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Abstract Natural killer (NK) cells play an important role in
virus control during infection. Many viruses have developed
mechanisms for subversion of NK cell responses. Murine
cytomegalovirus (MCMV) is exceptionally successful in
avoiding NK cell control. Here, we summarize the major
MCMV evasion mechanisms targeting NK cell functions
and their role in viral pathogenesis. The mechanisms by which
NK cells regulate CD8+ T cell response, particularly with
respect to the role of NK cell receptors recognizing viral
antigens, are discussed. In addition, we discuss the role of
NK cell receptors in generation and maintenance of memory
NK cells. Final part of this review illustrates how the NK cell
response and its viral regulation can be exploited in designing
recombinant viral vectors able to induce robust and protective
CD8+ T cell response.
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Introduction

Natural killer (NK) cells are innate immune cells primarily
known for their function in immune surveillance of viral
infections and tumors. NK cells also have an important role
in shaping the adaptive immune response through various
mechanisms including crosstalk with other cells of innate

and adaptive immunity. The importance of NK cells in control
of herpes viruses, including cytomegalovirus (CMV), is best
illustrated by the fact that individuals possessing NK cell
deficiencies are more susceptible to these viruses [1].
Studies of NK cell control of CMV infection revealed some
of the key features of NK cell biology. The mouse model of
CMV infection with murine CMV (MCMV) has been partic-
ularly informative. Similar to NK cell deficient humans, NK
cell-deficient mice are more susceptible to MCMV infection
and show impaired control of virus replication [2]. MCMV
uses various mechanisms to avoid NK cell recognition. The
significance of MCMV evasion of NK cells for virus control
in vivo is revealed by the fact that deletion of individual
MCMV genes involved in NK cell evasion results in virus
attenuation in NK cell dependent manner [3]. In addition,
certain mouse strains possess NK cell receptors able to drive
resistance toMCMVinfection [4]. Here, we discuss the role of
NK cell receptors in MCMV control and in regulation of
adaptive immune response. In addition, we discuss various
viral immunoevasion mechanisms aimed to compromise NK
cell function particularly with respect to using engineered
CMV mutants lacking NK cell immunoevasins as attenuated
vaccine vectors.

NK cell receptors

Antiviral functions of NK cells include various mechanisms:
(i) elimination of infected cells by release of cytotoxic gran-
ules, (ii) induction of apoptosis in target cells through Fas
Ligand (FasL) or TNF-related apoptosis-inducing ligand
(TRAIL), and (iii) secretion of cytokines. The activation of
NK cells is regulated by a repertoire of receptors sensing
cytokines induced by infection and those recognizing ligands
expressed on target cells [5]. Receptors sensing cytokines
potentiate NK cell function primarily by responding to type

This article is a contribution to the special issue on Immune Modulation,
properties and models of CMV - Guest Editor: Ofer Mandelboim

I. Brizić : T. Lenac Roviš :A. Krmpotić : S. Jonjić (*)
Center for Proteomics and Department of Histology and
Embryology, Faculty of Medicine, University of Rijeka, B.
Branchetta 20, 51000 Rijeka, Croatia
e-mail: stipan.jonjic@medri.uniri.hr

Semin Immunopathol (2014) 36:641–650
DOI 10.1007/s00281-014-0441-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the University of Rijeka

https://core.ac.uk/display/197698689?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I IFNs, as well as IL-12, IL-15, and IL-18. NK cells also
express a variety of germ-line encoded NK cell receptors
(NKRs) that can be grouped based on either their chemical
structure or role in NK cell response. Structurally, the majority
of NKRs belong to the C-type lectin-like family or
immunoglobulin-like family. Functionally, receptors may de-
liver either activating or inhibitory signal into the cell. Most of
the ligands recognized by NK receptors are MHC-I or MHC-
related molecules [4, 6]. Inhibitory receptors bind MHC-I
molecules expressed on virtually all cells, maintaining NK
cells in the state of inhibition. In mice, these include receptors
such as CD94/NKG2A, inhibitory Ly49 receptors and
KLRG1 [5]. Activating receptors are engaged by stress-
induced molecules and nonself peptides or ligands.
Examples of mouse-activating receptors are NKG2D, activat-
ing Ly49 receptors , NKp46 (NCR1), DNAM-1,
CD94/NKG2E, CD94/NKG2C, and CD16 (FcγRIII).
Engagement of some receptors, e.g., 2B4 or CD96, can result
in NK cell inhibition or activation, depending on the engage-
ment context [7, 8]. Distribution of NK cell receptors is
stochastic, making individual NK cells heterogeneous and
functionally diverse. Recent investigation that employed anal-
ysis of 28 receptors on human NK cells by cytometry coupled
to mass spectrometry (CyTOF) has showed that there are 6 to
30,000 diverse NK cell subpopulations per individual and
more than 100,000 NK cell subpopulations in analyzed group
of individuals [9]. Interestingly, the expression of inhibitory
receptors is genetically determined while the expression of
activating receptors is strongly influenced by environmental
stimuli.

Molecular mechanisms of MCMVevasion of NKG2D
and NCR1 receptors

In order to avoid recognition by activating NK cell receptors,
the virus needs to prevent the expression of their ligands on
the plasma membrane of infected cells. The molecular mech-
anisms behind the subversion of various ligands interacting
with the NKG2D receptor have been the subject of extensive
studies [3]. NKG2D is a c-type lectin-like receptor expressed
as a homodimer on majority of NK cells and functionally
conserved in humans and mice. In mice, it is also expressed
on someγδTcell, CD8 Tcell, and CD4 Tcell subpopulations,
where it functions as a costimulatory molecule [6, 10].
NKG2D receptor recognizes a broad set of ligands. In mice,
these ligands include murine UL-16 binding protein-like tran-
script −1 (MULT-1), H60 family (H60a, H60b, and H60c),
and retinoic acid early inducible cDNA clone-1 (RAE-1)
family (α-ε). Protein structure of these ligands is MHC class
I related and their expression is induced upon cellular stress,
infection, and transformation [10]. To avoid NK cell activa-
tion via NKG2D, MCMV encodes several inhibitors that

prevent the expression of NKG2D ligands on the surface of
infected cells (Fig. 1).

Under physiological conditions, surface expression of
NKG2D ligands is tightly controlled. The regulatory mecha-
nism of the surface expression of MULT-1 includes
ubiquitination and lysosomal degradation by cellular E3 li-
gases [11]. Once reaching the plasma membrane, MULT-1
recycles in clathrin-positive vesicles for a prolonged period of
time [12]. Upon MCMV infection, virus induces MULT-1
transcription but manages to prevent its surface expression
using two immunoevasins, m145 and m138 [12, 13] (Fig. 1).
MCMV protein m138 induces endocytosis of MULT-1 mol-
ecules that have reached the plasmamembrane and drive them
to lysosomal degradation [12]. The second viral inhibitor of
MULT-1, m145, targets mature MULT-1 protein in the secre-
tory pathway, after the trans Golgi compartment, even though
the complete mechanism is still not resolved [13]. The
MCMVmutant that lacks MULT-1 inhibitor m145 is severely
attenuated in vivo and this attenuation is NK cell dependent
[13]. The m138 MCMVmutant is also attenuated in vivo, but
m138 has been shown to have additional immunosubversive
functions that could render a virus lacking this gene more
susceptible to immune control [12, 14].

H60 family of NKG2D ligands comprises three members:
H60a, H60b, and H60c [15, 16]. MCMVinduces transcription
of H60b, but not of H60a or H60c genes [15]. MCMV has
devoted two inhibitors to prevent H60 surface expression [12,
17, 18]. MCMV proteins m155 and m138 target mature H60
molecules (Fig. 1). While m155 is ER resident protein in-
volved in the downregulation of H60 by proteasomal degra-
dation pathway, m138 downregulates H60 by lysosomal deg-
radation pathway [12, 17, 19]. The m155 is another MCMV
protein with dual immunosubversive function, since it in-
hibits the expression of CD40 in infected antigen-presenting
cells [19].

MCMV infection induces transcription of all five RAE-1
genes [20] by activating the phosphatidylinositol-3-kinase
(PI3K) pathway [21]. However, the virus prevents RAE-1
surface expression using two immunoevasins, m152 and
m138 (Fig. 1). The m152 viral protein is the first identified
MCMV regulator with the ability to subvert NKG2D-
mediated immune response [20, 22]. m152 is also known for
its ability to retain MHC class I molecules in the ER [23] and
the RAE-1 proteins are retained in the same compartment by
m152 [24]. In contrast to m152, which retains all RAE-1
isoforms, m138 exclusively downregulates the surface resi-
dent RAE-1εmolecules. RAE-1δ has the longest half life due
to the lack of specific PLWY motif that is present in other
RAE-1 isoforms. As such, RAE-1δ remains present on the
surface of infected cells for a prolonged period of time and
increases the NKG2D-mediated resistance to MCMV infec-
tion. The PLWY motif has also been shown to influence the
affinity of m152 to interact with the RAE-1β molecules [25].
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Recently, the crystal structure of RAE-1γ in the complex with
m152 was solved and proposed as a model for interaction of
MHC-I-like ligands with MHC-I-like viral inhibitors [26].

Altogether, a range of viral immunoevasins is dedicated to
preventing the expression of NKG2D ligands on the surface of
infected cells. Moreover, a significant portion of NKG2D
ligands is regulated by two MCMV immunoevasins targeting
corresponding ligands at different cellular compartments.
When either of the viral immunoevasins is missing, the re-
spective NKG2D ligand is expressed on the surface of the
infected cell, in spite of the presence of the second viral
inhibitor. Thus, the redundancy of viral inhibitors of
NKG2D is functionally relevant.

Natural cytotoxicity receptors (NCRs) are a family of acti-
vating NK cell receptors. Three NCRs are described on human
NK cells: NKp46 (NCR1; CD335), NKp44, and NKp30 [27].
NKp46 is the only NCR with ortholog in mouse, named
NCR1. While cellular ligand for NCR1 is still unknown,
several pathogen-derived ligands have been reported
(reviewed in [28]). The influenza hemagglutinin (HA) was
shown to be a ligand for human NKp46 as well as mouse
NCR1. Thus, mice missing the NCR1 receptor are more
susceptible to lethal influenza infection [29]. Staining with
NCR1 fusion protein revealed that MCMV is able to down-
regulate NCR-1 ligands from the surface of infected cells, and
by doing so provides opportunity to avoid NK cell control
(unpublished observation and [3]). Consequently, there is no
difference in the early control of MCMV infection between

NCR1gfp/gfp and wt mice (unpublished observation).
However, the identity of the downregulated ligands or the
molecular mechanism engaged is still not known. In contrast,
NK cells from another mouse model of NCR1 deficiency,Noé
mice, are hyperresponsive and these mice show enhanced
resistance to MCMVand influenza infection [30]. The differ-
ences may be explained by the fact that Noémice bear a point
mutation in the gene encoding NCR1 receptor that leads to its
absence from the cell surface, although the protein is pres-
ent intracellularly. On the other hand, in NCR1gfp/gfp mice,
part of the gene encoding for NCR1 has been replaced with
gene encoding gfp, resulting in complete loss of NCR1
expression [29].

Evasion of paired receptors and receptors with dual
function

Some activating and inhibitory receptors can be engaged by
the same cellular ligand. The best example is PVR (CD155)
which serves as a ligand for the activating receptor DNAM-1,
inhibitory receptor TIGIT, and CD96, the receptor with dual
function [7, 31]. The human counterparts of TIGIT and
DNAM-1 receptors appear to be more promiscuous and bind
other members of the nectin or nectin-like families, but in
mice, their recognition seems to be restricted to PVR and to
another, still unidentified ligand expressed on the mouse pe-
ripheral blood mononuclear cells (PBMCs) [32]. CMV
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Fig. 1 MCMV subverts NK cell receptors by different molecular mech-
anisms. Most of MCMV immunoevasion mechanisms are aimed to
prevent surface expression of ligands for activating NK cell receptors or
include MHC I manipulation to avoid the ‘missing self’ recognition.
Activating receptors NKG2D and NCR1 as well as 2B4 receptor are
subverted by downregulation of ligands required for their engagement. In
case of 2B4 and NKG2D, the downregulation is mediated by MCMV

proteins that target either plasma membrane resident ligands (m138) or
ligand maturation (m152), or induce their degradation (m154). Inhibitory
Ly49 receptors are subverted either by expression of MHC homologues
(m157), proteins mediating surface repopulation of MHC class I (m04),
or by currently undefined mechanisms. However, certain mouse strains
encode activating Ly49 receptors able to recognize viral products (m157,
H-2Dk/d/m04)
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modulates the surface expression of PVR and its availability
to ligate its cognate receptors. The UL141 protein of HCMV
actively prevents expression of PVR on the cell surface [33].
However, recent data show the upregulation of PVR on
MCMV-infected dendritic cells and macrophages in vivo,
contributing to DNAM-1-mediated generation of MCMV-
specific effector and memory NK cells [34]. It will be inter-
esting to see how MCMV modulates surface expression of
PVR on other permissive cell types in vitro and in vivo, as
well as what the consequences of viral modulation on the NK
cell activation following the recognition by DNAM-1, CD96,
and TIGIT are.

The signaling lymphocyte activation molecule (SLAM)
family of receptors is expressed on various immune cell types,
including NK cells [8]. HCMV downregulates CD48, a
SLAM family member, while the viral UL7 protein, which
strongly resembles SLAM receptor’s sequence, is able to
attenuate proinflammatory cytokine production in myeloid
cells [35, 36]. MCMV also downregulates SLAM family
members including CD48, CD84, CD229, and Ly108 [37].
The MCMV m154 protein targets CD48 molecule, leading to
its degradation by both lysosomal and proteasomal pathways
(Fig. 1). CD48 is the interaction partner of the 2B4 receptor,
also being a SLAM family member [8]. The 2B4 receptor is
another example of NK cell receptor with dual function, since
its engagement by CD48 can lead to activating or inhibitory
signaling. It has been proposed that the dual function of 2B4
is regulated by CD48 and 2B4 expression levels, as well as
by the availability of the signaling adaptor protein SAP in NK
cells [38]. The MCMV m154 deletion mutant virus has
significantly reduced titers in all organs and depletion of
NK cells has restored replication to the wt level, indicating
that engagement of 2B4 receptor in this case leads to NK cell
activation [37].

Ly49 receptors: viral subversion of ‘missing self’
mechanism and host counter responses

The Ly49 family comprises more than 20 members of acti-
vating or inhibitory receptors, some of them being paired
receptors, expressed in different combinations and predomi-
nantly on NK cells [4]. The MHC class I molecules are
common ligands of the inhibitory Ly49 NK cell receptors
and their expression protects healthy cells from being lysed
by NK cells, i.e., they are recognized as self. In order to avoid
lysis by CD8+ T cells, MCMV downregulates MHC I mole-
cules from the surface of infected cells using two viral pro-
teins, m06 andm152 [39]. Absence ofMHC I renders infected
cells susceptible to the ‘missing self’ recognition and lysis by
NK cells. However, MCMV possesses a mechanism aimed at
evading the ‘missing self’ recognition. The MCMV m04
protein antagonizes the function of m06 and m152 by binding

to MHC I molecules and escorting them to the cell surface
[40]. In addition, MCMVencodes MHC-I homologues aimed
to engage inhibitory Ly49 receptors (Fig. 1) [41–43].

The inhibitory receptor Ly49I interacts with the MCMV-
encoded MHC class I homologue m157 [41]. More recently,
another inhibitory Ly49 receptor, Ly49C, has been shown to
bind the m157 protein from wild type MCMV isolate G1F
[42]. Interestingly, the inhibitory potential of Ly49C is cis
regulated by the host’s MHC I molecules [44]. The viral
protein m157 is also recognized by the activating Ly49H
receptor [45]. This might represent an evolutional host’s
response to the selective pressure imposed by the m157
evasive mechanism. The m157 gene sequence is highly
variable among MCMV isolates and under selective pres-
sure, in Ly49H positive mice, virus is able to mutate m157
[46, 47]. A crystal structure of the Ly49H receptor in com-
plex with m157 identified the helical stalk of Ly49H mole-
cule as a binding site of m157 [48]. In parallel, a binding
model has shown that the final complex is a result of positive
cooperative binding mechanism of two viral proteins to the
Ly49 molecule [49]. The GPI anchor of m157 has been
shown to be important for the m157 availability on the cell
surface and corresponding efficacy of the Ly49-m157 com-
plex formation [50].

In addition to mouse strains bearing Ly49H receptor, MA/
My is another mouse strain that confers the MCMVresistance
to the ability of Ly49 receptors to recognize viral products
(reviewed in [4]). However, the activating Ly49P receptor
specifically recognizes MCMV-infected cells in the context
of H-2Dk molecule [51]. This recognition involves the m04
protein of MCMV [52] and another still undefined viral com-
ponent. Interestingly, another Ly49 family member, the inhib-
itory receptor Ly49G2, which also recognizes H-2Dk mole-
cules, further contributes to the MCMV resistance of MA/My
mice [53]. Ly49G2 enables MCMV protection by licensing
NK cells, shown to be essential for efficient detection and
elimination of MCMV infected targets [54].

A huge coding potential of MCMV has enabled the virus
to encode a variety of MHC class I homologues that could
potentially attenuate NK cell response by engaging inhibi-
tory NK cell receptors [55]. However, the alignment of
putative MHC-I-like molecules of MCMV, mostly the mem-
bers of the m145 family (m17, m145–m158), with classical
MHC-I molecules have revealed varying and in general low
level of sequence identity [56]. Nevertheless, currently avail-
able crystal structures of MCMV proteins m144, m152,
m153, and m157 have confirmed their MHC-I-like fold
[26, 56]. Direct recognition of MCMV product by NK cells,
limited to a few mouse strains and best represented by
m157, confirmed possible deleterious consequences for the
virus in case when its MHC I homologue exposed on the
cell surface is recognized by an activating counterpart of the
immune system.
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Memory-like NK cells in CMV infection

NK cells are traditionally considered to be a part of the innate
immune system, as they lack gene-recombination machinery
and are thought to be relatively short-lived. However, recent
data show that NK cells can also mount an efficient long-term
recall response [57–59]. Moreover, memory-like NK cells
have been reported both in mice and humans [57–60]. The
MCMV specific memory-like NK cells have been detected
after MCMV infection of mouse strain bearing Ly49H recep-
tor able to recognize viral m157 protein [59]. The interaction
of Ly49H and m157 leads to IL-12 dependent expansion of
Ly49H+ NK cells [61]. The acute phase of infection is follow-
ed by the contraction and formation of a pool of long-lived
Ly49H+ NK cells, able to undergo secondary expansion and
provide enhanced protection against MCMV infection [59,
61]. Although the mechanism behind formation of memory-
like NK cells is still elusive, recent report shows that besides
Ly49H, DNAM-1 signaling is required [34]. In addition, as
for T cell memory, proapoptotic factor Bim is required for
contraction and generation of mature memory Ly49H+ NK
cells [62]. In humans, such antigen-specific memory-like NK
cells have not been characterized, even though the human
NKG2C-activating NK cell receptor seems to play a role in
the specific recognition of HCMV [63]. The NKG2C+ NK
cells are found in high frequencies in HCMV seropositive
individuals and expand greatly during HCMV viremia or
reactivation. Expansion of NKG2C+ NK cells has also been
observed during hantavirus infection or chikungunya virus,
chronic hepatitis B or C virus and HIV infections, but only in
HCMV seropositive individuals (reviewed in [64]). However,
during EBV infection NKG2C+ NK cells do not expand;
instead, CD56dimNKG2A+CD57+ NK cell population ex-
pands in CMV positive individuals and persists long-term
[65]. In the majority of HCMV seropositive donors,
NKG2C+ NK cells are associated with lack of FcRγ expres-
sion [66, 67]. FcRγ-deficient NK cells respond more robustly
through CD16, compared to FcRγ-expressing NK cells [66].
The analogous NK cells in mouse are unlikely to be found,
since mouse FcRγ-deficiency abrogates CD16 expression.
The classical T cell memory response after vaccination or
exposure to antigen is characterized by decay over time. In
case of CMV infection CD8 T cell memory inflation is
observed, driven by continuous virus reactivations [68].
Could it be that the same reactivations, i.e., antigen and other
accompanied forms of stimulation, also affect NK cells and
sustain their numbers? The study of Foley et al. on hemato-
poietic cell transplants supports such hypothesis [63].
Transplanted NKG2C+ NK cells declined in CMV seroneg-
ative recipients while they expanded in CMV seropositive
recipients, even in the absence of viremia, indicating that
expansion of NKG2C+ NK cells requires the presence of
CMV antigen [63].

Besides CMV specific, cytokine-induced and liver-
restricted memory-like NK cells have also been described
[57, 58]. Cytokine-induced memory-like NK cells derive up-
on stimulation with IL-12, IL-15, and IL-18 [58]. These cells
show prolonged presence after adoptive transfer in naïve mice
and produce more IFN-γ after restimulation compared to
naïve NK cells [58]. Similarly, IL-12/15/18 prestimulated
human NK cells show increased proliferation and effector
function [69, 70] and express high levels of high affinity IL-
2 receptor [69]. Interestingly, MCMV infection can also lead
to induction of high affinity IL-2 receptor on NK cells [71].

Liver-restricted memory-like NK cells are induced upon
sensitizing T and B cell deficient Rag2−/− mice with haptens
[57]. In this model, mice could discriminate between haptens
during secondary challenge. Therapeutic potential of these
cells has been shown by vaccination of mice with viral anti-
gens that induced hepatic memory-like NK cells, providing
antigen-specific protection against several viruses [72].
Hepatic memory-like NK cells are dependent on the chemo-
kine receptor CXCR6 [72], IFN-α, IFN-γ, and IL-12 [73] and
are additionally defined by the expression of CD49a and by
the absence of DX5 [74]. Interestingly, these cells seem to
originate from hepatic stem cells, not from bone marrow [74].
It remains to be tested whether CMV infection also induces
similar memory-like NK cells in liver.

NK cell memory is an exciting new research field with a
possible huge therapeutic potential. However, many questions
are still unanswered. CMV-specific memory-like NK cells
could be explained by virus persistence and continuous stim-
ulation. Cytokine-induced memory-like NK cells exert en-
hanced effector functions, for example IFN-γ production.
This could be due to the epigenetic changes in IFNG locus,
as it was shown for memory T cells [75], or to posttranscrip-
tional IFN-γ mRNA regulation [58]. Such mechanism could
also drive NK cell memory during CMV infection. Hepatic
memory NK cells are evenmore complex as they break at least
two dogmas in immunology. Not only that they obtain mem-
ory properties, but they also show specificity for many anti-
gens [72]. Are memory-like NK cells beneficial for the host in
control of viral infections and tumors? In CMV seropositive
individuals increased frequency of NKG2C+ NK cells is per-
sistent for lifetime. Expansion of certain NK cell subpopula-
tion could partially alter NK cell repertoire that might lead to
reduction of immune surveillance capacities. However,
NKG2C+-associated FcRγ deficiency enhances NK cell re-
sponse via CD16 [66].Moreover, high percentage of NKG2C+

NK cells is associated with reduced HIV progression [76]. In
addition, cytokine-induced memory-like NK cells are protec-
tive against tumors in mouse model [69]. However, the study
in patients following orthotopic liver transplantation indicated
that while the presence of immature NKG2C− NK cells
(NKG2AhighCD62LhighCD57lowNKG2C−TNF-αlowIFN-γhig-

h) is associated with the development of certain tumor types
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(genitourinary tumors), expansion of NKG2C+ NK cells
(NKG2AlowCD62LlowCD57highNKG2C+TNF-αhighIFN-γlow

NK cells) is also associated with the development of specific
tumors (head/neck or colorectal tumors) [77].

NK cell regulation of CD8+ T cell responses
during MCMV infection

The influence of NK cells on CD8+ T cell response is still the
matter of investigation, but currently available body of data
indicates that the outcome is dependent on the infection con-
text which can lead to the enhancement or reduction of CD8+

T cell response magnitude [78–81]. Antiviral NK cell activi-
ties are shaping CD8+ T cell response as they affect viral load,
as well as amount of cytokines produced early during infec-
tion. Besides, recent reports indicate that regulation of CD8+ T
cell response by NK cells is much more complex as it was
shown that NK cells canmodulate Tcell response also directly
by killing T cells [82–84] or indirectly by interacting with
APCs [85].

Most of the evidence describing regulation of CD8+ T cell
response by NK cells is generated on the MCMV model of
infection. Su et al. have been first to report that depletion of
NK cells in C57BL/6 mice leads to enhanced CD8+ T cell
response [81]. This enhancement is characterized by increased
IFNγ production and CD8+ T cell expansion. On the other
hand, strong NK cell response induced by interaction of
Ly49H and m157 negatively influences long-term virus-spe-
cific CD8+ and CD4+ T cell responses [79]. This is achieved
by NK cell-mediated elimination of infected DCs and subse-
quent limitation of CD8+ T cell priming. We have shown that
lack of m157 and Ly49H interaction, upon infection of
C57BL/6 mice with Δm157 mutant virus, induces stronger
CD8+ T cell response when compared to infection with wt
MCMV [78]. This effect is mediated by higher levels of IFNs
and other proinflammatory cytokines, increased antigen load
and preservation of early cDCs’ function in the absence of
m157. Further, upon MCMV infection of perforin knockout
mice, Ly49H+ NK cells suppress CD8+ T response by secre-
tion of anti-inflamatory cytokine IL-10 [86]. Additionally, it
has been reported that IL-10 can also reduce CD4+ T cell
priming by interfering with NK-DC crosstalk [87]. Viral che-
mokine MCK-2 has also been shown to be implicated in NK
cell-mediated shaping of CD8+ T cell response [88]. MCK-2
recruits inflammatory monocytes to the site of infection, con-
tributing to the enhancement of NK cell response, resulting in
decreased CD8+ T cell response. Even though the aforemen-
tioned studies indicate that stronger NK cell response will lead
to weaker CD8+ T cell response, some studies have demon-
strated quite the opposite finding. Strong activation of NK
cells mediated through Ly49H-m157 interaction has resulted
in accelerated CD8+ T cell responses due to limiting IFNα/β

production by pDCs and preservation of splenic cDCs [80].
Additionally, Ly49G2+ NK cells, able to recognize infected
cells, mediate faster recovery of cDCs, leading to enhanced
CD8+ T cell response [54].

The role of NK cells in shaping T cell response has also
been shown in lymphocytic choriomeningitis virus (LCMV)
infection. Waggoner et al. have demonstrated that NK cells,
otherwise unable to directly control LCMV infection, can
regulate CD8+ T cells response to this virus [82–84].
Regulation is achieved by elimination of activated helper
CD4+ T cells by NK cells, an effect strictly dependent on the
infection conditions and virus dose. The results of this study
have indicated that NK receptor 2B4 plays a role in specific
CD4+ T cell elimination [82]. Another study has shown that
NK cell regulation of T cell response to LCMV is a conse-
quence of perforin-dependent NK-cell functions; however, the
authors claim that this effect is mediated through NKG2D
[89]. In addition, recent studies showed that sensing of type I
IFNs protects T cells from elimination by NK cells during
LCMVinfection [83, 84]. Type I IFN receptor deficient Tcells
are expressing lower levels of ligands for inhibitory receptors,
MHC I and Qa-1b [84], and are recognized and eliminated by
NK cells in NCR1 dependant manner [83]. Whether NK cells
can shape T cell response by such mechanism during MCMV
infection, is still not known.

Exploiting the ligands for activating NK cell receptor
to potentiate efficacy of live attenuated viral vaccine
and vaccine vectors

As CMV induces strong CD8+ T response and has a large
genome allowing the insertion of multiple foreign genes, it is
increasingly being recognized as an excellent vaccine vector.
A recent report by Hansen et al. has demonstrated how ma-
nipulation of CMV vector can lead to substantial improve-
ment of vaccine properties [90]. For example, the absence of
rhesus CMV (RhCMV) orthologs of HCMV pUL128-131A
results in dominant MHC-II-restricted CD8+ T cell response,
while the expression of US11 ortholog suppresses the induc-
tion of canonical simian immunodeficiency virus (SIV) epi-
tope specific CD8+ T cell responses. Vaccination with such
RhCMV vector bearing SIV antigens has been successful in
protecting 50 % of the vaccinated macaques upon lethal SIV
challenge [90].

Since NKG2D is expressed on NK and CD8+ T cells, it
represents an ideal candidate for targeted manipulation of
vaccine properties. Diefenbach et al. have demonstrated that
tumors ectopically expressing NKG2D ligands, RAE-1β and
H60, induce potent T cell response and sensitize NK cells
in vivo [91]. Vaccination with such tumor cells could protect
mice from tumors that do not express RAE-1β and H60
indicating that NKG2D ligands potentiate the priming of
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tumor specific CD8+ T cells. We have recently tested the
impact of expression of NKG2D ligand RAE-1 on the
immunobiology of the recombinant virus possessing RAE-
1γ in the place of its viral inhibitor [92]. In spite of dramatic
attenuation, such virus demonstrates a robust capacity to
induce CD8+ T cell immune response and protect vaccinated
mice against challenge infection (Fig. 2). Moreover, on the
backbone of RAE-1γ expressing MCMV, we constructed
several vectors expressing foreign CD8 epitopes and demon-
strated enhanced CD8+ T responses to vectored antigens [92,
93]. Surprisingly, the enhanced CD8+ T cell response by
MCMVvector expressing RAE-1γwas observed also in mice
lacking NKG2D receptor or in mice treated with blocking
anti-NKG2D mAbs. Therefore, the results indicate additional

immune function of RAE-1γ protein. Further studies are
needed to characterize this NKG2D independent function of
RAE-1 including characterization of the so far unknown pu-
tative additional receptor.

Since recombinant MCMVexpressing NKG2D ligand has
shown such tremendous vaccine properties, translation of this
knowledge to HCMV system is of great importance. UL16
binding protein 2 (ULBP2 protein), human RAE-1γ homo-
logue, is the most promising candidate for the development of
analogous HCMV vaccine vector. Recent progress in human-
ized mouse models could provide an opportunity for investi-
gation of such vaccine model. Up to now several approaches
have been applied to construct CMV vaccine/vaccine vectors,
including spread deficient virus [94], cell culture-derived virus
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1γMCMV-List) is attenuated following vaccination compared to wt
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bearing mutations (e.g., in UL128-131A genes) [90], deletion
of immunoevasion gene-rich regions [95], and others. An
important question is, can CMV vector be engineered so that
these beneficial manipulations act synergistically? For exam-
ple, could combining NKG2D ligand insertion in vector with
no gH/gL/pUL128-131A complex lead to an even better
CD8+ T cell response, i.e., protection?

Conclusions

The understanding of the NK cell role has evolved over the
years: from plain innate eliminators of transformed and infected
cells to complex immune cells able to strongly shape adaptive
immunity and acquire adaptive functions. CMV is a complex
DNA virus able to manipulate a plethora of immune response
mechanisms including recognition by NK cell receptors. Yet, the
host’s evolutionary response seems to be capable of undermining
some CMV evasion mechanisms, strongly influencing the im-
mune response, and resulting in resistance to CMV. Recent
studies have demonstrated that CMVs encodemuchmore genes,
transcripts and proteins than we originally thought [96, 97]. This
complexity of virus and host immune response parameters and
outcomes may explain some of the apparent discrepancies in the
published literature. Better understanding of NK cells/CMV
interactions will certainly help guide new strategies for the
rational design of CMV vaccine and vaccine vectors. Indeed,
several recent studies have demonstrated that recombinant
CMVs are attractive candidates as vaccine vectors for a number
of clinically relevant infections [90, 93, 98].
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