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RESUMO 

 

Nos últimos anos o interesse pelos peptídeos bioativos de Spirulina sp. (Arthrospira) tem 

aumentado enormemente devido a seu estado Geralmente reconhecido como seguro (GRAS) e 

seus potenciais benefícios para a saúde. Essa microalga pode ser utilizada em diferentes 

alimentos funcionais, para fins médicos, cosméticos e nutracêuticos devido às suas propriedades 

biológicas como anti-hipertensivas, antioxidantes, anti-hialuronidase e outras. No presente 

trabalho de investigação, as fracções de peptídeos de Spirulina maxima foram produzidas através 

de três processos diferentes de hidrólises, utilizando duas proteases diferentes. Em seguida os 

extratos foram submetidos a um processo de purificação pelo método de filtração tangencial 

(membranas de 2 µM e 10 kDa), e os fragmentos obtidos no permeado de 10 kDa foram 

parcialmente caracterizados e avaliadas suas capacidades antioxidantes (sequestro de radicais, 

atividade quelante de ferro, antimicrobiana, anti-inflamatória e anticolagenase. Fração de 

peptídeos obtido do primeiro hidrolisado (PHA) apresentou atividade antioxidante capturando 

aos radicais DPPH com um valor de IC50 21,25 µg/ml e ABTS com IC50 9,5 µg/ml e TEAC 

465,7 Trolox µM/µg de amostra, e atividade quelante mostrou uma inibição de 97,3% e um IC50 

6,99 µg/ml. Fração de peptídeos obtido do segundo hidrolisado (PHP) apresentou atividade 

antimicrobiana com concentração inibitória media (IC50) e concentração bactericida mínima 

(CBM) de 0,34 e 0,63 mg/ml (Bacillus subtilis), IC50 e CBM 0,62 e 0,63 mg/ml (Staphylococcus 

aureus), IC50 e CBM 0,99 e 1,25 mg/ml (Salmonella typhi), IC50 e CBM 0,94 e 1,25 mg/ml 

(Escherichia coli). Fração de peptídeos obtido das duas enzimas (PHS) apresentou atividade 

antioxidante capturando aos radicais DPPH com um valor de IC50 17,93 µg/ml e ABTS com IC50 

8,6 µg/ml e TEAC 540,7 Trolox µM/µg de amostra, anti-inflamatória com inibição da enzima 

hialuronidase 39% e IC50 0,92 mg/ml, e anticolagenase com uma inibição 92,5% e IC50 32.49 

µg/ml. Os resultados permitem concluir que isolado proteico de Spirulina pode ser uma fonte 

para obtenção de extratos peptídicos (PHA, PHP e PHS) com atividade antioxidante, quelante, 

antimicrobiana, anti-inflamatória, anticolagenase. 

 

Palavras-chave: Spirulina máxima, peptídeo, atividade antioxidante, quelante, antimicrobiana, 

anti-inflamatória, anticolagenase. 
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ABSTRACT 
 

In the last years, the interest by the bioactive peptides Spirulina sp. (Arthrospira) is increasing, 

because of its Generally Regarded as Safe (GRAS) status, and their potential health benefits. 

These peptides can be used in different functional foods, for medical purposes, cosmetic and 

nutraceuticals, due to biological properties such as antihypertensive, antioxidative, anti-

hyaluronidase and others. In the present investigation, Spirulina maxima were produced through 

of three hydrolyses process. After, the peptides fractions were purified through tangential 

filtration (membrane of 2 µM and 10kDa), and the fragments obtained below 10 kDa were 

partially characterized and determinate their antioxidant (radical scavenging, iron-chelating), 

antimicrobial, anti-inflammatory, and anti- collagenase. The peptide fraction obtained from the 

first hydrolyzed (PHA) presented antioxidant activity by capturing the DPPH radicals with a 

value of IC50 21.25 µg/ml and ABTS with IC50 9.5 µg/ml and TEAC 465.7 Trolox µM/µg 

sample, iron-chelating showed inhibition of 97.3% and IC50 6.99 µg/ml. Meanwhile, the peptide 

fraction obtained from the second hydrolyzed (PHP) presented antimicrobial activity with the 

half maximal inhibitory concentration (IC50) and the minimum bactericidal concentration (MBC) 

0.34 mg/ml and 0.63 mg/ml (Bacillus subtilis), IC50 and MBC 0.62 mg/ml and 0.63 mg/ml 

(Staphylococcus aureus), IC50 and MBC 0.99 mg/ml and 1.25 mg/ml (Salmonella typhi), IC50 

and MBC 0.94 mg/ml 1.25 mg/ml (Escherichia coli). The peptide fraction obtained from the two 

enzymes (PHS) showed antioxidant activity by capturing the DPPH radicals with a value of IC50 

17.93 µg/ml and ABTS with IC50 8.6 µg/ml and TEAC 540.7 Trolox µM/µg sample, anti-

inflammatory with inhibition of 39% and IC50 0.92 mg/ml, and anti-collagenase with inhibition 

92.5% and IC50 32.49 µg/ml. The results indicated that protein isolate from Spirulina maxima 

can be a source for obtaining of peptides fractions (PHA, PHP and PHS) with activity 

antioxidants, iron-chelating, antimicrobial, anti-inflammatories and anti-collagenase. 

 

Keywords: Spirulina maxima, peptide, activity antioxidants, iron-chelating, antimicrobial, anti-

inflammatories and anti-collagenase.  
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INTRODUCTION 

 

In the actuality, numerous diseases and physiological and morphological disorders are 

increasing and affecting the quality of life. Many of these disorders are associated with abuse of 

synthetic drugs and additives. For this reason, increasing the search for new drugs and functional 

food products able to fight degenerative illnesses has increased. Natural sources are especially 

appealing in this context, en especially proteins and their derivatives, including peptides 

( S E G U R A  C .  e t  a l . ,  2 0 1 1 ;  S U L T A N  e t  a l . ,  2 0 1 6 ) .  

Bioactive peptides (BPs) are specific protein fragments, formed by amino acids joined 

by peptide bonds, that are produced by cleavage from parent proteins, usually composed by 

one chain of 2 - 20 amino acids (HARNEDY; FITZGERALD, 2012; LAFARGA; ÁLVAREZ; 

HAYES, 2017; SULTAN et al., 2016). The BPs present a positive impact on body functions 

and may influence in the health, as they show high biological activities (e.g. opioid, 

hypersensitive, antithrombotic, and antimicrobial) associated with low toxicity and high 

specificity (SHARMA; SINGH; RANA, 2011; SINGH; VIJ; HATI, 2014). The activity of these 

peptides is dependent on the structure, hydrophobicity, charge, and other factors, and a single 

peptide may have more than one activity (MEISEL; FITZGERALD, 2003; WIJESEKARA; 

KIM, 2010). 

Bioactive peptides are produced by means of the following mechanisms: a) during the 

fermentation of food using proteolytic starter cultures, b) as a result of the degradation of dietary 

proteins by digestive enzymes in vivo, c) as a result of the enzymatic action of digestive enzymes 

in vitro (CICERO; FOGACCI; COLLETTI, 2017; MUKHOPADHYA; SWEENEY, 2016; 

OVANDO et al., 2016). The most common method is enzymatic hydrolysis, which does not 

use organic solvents or toxic chemicals, and is more specific and controlled (CLARE;  

SWAISGOOD,  2000 ;  ZINOVIADOU;  GALANAKIS,  2017) .  

Marine cyanobacteria are significant sources of several bioactive compounds and, 

therefore, they may be used in several biological applications related to health benefits, and 

nutraceuticals ( D E  J E S U S  R A P O S O ;  D E  M O R A I S ;  D E  M O R A I S ,  

2 0 1 3 ;  M I  e t  a l . ,  2 0 1 7 ) .  Spirulina (Arthrospira) has been used by humans as food 

since ancient times due to its high content of proteins (43-70%), essential amino acids, and 

vitamins (BILLS; KUNG, 2014; KHAN; BHADOURIA; BISEN, 2005) Furthermore, the 
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pharmaceutical industry has shown great interest in Spirulina for its biotechnological and 

nutritional properties, as well as its GRAS (Generally Regarded as Safe) status by Food and 

Drug Administration (FDA) (OLIVEIRA et al., 2013). 

Studies have shown that Spirulina proteins hydrolyzed with commercial proteases result 

in bioactive peptides with possible health promoting properties such as antioxidant effect 

(SAFITRI et al., 2017), Anti-allergic effect (VO et al., 2014), anticancer effect, antimicrobial 

activity (JANG; PARK, 2016), angiotensin I-converting enzyme (ACE) inhibiting activity (HEO 

et al., 2015). In addition, a large variety of peptides of marine origin have been discovered, but 

few Spirulina peptides have been identified. Thus, the objective of this study is the generation of 

bioactive peptides of Spirulina maxima through enzymatic hydrolysis for determination of the in- 

vitro bioactivity of the hydrolysates. 
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OBJETIVE 
 

 
The aim of this study was the production of bioactive peptides of Spirulina maxima 

through enzymatic hydrolysis for determination of biological activity. 

 

 

 
Secondary objectives 

 

 
 Evaluate the proximal composition of biomass of Spirulina maxima. 

 Obtain the protein isolate of biomass from Spirulina maxima. 

 Hydrolyze the protein isolate by two methods (single-step and sequential-step). 

 Evaluate the degree of hydrolysis and the concentration of peptides of hydrolyzes. 

 Purify and identify the peptides fractions of Spirulina maxima. 

 Evaluate the antioxidant, iron-chelating, antimicrobial, anti-inflammatory and anti-

collagenase activity in-vitro. 
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CHAPTER 1: THEORETICAL FRAMEWORK 

 

1. Bioactive Peptide 

 

Bioactive peptides (BPs) are specific protein fragments, and in addition to act as amino 

acids and nitrogen sources, they have a positive impact on body functions and may influence in 

the health (HARNEDY; FITZGERALD, 2012; SHARMA; SINGH; RANA, 2011; SINGH; VIJ; 

HATI, 2014). BPs can be obtained from diverse raw materials, such as: plants, animals, 

macroalgae, microalgae, seafood, and fungi (HAYES, 2013; KITTS; WEILER, 2003; 

SHARMA; SINGH; RANA, 2011). 

The bioactive peptides are naturally occurring biomolecules, and are released by 

processes such as (a) microbial fermentation of proteins by proteolytic microbes, (b) proteolysis 

by enzymes from plants or microorganisms, and (c) proteolysis by gastrointestinal enzymes 

(AGYEI et al., 2016; SAMARAKOON; JEON, 2012). Nevertheless, especially in food and 

pharmaceutical industries the enzymatic hydrolysis method is preferred for production of BPs, 

because of the lack residual organic compounds and toxic chemicals in the end product (KADAM 

et al., 2015; LAFARGA; ÁLVAREZ; HAYES, 2017). Thus, two factors can determine the 

generated bioactive peptide: the protein substrate and the specificity of the enzyme(s) which is 

used to generate the peptide (HARNEDY; FITZGERALD, 2012). The size of BPs usually 

contains 3–20 amino acid residues in length (WALTHER; SIEBER, 2011). The bioactive peptide 

can be absorbed by the intestine and be transported out intact in the circulatory system, where 

they exert physiological effects or local effects on the gastrointestinal system (MARCONE; 

BELTON; FITZGERALD, 2017; SEGURA C. et al., 2011). The bioavailability of peptides 

molecules depends on their ability to cross the intestinal mucosa and by the resistance to peptidase 

degradation of both the intestinal tract (RENUKUNTLA et al., 2013; VERMEIRSSEN et al., 

2004). Furthermore, depending on the amino acid sequence, structure, molecular weight, 

hydrophobicity, charge, and other factors, they may be induced several biological functions such 

as antioxidant, anticancer, antihypertensive, antimicrobial, anti-obesity, immunomodulatory , 

metal-chelating (SULTAN et al., 2016). Also, some peptides may exhibit several properties, 

where specific peptide sequences may possess two or more different biological activities (Table 3) 

(HARNEDY; FITZGERALD, 2012; KIM; WIJESEKARA, 2010). 
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Figure 1-Example of possible structures of bioactive peptides. 

 

2. Enzymatic hydrolysis for peptide production 

 

In the actuality, the methodology most used for protein breakdown and to generate 

functional peptide is enzymatic hydrolysis, where the enzymes applied could be non -

gastrointestinal (non-GI) proteases (e.g., papain, alcalase and thermolysin) from bacterial, 

fungal or plant sources or gastrointestinal ( G I )  proteases (e.g., pepsin, trypsin and 

chymotrypsin) of animal origin (KORHONEN; PIHLANTO, 2003; SULTAN et al., 2016). 

For production of peptides with potential impact on health or food quality is important to 

select the appropriate proteolytic enzyme and in addition perform the process at the optimal 

physicochemical conditions (pH, temperature, incubation time, flow rate), in order to maximize 

the yield (hydrolysis degree), the activity of proteolytic enzyme, due to considerably 

influence the molecular weight distribution and fractions of peptides; affecting the target 

bioactivity (LIU et al., 2016; SARMADI; ISMAIL, 2010). Furthermore, in this process of 

hydrolysis, if is necessary, can be used simultaneously two or more enzyme or sequentially for 

production of novel BPs (ALUKO, 2012; OVANDO et al., 2016). For this reason, is 

fundamental the search of suitable enzymes for targeted bioactivity and optimize the hydrolysis 

degree using the bioactivity as response factor also. 

Marine bioactive peptides possess a variety of beneficial biological functionalities and 

have many physiological effects in the human body ( H A Y E S ,  2 0 1 3 ;  K I M ;  

W I J E S E K A R A ,  2 0 1 0 ) . For example, several studies have shown that Spirulina 

protein hydrolyzed with commercial GI proteases and non-GI proteases generates peptides 

 

NH3 

H O O 
O 

N + - 

H H3N NH O 

N OH  
NH 

O 
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Gly-Gly Thr-Gly-Gly-Lys 



6  

with therapeutical effects in the health ( K I M ;  W I J E S E K A R A ,  2 0 1 0 ;  O V A N D O  e t  

a l . ,  2 0 1 6 )  (Table 1). For the food and pharmaceutical industries, the use of enzymatic 

hydrolysis is preferred, in the production of bioactive peptides, because the process gives 

better yields and purities than organic solvent extractions (ZAMBROWICZ et al., 2013). 

 

Table 1- Enzymes and optimum conditions used in hydrolysis of marine-derived. 

Enzymes and ratio 

E:S 
Buffer/Solvent pH T Time Bioactivity Reference 

Proteomax 580L 

(1:25) 

Sodium carbonate 

bicarbonate buffer 
9.5 60 °C 3.5h Antioxidant 

(LISBOA et al., 

2016) 

Papain 

(1:50) 
 7 70 °C 9 h Anti-hypertensive (PAN et al., 2015) 

Alcalase 

(1:500) 
Sodium 

phosphate 10 

mM 

8 55 °C 1 h 

Iron-chelating (KIM et al., 2014) 
Flavourzyme 

(1:50) 
7 50 °C 8 h 

Pepsin 

(1:50) 
Water 2 50 °C 15 h Anticancer 

(SHEIH et al., 

2010) 

Pepsin 

(1:250) 

 

2 37 °C 2 h 

Ace-inhibitory and 

antioxidant 

(NAKAJIMA; 

YOSHIE-STARK; 

OGUSHI, 2009) 

Pancreatin 

(1:100) 
7 37 °C 3 h 

Termolysin 

(50:1) 
7 37 °C 5 h 

FONT: The author. 

 

3. Production and identification of bioactive peptides 

 

For the discovery and production of bioactive peptides involves a serial of steps, first 

identifying a suitable protein source, second releasing peptide fragments with bioactivity through 

hydrolysis of peptide bonds, usually by the proteolytic action of enzymes sourced exogenously 

(e.g. chymotrypsin, pancreatin, trypsin, and pepsin) (LI-CHAN, 2015). In order to identify 

bioactive peptides following hydrolysis, the crude hydrolysates are assayed for various 

bioactivities and size fractionated. Finally identification of BPs and synthesis (Figure 2). 
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Figure 2-Flowchart showing the various steps involved in the production of bioactive peptides from food 

proteins. Adapted from CHALAMAIAH; YU; WU, (2018). 

For the adequate detection of bioactive peptides, it is necessary to remove impurities in 

order to increase the product selectivity using ultrafiltration membrane system (10, 5, 3 KDa), 

allowing for improved studies of structure, physicochemical properties, and evaluation of the 

bioactive properties (AGYEI et al., 2016; SHAHIDI; ZHONG, 2008). 

The most common technique for the purification of bioactive peptides is RP- HPLC 

(Stationary phases for reversed phase high performance liquid chromatography), is used for 

separating peptides based on the interaction between their side chains and the stationary phase 

and the mobile phase (AGUILAR, 2004; HARA et al., 2015; HUGHES ANDREW, 2010; 

Food    proteins 

Addition    of    enzymeand 
hydrolysis 

Food protein    hydrolisates 
(peptides) 

Bioassays    in-vitro    
(Antopxidant,    Antitumoral,    

etc.) 

Size    separated    Peptide 
fractions                (UF) 

Purification    of    peptides      
RP-HPLC 

Isolated    Peptide 

Analysis    of    peptide    sequenced    
(MS,    protein sequencer) 

Synthesized    peptide 
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LEMES et al., 2016). Furthermore, by to identify individual peptide fractions a combination of 

HPLC and mass spectrometry (LC-MS/MS) and protein sequencing are useful tools (ARIHARA, 

2006). 

 

4. Spirulina as source of novel bioactive peptides 

 

Marine microalgae and cyanobacteria are very rich in several bioactive compounds and, 

therefore, they may be used in several biological applications related to health benefits, and 

nutraceuticals (DE JESUS RAPOSO; DE MORAIS; DE MORAIS, 2013). Among several 

cyanobacteria is considered that an excellent source of bioactive substances in especially of 

bioactive peptides is Spirulina (BELAY, 2002). 

Spirulina (Arthrospira) is a microscopic and filamentous cyanobacterium belonging to the 

family Oscillatoriaceae, and their filaments have a form spiral or helical nature (KITTS; 

WEILER, 2003). The Spirulina has been used by humans as a food supplement since 

ancient times, due to having a complete nutritional composition of minerals, polysaccharides, 

essential fatty acids and vitamins. Besides, of present a high content of proteins (60-70%), 

containing all amino acid essential (BABADZHANOV et al., 2004; YU et al., 2016). 

Spirulina is well recognized as a therapeutic source. Many research studies show that 

Spirulina its effectiveness in the treatment of anti-inflammatory, antioxidant, antiviral, anti- 

bacterial, hypertensive, immunomodulatory, anticancer, anti-virus and others activities 

(JANG;  PARK,  2016;  WU et  a l . ,  2016) . Since 1981 is considered Generally Regarded 

as Safe (GRAS) status by Food and Drug Administration (FDA) (OLIVEIRA et al., 2013). 

Also, is recognized by World Health Organization (WHO) for therapeutics and nutritional 

properties (ABD EL-BAKY; EL-BAROTY, 2012). 

 

These attributes combined with great interest of cosmetic, nutraceutical and 

pharmaceutical industry for its biotechnological and nutritional properties, make a Spirulina an 

attractive source for exploration and production of bioactive peptides. Table 2 shows a list of the 

recent studies of specific peptides derived from Spirulina biomass with different bioactivities. 
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Table 2- Spirulina bioactive peptides. Adapted from OVANDO (2016). 

Bioactivity Amino acid sequence  Enzyme  Source Reference 

Anti-

Hypertensive 

Ile-Ala-Glu 

Phe-Ala-Leu 

Ala-Glu-Leu 

Ile-Ala-Pro-Gly 

Val-Ala-Phe 

 Pepsin  
Spirulina 

platensis 

(SUETSUNA; 

CHEN, 2001) 

Thr-Met-Glu-Pro-Gly-Lys-Pro  
Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

sp. 

(HEO et al., 

2015) 

Ile-Gln-Pro  Alcalase  
Spirulina 

platensis 

(LU et al., 2010; 

PAN et al., 

2015) 

Val-Glu-Pro  Papain  
Spirulina 

platensis 
(LU et al., 2011) 

Anti-allergic 
Leu-Asp-Ala-Val-Asn-Arg 

Met-Met-Leu-Asp-Phe 
 

Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

maxima 
(VO et al., 2014) 

Antitumor 

Ala-Gly-Gly-Ala-Ser-Ley-Leu-

Leu-Leu-Arg 

Leu-Ala-Gly-His-Val-Gly-Val-

Arg 

Lys-Phe-Leu-Val-Cys-Leu-Arg 

 
Alcalase, 

Papain 
 

Spirulina 

platensis 

(WANG; 

ZHANG, 2016a) 

His-Val-Ser-Arg-Ala-Pro-Arg  
Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

platensis 

(WANG; 

ZHANG, 2016b) 

Tyr-Gly-Phe-Met-Pro-Arg-Ser-

Gly-Leu-Trp-Phe-Arg 
 Papain  

Spirulina 

platensis 

(WANG; 

ZHANG, 2016c) 

Anti-

inflammatory 

Leu-Asp-Ala-Val-Asn-Arg 

Met-Met-Leu-Asp-Phe 

 

 
Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

maxima 

(VO; RYU; 

KIM, 2013) 

Antibacterial 

Lys-Leu-Val-Asp-Ala-Ser-His-

Arg-Leu-Ala-Thr-Gly-Asp-Val-

Ala-Val-Arg-Ala 

 
Papain 

 
 

Spirulina 

platensis 

(SUN et al., 

2016a) 

Antiviral Ser-Met  
Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

maxima 

(JANG; PARK, 

2016) 

Anti-

atherosclerotic 

Leu-Asp-Ala-Val-Asn-Arg 

Met-Met-Leu-Asp-Phe 

 

 
Pepsin, Trypsin, 

α-chymotrypsin 
 

Spirulina 

maxima 

(VO; KIM, 

2013) 

Iron-chelating Thr-Asp-Pro-Ile(Leu)-Ala-Ala-  Alcalase,  Spirulina (KIM et al., 
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Cys-Ile(Leu) Flavourzyme sp. 2014) 

Antioxidant 

Phe-Ser-Glu-Ser-Ser-Ala-Pro-

Glu-Gln-His-Tyr 
 

Thermolysin, 

pepsin, trypsin, 

α-chymotrypsin 

 
Spirulina 

platensis 

(SAFITRI et al., 

2017) 

Pro-Asn-Asn 

 
   

Spirulina 

platensis 
(YU et al., 2016) 

 

5. Bioactivities investigated in the present thesis 

 

5.1. Antioxidant activity 

Food quality can suffer a deterioration of their attributes such as flavor, 

aroma, texture and color on account of oxidative reactions, and can provoke serious 

diseases. The antioxidant mechanisms possess multiple pathways including 

inactivation reactive oxygen species (ROS), metal-ion chelation, free-radical 

scavenging, and reduction of hydroperoxides ( E L I A S ;  K E L L E R B Y ;  

D E C K E R ,  2 0 0 8 ;  S U ;  S H Y U ;  C H I E N ,  2 0 0 8 ) .  

Antioxidants protect the body, during metabolism and respiration, reactive 

oxygen species (ROS) are constantly and inevitably produce, such as superoxide anion 

(O2-
) and hydroxyl (OH

-
) radicals, and non-free radical species such as hydrogen 

peroxide (H2O2) and singlet oxygen (
1
O2), which can exert oxidative damage to 

proteins, lipids and DNA by subtracting electrons, thus starting chain reactions 

(JENSEN et al., 2013; NURDIANI et al., 2016; YU et al., 2016). Also, when ROS are 

overproduced, redox-active transition metal ions such as iron (II) or copper (II) can 

cause severe oxidative stress and thus damage tissues and the cellular DNA (KAUR et 

al., 2006). 

The oxidative damage cause by ROS can lead to different diseases diabetes, 

anemia, aging process, allergies, cancer, cardiovascular and neurodegenerative 

(GALLEGOS T. et al., 2011; PIÑERO E.; BERMEJO B.; VILLAR DEL FRESNO, 

2001). Meanwhile, the antioxidant system can under normal conditions remove 

reactive species through enzymatic (e.g. superoxide dismutase SOD) and non- 

enzymatic antioxidants (e.g. antioxidant vitamins and trace elements), but if this 
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endogenous defense system present a problem or is aging can not to protect the body and 

produce a major quantity of ROS (LAFARGA; ÁLVAREZ; HAYES, 2017). One way 

to suppress oxidative stress is intake of dietary antioxidative peptides and that can act 

as radical scavengers (HAYES, 2013; SARMADI; ISMAIL, 2010). 

 

5.1.1. Antioxidant Peptides 

The antioxidant peptide acts by preventing binding of oxygen to another 

molecule, and by the inhibition of free-radicals action (KANG et al., 2011). These 

peptides are important, because of their protective effect in lessening the severity 

of diseases; considering that in our body oxidative stress can cause serious 

damage to cells or tissues ( N U R D I A N I  e t  a l . ,  2 0 1 6 ;  R A H A L  e t  

a l . ,  2 0 1 4 ) . Additionally, the antioxidant peptides can present structures that 

contain nucleophilic sulfur-contain side chains cysteine (Cys) and methionine 

(Met) or aromatic side chains with amino acids histidine (His), tyrosine (Tyr) and 

methionine (Met) which can easily donate hydrogen atoms. Also, hydrophobicity 

and position of amino acids in the peptide are believed to play an essential role 

regarding antioxidant activity of a peptide ( H A Y E S ,  2 0 1 3 ) . The Antioxidant 

peptides have been found in differents sources such as plants, marine-derived, 

animal-derived and other (Table 3). In the resent years, a lot of research has 

focused on antioxidant peptides derived from Spirulina. 

5.1.2. Iron-chelating peptides 

The iron-chelating peptides have a capacity the increase iron absorption and 

bioavaility, due to these peptides combined with non-heme iron facilitating direct 

absorption in the intestine (NGO, 2013; WU et al., 2012). The Iron-chelating 

activity can determine by measuring the formation of the Fe
2+

 -ferrozine complex. 

The iron-chelating peptides may present structure that contains methionine (Met), 

glutamine (Gln), lysine (Lys) and arginine (Arg) (DE CASTRO; SATO, 2015) 

(Table 3). 

 

5.2 Antimicrobial activity 

Currently, all living organisms are constantly exposed several pathogens, which 
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can cause damage on the health (ANDERSSON; HUGHES; KUBICEK S., 

2016). The survival of such pathogens in the host organisms depends, of an innate 

mechanism of immune system of the host and by acquired immune responses 

(molecules endogenous). The endogenous compounds can proportion responses faster 

and effective means of defense against the pathogen ( R E D D Y ;  Y E D E R Y ;  

A R A N H A ,  2 0 0 4 ) . These compounds called antimicrobial peptide (AMPs) that 

have primitive immune defense mechanism ( B E C H I N G E R ,  2 0 0 4 ) . The 

antimicrobial action of AMPs is divided in two mechanism classes: membrane-

disruptive and non-membrane-disruptive (NAWROT et al., 2013; NICOLAS, 2009). 

These mechanisms depend on the peptide physicochemical properties and the 

membrane composition of the pathogen (bacterial Gram negative or Gram 

positive) (SHAI, 1999; SMITH; DESBOIS; DYRYNDA, 2010). 

The membrane-disruption mechanism has been explained through barrel-stave, 

micellar-aggregate, and carpet models ( M A L M S T E N ,  2 0 1 4 ) . The barrel-

stave model describes how amphipathic peptides re-orient and perpendicularly align 

to the membrane in a manner in which the hydrophobic side chain of AMP drives 

into the lipid environment while the polar side chains align to form a 

transmembrane pore (POWERS; HANCOCK, 2003), this pore act as a channel that 

allows the escape of cellular components. In the carpet model, peptides self-

associate onto the acidic phospholipid-rich regions of lipid bilayers so peptides are 

absorbed and accumulated in the membrane surface. Exceeding the monomers 

threshold causes permeation and disintegration of the membrane 

( P E L E G R I N I  e t  a l . ,  2 0 1 1 ;  S M I T H ;  D E S B O I S ;  D Y R Y N D A ,  

2 0 1 0 ) . Equally important, the micelle-aggregate model describes that the peptides 

reorient and associate with other membrane-spanning micellar; apart that indicate 

that collapse this aggregates could explain translocation into the cytoplasm and 

provoke the membrane disruption (CHEUNG; NG; WONG, 2015).  

The non-membrane-disruptive mechanism some peptides have the capacity to 

induce transcriptional changes in the bacteria cytoplasm ( Z E N G  e t  a l . ,  

2 0 1 3 ) . This mechanism is used by antimicrobial peptides in order to affect 

bacterial growth. Likewise, antibiotic molecules have the necessity of interacting 
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with biological membranes which induces changes in the structure of the lipid 

bilayer. There are five factors involved in this interaction: hydrophobicity, steric-

effect, conformation and self-association, net charge, and bilayer insertion ( Z E N G  

e t  a l . ,  2 0 1 3 ) . 

The AMPs are of enormous interest because they are powerful stimulators of the 

immune system. They also demonstrate beneficial impacts in health due to their 

inhibitor effect towards microorganisms (MAHLAPUU et al., 2016; SUN et 

al., 2014; ZHANG; GALLO, 2016). Several studies demonstrate that 

antimicrobial peptides play other important roles in processes such as angiogenesis, 

attraction of leukocytes, inflammation, and cell proliferation (PHOENIX; 

DENNISON; HARRIS, 2012). 

The AMPs present common characteristics: high proportion of hydrophobic 

residues such as Leucine (Leu), Isoleucine (Ile), Valine (Val), Phenylalanine (Phe), 

and Tryptophan (Trp) (HANEY; HANCOCK, 2014). AMPs can also be 

classified based on their secondary structure and amino acid sequences as linear α-

helical peptides, cyclic peptides, looped peptides and linear peptides. The AMPs 

has been found in differents sources such as plants, marine-derived, animal-

derived and other ( F A L A N G A  e t  a l . ,  2 0 1 6 ;  G A G N O N  e t  a l . ,  

2 0 1 6 ;  S P E R S T A D  e t  a l . ,  2 0 1 1 ) (Table 3). 

 

5.3 Anti-inflammatory activity 

The inflammation performed a physiological role in wound healing and infection 

tissues (MARCONE; BELTON; FITZGERALD, 2017). An excessive inflammation 

may cause an uncontrolled production of pro-inflammatory cytokines, eicosanoids 

derived from arachidonic acid and also oxygen reactive species can be produced 

(VERNAZA et al., 2012). The inflammation and remodeling of tissue occur in the 

synthesis and degradation of extracellular matrix, in this process is involving the 

activation and inhibition of hyaluronidase enzyme ( P R A D O  e t  a l . ,  

2 0 1 6 ) . The hyaluronidase is an enzyme that has a capacity of hydrolyzes 

hyaluronic acid; this acid is a viscous polymer and whose function is to ensure that 

cells remain adhered to one other. By the action of hyaluronidase, the polymer is 
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transformed into small fragments, significantly reducing its viscosity and facilitating 

the proliferation of these cells from the tissues, leading to a degradation of the 

extracellular matrix (ECM) that promotes inflammation. The excessive degradation 

of the ECM may development several diseases (e.g. arthritis, rheumatism). Due 

to importance of hyaluronic acid is necessary procured natural inhibitor such as 

peptides, phenolic compounds and flavonoids for hyaluronidase enzyme (GIRISH et 

al., 2009; MARCHESAN et al., 2006).  

The anti-inflammatory peptides have received much attention due to its 

potential in the therapeutic treatment for several diseases (cancer, tumor 

progression, allergy, asthma, autoimmune diseases, and coeliac disease) (VO; RYU; 

KIM, 2013) (Table 3), with respect their structures and characteristics not yet 

elucidated. 

 

5.4 Anti-collagenase activity  

The aging is a natural process that all people undergo with the time pass. The 

process of skin aging, like other organs are divided into two categories: (a) Intrinsic 

skin aging, those occur due to passage of time, genetic influence and the intrinsic 

factors (telomere shortening), the imbalance between free radicals and hormonal 

changes. (b) Extrinsic skin aging is cause for exposure to solar radiation and 

provokes leathery appearance, dark/light pigmentation 

( C H A T T U W A T T H A N A ;  O K E L L O ,  2 0 1 5 ;  T H R I N G ;  H I L I ;  

N A U G H T O N ,  2 0 0 9 ) . These structural alterations occur when the 

extracellular matrix (ECM) is degraded and cause increase in activity of certain 

enzymes (e.g. elastase, collagenase), proteolytic breakdown, and breakup of dermal 

fibers (e. g. collagen, elastin) ( N D L O V U  e t  a l . ,  2 0 1 3 ) . The ECM is the 

non-cellular component present within all tissues and organs and is composed 

by proteoglycans (PGs) and fibrous proteins (collagens, elastins, fibronectins and 

laminins) (FRANTZ; STEWART; VALERIE M. WEAVER, 2010). 

The collagenase (metalloproteinase) posse a capacity of cleaving the X-Gly bond 

of collagen causing the skin aging, due to collagen is responsible for the elasticity 

and strength of the skin. On the other hand, for detaining the action of this enzyme 
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is using inhibitors synthetics, that can be caused several secondary effects (eg. 

colitis, esophagitis), for this reason, is necessary procured natural inhibitors (e.g. 

peptides, phenolic) (NORZAGARAY V. et al., 2017). 

Actuality, only know that anti-collagenase peptides posse a capacity of a block the 

activity of the enzyme and can present a sequence which most closely resembles 

that around the cleavage site in native collagen, their structure can compose of 

hydrophobic residues such as Leucine (Leu), Isoleucine (Ile), Valine (Val), and 

Phenylalanine (Phe) (AURELI et al., 2008; THRING; HILI; NAUGHTON, 2009) 

(Table 3). 

 

Table 3- Bioactive peptides and possible bioactivities from protein hydrolysates of the marine-derived. 

Source Amino acid Bioactivity Reference 

Shrimp Ile-Phe-Val-Pro-Ala-Phe 

Anti-Hypertensive 

(HAI-LUN et al., 

2006) 

Chlorella 

vulgaris 
Val-Glu-Cys-Tyr-Gly-Pro-Asn-Arg-Pro-Gln-Phe 

(SHEIH; FANG; 

WU, 2009) 

Undaria 

pinnatifida 

Val-Tyr 

Ile-Tyr 

Ala-Trp 

Phe-Tyr 

Val-Trp 

Ile-Trp 

Leu-Trp 

(SATO et al., 

2002) 

Chlorella 

vulgaris 
Val-Glu-Cys-Tyr-Gly-Pro-Ans-Arg-Pro-Gln-Phe 

Antioxidant 

(SHEIH; WU; 

FANG, 2009) 

Conger eel Leu-Gly-Leu-Asn-Gly-Asp-Asp-Val-Asn 

(RANATHUNGA; 

RAJAPAKSE; 

KIM, 2006) 

Platycephalus 

fuscus 

Met-Gly-Pro-Pro-Gly-Leu-Ala- 

Gly-Ala-Pro-Gly-Glu-Ala-Gly-Arg 

(NURDIANI et 

al., 2016) 

American 

lobster 

Ala-Ala-Ala-Leu 

Ala-Gly-Gly-Val 

Ala-Ala-Val-Lys-Met. Antimicrobial 

(SILA et al., 2014) 

Oyster CgPep33 (LIU et al., 2008) 

Green sea Cys (LI et al., 2008) 
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urchin 

Platycephalus 

fuscus 

Met-Gly-Pro-Pro-Gly-Leu-Ala- 

Gly-Ala-Pro-Gly-Glu-Ala-Gly-Arg 

Anticancer 

(NURDIANI et 

al., 2016) 

Tuna dark 

muscle 

Leu-Pro-His-Val-Leu-Thr-Pro-Glu-Ala-Gly-Ala-Thr 

Pro-Thr-Ala-Glu-Gly-Gly-Val-Tyr-Met-Val-Thr 

(HSU; LI-CHAN; 

JAO, 2011) 

Sea hare Dolastatin 
(MADDEN et al., 

2000) 

Salmon pectoral Pro-Try-Leu 

Anti-inflammatory 

(AHN; CHO; JE, 

2015) 

Salmon SPHF1 
(AHN; JE; CHO, 

2012) 

Engraulis 

japonicus 

Ser-(Gly)7-Leu-Gly-Ser-(Gly)2-Ser-Ile-Arg 

Ile-(Glu)2-Leu-(Glu)3-Ile-Glu-Ala-Glu-Arg. 
Metal-chelating 

(WU et al., 2012) 

Hoki frame 
Val-Leu-Ser-Gly-Gly-Thr-Thr-Mrt-Tyr-Ala-Ser-

Leu-Tyr-Ala-Glu 

(JUNG; KIM, 

2007) 

Echiuroid worm 

Gly-Glu-Leu-Tyr-Pro-Glu-Ser-Gly-Pro-Asp-Leu-

Phe-Val-His-Phe-Asp-Gly-Pro-Ser-Tyr-Ser-Leu 

Try-Ala-Asp-Ala-Val-Pro-Arg 

 

 

Anticoagulant 

(JO; JUNG; KIM, 

2008) 

Nori 
Asn-met-Glu-Lys-Gly-Ser-Ser-Ser-Val-Val-Ser-Ser-

Arg-Met 

(INDUMATHI; 

MEHTA, 2016) 

Hippocampus, 

(Syngnathidae) 
SHP-1 Anti-collagenase 

(RYU; QIAN; 

KIM, 2010) 

FONT: The author. 
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CHAPTER 2:  

PROMISING BIOLOGICAL ACTIVITIES FROM NEW PEPTIDES OF 

Spirulina maxima. 

 
 

 
ABSTRACT 

 

The interest in biological peptides from Spirulina (Arthrospira) is increasing in the last time at 

reason of great potential to produce new products for the food, cosmetic and pharmaceutical 

industry. The aim of this study was the production of bioactive peptides of Spirulina maxima 

through enzymatic hydrolysis. In this work, Spirulina maxima proteins were hydrolyzed using 

single and sequential digestion. These hydrolysates were purified by ultrafiltration (<10kDa) to 

evaluate peptide concentration and determinate their biological activities. Three peptide fractions 

were analyzed; the best antioxidant activity was obtained by first hydrolysis (PHA) displayed an 

for the capture of DPPH radicals with an IC50 value of 21.25 µg/ml, against ABTS with an IC50 

9.5 µg/ml, a TEAC activity of 465.7 Trolox µM/µg sample, together with a 97.3% inhibition of 

iron-chelation and IC50 6.99 µg/ml. For the antimicrobial activity maximal inhibitory 

concentration (IC50) and the minimum bactericidal concentration (MBC) the best was second 

hydrolysis (PHP) that presented 0.34 mg/ml and 0.63 mg/ml for Bacillus subtilis; 0.62 mg/ml 

and 0.63 mg/ml for Staphylococcus aureus; 0.99 mg/ml and 1.25 mg/ml for Salmonella typhi 

and 0.94 mg/ml and 1.25 mg/ml for Escherichia coli. While the peptide fraction obtained from 

the two enzymes (PHS) showed multi biological activity as antioxidant against DPHH with a 

IC50 value of 17.93 µg/ml and against ABTS with IC50 8.6 µg/ml, TEAC of 540.7 Trolox µM/µg 

sample, anti-inflammatory with inhibition of hyaluronidase of 39% and IC50 0.99 µg/ml, and 

anti-collagenase with 92.5% inhibition and IC50 32.49 µg/ml. The results indicated that the three 

peptides possessed diverse activities and could be potential candidates for used in the 

pharmaceutical, cosmetic and food industry. 

 

Keywords: Spirulina maxima, peptide, antioxidant, iron-chelating, antimicrobial, anti-

inflammatory, anti-collagenase. 
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1. Introduction 

 

 

The importance of novel bioactive compounds significantly increased in the last years. 

Bioactive peptides (BPs) are specific protein fragments, they have a positive impact on body 

functions and may influence health (HARNEDY; FITZGERALD, 2012; SHARMA; SINGH; 

RANA, 2011; SINGH; VIJ; HATI, 2014). BPs can be obtained from diverse raw materials, such 

as plants, macroalgae, microalgae, seafood, and fungi (HAYES, 2013; KITTS; WEILER, 2003; 

SHARMA; SINGH; RANA, 2011).  

Recently, there has been great interest in the use and evaluation of peptides that show 

biological activities. The antioxidant peptides are important, because of their protective effect in 

lessening the severity of diseases; considering that in our body oxidative stress can cause serious 

damage to proteins, lipids, and DNA by subtracting electrons (NURDIANI et al., 2016; RAHAL 

et al., 2014). These peptides act by preventing binding of other molecules to oxygen, and by the 

inhibition of free-radicals action (KANG et al., 2011). On the other hand, the antioxidant 

peptides can present structures that contain nucleophilic sulfur-contain side chains (Cys and Met) 

or aromatic side chains with amino acids histidine (His), tyrosine (Tyr) and methionine (Met) 

which can easily donate hydrogen atoms (HAYES, 2013). Also, the iron-chelating peptides, due 

to act in the metabolical pathways of autoxidation mechanisms and have the capacity the 

increase non-heme iron absorption and bioavaility in the body (HELI; MIRTORABI; 

KARIMIAN, 2011; NGO, 2013; WU et al., 2012). These peptides may present structure that 

contains methionine (Met), glutamine (Gln), lysine (Lys) and arginine (Arg) (DE CASTRO; 

SATO, 2015). 

The antimicrobial peptides (AMPs) are of enormous interest because of their inhibitory 

activity against several pathogens and their ability as stimulators of the human immune system. 

AMPs are known as host defense peptides due to their innate presence in the immune system in 

animals, insect, plants, and humans with the role of defending against the diversity of bacterial, 

fungal, viral, and other pathogenic infection (MAHLAPUU et al., 2016; WANG, 2014; ZHANG; 

GALLO, 2016). Furthermore, it is known that AMPs have the capacity to play other important 

roles in such processes as angiogenesis, an attraction of leukocytes, inflammation, and inhibition 

cell proliferation (PHOENIX; DENNISON; HARRIS, 2013). The AMPs present common 

characteristics: high proportion of hydrophobic residues such as Leucine (Leu), Isoleucine (Ile), 
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Valine (Val), Phenylalanine (Phe), and Tryptophan (Trp) (HANEY; HANCOCK, 2014). 

The same way, the anti-inflammatory peptides have received much attention due to its 

potential in the therapeutic treatment for several diseases (cancer, aging, allergy, asthma, 

autoimmune diseases, and coeliac disease)(VO; RYU; KIM, 2013). These peptides act block 

hyaluronidase enzyme and prevent hydrolysis of hyaluronic acid, helping to regeneration, 

proliferation, and reparation of tissues. As well, can increase elasticity and decrease the loss of 

moisture on the skin (PRADO et al., 2016; SULERIA et al., 2016). On the other hand, the anti-

collagenase peptides prevent degradation of the extracellular matrix (ECM) by blocking the 

action of the collagenase (CHATTUWATTHANA; OKELLO, 2015; NDLOVU et al., 2013; 

THRING; HILI; NAUGHTON, 2009). These peptides can present a sequence which most 

closely resembles that around the cleavage site in native collagen, their structure can compose of 

hydrophobic residues such as Leucine (Leu), Isoleucine (Ile), Valine (Val), and Phenylalanine 

(Phe) (AURELI et al., 2008; THRING; HILI; NAUGHTON, 2009). 

The cyanobacteria Spirulina has been used by humans as food since ancient times due to its 

high protein content (43-70%), which can be hydrolyzed into BPs (BILLS; KUNG, 2014; YU et 

al., 2016). It has been experimentally proven to be effective for the treatment of certain 

conditions, such as anti-inflammatory, antioxidant, antiviral, anti-bacterial, hypertensive, 

immunomodulatory, anticancer (JANG; PARK, 2016; OVANDO et al., 2016; SHIH et al., 

2009). Furthermore, the pharmaceutical industry has shown a great interest in Spirulina for its 

nutritional and biotechnological properties, as well as its Generally Regarded as Safe (GRAS) 

status by the Food and Drug Administration (FDA) (OLIVEIRA et al., 2013). Thus, the objective 

of this study is the generation of bioactive peptides from Spirulina maxima through an enzymatic 

hydrolysis in order to determine the in vitro bioactivity of the hydrolysates. 

 

2. Material and methods 

 

A general schema is of the peptides fraction production and a biological activities test is 

present in Figure 7. 

 

2.1. Material 

Spirulina maxima biomass was provided by the Ouro Fino Agribusiness, Ribeirão Preto,São 
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Paulo, Brazil. All solvents used were of analytical grade. 1,1-diphenyl-2- picrylhydrazyl 

(DPPH), 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS), 3-(2-Pyridyl)-5,6-

diphenyl-1,2,4-triazine-p,p′-disulfonic acid monosodium salt hydrate (Ferrozine), Iron(II) 

chloride, Disodium ethylenediaminetetraacetate dihydrate (EDTA-Na2), hyaluronidase from 

bovine testes (EC 3.2.1.35) and a Collagenase Activity Colorimetric Assay Kit were all 

purchased from Sigma-Aldrich, St. Louis, MO, USA. 

2.2. Proximal composition 

Analyses of S. maxima biomass were performed in order to determine the proximal 

composition. Analyses of total protein, ashes, carbohydrate and lipids composition were carried 

out according to the methods described by the Association of Official Analytical Chemists 

(HORWITZ, WILLIAM; LATIMER, 2005). 

2.3. Protein Extraction from Spirulina maxima 

Soluble protein extraction was performed as described previously (Wang and Zhang, 2016), 

with modifications. S. maxima powder (100 g) was dissolved in 1 L sodium phosphate buffer 

(PBS) (0.1 M). The solution was frozen at −20 °C for 4 h and thawed at 37 °C, with 4 freeze– 

thaw cycles in total. After homogenization (2800 x g 30 s, 11000 x g 1 min, 2800 x g 30 s), the 

mixture was ultrasonicated under 160 W power for 25 min (every 10s with 13s interval) in an ice 

bath. Afterwards the lysate solution was centrifuged at 10000 x g and 4 
o
C for 15 min. The

protein content of the supernatant was determined by the Bradford Protein Assay. 

2.4. Enzymatic hydrolysates 

The protein fraction of S. maxima was initially diluted to 3% in citrate phosphate buffer in 

different pH (0.1 M pH 7 and pH 3) and hydrolyzed with two types of endopeptidases under 

specific conditions. The conditions under which these two enzymes were worked on in the 

enzyme process were based on previous studies for peptides production (KIM, 2013; LISBOA et 

al., 2016; LU et al., 2010; WANG; ZHANG, 2016). The first hydrolysate was prepared using 

protease 1 in the following conditions, enzyme/substrate (E/S) ratio of 2% w/w, 60 
o
C, pH 6.5 

and 6 h reaction time. The second hydrolysate was prepared with protease 2, E/S of 4% w/w, 37 
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o
C, pH 4 and 4 h of reaction time. The last hydrolysate was prepared using both enzyme systems, 

sequentially. The solution was first treated using protease 1 under the above conditions and with 

a 4 h reaction time; after inactivation at 85 
o
C, the solution was then hydrolyzed by protease 2 

under the conditions described above and with a 3 h reaction time. The reactions were stopped 

by heating the solution in a boiling water bath for 10 min. The obtained hydrolysates were 

centrifuged at 6000 x g for 10 min (Figure 8). 

 

2.5. Determination of degree of hydrolysis  

The method used to determine the degree of hydrolysis (DH) was performed as described 

previously (Hoyle and Merritt, 1994). Three hydrolysis systems were evaluated: 1 ml aliquots 

were inactivated by the addition of 9 ml of 6.25% (w/v) trichloroacetic acid (TCA) solution and 

left to settle for 10 min. The solution was then centrifuged for 5 min at 3000 x g and the 

precipitate removed. The soluble proteins content was determinate using the Bradford (1976) 

method. DH was calculated as shown in Eq. 1: 

 

  ( )  
(    -     

      
            (Eq. 1) 

 

Where: PSto, corresponds to the amount of soluble protein in TCA 6.25% w/v before the 

addition of enzyme; PSti, is the protein soluble after the addition of enzyme and P total is the 

amount of total protein in the sample. 

 

2.6. Purification of proteins hydrolyses  

Peptides obtained from enzymatic hydrolysis were purified by ultrafiltration through a 

Vivaflow 200 Sartorius (tangential filtration) system. First the hydrolysate was microfiltrated 

using a 2 µM membrane, after it was ultrafiltrated using a membrane of 10 kDa molecular 

weight cut off (MWCO). The permeate fraction containing molecules below 10 kDa was 

collected and stored at – 80 
o
C, before lyophilization. 

 

2.7.  ep  de’s quantification  

The lyophilized peptide extract (<10 kDa) of S. maxima was solubilized in ultrapure water 

for obtained at concentration of 1 mg/ml. The content of peptides present in the solution was 
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determined using the Micro BCA Protein Assay Kit (Thermo fisher).  

 

2.8. SDS-PAGE gel electrophoresis  

The lyophilized S. maxima peptide isolates of were resolved on a 17% polyacrylamide gel 

and stained with silver nitrate. The molecular weight marker was Protein MW marker, low range 

K-880 (3.5-31.0 kDa) (AMRESCO, Fountain Parkway Solon, OH, USA). The GelAnalyzer 2010 

software (Lazar et al., 2010) was used to calculate the molecular weights . 

 

2.9. DPPH Radical Scavenging -in vitro assay 

The capacity of the peptides for sequestering the free radical 2,2-diphenyl-1-picryl-hidrazol 

(DPPH) was performed as described previously (Yu et al., 2016). For the preparation of the 

DPPH reagent, 4 mg DPPH (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 100 ml 95% 

methanol. For each peptide extract, concentrations of 2, 5, 10, 25, 50, 100 µg/ml was used for 

this assay of each peptides extracts. Vitamin C (0.1 mg/ml) was used as a positive control. A 96-

well microplate was used to determine the scavenging activity, where 100 µl of the samples or 

standard were mixed with 100 µl of DPPH reagent, and incubated for 30 min in the dark at room 

temperature. After this time the absorbance was measured by using a PowerWave XS Microplate 

Spectrophotometer (BioTek Instruments, Inc., Winooski, USA) at 517 nm. The percentage of 

DPPH radical scavenging was calculated as shown in Eq. 2: 

 

       d     s   e          *
     

  
+           (Eq. 2) 

 

Where A0 was the absorbance control, A1 was the absorbance of the sample. 

 

2.10. ABTS Radical Scavenging- in vitro assay 

The 2,2’-azinobis-3-etilbenzothiazoline-6-sulfonic acid (ABTS) Radical Scavenging assay 

was performed as described previously (Lee et al., 2015). The ABTS reagent was prepared by 

mixing 5 ml of 7 mM ABTS (Sigma-Aldrich, St. Louis, MO, USA) with 88 µl of 140 mM 

potassium persulfate, and reacting for 16 h at room temperature in the dark. After this time, the 

ABTS reagent was diluted to 1:45 with ethanol (99%) until reaching an absorbance of 0.700, 

which was measured in the spectrophotometer at 734 nm. Trolox (6-hydroxy-2,5,7,8-
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tetramethylchroman-2-carboxylic acid) (Sigma-Aldrich, St. Louis, MO, USA) was prepared 

from a stock solution (1 mM) over the concentration range (200, 100, 50, 25, 10, 5, 2 µM). In the 

case of peptide extracts and with the positive control (vitamin C), was used with the 

concentrations (100, 75, 50, 25, 10, 5, 2 µg/ml). For determining the scavenging activity a 96-

well microplate was used where 100 µl of the samples or standard were mixed with 100 µl of 

ABTS reagent, in the dark at room temperature. The absorbance was measured by using a 

PowerWave XS Microplate Spectrophotometer (BioTek Instruments, Inc., Winooski, USA) at 

734 nm. The percentage of ABTS radical scavenging was calculated as shown in Eq. 3: 

 

       d     s   e      ( )  *
     

  
+           (Eq. 3) 

Where A0 was the absorbance control, A1 was the absorbance of the sample. 

 

2.11. Ferrous ion-chelating activity - in vitro assay 

The ferrous ion-chelating activity was performed as described previously (Wang et al., 

2009). Peptide extract (100 µl) was added in the following concentrations (1.25, 2.5,5,10, 25 

µg/ml) and mixed with 135 µl of distilled water and 5 µl of 2 mM FeCl2 in the microplate. The 

reaction was initiated by the addition of 10 µl of 5 mM ferrozine, and mixed for 10 min at room 

temperature. After incubation, the absorbance was measured at 562 nm with a PowerWave XS 

Microplate Spectrophotometer. Distilled water (100 µl) instead of sample was used as the 

control. For the blank distilled water (10 µl) instead of ferrozine was used. EDTA-Na2 was used 

as reference standards. All measurements were performed in triplicate. The ferrous ion-chelating 

activity was calculated as shown in Eq. 4: 

 

 e    s    -  e                    
 (    (     ) 

  
        (Eq. 4) 

 

Where A0 was the absorbance control, A1 was the absorbance of the sample or standard and A2 

was the absorbance of the blank.  

 

2.12 Antimicrobial activity - in vitro assay 

Broth microdilution is a method used for determining the minimal inhibitory concentration 
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(MIC) of a substance. It is considered as the best methodology for examination of susceptibility 

or resistance of bacteria to antimicrobials (ELSHIKH et al., 2016). 

 

2.12.1 Minimum Inhibitory Concentration (MIC) Determination 

This assay determines the antimicrobial potential of the peptide extract. A 96-well microplate 

assay was used to determine the MIC: 80 µl of Mueller Hinton Broth (MHB) was put in wells, 

mixed with 100 µl of peptides extracts (0.13, 0.63, 1.25, 6.25 mg/ml) and inoculated with 20 µl 

of bacterial suspension (1.0x 10
7
 UFC/ml) (Bacillus subtilis (ATCC 6633), Staphylococcus 

aureus (ATCC 25923), Salmonella typhi (ATCC 14028), Escherichia coli (ATCC 35218)). 

Chloramphenicol (Sigma-Aldrich, St. Louis, MO, USA) was used as the positive control, and 

only culture medium plus peptide extract for the negative control. The microplate was sealed 

tape (Corning) and incubated at 37 
o
C for 24 h. After incubation, the absorbance was measured at 

600 nm. The percentage of growth inhibition was calculated as shown in Eq. 5: 

 

                ( )  *  (
  

  
)+           (Eq. 5) 

 

Where Ac was the absorbance of the sample, Ao was the absorbance of the control. Finally, the 

microplate was colored with 30 µl of resazurin indicator solution (0.1%), and incubated for 2 h. 

 

2.12.2. Minimum Bactericidal Concentration (MBC) Determination  

After MIC determination of the peptide extracts, an aliquot of 5 μ  from all microplate assay 

wells was seeded in Mueller Hinton Agar (MHA) plates. The plates were then further incubated 

at 37 °C for 24h. The MBC endpoint is defined as the lowest concentration of antimicrobial 

agent that kills >99.9% of the initial bacterial population where no visible growth of the bacteria 

was observed on the MHA plates. 

 

2.13  Anti-inflammatory activity - in vitro assay 

The anti-inflammatory activity was evaluated by the inhibition of the enzyme hyaluronidase 

(Type IV), as described previously (Prado et al., 2016), with slight modification. Briefly, the 

three lyophilized peptide isolates (<10 kDa) of S. maxima were used in different concentrations 

(3.3, 10, 33,100, 333 µg/ml). The propolis commercial extract (Bitmel, São José do Rio Preto – 
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SP) was used as positive control. 

To begin the analysis, 100 µl of peptide extract or the positive control was added to 500 µl 

of the potassium salt of hyaluronic acid (Sigma-Aldrich, St. Louis, MO, USA), and incubated for 

5 min at 37 
o
C. Then, 350 units of the enzyme hyaluronidase type IV-S were added (Sigma-

Aldrich, St. Louis, MO, USA), and incubated at 37 
o
C for 40 min. The reaction was inactivated 

by adding 10 ml of sodium hydroxide solution (4 N) and 100 µl of potassium tetraborate at 0.8 

M, and incubated for a further 3 min at 100 
o
C. Afterwards, 3 ml of 4-

dimethylaminobenzaldehyde (DMAB) was added to the tubes, mixed and transferred to a water 

bath for 20 min at 37 
o
C. Finally, the absorbance was measured in the spectrophotometer at 585 

nm. The percentage of inhibition was calculated as shown in Eq. 6: 

 

         d se                     ( )  
      

  
     (Eq. 6) 

 

Where: Am is the absorbance of sample after interaction with the enzyme hyaluronidase, Ac 

corresponds to the absorbance of the control. 

 

2.14. Collagenase inhibition - in vitro assay 

This assay was performed according to the descriptive instructions supplied by the Collagenase 

Activity Colorimetric Assay Kit. The principles of this assay are based on the enzyme-substrate 

interaction between collagenase from Clostridium histolyticum and the synthetic N-[3-(2- 

furyl)acryloyl]-Leu-Gly-Pro-Ala (FALGPA). For this assay each peptide extract (10 µl) was 

added in the following concentrations (10, 25, 50, 75 µg/ml). Negative controls were performed 

with water and positive control was performed 10-Phenanthroline. Absorbance at 345 nm was 

measured. All measurements were performed in triplicate. The collagenase inhibition activity 

was calculated as shown in Eq. 7: 

 

      e  se                         *
(     )

  
+         (Eq. 7) 

 

Where A0 was the absorbance control, A1 was the absorbance of the sample. 
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2.15. Statistical analysis 

Statistical analysis was performed using one-way and two-way ANOVA test on 

Graphpad Prism6 305 software. 

3. Results

3.1. Characterization of peptide extracts 

The composition of S. maxima was as follows: 57.04±0.031% (w/w) proteins, 11.2±0.36% 

(w/w) lipids, 10.67±0.12% (w/w) carbohydrates and 5.65±0.276% (w/w) ash. On the other hand, 

the protein isolate had a concentration of 2983±0.06 mg/ml, a recovery of approximately 80% of 

the total proteins by using water extraction, freeze–thawing, homogenization and ultrasonication. 

Single-step and two-step hydrolysis of the extracted proteins with proteases were performed 

under controlled conditions. The characterization of peptides extracts was shown Table 4. 

Peptide profiles in PHS, PHA and PHP were realized using electrophoretic analysis and 

presented a large number of bands with very different molecular masses, are shown in Figure 3. 

Table 4- Characterization of protein hydrolysis from Spirulina maxima. 

Sample 
Degree hydrolysis 

(%) 

concentration 

(µg/ml) 

Molecular mass 

(kDa) 

PHA 49.5 2395.6 >3.5 

PHP 43 2831.5 2.6-10.6 

PHS 43.3 2651.1 3.6-10.9 
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Figure 3-Electrophoretic analysis of peptides. The sample of peptides extracts with concentration of 40 

µg/ml of PHS (1), PHA (2) and PHP (3) is submitted (SDS-PAGE) 17%. 

3.2. Free-radical scavenging activity-in vitro 

The samples PHA, PHP and PHS were evaluated for their capacity to free-radicals 

scavenging and known antioxidant capacity in the DPPH and ABTS
+ 

assays. For each peptide, six 

concentrations from 100 to 2.5 µg/ml were used. All samples exhibited antioxidant activity 

(Figure 4). At a concentration of 100 µg peptide/ml extract, PHA had an antioxidant activity in 

the DPPH assay of 78±0.44%, PHS exhibited a value of 78±0.21% and PHP an activity of 77

±0.71%. Meanwhile in the ABTS
+
 assay, with the same concentration of peptide, PHA exhibited 

an activity of 98.4±0.71%, PHP exhibited 97.3±0.71% and PHS displayed an activity of 96.1

±0.9% The IC50 and TEAC of these assays are shown in Table 5. 
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Figure 4-(A) Percentage of radical scavenging using DPPH assay. (B) Percentage of radical scavenging 

using ABTS assay. The PHP, PHA and PHS have shown six concentrations (2.5, 5, 10, 25, 50, 100 

µg/ml). 

3.3 Iron-chelating activity-in vitro 

The peptide extracts (PHP, PHS, and PHA) were assayed for their Fe
2+

chelating activity at

different concentrations and this activity was compared with the chelating activity of the 

synthetic metal chelator EDTA. PHA at 25 µg/ml showed a percentage of chelating activity of 

97.3 ± 0.4%. While PHP and PHS at the same concentration showed values of less than 30%. 

EDTA-NA2 presented a chelating activity 61±1.3% at 25 µg/ml. Furthermore, with respected to 

their IC50, PHA showed a lower value compared with the others samples and the commercial 

chelator EDTA-NA2 (see Table 5). 

Table 5-Antioxidant and iron-chelating activities of extracts peptides from Spirulina maxima. 

Scavenging of DPPH 

radical scavenging

Scavenging of ABTS
+
 radical 

scavenging

Fe
2* 

Chelating 

activity 
c 

Samples 
IC50 

(µg/ml) 

IC50 

(µg/ml) 

TEAC 

(Trolox µM/µg sample) 

IC50 

(µg/ml) 

PHA 21.25 a 9.5 b 465.7 b 6.98 c 

PHP 34.63 a 15.63 b 282.2 b 724.7 c 
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PHS 17.93 a 8.6 b 540.7 b 492.2 c 

Vitamin C 11.97 6.1 Nd nd 

Trolox nd* 44.11 Nd nd 

EDTA-NA2 Nd nd Nd 14.31 

a Analysis of variance showed р=0.006 (PHA vs PHP; PHA vs PHS; PHP vs PHS). 

b Analysis of variance showed р=0.0113 (PHA vs PHP; PHA vs PHS; PHP vs PHS). 

c Analysis of variance showed р=<0.0001 (PHA vs PHP; PHA vs PHS; PHP vs PHS) 

*nd=not determinate  

 

3.4 Antimicrobial activity-in vitro 

The three protein hydrolyzes were evaluated MIC, MBC and percentage of growth 

inhibition in presence of human pathogenic bacteria (E. coli, S. typhi, B. subtilis and S. aureus). 

For each peptides extract five concentrations were used, from 6.25 to 0.13 mg/ml. The PHA, 

PHP and PHS values of MIC, MBC and IC50 are shown in Table 6. 

 

Table 6- Antimicrobial activity of peptides from Spirulina maxima determined by MIC, MBC and IC50. 

Sample PHA PHP PHS 

Bacteria 
IC50 

(µg/ml) 

MIC 

(mg/ml) 

MBC 

(mg/ml) 

IC50 

(mg/ml) 

MIC 

(mg/ml) 

MBC 

(mg/ml) 

IC50 

(mg/ml) 

MIC 

(mg/ml) 

MBC 

(mg/ml) 

B. subtilis 2.17 6.25 >6.25 0.34 0.63 0.63 1.25 1.25 6.25 

S. aureus 1.62 6.25 >6.25 0.62 0.63 0.63 0.88 1.25 >6.25 

S. typhi 7.15 >6.25 >6.25 0.99 1.25 1.25 1.22 1.25 6.25 

E. coli 11.89 >6.25 >6.25 0.94 1.25 1.25 0.79 1.25 6.25 

Analysis of variance showed p = <0.0001 (significant).  

MIC= minimum inhibitory concentration 

MBC= minimum bactericidal concentration 

 

3.5 Anti-inflammatory activity-in vitro  

For anti-inflammatory activity, the inhibition by PHP, PHA and PHS of hyaluronidase 

Type IV was evaluated. Six concentrations from 3.3 to 333 µg/ml of each peptide extract were 

evaluated and the results are shown in Figure 5. PHP showed 30.4± 0.15% at 333 µg/ml, PHA 

32.3±1.1% and PHS 38.8±1.1% at the same concentration. The three peptide isolates showed 

anti-inflammatory activity. The PHS showed IC50 0.92 mg/ml, PHA presented IC50 1.63 mg/ml, 
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and PHP showed IC50 1.66 mg/ml and control + showed IC50 23.61 mg/ml. 

 

 

Figure 5-Percentage of inhibition of hyaluronidase enzyme. The PHP, PHA, and PHS have shown six 

concentrations (1.0, 3.3, 10, 33, 100, 333 µg/ml) (p=0.009). 

 

3.6 Anti-collagenase activity-in vitro 

Collagen, the major component of the skin, is degraded by the enzyme collagenase. The 

peptide extracts (PHP, PHS, PHA) at different concentrations were assayed for their ability to 

inhibit collagenase and this activity was compared with the synthetic inhibitor 10-

Phenanthroline. PHS at 75 µg/ml showed an inhibition activity of 92.5 ± 0.5% and an IC50 32.5 

µg/ml, while PHP and PHA showed values of <70% at the same concentration and IC50 values of 

43.9 and 96.7 µg/ml. The 10-Phenanthroline presented an inhibition activity of 57.13±1.9% at 75 

µg/ml. Results are shown in Figure 6.  
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Figure 6-Percentage of inhibition of collagenase enzyme. The PHP, PHA, and PHS have shown four 

concentrations (10, 20, 50, 75 µg/ml) (p=<0.0001). 

 

4. Discussion 

Currently, bioactive peptides have received plenty of attention due to their ability to play a 

significant role in regulation and metabolic modulation, which suggest potential use as 

nutraceutical and functional food for human health promotion and reducing the risk of disease 

(HARNEDY; FITZGERALD, 2012; MOHANTY et al., 2016; SHARMA; SINGH; RANA, 

2011). BPs have previously been obtained from various raw materials that contain high protein 

concentration through enzymatic hydrolyzes. In this current study, for the generation of Spirulina 

BPs, the proteins were subjected to an individual hydrolysis process or sequential. The biomass 

of the S. maxima used in this work contained 57.04±0.031% (w/w) proteins. This is within the 

range (43-70% w/w) of proteins previously described for Spirulina (BILLS; KUNG, 2014; 

EPPINK; BARBOSA; WIJFFELS, 2012; SARAVANAMUTHU, 2010). The single or combined 

hydrolysis process here employed resulted in three extracts with values in the range of 43-50% 

degree of hydrolysis, thus generating a large population of peptides. According to previous 

research, these enzymes have been used for the production of peptides with antioxidant, 

anticancer, anti-microbial and ACE-inhibitory, among other activities (KANG et al., 2011; QU et 

al., 2010; SHEIH et al., 2010; THÉOLIER et al., 2013). The PHA showed only one band, the 

PHP resulted in the formation of four bands and the PHS showed four bands (Table 4). 

According to the literature peptides of less than 4 kDa are generally generated, peptides as large 
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as 12 kDa could also be identified (MAIER et al., 2013; SILVA et al., 2003; SLOMIANY; 

SLOMIANY, 1993). The total antioxidant potential of the three peptides extracts (PHA, PHP, 

and PHS) was studied using two commonly used methods. The first one was to measure their 

ability to scavenge free radicals, where the ABTS and DPPH assay was used. The PHA showed 

the highest percentage of ABTS radical scavenging with value of 98.4±0.71% at 0.1 mg/ml, 

while PHS showed value of scavenging of 96.1±0.9% at 0.1 mg/ml and lowest values of IC50 and 

a TEAC of 5407*10
^2 

Trolox mM/g sample. The S. platensis hydrolysate showed antioxidant 

activity 85.21 ± 1.59% at 10 mg/ml (YU et al., 2016). Lisboa et al. (2016) reported an 

antioxidant activity of 73.25±0.34% at 2.5 mg/ml of and a TEAC of 0.248 Trolox mM /g sample, 

using peptides of Spirulina. Valenzuela et al. (2017), reported the hydrolysis of three species of 

microalgae, D. tertiolecta, T. suecica and Nannochloropsis sp. which gave a TEAC value of 

437.01±1.34 Trolox µM /g protein hydrolysate, 696.99±1.82 Trolox µM /g protein hydrolysate, 

519.44±4.46 Trolox µM /g protein hydrolysate, respectively. The second method here used was 

iron-chelating, where the only extract that exhibited good activity was PHA with an inhibition 

rate of 97.3% at 0.075 mg/ml and an IC50 0.007 mg/ml. On the other hand, comparing with a 

known chelating agent (EDTA-NA2), PHA showed a higher percentage of iron chelation. Kim et 

al. (2014), reported that the peptide Thr-Asp-Pro-Ile(Leu)-Ala-Ala-Cys-Ile(Leu) from Spirulina 

sp. gave a value of 80% iron-chelating activity. Wu et al. (2012), reported that hydrolysis of 

Anchovy resulted in values of IC50 0.048 and 0.086 mg/ml. Comparing our sample (PHS and 

PHA) with those previously reported in the literature, we observe that our process obtained a 

better radical scavenging and chelating activity, suggesting that the peptides contain cysteine 

(Cys) and methionine (Met), glutamine (Glu), lysine (Lys) and arginine (Arg) or aromatic side 

chains with amino acids histidine (His) and tyrosine (Tyr). Furthermore, based on these results, it 

can be said that PHS and PHA have the ability to scavenging of free radicals, and prevent 

oxidative damage to proteins, lipids, and DNA (NURDIANI et al., 2016). In addition, the 

chelating action of the PHA extract could be used as an agent to preserve foods with high lipid 

content and as a catalysts for metal ions to reduce cell damage (Castilla et al., 2012). But, these 

iron-chelating peptides not only act in the metabolical pathways of autoxidation mechanisms, but 

also have the capacity to promote the absorption and bioavailability of non-heme iron (WU et al., 

2012).  

The antimicrobial activity against four pathogenic bacteria (E. coli, S. typhi, B. subtilis and S. 
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aureus) was evaluated. This activity is important because these pathogens mutating and present 

resistance to existing drug, for this reason is necessary to search for alternatives (ALLEN et al., 

2014). In our study, we have demonstrated that PHP was the most effective growth inhibitor, and 

displayed better MIC and IC50 values against B. subtilis, S. aureus and S. typhi. Additionally, this 

peptide extract is unique in that it showed bactericidal action against all four pathogenic bacteria 

used in this assay. PHS was most efficient against E. coli. The PHP showed activity against 

Gram positive and Gram negative Bacterial, confirmed this sample have antibacterial activity 

and can be used as antibiotic. The AMPs can kill Gram-positive and Gram-negative bacteria but 

also have the capacity to simultaneously neutralize released pathogenic factors (PINI et al., 

2010). Spirulina is renowned by have antibacterial activity through the production of 

phycocyanins and carotenoids, while the existence of antibacterial peptides is rarely reported 

(OZDEMIR et al., 2004). Sun et al. (SUN et al., 2016b), showed an antimicrobial activity against 

E. coli and S. aureus with a peptide from S. platensis, with MIC values of 8 and 16 mg/ml, 

respectively. Comparing, our PHP extract to that reported in the literature PHP exhibits a better 

antimicrobial activity against E coli and S. aureus.  

Anti-inflammatory activity was evaluated as a percentage of inhibition of hyaluronidase due 

to that this enzyme is involved in degradation of the extracellular skin matrix and the vascular 

system. Therefore, it may be expected that hyaluronidase is responsible for the processes causing 

inflammatory, aging and allergic reactions (GIRISH et al., 2009; KOLAYLI et al., 2016; 

PRADO et al., 2016). PHS showed an IC50 of 0.92 mg/ml while the positive control showed an 

IC50 of 23.61 mg/ml. These results suggest that the peptides generated by the sequential action of 

both proteases has a higher anti-inflammatory activity at lower doses than for example propolis 

ethanol extract, in addition to increasing tissue regeneration, proliferation, and repair by 

inhibiting hyaluronic acid hydrolysis. Valenzuela et al. (2017) reported that D. tertiolecta 

exhibited IC50 5.542 mg/ml and T. suecica showedIC50 5.907 mg/ml. Here we show that PHS is a 

potent anti-inflammatory agent when compared with similar compounds reported in the 

literature. Furthermore, the capacity of these peptide extracts to inhibit the enzyme collagenase, 

which causes alterations in the extracellular matrix, was also evaluated. PHS also displayed the 

best inhibition value (92%) of collagenase, especially compared to the positive control (10-

Phenanthroline) that resulted only in a 57% inhibition, and would indicate that PHS possesses 

the capacity to prevent the cutting of collagen, delaying the process of pre-collagen fibers 
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formation and the subsequent aging process. It must also be considered that hyaluronidase and 

collagenase enzyme can act together in the aging process by damaging the extracellular matrix, 

causing loss of strength, flexibility, elasticity and moisture loss in the skin 

(CHATTUWATTHANA; OKELLO, 2015; NDLOVU et al., 2013; THRING; HILI; 

NAUGHTON, 2009). Making such BPs through the combined hydrolysis with both proteases 

provides a potential alternative for anti-aging treatment. To our knowledge no existing reports 

exist of peptides from Spirulina displaying anti-aging activity. 

 

5. Conclusion 

The present study demonstrates that the three peptides fractions (PHA, PHP, and PHS) obtained 

by single or sequential hydrolysis from Spirulina maxima proteins, exhibited noticeable 

biological activities in different in vitro test models. According to the results, PHA could be used 

as a potential antioxidant and chelating agent. PHP could be used as an antimicrobial agent, 

above all, against Staphylococcus and Salmonella. PHS showed antioxidant, anti-hyaluronidase 

and anti-collagenase activity, by presenting these activities possesses a high potential for aging 

treatment and as an anti-inflammatory agent. The peptides fractions obtained from S. maxima 

showed great potential to be used in a large variety of products of pharmaceutical, cosmetic and 

food industries. 
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CONCLUSION AND PERSPECTIVE 

 

 

 In the present study, we demonstrate that the peptides extracts obtained by singly or in 

sequence hydrolysis from proteins of Spirulina maxima exhibited several biological activities in 

different test models in vitro. The high hydrolysate yields, peptide recoveries, and the gel 

electrophoretic profiles of the hydrolysates indicated that the enzymatic processes employed 

were efficient in hydrolyzing proteins of S. maxima into low molecular weight peptides. 

 The PHA showed iron-chelating, and antioxidant. Meanwhile, the PHP showed 

antimicrobial activity. Furthermore, the PHA presented better antioxidant activity, anti-

inflammatory, and anti-aging potential. In summary, the peptides extracts could be potential 

candidates for use as bioactive ingredients in functional foods, nutraceuticals, cosmetics and 

pharmaceuticals industry.  

 Further studies should be conducted such as identify the peptide with better biological 

activity, chemical synthesis of peptides, Analysis of the stability of peptide and test the peptides 

in-vivo models. 
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SUPPLEMENTARY MATERIAL 

 

Figure 7- General schema of peptides fractions production and their biological activities tests. 
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Figure 8-Schema of enzymatic hydrolysis process. 
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