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Abstract. The popularity of the cloud computing paradigm is opening
new opportunities for collaborative computing. In this paper we tackle
a fundamental problem in open-ended cloud-based distributed comput-
ing platforms, i.e., the quest for potential collaborators. We assume that
cloud participants are willing to share their computational resources for
shared distributed computing problems, but they are not willing to dis-
closure the details of their resources. Lacking such information, we advo-
cate to rely on reputation scores obtained by evaluating the interactions
among participants. More specifically, we propose a methodology to as-
sess, at design time, the impact of different (reputation-based) collabo-
rator selection strategies on the system performance. The evaluation is
performed through statistical analysis on a volunteer cloud simulator.
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1 Introduction

Cloud computing has gained huge popularity in recent years. This is mainly due
to the progress in virtualization technologies and the transfer of data centers to
low-cost locations. This emergent paradigm meets many of today’s requirements
like the need of elaborating big volumes of data or the necessity of executing
applications of which only the front-end is able to run on a mobile device. Next
to the presence of traditional cloud computing platforms built running in pro-
prietary data centers, another trend that is gaining popularity is the use of
volunteer resources offered by institutions or ordinary people for, e.g., scien-
tific computations. The success of the volunteer paradigm is witnessed by the
wide set of existing platforms where, amongst others, we mention: BOINC [3],
HTCondor [24], OurGrid [8], Seattle [9] and Seti@home [4]. These collabora-
tive environments can effectively be seen as cloud computing platforms where
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participants take advantage of virtualization techniques to share their compu-
tational resources for distributed computing applications, like the execution of
tasks. Differently from grid computing, we cannot expect volunteer participants
to guarantee a certain level of performance in terms of shared resources or online
availability. On the other hand, volunteer clouds offer the unique opportunity of
letting participants find their collaborators in the entire volunteer network. The
quest for collaborators is one of the key aspects in such platforms.

This paper proposes a reputation-based approach to the collaborator selec-
tion problem and a methodology to assess, at design time, the impact of the
selection strategies on the system performance. We focus on a peer-to-peer co-
operative environment on top of which a cloud platform offers a task execution
service. The aim of the platform is to maximize the number of successfully exe-
cuted tasks. We consider a cloud platform with an integrated reputation system,
where a reputation score is associated to each node denoting the trustworthiness
of the node. Reputation scores are computed on the basis of the rating values
released by other nodes. These ratings evaluate the behavior of the node in past
interactions. Specifically, we exploit the concept of reputation as an indicator of
the likelihood that a node will successfully execute the task, i.e., the higher the
reputation the higher the probability that the task will be successfully executed.
We assume that tasks have an associated Quality of Service (QoS) requirement
given by a deadline, after which the task execution is considered unsatisfactory.

The reputation-based node selection strategies provide loose coupling and
self-adaptivity, since the nodes take their decisions based on the reputation learn-
ing mechanism. Overall, the system is able to autonomously adapt the load of
nodes during system execution while avoiding to interact with nodes to check
their current status. This is in particular useful in platforms that are dynamic,
where nodes can join and leave the system continuously over time, and heteroge-
neous, since participants with different computational resources are rated with
the same mechanism but can customize their strategies according to their needs.

As a reference case study for experimenting with the proposed reputation-
based approach, we have used the Science Cloud [16,6] platform, developed
within the EU project ASCENS [5], which aims at offering resources for scientific
computations. In particular, we have modeled this cloud platform with DEUS [2]
and carried out a number of experiments considering different configuration sce-
narios. The obtained results show the benefit of the use of reputation-based
approaches. Specifically, our experimental analysis shows that a probabilistic
reputation-based strategy (compared to both reputation based and random ap-
proaches) seems to be more robust to the workload variation, offering the best
performance at a reasonable communication overhead.

Structure of the paper. Section 2 introduces the case study. Section 3 presents
the node selection strategies. Section 4 presents a simulation-based comparison
of the strategies’ performances on different instances of the case study. Section 5
discusses related work. Finally, Section 6 closes the paper and suggests directions
for future work.
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Fig. 1. Science Cloud Architecture

2 Science Cloud Case Study

The Science Cloud [16,6] is a volunteer P2P Platform-as-a-Service (PaaS)
system developed within the European project ASCENS [5] with the aim of
creating a decentralized platform for sharing computational resources in scien-
tific communities. Participants contribute with their desktops, mobile devices,
servers, or virtual machines by running platform nodes on them. Since we as-
sume that every participant runs exactly one platform node, we will often use
node and participant as synonyms. Nodes may be heterogeneous, i.e., they may
offer different virtual resources (CPU, disk, memory) and also highly dynamic,
i.e., they may enter or leave the system at any time, and their load as well as
their resources may change. Self-healing network mechanisms take care of such
dynamism to ensure that all nodes are able to route messages between them-
selves. The Science Cloud provides distributed application execution as its
main functionality. Applications may range from batch tasks to more sophisti-
cated human-interactive applications, which may have different requirements in
terms of resources (e.g., CPU and memory needed) and QoS (e.g., deadlines).

Fig. 1 illustrates the general architecture of the Science Cloud. For the sake
of simplicity, we provide the internal architecture of two internal nodes only. The
platform nodes (PN) run on top of virtual machines (VM) offering an application
environment (AE) where tasks can be executed. For each task, one initiator node
is chosen as being responsible for processing the task (not necessarily executing
the task itself). This node needs to be secure against failures, i.e., if it goes down
another node needs to take its place. The initiator may choose to execute the
task itself, but may also choose to delegate to a collaborator node. Whoever
finally executes the task is called the executor.

In this work, we consider scenarios based on batch task applications. We as-
sume that a deadline is associated with each task and that a task is successfully
executed if the deadline is met. Moreover, each task requires only one execu-
tor node. Since the Science Cloud is a cooperative environment, we consider
scenarios without malicious nodes: nodes accept a task only if they satisfy the
resource requirements of the task and if they estimate that they are able to ex-
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Fig. 2. Finding a collaborator

ecute it. These estimations assume that the node will remain always connected.
However, nodes are not aware of their online/offline times and thus, it may hap-
pen that a node accepts a task but, before finishing its execution, goes offline.
When a node goes offline it loses all the tasks in its queue regardless of the time
in which it will return online. An offline node that returns online will maintain
its identifier; this is indispensable to describe the node behavior.

Our goal in such scenarios is to maximize the overall number of tasks ex-
ecuted. To achieve this goal we aim at selecting, for each new task, the node
most likely to successfully execute the task. The next section proposes some
reputation-based strategies to address this.

3 Node Selection

In this section we briefly introduce reputation systems and, in particular, we
recall the definition of the Beta [14] reputation system. Then, we suggest and
discuss some reputation-based strategies based on the Beta reputation system for
addressing the node selection problem. Each strategy consists of a node ranking
schema and a node selection strategy.

First, we briefly describe (see Fig. 2) the underlying architecture and the
protocol that nodes follow to implement the reputation-based strategies: (1) the
initiator node sends a request to the reputation system asking for a list of po-
tential executor nodes ordered according to the node selection strategy; (2) the
reputation system provides the desired answer to the initiator node; (3) the ini-
tiator node starts contacting the potential executor nodes using the obtained
list; (4) the contacted nodes send their response to the initiator, either rejecting
the request or accepting it (and eventually communicating the completion of
the task execution); (5) the initiator node provides feedback to rate its inter-
action with the contacted executor nodes. Note that the reputation system is
not necessarily centralized. The use of a P2P overlay infrastructure enables the
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use of distributed storage techniques [15], for example Distributed Hash Tables
(DHTs), to store reputation values without a central coordinator.

3.1 Reputation Systems

A reputation system associates a reputation score to each node, denoting the
trustworthiness of the node, i.e., the higher the reputation, the more trustworthy
the node. The reputation score of each node is computed on the basis of the
rating values released by other nodes. Such ratings correspond to evaluations
of the behavior of the nodes in past interactions, which in our case can have
only two possible outcomes: ‘satisfactory’ (i.e., the task was executed and its
QoS was satisfied) or ‘unsatisfactory’ (the task was not executed or its QoS
was not satisfied). In other words, we consider binary ratings. In our approach,
the reputation of a node is an indicator of the probability that the node will
successfully execute the task. We consider the termination deadline as the QoS
parameter and we assume that missing a deadline makes the task completion
useless.

In this work, we focus on probabilistic trust systems [12,13] which use prob-
ability distributions to model the behavior of a node. The goal of such systems
is to provide an estimation of the distribution’s parameters modeling the node
behavior on the basis of past interaction outcomes, i.e., the ratings. This esti-
mation is indeed the reputation score of the node and is used to compute the
probability of future interaction outcomes with it.

For the definition of our strategies we exploit the Beta reputation system [14].
The name of this system is due to the use of the Beta distribution to estimate
the posterior probabilities of binary events. In the Beta system, the behavior
of each node is modeled as a Bernoulli distribution with success probability
θ ∈ [0, 1]. This means that, when interacting with a party whose behavior is
(determined by) a given θ, the estimated probability that a next interaction will
be satisfactory is θ. The reputation computed by the system is then an estimation
θ̃ of the node’s behavior θ. Specifically, to compute the reputation of a given node,
the Beta reputation system takes as input the number α of past satisfactory
interactions with the node and the number β of past unsatisfactory interactions.
The reputation θ̃ of the node is given by the expected value of a random variable
ϑ distributed according to the Beta distribution Beta(α + 1, β + 1), with α ≥
0 , β ≥ 0, that is defined as follows:

θ̃ = E[ϑ] =
α+ 1

α+ β + 2

Summing up, in our case the reputation of a node denotes the likelihood that
the node, if selected, will not disconnect before completing the task and that it
will accept the task because it is not overloaded, i.e., it can meet the deadline.
Thus, nodes with high reputation should be able to successfully execute a task
with higher probability.



6 A. Celestini, A. Lluch Lafuente, P. Mayer, S. Sebastio, F. Tiezzi

accept reject complete fail

score – + –

Table 1. Node ranking schema

3.2 Node Ranking Schema

The interactions we aim at evaluating in our systems are the following:

– accept: the selected node accepts the task;
– reject: the selected node rejects the task, since it cannot meet the deadline;
– complete: the selected node successfully completes the task execution, i.e., it

meets the deadline and does not go offline during the execution;
– fail: the selected node fails in executing the task because it goes offline during

the execution.

Notably, we assume that the executor nodes are truthful: they are able to
accurately predict the task completion time and accept a new task iff they are
principally able to execute it within the task deadline. However, nodes do not
know their online-offline cycles a priori. It is thus possible that a node misses a
task it has accepted by going offline.

Each action can be evaluated by the nodes as satisfactory (+) or unsatisfac-
tory (–), which corresponds to giving a positive or negative rating, respectively.
The node ranking schema is defined by the value assigned to each individual
interaction as summarized in Table 1. Notably, the negative rating assigned to
the action fail is given for each task whose execution was not successful. Notice
also that no rating is given in case of task acceptance.

3.3 Node Selection Strategies

Reputation scores are used by the initiator node for the selection of an executor.
We consider the following node selection strategies:

– Random (R): a node is chosen randomly using an uniform probability dis-
tribution over the node pool (i.e., reputation is not taken into account).

– Reputation-based (RB): the node with the highest reputation score is cho-
sen. If more than one node exists with the same score, the choice is arbitrary
(i.e., random).

– Probabilistic reputation-based (PRB): a node is chosen randomly using
a probability distribution over the node pool. Such a distribution assigns a
probability to each node that is proportional to the reputation score of the
node, i.e., the higher the node reputation, the higher the probability the node
is selected. The idea is to introduce some randomness to avoid congesting
nodes with good reputation, and also some fairness by giving nodes with
low scores the chance to achieve a higher ranking (again). The probability
that a given node i will be selected among l nodes (the node-i’s neighbors)
according this strategy is defined as follows:

P (selecti) =
θ̃i∑l
j=1θ̃j
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4 Validation

In this section, we present an experimental validation of the proposed approach.
We start by presenting our volunteer cloud computing simulator built on top of
DEUS (Section 4.1). Then, we describe the performance parameters taken into
account during our experimental validation (Section 4.2). We describe next the
studied scenarios (Section 4.3) and conclude with reporting and discussing the
obtained results (Section 4.4).

4.1 The simulator in a nutshell

Our simulation model is implemented in DEUS [2], an open-source discrete event
simulation tool developed in Java. Although many other simulation tools are
available, DEUS appears to be more generic and flexible regarding the analysis
of complex dynamic systems like the one considered in this paper. The DEUS
API allows users to define and characterize three type of components: (i) nodes,
basic elements that interact in the complex system; (ii) events, which are the
actions performed by the simulator and correspond to internal and external
node actions that can be due to interaction among nodes; (iii) processes, which
constrain the timeliness of events in a stochastic or deterministic manner. The
node state transition can be defined by functions specified in the node source
code or in the source code of the events associated to the node.

Our statistical analysis has been performed with MultiVeStA [19,22], a dis-
tributed statistical analysis tool that can be integrated with any discrete event
simulator. MultiVeStA provides a language (MultiQuaTEx) to express the sys-
tem properties of interest in a compact fashion. Essentially, MultiVeStA per-
forms independent distributed DEUS simulation runs until these properties are
evaluated with the required accuracy.

The simulator implements the basic machinery to suitably model the sce-
narios under consideration. In the following we discuss some parameters of the
configurations of the simulator that can be taken into account to set up the
desired volunteer cloud scenarios.

Workload Model. Tasks are generated by initiators according to some parametric
process that determines frequency of task generation, their duration (expressed
as CPU cycles) and memory occupation. Tasks are defined by their duration
and their deadline. If the deadline expires the task execution is considered to be
useless. The deadline offset is defined as 20% beyond the ideal task duration.
Thus, if a task that requires t exec arrives at time t arrival, the task execu-
tion is considered useful if it is completed within time: t arrival + t exec +

task exec*20%.

Network Model. When a node accepts a task execution request coming from
another node a communication overhead is evaluated to the simple yet realistic
network models described by Saino et al. [20].
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Node Model. The nodes realize an exclusive task execution environment where
the whole Virtual Machine (VM) is assigned to only one task at a time. Its
behavior is modeled by a M/G/1/+∞ queue using the Kendall’s notation [7],
i.e., Poisson arrival process, general service time distribution with only one VM
and infinity queue capacity. A task is accepted by a node only if the node is able
to satisfy the requested task deadline, taking into account the tasks already on
its queue but without knowing its departure time (i.e., the point in time when
it goes offline). Thus, it is possible that a node accepts a task since it is able to
satisfy the QoS constraint, but after a while it leaves the network losing the task
execution results until that point. In this case the task is lost.

Node Classes. There are executor nodes of two classes: stable and unstable. Sta-
ble nodes are always online. Unstable nodes have two possible states (online and
offline) and two transitions (from online to offline and back). Their change of
state obeys some parametric, periodic or stochastic model. There are n stable
nodes and m unstable nodes created in the initial simulation stage. During the
simulation, unstable nodes can leave the network (causing a miss for all the
tasks on their execution queue) and reconnect subsequently according to a pa-
rameterizable process. When a node comes back online it retains its identifier; in
this way the behavior history of unstable nodes is preserved. Nodes are hetero-
geneous. Disregarding of their class they have computational resources (CPU,
RAM) randomly selected in some range (uniformly distributed). The node RAM
constitutes a constraint on the task that can be accepted by the node.

Simulation Duration. Our scenarios were simulated for seven hours; the end
result of these simulation runs are shown in Table 2.

We have also investigated how some of the performance parameters respond
over time considering a granularity of one second; this is shown in the plots 3, 4,
and 5. During our experiments the transient time has proven to be less than 7
minutes.

In the following we refer to the average results obtained after reaching a 95%
confidence interval, with a radius of 0.05, evaluated with the Student’s t-test [7].

4.2 Performance parameters

To evaluate the performance of the proposed strategies (see Section 3) we have
considered four different measurements to be relevant: the hit rate perceived, the
messages spread in the network (total and refused messages), the QoS (Quality
of Service) perceived by the task initiators (through the waiting and sojourn
times) and the algorithm fairness (considering how well the followed approach is
able to equally distribute the task load). In particular, we have considered nine
different performance parameters:

1. Hit plus running rate (H+R): defined as the relative amount of tasks that
have completed (satisfying their deadline) or are still running, over the total
number of sent requests. A running task will be completed if the node that
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executes it does not go offline. A higher value is desirable since it denotes
the ability of a strategy to accommodate a heavier load.

2. Useless message rate (Refused rate): defined as the relative amount of
refused requests over the total number of sent requests. This performance
indicator enables us to evaluate the overhead introduced by sending requests
to overloaded nodes. The requests are sent until a node able to accept the
request is found or the node list is exhausted. It is preferred to have low
values of this parameter corresponding to a minor overhead introduced in
the network for useless messages.

3. Total number of execution requests addressed (Tot req): defined as
the total amount of requests spread in the network in order to find a node
able to execute the task. Similarly to the previous parameter, but in absolute
values, this parameter allows to point out the introduced overhead.

4. Mean task Waiting time (W time): defined as the time that a task spends
before that its execution starts. Lower values suggest a better system re-
sponse to the incoming task requests.

5. Mean task Sojourn time (S time): defined as the overall time that a
task spends in the network. It is measured as the sum of the waiting and
execution times. It combines the previous performance indicator with the
required service time, thus also in this case lower values are better.

6. Mean number of tasks per node (tpn): the mean number of tasks that
have been executed by each node taking part in the network. The more this
value is closer to numberOfTasks

numberOfNodes and the more the strategy follows a load
balancing approach, i.e., it spreads the workload evenly among the nodes.

7. The variance of tasks per node (σ2
tpn): the variance of tasks executed

by each node taking part in the network. A reduced variance suggests that
more nodes execute an amount of work close to the mean.

8. Max number of tasks per node (max(tpn)): the number of tasks executed
by the node that has worked more. This is an index of the effort by the nodes
that have executed more tasks.

9. Min number of tasks per node (min(tpn)): the number of tasks executed
by the node that has worked less. A higher value suggests that all the nodes
have an active participation in the task execution service.

Note that a tpn value close to the numberOfTasks
numberOfNodes cannot always be obtained,

e.g., if we consider the presence of a certain amount of nodes that are unstable to
the extent of not being able to execute any task. Parameters tpn, σ2

tpn, max(tpn)
and min(tpn) should be analyzed together to evaluate the strategy’s ability to
address the workload and to what degree it is able to evenly distribute that load.

4.3 Simulated scenarios

The archetypal scenarios we used in order to evaluate the benefit that can be
achieved when reputation mechanisms are used in the node selection process to
distribute the task execution requests is as follows: In our scenarios the arrival
processes are Markovian, i.e., the inter-arrival time between two consecutive
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Property R RB PRB

H+R 0.757 0.813 0.770

Refused rate 0.519 0.020 0.004

Tot req 16742.0 25075.25 25074.666

W time 4520.729 4135.410 4764.227

S time 70404.393 71811.297 71801.275

tpn 18.999 22.900 19.375

σ2
tpn 119.865 175.470 127.094

max(tpn) 38.666 42.416 39.833

min(tpn) 0.25 0.0 0.0

Property R RB PRB

H+R 0.550 0.482 0.551

Refused rate 0.911 0.525 0.284

Tot req 22322.916 21047.916 25435.416

W time 12765.934 15102.111 13214.652

S time 93410.104 105657.507 94366.635

tpn 18.430 17.916 18.240

σ2
tpn 66.430 59.491 54.883

max(tpn) 31.25 25.75 29.083

min(tpn) 1.083 1.916 1.833

Table 2. Mean task arrival: 1000 (top) and 750 (bottom)

tasks can be modeled as an exponential random variable with a mean value
equal to 750 ms or 1000 ms in the comparing workload. Also, the unstable node
departure and reconnection times are modeled with Markovian processes with a
mean value equal to 72 seconds. The simulated time is 7 hours, and the temporal
analysis considers a granularity of 200 sec. The tasks are described by a deadline
of 20% of its duration, a task duration uniformly distributed in a range of [0...24]
minutes and a memory requirement in the range of [0...512] MB.

4.4 Experimental results

We have considered two different task arrivals to evaluate the performance of
the proposed strategies under varying workload. Table 2 shows both: First, a
low-load scenario where tasks have a mean arrival time of 1000 ms, and second
a heavy-load scenario where the tasks mean arrival is 750 ms.

In the low-load situation (Table 2, top), analyzing the H+R rate (Fig. 3)
and the Refused rate (Fig. 4, top right), we observe that both reputation-based
approaches (RB and PRB) are able to identify the stable nodes and redirect the
load towards them. The Tot req spread in the network and queue times are
almost the same for each kind of strategy. The strategies that implement a
random choice (i.e., R and PRB) are able to spread the load more uniformly
among the nodes (Fig. 5).

When the node load increases (Table 2, bottom), it is the PRB approach that
obtains the best performance, since it is able to spread the load on more nodes in
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Fig. 3. H+R rate

comparison to the RB and the R approaches (Fig. 5). At the same time, the PRB

approach is able to take into account the information gained on the evaluation
of the node’s behavior through the reputation scores, and does not stop on a
local minimum.

Fig. 3, 4 and 5 show the benefits of using different node selection strategies.
It is worth observing that the RB approach is more sensitive to the increase
in system load. The RB has the greatest dependency by task load; indeed its
performance on the H+R rate decreases quickly. The PRB approach instead is
the more stable under the change of workload. The same observation arises from
the Refused rate in the heavy load scenario, where the RB approach behaves like
the random approach. The PRB approach instead shows the lowest reduction on
the performance.

The W and S times (Fig. 4, bottom) are minimized with the RB approach
where the nodes are almost able to address all the task load, since this approach
is able to identify the more powerful nodes. However, when load increases and
these nodes are no longer able to manage the workload, they become overloaded,
which leads to a drop in queue performance and H+R.

The task distribution among nodes (Fig. 5) shows that the RB approach tends
to direct the load to few nodes: high max(tpn) and σ2

tpn.

Our conclusion is that the node selection process done through a reputation-
based mechanism can be an effective way to evaluate the node behavior and thus
identify the most promising nodes for task execution. Using only the reputation
score, it is possible to observe a degradation on the performance when the task
load is high, since the reputation initially leads to a redirection of all tasks to
a few nodes that soon get overloaded and consequentially lose their score due
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Fig. 4. Tot req (top left), Refused rate (top right), Waiting time (bottom left) and
Sojourn time (bottom right).

to task rejections. The mix of the two approaches, realized in the PRB approach,
seems to be the more effective way to use the knowledge acquired with the rep-
utation scores, and at the same time avoids getting stuck in a performance local
minimum. This is because the PRB approach allows some degree of exploration
of the nodes that do not currently have high scores.

5 Related work

In this section, we discuss work which shares similarities with our approach or
served as a source of inspiration. For the sake of brevity we focus on those works
that put special emphasis on reputation, trust and load balancing aspects within
the same system.

One such work is the trust management framework proposed by Mishra et
al. [18] for the sake of trustworthy load balancing in cluster environments. The
framework extends the Jingle Mingle Model (JMM) whose aim is to evenly dis-
tribute the task workload across multiple node within a cluster, while ensuring
that the node that takes in charge the process of an overloaded node is trusted.
Differently from our approach, they assume the presence of malicious nodes. In-
deed, the main motivation is that, since process migration involves transferring



Reputation-based Cooperation in the Clouds 13

 0

 5

 10

 15

 20

 25

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

M
e
a
n
 T

a
s
k
 p

e
r 

N
o
d
e

Time

(RB) - mean task 75

(RB) - mean task 100

(R) - mean task 75

(R) - mean task 100

(PRB) - mean task 75

(PRB) - mean task 100

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

V
a
ri
a
n
c
e
 o

f 
T

a
s
k
 p

e
r 

N
o
d
e

Time

 0

 0.5

 1

 1.5

 2

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

M
in

 T
a
s
k
 p

e
r 

N
o
d
e

Time

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06

M
a
x
 T

a
s
k
 p

e
r 

N
o
d
e

Time

Fig. 5. Mean (top left), Variance (top right), Min (bottom left) and Max (bottom
right) number of tasks.

the state of processes among nodes, a malicious node could steal or manipulate
such information, which may include code, data and credentials. The proposed
JMM extension considers the presence of a Process Migration Server (PMS), a
trustworthy node in charge of authenticating nodes. It maintains a table where
each row is composed by a node id and the corresponding trust probability.
When a node joins the cluster system, the PMS assigns a trust score α equal to
0.5 to the node. Every time a node executes some remote process successfully
the trust score is updated with α ∗ n where n is the number of times it has
successfully completed remote executions. A connection among the underloaded
(Jingle-node) and the overloaded (Mingle-node) node is kept, and malicious ac-
tion (e.g., the executing node inappropriately changes data) are reported to the
PMS, who reduces the trust score by 1 unit. When a node’s trust score goes
below the threshold of 0.5 the PMS disconnects the node from the network and
the corresponding table entry is removed from the table. In sum, the main differ-
ence with respect to our approach is that we use reputation scores as a measure
of goodness of collaborator nodes, while their approach aims at minimizing the
probability of assigning nodes to malicious nodes.

A work similar to ours is the reputation-based approach to discovery and
selection of reliable resources in P2P Gnutella-like environments, proposed by
Damiani et al. [11]. The authors propose XRep, a self-regulating system that
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uses a distributed polling algorithm implemented in the P2P network to build a
robust reputation mechanism. Each node and every resource in the P2P network
has a reputation associated to a tampered resistant identifier (or to a content
digest in the case of a resource). Reputations are cooperatively managed via a
distributed polling algorithm to reflect the community’s view on the use of a
certain resource. The resource selection process in the P2P network is enriched
by inquiring the network for the opinion of peers on resources and their offers.
Each node maintains an experience repository constituted by: (i) a resource table
that assigns a binary value (good or bad) to each resource it has experienced;
(ii) a node table that associates to each peer the number of successful and un-
successful downloads. These informations are shared on request. In Gnutella-like
networks, when a node searches for keywords, it receives a list of resources and
the corresponding nodes that offer them. Thus, XRep allows to inquire other
peers about either resources and nodes that offer them. The decision from which
node to start the download is based on the votes received and on the reliability
of the votes (obtained through a second round of opinions on the voters from
another set of peers). Our approach is inspired by this work, but we addresses a
different problem: distributed QoS-constrained task execution in a cooperative
environment instead of file sharing with a more stable presence of node resources.
In our scenarios the focus is on both the node load, behavior (expressed as stable
or unstable online presence) and node resource capability.

Many distributed computing problems similar to our case study have been
approached with distributed learning-based approaches in the past. An archety-
pal examples are those based on Ant Colony Optimization (ACO). Such ap-
proaches assume that no information about node characteristics or their load is
available a priori and try to gather such information in a distributed way. The
ACO approach was firstly proposed by Di Caro and Dorigo [10] and recently
applied also to volunteer cloud environments, for example by Sim et al. [23],
Mishra [17] and Ali et al. [1]. One crucial difference with our setting is that we
assume that nodes are not willing to disclosure any information regarding the
resources they own. In current work we are evaluating an ACO-based technique
for volunteer clouds [21] and we are investigating how to combine it with the
node pre-selection strategies proposed in this paper.

6 Concluding remarks

In this paper, we have investigated the problem of task distribution in voluntary,
peer-to-peer cloud computing environments where nodes are willing to share
their resources to other nodes. We have shown that reputation-based systems
can be beneficial in cases where available node resources are unknown, or where
nodes deliberately do not want to disclose their status (e.g., current load) or
their resources (e.g., CPU, memory).

In our experiments, the reputation score calculated through the evaluation of
node interactions has been used as the main criteria for selecting nodes for task
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execution. Our simulation results shows how the task performance parameters
are affected by the use of three different strategies (i.e., R, RB and PRB).

Currently, we are calculating reputation scores by considering all aspects of
the behavior of a node in a uniform way, i.e., all (satisfactory or unsatisfactory)
ratings have the same weight (see Table 1). We plan to extend our analysis
with more sophisticated reputation-based approaches, where separate behavioral
aspects of a node (e.g., capacity or online/offline period) are rated differently
and where further aspects may be taken into account. In this way, we can tune
the selection strategies according the specific needs of a given cloud application,
which for example may privilege node availability with respect to other features.

Furthermore, we are investigating the implementation of reputation-based
node selection strategies in the Science Cloud platform to validate the simulation
results with experiments on a real-world cloud platform.
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