
Strathprints Institutional Repository

Khorasanchi, Mahdi and Huang, Shan (2009) Preliminary instability-analysis of deepwater riser with
fairings. [Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/19767465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering 
OMAE2009 

May 31 - June 5, 2009, Honolulu, Hawaii 

   Copyright © 2009 by ASME 1 

OMAE2009-79116 

 PRELIMINARY INSTABILITY-ANALYSIS OF DEEPWATER RISER WITH FAIRINGS 

 
 

Mahdi Khorasanchi and Shan Huang 
 

Joint Department of Naval Architecture and Marine Engineering  
Universities of Glasgow and Strathclyde  

100 Montrose Street, Glasgow G4 0LZ, UK 
 
 

ABSTRACT 

Instability of deepwater riser with fairings is investigated 
in this study. Despite the advantages over other devices for 
suppressing vortex-induced-vibration (VIV), fairings may be 
susceptible to flutter type instability. A two-body mathematical 
model is established for the coupled transverse-torsion motion 
of a top tensioned riser with fairings. The inner part (riser) can 
only move transversely while the outer part (fairing) has 
transverse-torsion motion. The effect of the transverse velocity 
on the angle of attack is taken into account and damping is 
considered for both degrees of freedom. An eigenvalue analysis 
is employed to examine the issue of stability. The emphasis is 
on identifying the critical current speed for a given riser and 
fairing configuration. The effects of key parameters are 
investigated and the results indicate that the section 
hydrodynamic characteristics of the fairings have a significant 
impact on the instability.  

INTRODUCTION 

Marine risers are subjected to drag and vortex induced 
vibration (VIV). The drag is important, particularly for 
deepwater drilling risers, as it can lead to suspension of 
operations or even riser disconnection. VIV on the other hand 
can significantly shorten the riser fatigue life. A number of VIV 
suppression devices have been proposed and/or used in 
practice. Among these, helical strake is probably the most 
prevalent option. The main shortcoming of the helical strake is 
that it increases the drag force. In contrast, it is possible to 
reduce the drag and suppress VIV simultaneously by the use of 
fairings.  

Fairings are typically of teardrop geometry, as shown in 
Figure 1, varying in terms of chord length, nose thickness, span 
length, tip and tail details. They reduce the vibration by 

streamlining the flow and weakening the vortices shed aft of 
the fairing. Compared with the helical strakes, fairings have 
better performance in VIV suppression (Allen, 2003). They are 
also more effective than others when located downstream in the 
wake of upstream risers. Moreover, they reduce the drag as 
well. But the downside is that fairings may be susceptible to 
flutter-type instability, as observed in some studies (Lee and 
Allen, 2005, Meyer et al., 1995, Slocum et al., 2004, Ericsson 
and Reding, 1980, Ikeda et al., 2003). A key feature observed 
in the model tests, which is characteristically different from 
VIV, is that the vibration amplitude increases monotonically 
with the current velocity.  

 
 

 

Figure 1  A Typical Installed Riser Fairing. 
 

Slocum et al. (2004) demonstrated that a simple model of 
aircraft wing flutter can explain the mechanism of riser fairing 
instability and help to better understand the cause of oscillation. 
Although connected, riser and fairing are two independent 
bodies. A single body modelling may be overly simplistic, for 
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example, it can not handle the friction between the two bodies 
which may play an important part to the onset of the instability. 

NOMENCLATURE 

A1, A2 Area of riser and fairing 
c Fairing chord length (tip to tail) 
CD Drag coefficient measured at centre of rotation 
CL Lift coefficient measured at centre of rotation 
CM(cr)  Moment coefficient measured at centre of rotation 
Cy, Cθ Transverse and torsional damping coefficients 
ky  Transverse stiffness 
T1, T2 Kinetic energy  
U Current velocity 
Urel Relative current velocity 
Ury Reduced velocity 
V Potential energy 
y Transverse motion 
α Angle of attack (AoA) 
θ Torsional motion 
ξ, η Local coordinates 
ρ Fluid density 
ρs  Structural density 

MATHEMATICAL MODELLING 

Consider a simplified 2D model of a riser and its fairing. 
The local coordinate system, (ξ, η), is fixed on the fairing at its 
centre of rotation (cr), as shown in Figure 2. Only the 
transverse motion of the riser, y, is considered. The fairing 
follows the riser’s transverse motion, as well as rotates about its 
centre of rotation with the rotation angle defined as θ. In a fixed 
global coordinate system (X, Y), the horizontal and vertical 
velocities of any point on the fairing can be written as, 

X = ηθɺɺ   and Y y= − ξθɺɺ ɺ  (1) 

 

The kinetic energy of the system is made up of two parts, 
the energy of solid bodies (T1), i.e. riser and fairing, and the 
energy of fluid motion (T2) induced by moving bodies, 
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where ρs and ρ are structural and fluid densities, respectively. 
y
xuɺ denotes the fluid particle’s velocity in x direction, induced 

by unit velocity of fairing in y direction. 

 

 

Figure 2  Local and Global Coordinate Systems. 

The potential energy (V) is given as,  

21
y2

V k y=  (2) 

 

Lagrange’s equation for dynamics states, 

i
i i

d
Q (T V) (T V)

dt q q

 ∂ ∂= − − − ∂ ∂ ɺ
 (3) 

where qi shows the ith degree of freedom and Qi is the 
corresponding external force. The external force includes the 
hydrodynamic forces and linear damping, Cy and Cθ, i.e., 
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When the current moves with velocity of U in x direction, 
if the quasi-steady state is considered, both the transverse and 
torsional velocities have an effect on the relative flow velocity, 
Urel, and change the real angle of attack (Blevins, 2001) as 
shown in Figure 3,  

y R
arctan( )

U

− θβ =
ɺɺ

  

α = θ − β  

 

R shows the position of a reference point for the velocity 
induced by the angular velocity (Blevins, 2001). If R > 0, it 
means this point is aft of the centre of rotation. 

Hydrodynamic force for each degree of freedom consists 
of, 

[Hydro. force]y (Lift) cos (Drag) sin= × β − × β =  

               2 21 1
rel L rel D2 2

U cC cos U cC sinα αρ × β − ρ × β  
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2 21
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U c C

α
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where c is the chord length of the fairing. LC
α

, DC
α

, and 

M(cr)C
α

 are the lift, drag and moment coefficients at incident 

angle of α, measured at the centre of rotation (cr).  

 
Figure 3  Effective Angle of Attack α. 

 

The equations of motion can now be written as 
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 can be linearised as 
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where O(α2) means terms proportional to α2 and higher powers 
of α have been neglected. 

By keeping only the linear terms, the governing equations 
are in the form of, 
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By defining the following, 

Ŷ y= ɺ  and Θ̂ = θɺ  

Eqs (8) and (9) can be re-written in a matrix form, 
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The eigen-value equation is  

det A B λ −   = 0      (12) 

and the condition for stability is Real(λ) < 0.   
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The last term on the left hand side of Equation (9) can be 
interpreted as hydrodynamic torsional stiffness. Thus, the 
natural frequencies of both motions are defined as, 
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To non-dimensionalise the eigen-value equation, the 
following dimensionless parameters are defined, 
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where λɶ  is the ratio of the time that takes a flow particle to 
pass the chord to the period of oscillation; γ is the 
dimensionless form of the radius of gyration about pivot point 
with respect to chord length; Sr is the dimensionless distance of 
centre of gravity from pivot point; A is the inverse of mass 
ratio; ξy and ξθ are the damping ratio of transverse and torsional 
motions respectively; Ury and Urθ are reduced velocities; and Rr 
is the dimensionless distance of reference point. 

The non-dimensional eigen-value equation is then given 
by, 

4
i

i
i 1

c 0
=

λ =∑ ɶɶ  (17) 

where 

22
4 rc S = γ −

 
ɶ  

( )

( )

M(cr)
3 r r

o

2 L
r r D o

o

y2

ry r

C
c A S R

C
A R S C

2 ( )
U U

θ

θ

 ∂
= −

∂α

 ∂
+ γ − +  ∂α 

ξ ξ
+ γ + 



ɶ

2
y M(cr)

2 r2
ryry o

2 L
D o

r o

y2 L
r

ry r o

C
c A 1 2R

UU

C
2A C

U

C
4 AS

U U

θ

θ

θ

θ

  ξ ∂γ
= − + 

  ∂α  

 ξ ∂+ γ +  ∂α 

ξ ξ ∂
+ γ − 

∂α 

ɶ

 

y M(cr)r
1 2

ry ry o

2
M(cr)2

D2 o
rry o

CR
c A 2

U U

C
2 A C

UU
θ

θ

  ξ ∂
  = − +

  ∂α
 

∂ξγ
+ −

∂α 

ɶ

 

M(cr)
0 2

ry o

C1
c A

U

 ∂
 = −

∂α  

ɶ  

This equation is solved for λɶ  to see if the condition 
Real(λ) < 0 is satisfied. 

VERIFICATION AND PARAMETRIC STUDY  

A series of rigid cylinder tests was carried out by 
ExxonMobil at the David Taylor Model Basin (Slocum et al., 
2004). One of the tests was on a rigid cylinder with the 
diameter of 22cm and the length of 3.96m. It was fitted with six 
independent and identical fairing segments with their profile 
given in Figure 4. Each fairing segment has a span of 61.2cm, 
chord length of 52.6cm, and thickness of 23.2cm. 

 

 

Figure 4  ExxonMobil Fairing on a Rigid Cylinder. 
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Based on the data provided in the paper, some of the 
dimensionless parameters were calculated and given below:  

A = 0.8435  

γ
2 = 0.0792  

Sr = 0.2016 

 

Rr is a reference length for average effect of angular 
velocity on real angle of attack (AoA). For flutter of a thin 
airfoil which rotates about its elastic axis, Rr is chosen to give 
the AoA at a point three-quarters of the chord length back from 
the leading edge (Fung, 2002). The elastic axis for a typical 
airfoil is aft of midpoint and close to it. But the thick section of 
fairing swings about the centre of riser, further up toward the 
leading edge. Thus, Rr was selected as 0.40. 

The other group of required data in the model relates to 
hydrodynamic behaviour of fairing. A CFD analysis was 
performed on a few typical fairings including this section. The 
analysis was done at Reynolds number of 5x104 at different 
angles of attack. The velocity contour in the vicinity of the 
fairing at zero AoA is illustrated in Figure 5.   

 

 

Figure 5  CFD Results - Velocity Distribution at Re 5x104. 

Based upon the above study, the following parameter 
values are obtained. 

D o
C = 0.176 

L o
C /∂ ∂α  = 1.146 (1/rad)  

M(cr) o
C /∂ ∂α  = -0.0344 (1/rad) 

 

With respect to damping, some experimental tests report 
high level of in-water damping for riser fitted with fairing, e.g. 
0.10 to 0.18 (Lee et al., 2004). Very little data on torsional 

friction damping is available. For the preliminary study here, 
the following damping ratios are selected.  

yξ  =  5 % 

θξ  =  1 % 

 

The critical reduced velocity, Ucr, at which the real part of 
solution to equation (17) becomes positive, is obtained 
numerically by increasing the reduced velocity and solving this 
equation at each increment. For this case study, the analytical 
model shows the system becomes unstable at Ucr = Ury(flutter) = 
0.51, which is in the range of experimental results (0.42-0.56) 
(Slocum et al., 2004).  Through the analysis of eigenvalues, the 
model also reveals that the transverse mode becomes first 
unstable in this case. The trajectories of the eigenvalues in the 
complex plane as the current velocity increases are shown in 
Figure 6. The four eigenvalues were calculated for a range of 
reduced velocities, starting from zero with a small increment. 
The red circles correspond to the highest reduced velocity 
investigated, where one pair of the eigenvalues crosses the 
imaginary axis with its real part becoming positive.  

The imaginary part of the solution, λɶ , relates to the 
frequency of vibration. According to equations (15) and (16), 
the imaginary and real parts are multiplied by Ury to remove the 
effect of velocity in the non-dimensionlisation, i.e.,  

ry
y

U
λλ × =

ω
ɶ  
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Figure 6  Trajectory of Eigenvalues with Increasing 

Velocity. 

It is seen in Figure 6 that as the current speed increases, the 
imaginary part of eigenvalues associated with the torsional 
mode (left branch), increases too. This is in conformity with the 
fact that higher current velocity generates larger hydrodynamic 
torsional stiffness and consequently higher frequency of 
vibration. It should be reminded that the last term in the left-
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hand side of equation (9) can be interpreted as the only 
hydrodynamic torsional stiffness which is proportional to the 
current speed squared. 

The variation of the critical reduced velocity, Ucr, against 
the fairing section hydrodynamic coefficients is demonstrated 
in Figure 7 to Figure 9. It is seen from these figures that the 
slopes of the lift and moment curves at α = 0 play a significant 
role in the stability of system. On the other hand, the drag force 
does not present any significant influence on the instability 
onset condition in this case. 
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Figure 7  Critical Reduced Velocity versus Lift-Curve Slope 

at α = 0.  
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Figure 8  Critical Reduced Velocity versus Moment-Curve 

Slope at α =0. 
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Figure 9  Critical Reduced Velocity versus Drag Coefficient. 

  

CONCLUSION 

The study investigated the dynamic instability of riser fairing 
and developed a more general analytical model to predict the 
onset condition of instability. The critical condition, at which 
the combined system of riser and fairing loses its stability, was 
formulated as a function of the structural properties of the riser 
and the hydrodynamic characteristics of the fairing. In the 
model, the real angle of attack is influenced by both the 
transverse and angular motions. It also accounted for the effect 
of damping. Preliminary results of the mathematical model 
showed a good agreement with test data. It was also concluded 
that the section hydrodynamic properties of the fairing are 
critical to the instability onset condition.  
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