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Abstract 

 

Background: Performing gait analysis in a clinical setting can often be challenging due to 

time, cost and the availability of sophisticated three dimensional (3D) gait analysis systems. 

This study has developed and tested a portable wireless gait assessment tool (wi-GAT) to 

address these challenges.  

 

Aim: To investigate the concurrent validity of the wi-GAT in measuring spatio-temporal gait 

parameters such as stride length, stride duration, cadence, double support time (DST), stance 

and swing time compared to a 3D Vicon motion analysis system.   

 

Methods: Ten healthy volunteers participated in the study (age range 23-30 years). Spatio-

temporal gait parameters were recorded simultaneously by the Vicon and the wi-GAT 

systems as each subject walked at their self-selected speed. 

 

Results: The stride length and duration, cadence, stance duration and walking speed recorded 

using the wi-GAT showed strong agreement with those same parameters recorded by the 

Vicon (ICC of 0.94 to 0.996). A difference between the systems in registering “toe off” 

resulted in less agreement (ICC of 0.299 to 0.847) in gait parameters such as % stance and % 

swing and DST. 

 

Discussion and Conclusion: The study demonstrated good concurrent validity for the wi-

GAT system. The wi-GAT has the potential to be a useful assessment tool for clinicians. 

 

 



 

1. Introduction 

Gait analysis is a commonly used assessment tool that helps to quantify human 

locomotion.  It has been widely used as a research and/or a clinical tool to quantify 

movement in various neurological conditions such as stroke [1, 2], cerebral palsy [3, 4], 

spinal cord injury [5], and also among the elderly population to assess the risk of falls [6]. 

Three dimensional (3D) gait analysis has evolved over the years as a tool that provides the 

most accurate measure of human movement. However access to this sophisticated system is 

often limited to movement laboratories within an academic institution or large hospitals with 

embedded research facilities [7]. In addition to limited access, the costs associated with gait 

assessments also make it difficult for clinicians to perform them routinely to monitor their 

patient’s progress.  It has been estimated that a gait study can cost anything up to $2000 and 

the cost to set up a movement laboratory can be on average about $300,000 [8].  

 

In a recent review that reported on gait deficits in patients with traumatic brain injury, it was 

found that out of 15 studies that had used 3D gait analysis as an outcome measure only 2 of 

the studies reported on the kinematics and kinetics of gait [9].  The majority of the studies 

that were reviewed reported the temporal-spatial gait parameters, such as walking speed, 

cadence, stride duration, stride length and step length.  A 3D gait analysis is often difficult to 

perform in a clinical setting, due to the reasons stated previously, however recording spatio-

temporal gait parameters is less time consuming and feasible.  The advantage of a 3D gait 

analysis is that provides extensive data that includes kinematics and kinetics, which often gait 

assessment tools that record spatio-temporal parameters alone, do not provide.  There are 

commercially available gait assessment tools that can record spatio-temporal gait parameters 

such as instrumented mats with pressure sensors [10] and body worn sensors that incorporate 



accelerometers [11].  The limitations of these systems include difficulties in set-up within a 

clinical environment, where space is often limited, and although they may not be as 

expensive as the 3D gait analysis system, they are still costly for individual departments or 

independent rehabilitation clinics to utilize in providing a cost effective clinical assessment. 

 

Therefore there is a need for a low-cost, low-tech alternative that provides accurate measures 

that can be easily used by rehabilitation professionals without specialist motion 

capture/analysis training and most importantly within a clinical environment.  We have 

developed a system that meets these goals.  The initial wired prototype of this portable low–

cost gait assessment system was piloted among incomplete spinal cord injured patients as part 

of a clinical study that monitored recovery in walking among these patients [12].  We have 

now successfully developed a wireless version of this portable gait assessment 

system.  Therefore the aim of this study was to establish the concurrent validity of spatio-

temporal gait parameters recorded by this novel system among adult able bodied subjects. 

 

2. Materials and Methods 

The wi-GAT was recently upgraded as a standalone data acquisition device which required 

adaptations to its circuitry and data acquisition software, this justifies the need for a 

validation study. The spatio-temporal gait parameters which were validated include stride 

length, stride duration, cadence, stance duration, swing duration, stance%, swing%, double 

support duration and walking speed.  These parameters were calculated using the definitions 

provided in Table 1.   The Vicon (Vicon MX, Oxford Metrics, Oxford, UK) is a three 

dimensional motion analysis system which is commonly used for recording spatial and 

temporal gait parameters with high accuracy [13]. It was thus deemed an appropriate standard 

on which to validate the gait parameters recorded using the wi-GAT. 



 

2.1 Materials 

A custom designed printed circuit board (PCB) (Beta LAYOUT, Ireland) was used in the 

development of the wi-GAT. It incorporates a Bluetooth module (BlueGiga model: WT11, 

Espoo, Finland) and microcontroller chip (Microchip model: pic18f4520, Chandler, AZ, 

USA) powered by a 9V battery. The PCB is housed in a plastic enclosure with dimensions of 

12x10x4.5cm and the total weight (including battery) is 225g. The small size and weight 

enables the device to be attached to a belt on the subject’s waist during data collection. The 

device amplifies and transmits data from two instrumented insoles each comprising of four 

13 mm diameter force sensing resistors (FSRs) (Interlink Electronics, Camarillo, CA, USA) 

which are used to capture temporal information during gait. These are positioned under the 

heel, 1st metatarsal head, 5th metatarsal head and the big toe as described by Granat et al. 

[14]. Insoles were custom-made for each subject using FootDoc foot impression sheets 

(Visual Footcare Technologies, LLC, NY, USA) to position the FSRs as accurately as 

possible under the location of each anatomical landmark previously described. Standard shoe 

insoles were trimmed to the correct size and FSRs were attached under a clear plastic film in 

the correct positions for collecting the foot contact data (Figure 1). The process to fabricate 

the insoles for various shoe sizes takes approximately 15 minutes.  The insoles are connected 

via ribbon cable to the waist worn device (Figure 1). The wi-GAT uses a Bluetooth 

connection to a PC for data collection by an interface program implemented in LabVIEW 

(National Instruments Inc., Texas, USA). The signals were sampled at 30Hz and logged 

directly to a spreadsheet file. 

 

The spatio-temporal gait parameters were also recorded simultaneously using a twelve 

camera Vicon MX system operating at 100Hz. The Vicon Plug-in-Gait lower limb marker set 



and model was used.  Plug-in-Gait uses methodology which has been described by Davis et 

al. [15] and Kadaba et al. [16] and requires sixteen 15mm reflective markers to be attached to 

anatomical landmarks of the lower extremity. 

 

2.2 Experimental Setup 

The spatio-temporal gait parameters were recorded over a 10m walkway located within a gait 

lab at the Department of Biomedical Engineering, University of Strathclyde. The capture 

volume of the Vicon system was set to approximately 6x6x2m and was calibrated to the 

distance of the walkway using standardized protocols recommended by the manufacturer 

(Vicon MX, Oxford Metrics, Oxford, UK) at the beginning of each testing session. 

 

2.3 Subjects 

Ten healthy subjects with no known gait abnormalities volunteered to participate in the study. 

These included four males and six females with a mean age of 26.5 years (range 23 - 30 

years). The average height of the subjects was 1.72m (1.6 - 1.87m range) with an average 

weight of 73kg (54 - 86kg range). Ethical approval for the study was provided by the 

Biomedical Engineering ethics committee at the University of Strathclyde and the volunteers 

were fully informed of the procedure and provided written consent. 

 

2.4 Experimental Protocol 

Subjects were required to wear flat-soled training shoes and shorts. Anthropometric data was 

recorded for each subject on arrival and reflective markers were then attached to their lower 

extremities. The instrumented insoles were placed in the subject’s shoes and the wi-GAT box 

was positioned on a belt around their waist. Each subject was given the opportunity to 

perform practice walks to allow familiarization with the equipment and the experimental 



procedure. During data capture each subject was instructed to walk at a self-selected 

comfortable speed [11]. The first 2m of the 10m walkway were used by the subject to 

accelerate to their self selected speed and the last 2m to decelerate to a stop at the end of the 

walkway [12], [13]. The middle 6m of the walkway was used for data capture. Subjects 

performed a total of ten trials each.  

 

2.5 Extraction of Gait parameters 

2.5.1 Vicon 

Gait parameters were extracted from both the wi-GAT and the Vicon system for comparison. 

Vicon Nexus 1.7.1 software (Oxford Metrics, UK) was used to analyze the data recorded 

from the Vicon system.  Although force plates were present at the center of the 10m 

walkway, they were not used for detecting the heel strike and toe off events of the stride 

cycle because the size and position of the force plates limited data capture to a distance of 

1.2m or approximately a single stride cycle, compared to data recorded over 6m and multiple 

strides by the wi-GAT. Instead, the Vicon Nexus software was used to manually identify the 

heel strike and foot-off time points during each trial using the position of the xyz co-ordinates 

of the heel and toe marker as a point of reference.  The 3D coordinates and time frame that 

corresponded to each event were then exported as an ASCII file. Although the Vicon Nexus 

software can compute gait parameters from gait event information using the “Generate gait 

cycle parameters” pipeline process, these values are only calculated from the first identified 

stride cycle and not averaged over every recorded stride. As the wi-GAT averages over a 

series of strides, to preserve as many similar calculation methods as possible between the two 

systems, the Vicon trajectory and gait event timing data was used to manually calculate the 

gait parameters using the same gait parameter definitions used by the wi-GAT. These 

definitions along with the algorithms used to determine the parameters from the Vicon data 



are outlined in Table 1. In this study the wi-GAT measured a mean of 2.54 strides (std. dev. 

of 0.58) and the Vicon a mean of 2.43 strides (std. dev. of 0.54) across subjects. 

 

2.5.2 wi-GAT 

In order to extract the gait parameters from the wi-GAT, software implemented in LabVIEW 

was used (refer to screenshot Figure 2). This software up samples the recorded data file from 

30Hz to 100Hz to match the sampling frequency of the Vicon system.   The gait parameters: 

stride length, stride duration, cadence, stance duration, swing duration, stance%, swing%, 

double support duration and walking speed are calculated by averaging the FSR temporal 

data from the entire trial. The values were then saved to an excel file for subsequent analysis. 

 

2.6 Statistical Analysis 

Statistical analyses of all the gait parameter data was performed using SPSS (version 20.0) 

software (IBM Corp., Armonk, N.Y). A preliminary descriptive analysis and the Shapiro 

Wilk test were used to ascertain that the data was distributed normally.  In order to compare 

the gait parameters generated by both devices, the mean values were taken over the ten trials 

for each subject.  Intra-class correlation coefficients (ICCs) of the type (2, k) with absolute 

agreement [17], and repeatability coefficients were used to evaluate the level of agreement 

between the wi-GAT and Vicon systems for averaged stride data, as performed and 

recommended by previous investigations [11]. The repeatability coefficient was calculated 

according to Bland and Altman as 1.96 times the standard deviation of the differences 

between the wi-GAT and Vicon measurements [18]. The difference between the two 

measurement systems is expected to be less than this coefficient with a probability of 95%. 

The repeatability coefficient was also calculated as a percentage of the mean value of the two 

measurement systems.  



 

3. Results 

Comparative data for the Vicon and wi-GAT systems are presented in Table 2.  The mean 

value and standard deviation of each parameter from the ten subjects has been included to 

demonstrate the overall difference in measurement between the two systems. The majority of 

the ICCs (Table 2) demonstrate an excellent level of absolute agreement between the wi-

GAT and Vicon systems. These range from 0.94 to 0.996. The ICCs which showed less 

agreement ranged from 0.299 to 0.847, these were observed in four of the parameters: swing 

duration, stance%, swing% and double support duration. It should be noted that the actual 

stance (0.94, 0.94) and swing (0.847, 0.782) duration had moderate to good agreement but 

due to the short duration of each stride, when normalized, the stance% and swing% showed 

less agreement.  However, these differences were consistent across all the subjects and the 

repeatability coefficients (Table 2) were small in magnitude which may indicate that a close 

agreement still exists between the wi-GAT and Vicon. Small repeatability coefficients were 

observed for all of the gait parameters. For example, the absolute coefficient of 0.051m for 

left stride length in Table 2 indicates that the largest difference which can be expected 

between the two systems of data capture would be 5.1cm in 95% of the measurements. 

 

Bland and Altman plots were produced for stride length, stride duration, cadence and walking 

speed for the left and right legs combined, Figure 3. This is to verify that the assumptions of 

the limits of agreement are correct [18, 19]. 

 

The mean value of the true error was calculated as the mean difference between the ten 

averaged subject walks to identify how much the parameter values differ between the two 

systems (as reported by [11]), Table 2. The mean percentage error was then calculated 



between the wi-GAT and the Vicon mean values. The mean percentage error was defined as 

the difference in the measurement between the two systems divided by the Vicon 

measurement and recorded as a percentage. 

 

The parameters with the largest discrepancies are the parameters which use toe-off timing in 

their calculations (see Table 1). The largest difference in measurement was a 16% error in 

double support duration, which equates to a 0.024s or 24ms time difference. 

 

4. Discussion 

The validation results show good concurrent validity for most of the spatio-temporal gait 

parameters that were recorded using the wi-GAT.  The two main advantages of the wi-GAT 

are its low-cost and ease of use in a clinical environment.  There has been a lot of interest 

over the last decade on the development of low-cost gait assessment tools that can measure 

spatio-temporal gait parameters. The low-cost devices that have been developed so far 

include the use of two electric switches placed under the feet [20], ultrasonic sensors [21], 

photoelectric cells [22] and body worn gyroscopes [23].  Although most of these systems 

have used the term ‘low-cost’ in their description, the actual costs of these devices are not 

easy to estimate.  The wi-GAT system uses low cost components and a standard 

communication protocol. This provides the basis of what could be a low cost commercial 

product capable of operating in conjunction with any Bluetooth enabled device with the 

ability to run compact software applications. 

 

The second most important advantage of the portable wireless device is its ease of use in a 

clinical environment. Although the wi-GAT is yet to be used in a clinical setting, the wired 

version of this device was successfully used to evaluate gait in a study on gait recovery in 



incomplete spinal cord injured subjects [12] and in an investigation of the combined effects 

of functional electrical stimulation and Botulinum toxin on walking in children with cerebral 

palsy [3].  The total duration to setup the portable wireless device and record the spatio-

temporal gait parameters during a single trial is under 10 minutes, provided that insoles of 

various sizes are already instrumented and available. The analysis of the data using the 

graphical user interface (Figure 2) is simple with only two buttons for activation, meaning 

analysis can be completed in less than 2 minutes.  This we believe would encourage clinical 

use as the test is simple to perform, provides rapid reporting and can be completed within a 

single consultation. 

 

 The concurrent validity of the wi-GAT is comparable to other devices that have been 

developed to record spatio-temporal gait parameters such as body worn gyroscopes [11], and 

photoelectric cell walkways [22].  The spatio-temporal gait parameters: walking speed, stride 

length, stride duration, stance duration and cadence showed excellent agreement with the 

values estimated by the Vicon 3D motion analysis system (ICC values between 0.99 and 

0.94) (Table 2). The % errors for the above mentioned spatio-temporal parameters were also 

low and ranged between 0.25% and 2.2%. Given the low-cost and low-technology attributes 

of the portable wireless device, these are excellent agreements between a sophisticated 3D 

motion analysis system and the wi-GAT. 

 

The other spatio-temporal parameters calculated, swing duration and double support time, 

showed lesser levels of agreement between the wi-GAT and the Vicon 3D motion analysis 

system (ICC values between 0.84 and 0.49) (Table 2). The reasons for this lesser agreement 

are thought to be due to anatomical reasons combined with the differences in the methods of 

estimation used by the wi-GAT and the Vicon 3D motion analysis systems.  The gait analysis 



device uses an FSR positioned under the big toe to estimate toe-off as the time instance when 

this footswitch switches off. Whereas toe-off is identified by Vicon by manually entering a 

gait event in the software when the toe marker located over the 2nd metatarsal head has just 

left the ground. Due to the discrepancy in the timing of these toe-off events due to the 

anatomical difference in the placement of the FSR and marker, the stance% values for the wi-

GAT are slightly larger and thus the swing% values are slightly smaller than the values 

estimated by the Vicon 3D motion analysis systems.  These differences were typically in the 

range of a few milliseconds.  However when they were normalized in respect to the duration 

of a single gait cycle, the percentage errors were in the region of 3-6.5% (Table 2).  Similar 

differences in gait cycle durations have also been reported in a system that uses optoelectric 

cells to record spatio-temporal gait parameters [22].  Because these errors are consistent, the 

wi-GAT is a valid tool to assess the spatio-temporal gait parameters. 

 

There are some limitations in the present study.  The wi-GAT has been validated only among 

young healthy adults (23-30 years). A study is already underway to investigate the spatio-

temporal gait parameters in a geriatric population.  Also in the current study subjects were 

asked to walk using a self-selected speed.  A future study is being planned to evaluate the 

validity of the recorded spatio-temporal gait parameters using the wi-GAT during slow, 

regular and fast walking speeds and also establish the test-retest repeatability, which the 

current study has not investigated.  The wi-GAT is yet to be used in a clinical population.  In 

order to address this, a study is being planned to investigate the recovery of gait among 

incomplete spinal cord injured subjects using the wi-GAT in a clinical setup. 

 

There are also other gait parameters that the wi-GAT has a capability to record such as the 

mode of initial contact, heel contact time, inversion/eversion of the foot and the asymmetry 



index.  These are often important clinical indicators that provide the clinician with a wealth of 

information.  For example data on the mode of initial contact provides the clinician with an 

insight on the patient’s motor control of the foot during walking.  Any muscle tightness or 

spasticity can also strongly influence the mode of initial contact.  Therefore besides 

estimating the spatio-temporal gait parameters, the wi-GAT can also provide other clinically 

relevant data on the patient’s gait. 

 

5. Conclusion 

The wi-GAT has shown good concurrent validity when compared with the Vicon 3D gait 

analysis system, as shown by the excellent ICC values and low measurement errors.  The 

low-cost, low-technology and user friendly graphical interface makes it an ideal tool for 

clinicians to use as an assessment tool in their clinics. The time taken to setup and record the 

spatio-temporal gait parameters are also minimal.  The wi-GAT also provides additional data 

on initial contact pattern, heel contact time and other clinically relevant data, as shown in 

previous studies that have used this device.   
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Figure 1: Wi-GAT device and FSR insoles. 



 

Figure 2: Screen shot of the wi-GAT analysis software. The software automatically calculates 

the spatio-temporal gait parameters when a gait recording is selected. The spatio-temporal 

values can then be saved to a spreadsheet for further analysis. 

 

 

 

 

 

 

 

 



 

 

 

Figure 3: Bland and Altman plots of stride length, stride duration, cadence and walking speed 

for the left and right legs combined. The difference between the two systems (gait analysis 

device – Vicon) is plotted against the mean value of both devices for each subject. Limits of 

agreement are included as the mean value +/- 1.96 standard deviations (STD).  

 

 

 

 

 

 



 

Table 1 

The spatial and temporal gait parameter definitions used by the gait analysis device for the 

calculations are shown below. Foot strike was taken as the instance of a heel FSR switching 

over a given threshold and foot off as a time when no signal from the FSRs was measured for 

that particular foot. Definitions taken from [24].  

Gait Parameters Definition Vicon Calculation 

Stride Length (m) Distance covered between two subsequent 

foot strikes of the same foot. 
ܮ ൌ ͳ݊ሺݔశభ

ୀଵ െ  ሻݔ
Where ݔ  is the x coordinate (direction 

of walking) of the heel marker at heel 

strike. 

Stride Duration (s) Time taken to complete a single stride. ܦ ൌ ͳ݊ሺݐశభ െ ݐ
ୀଵ ሻ 

Where ݐ  is the time of heel strike in 

seconds. 

Cadence 

(strides/min) 

The number of strides taken in 1 minute.  

Stance Duration (s) Time taken from foot strike to the foot off 

of the same leg. 
ݐܵ ൌ ͳ݊ሺݐ௧ െ ݐ

ୀଵ ሻ 
Where ݐ௧ is the time when the toe marker 

leaves the ground in seconds. 

Swing Duration (s) Time taken from foot off until the next 

foot strike of the same leg. 
ݓܵ ൌ ͳ݊ሺݐ െ ௧ሻݐ

ୀଵ  

Stance (%) Percentage of the gait cycle when the foot 

is in contact with the ground (period 

between foot strike and ipsilateral foot 

off). 

 

 

Swing (%) Percentage of the gait cycle when the foot 

is in the air (starting with foot off and 

ending with the second ipsilateral foot 

strike). 

 

 

Double Support 

Duration (s) 

Time taken from foot strike to opposite 

foot off. 
ݏܦ ൌ ͳ݊ሺݐ௧ሺሻ െ ሻݐ

ୀଵ  



Walking Speed 

(m/min) 

Total distance travelled divided by the 

time taken to cover that distance. 

 



Table 2 

Mean (Std. Dev) values of each gait parameter averaged across all ten subjects for both the gait analysis and Vicon systems. Intra-class 

correlation coefficients (ICCs) and repeatability coefficients are also provided. 

  Average (Std. Dev) Difference Between Systems 
  

Repeatability 
Coefficients 

  

Gait Parameters Gait analysis system Vicon 
(Gait Analysis Device - 

Vicon) 
% Error Absolute Mean (%) ICC 

Stride Length, L (m) 1.454 (0.121) 1.484 (0.121) -0.030 -2.005 0.051 3.468 0.973 

Stride Length, R (m) 1.458 (0.121) 1.485 (0.122) -0.027 -1.805 0.042 2.823 0.975 

Stride Duration, L (s) 1.083 (0.077) 1.081 (0.077) 0.003 0.262 0.011 1.049 0.996 

Stride Duration, R (s) 1.086 (0.072) 1.080 (0.075) 0.007 0.626 0.030 2.773 0.981 
Cadence, L 
(strides/min) 55.654 (3.816) 55.791 (3.889) -0.137 -0.245 0.529 0.950 0.996 
Cadence, R 
(strides/min) 55.530 (3.621) 55.837 (3.821) -0.307 -0.550 1.268 2.277 0.985 

Stance Duration, L (s) 0.666 (0.050) 0.687 (0.048) -0.021 -3.016 0.024 3.567 0.940 

Stance Duration, R (s) 0.671 (0.048) 0.693 (0.050) -0.021 -3.103 0.024 3.454 0.940 

Swing Duration, L (s) 0.417(0.031) 0.394(0.034) 0.023 5.803 0.027 6.649 0.847 

Swing Duration, R (s) 0.415 (0.028) 0.388 (0.032) 0.027 7.046 0.026 6.472 0.782 

Stance, L (%) 61.502 (1.118) 63.602 (1.155) -2.100 -3.302 2.302 3.680 0.299 

Stance, R (%) 61.779 (0.953) 64.130 (1.145) -2.351 -3.666 1.555 2.470 0.343 

Swing, L (%) 38.498 (1.118) 36.461 (1.264) 2.038 5.589 2.362 6.303 0.338 

Swing, R (%) 38.221 (0.953) 35.920 (1.213) 2.301 6.405 1.756 4.737 0.344 

Double Support (s) 0.125 (0.013) 0.150 (0.015) -0.024 -16.241 0.017 12.069 0.494 

Walking Speed (m/min) 80.830 (7.900) 82.645 (7.147) -1.814 -2.196 2.590 3.168 0.977 
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