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Machine learning algorithms are generally developed in computer science or
adjacent disciplines and find their way into chemical modeling by a process
of diffusion. Though particular machine learning methods are popular in
chemoinformatics and quantitative structure–activity relationships (QSAR), many
others exist in the technical literature. This discussion is methods-based and
focused on some algorithms that chemoinformatics researchers frequently use.
It makes no claim to be exhaustive. We concentrate on methods for supervised
learning, predicting the unknown property values of a test set of instances, usually
molecules, based on the known values for a training set. Particularly relevant
approaches include Artificial Neural Networks, Random Forest, Support Vector
Machine, k-Nearest Neighbors and naïve Bayes classifiers. © 2014 The Authors. WIREs
Computational Molecular Science published by John Wiley & Sons, Ltd.
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INTRODUCTION

The field known as chemoinformatics, or sometimes
cheminformatics, can be considered as that part

of computational chemistry whose models are not
based on reproducing the real physics and chemistry
by which the world works at the molecular scale.
Unlike quantum chemistry or molecular simulation,
which are designed to model physical reality,
chemoinformatics is intended simply to produce useful
models that can predict chemical and biological
properties of compounds given the two-dimensional
(or sometimes three, see Box 1) chemical structure of
a molecule.

The history of chemoinformatics began with
local models, typically for quantitative structure–
activity relationships (QSAR) or quantitative
structure–property relationships (QSPR). Popular
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versions of this history usually begin with Hammett
or Hansch,1,2 though Borman has followed the trail
of QSAR back into the 19th century.3 Early models
were generally based on linear, and later multilinear,
regression. These were typically built using only a very
few features, and were valid only for a small series
of closely related compounds. Interestingly, machine
learning and pattern recognition methods have an
association with chemistry going back more than four
decades, with methods like the linear learning machine
being applied to problems such as the interpretation
of spectroscopic data, as discussed in an early review
by Kowalski.4

In contrast to the very small applicability
domains of early QSAR studies, much recent work
has concentrated on global models, by which we
mean models trained on and hence valid for a wide
range of organic or drug-like compounds. A number
of factors, most notably the availability of data for
molecules spanning a much wider chemical space, the
use of a large and diverse selection of descriptors, and
the development of sophisticated nonlinear machine-
learning algorithms have increased the use of such
global models in recent years.
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CHEMOINFORMATICS

From Molecules to Features to Properties
Although to some extent a postrationalization,
it is helpful to consider chemoinformatics model
building as a two-part process.5 Firstly a molecular
structure, typically represented as a molecular graph
or connection table, is converted into a vector of
features (which are also known as descriptors and
represented generically by the symbol x). This first
stage may sometimes also use three-dimensional
information (see Box 1), and can be referred to as
the encoding. Numerous recipes, some freely available
and many commercial, exist for encoding a compound
as a feature vector.6 The second part of building
a machine-learning model for chemoinformatics is
the mapping (using Lusci et al.’s terminology4). This
involves empirically discovering a function that maps
between the feature vectors and the property of
interest, represented by the symbol y. It is this
mapping that is most often learnt by the machine-
learning algorithm. The two-part process is illustrated
in Figure 1.

BOX 1

REPRESENTING MOLECULES: TWO OR
THREE-DIMENSIONAL?

In chemoinformatics, the researcher is pre-
sented with a fundamental dilemma—should
the molecules be described with two- or
three-dimensional representations? A two-
dimensional representation is essentially a
molecular graph with the atoms as nodes and the
bonds as edges. Onto this may be added extra
information, such as bond orders, and the stere-
ochemistry about double bonds and at chiral
centers. Such a representation of chemical struc-
ture is essentially a digitized form of the struc-
tural diagrams familiar to chemists, and lacks the
explicit spatial coordinates of the atoms.

An alternative approach is to generate a
three-dimensional structure. This can be done
from the molecular graph or connection table
using a program such as CORINA,7,8 from a
crystal structure, or from a quantum chemi-
cal calculation. Although a three-dimensional
structure carries additional information, the
difficulty is that molecules generally exist as
an equilibrium between multiple conformers.
Even if our structure correctly represents the
lowest energy, and hence most abundant,
conformer, alternative conformations may be

critical for biological functions such as protein
binding. Nonetheless, using three-dimensional
structure opens up possibilities like scaffold
hopping in drug design, where molecules with
diverse two-dimensional structures but similar
three-dimensional shapes may bind the same
target. Sheridan and Kearsley’s review9 and an
article by the Ritchie group10 are two of the
numerous papers discussing the relative mer-
its of two and three-dimensional molecular
representations.

Feature Selection
The descriptors chosen to represent the molecules
have no a priori reason either all to be relevant for
describing the property to be predicted or all to be
independent of one another. Some machine-learning
algorithms are robust against the inclusion of irrele-
vant or of mutually correlated features, others less so.
It is fairly common, as part of the training phase of the
algorithm, to choose a subset of the original features
that are helpful for building a predictive model and
not strongly correlated with one another.11–13 An
alternative approach is principal component analysis
(PCA),14 a statistical procedure that transforms mutu-
ally correlated variables, which should first be scaled,
into mutually uncorrelated combinations called prin-
cipal components. The process maximizes the variance
of the first principal component; the components are
ordered from first downwards by decreasing variance.
PCA provides a way of explaining most of the
variance in the output variable with a small number
of orthogonal components. Each principal component
is a linear combination of the original features, so
although the linear combinations do not have such
clear meanings as the original features, the user can at
least see which features are contributing to the model.

Similar Property Principle
Two compounds that are ‘similar’ to one another
will have feature vectors that, when considered as
position vectors in the chemical space spanned by the
descriptors, are close to each other. If the mapping
function varies reasonably slowly and smoothly
across chemical space, then we expect similar
molecules to have similar values of the relevant
chemical (or biological) property. This is the basis of
the similar property principle: ‘Similar molecules have
similar properties’. While this may be considered a
central principle of chemoinformatics, it is far from
universally valid. In the case of ‘activity cliffs’ for
instance, the mapping function varies dramatically

© 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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Mapping features to property

Encoding structure as features
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FIGURE 1 | We can conceive of chemoinformatics as a two-part problem: encoding chemical structure as features, and mapping the features to
the output property. The second of these is most often the province of machine learning.

over a small distance in chemical space, corresponding
perhaps to a change of one functional group which
might prevent a ligand from binding effectively to a
protein, and apparently similar molecules can have
very different bioactivities.15

What Properties Can We Model?
For many properties, especially those of isolated
molecules, chemoinformatics and machine learning
would be a poor choice of methodology. If we
want to calculate dipole moments, polarizabilities
or vibrational frequencies, we would be better off
using quantum chemistry. On the other hand, where
a complex biological or condensed phase system
cannot easily be directly modeled by physics-based
methods, then chemoinformatics becomes a sensible
option. Given the extent to which the development
of chemoinformatics has been intertwined with drug
discovery and the pharmaceutical industry, it is hardly
surprising that bioactivity and ADMET (Absorption,
Distribution, Metabolism, Excretion and Toxicity)

properties rank high on the list of those addressed
by informatics approaches. There are also numerous
physicochemical properties that are hard to obtain
from theoretical chemical methods such as density
functional theory or molecular dynamics, and hence
are often modeled by chemoinformatics. Amongst
such properties, aqueous solubility and logP (the
logarithm of the octanol:water partition coefficient)
are directly relevant to drug discovery, and melting
point is indirectly so, due to its correlation with
solubility.16 Properties such as solubility17,18 and
sublimation energy19–21 are potentially amenable to
modeling by either chemoinformatics or theoretical
chemistry approaches.

MACHINE-LEARNING METHODS

Artificial Neural Networks
An artificial neural network (ANN), often simply
called a neural network where confusion with biology
is unlikely, is a mathematical model used for pattern
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recognition and machine learning. The network’s
architecture is based on connected neurons in an input
layer, a hidden layer or layers, and an output layer.
In a typical design, each connection between neurons
carries a weight. The weights are varied during the
training phase as the network learns how to connect
input and output data, before being tested on unseen
instances. While the ANN is inspired by the structure
and function of the human brain, it is massively
simpler in design and in no way simulates higher
brain function. In fact, a typical ANN will be smaller
than the minimal 302 neuron brain of the nematode
Caenorhabditis elegans.22

ANNs have been used for a wide range
of chemoinformatics applications. Amongst studies
seeking to predict bioactivity are Li et al.’s work on
estrogen receptor agonists,23 and So et al.’s study of
steroids,24 while neural networks were amongst a
number of methods used by Briem et al. to identify
possible kinase inhibitors.25 As with other machine-
learning methods, ANNs are often used to predict
toxicological, pharmacological, and physicochemical
properties, such as hERG blockade,26 aquatic
toxicity,27 drug clearance,28 pKa,29 melting point,30,31

and solubility.17,32,33 However, ANNs suffer from
vulnerability to overfitting, with a danger of learning
the noise as well as the signal from the training set and
hence being less able to generalize to the unseen test
data.34 Addressing this requires careful study design,
so that the training process can be stopped close to
the optimal time.

Deep Learning
Deep learning, a concept closely associated with
ANNs, is in principle the learning of layered concepts.
Thus, a model could describe higher and lower-level
concepts at different layers of its structure. Lusci
et al.5 use a multilayer ANN, which they describe
as a deep learning technique, to go from molecular
graphs to a set of descriptors and then, via a suitable
output function, to predict aqueous solubility, as
shown in Figure 1. Overall, they are able to generate
good predictions of solubility, competitive with other
sophisticated machine-learning methods. Their model
is in fact an ensemble of 20 different ANNs, each with
slightly different architectures.

The Wisdom of Crowds and Ensembles
of Predictors
The wisdom of crowds is a well-known expression
of the benefit of utilizing multiple independent
predictors.35 For example, a fairground competition
might involve members of the public guessing the
weight of a cow. No doubt, some guesses would be

far too high and others much too low. However, the
wisdom of crowds concept holds that the ensemble of
estimates is capable of making an accurate prediction,
as observed by Galton more than a century ago.36

In order to avoid the excessive effect of one or two
absurd guesses on the mean, it is preferable to use the
median of the estimates as the best prediction in the
context of a public guessing game.

This idea was exploited by Bhat et al.,29 who
used an ensemble of neural networks to predict the
melting points of organic compounds. Each network
has a different, randomly assigned, set of initial
weights. The authors found a significant improvement
in prediction accuracy as a result of using the ensemble
approach, with the ensemble prediction being better
not just than that of a typical single network, but
better than the best performing single ANN. They
achieved substantial improvement upon adding the
first few additional ANNs, but there was little further
effect in going beyond a few tens of networks.
The authors chose to use 50 ANNs in their final
model, though the rapid training time (around 9
seconds per network) meant that they could have
afforded more if required. While Bhat et al. adapted
an ANN approach to benefit from using an ensemble
of predictors, we will see that the use of multiple
independent models is also fundamental to Random
Forest (RF). The key to benefitting from the wisdom
of crowds is to design an algorithm that can produce
multiple independent predictors, even though their
predictions must be based on essentially the same
pool of data. Interestingly, the idea of combining
predictors of different kinds into an ensemble has
been much less explored in chemoinformatics than in
postdock scoring, where consensus scores constitute a
well-established method.37

Random Forest
RF38,39 is a technique for classification based on
an ensemble, or forest, of decision trees. The large
number of independent trees allows RF to benefit
from the wisdom of crowds effect. The trees are built
using training data consisting of multiple features
for each of a training set of objects. As we are
discussing chemical applications, we will assume
that these objects or instances are molecules. Each
tree is generated by stochastic recursive partitioning
and is randomized in two ways. Firstly, the tree is
randomized by allowing it to use, at each node, only
a stochastically chosen subset of the features. As the
training instances progress through the tree, they are
partitioned into increasingly homogeneous groups,
so that each terminal node of the decision tree is

© 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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(a)

(c) (d) (e)

(b)

FIGURE 2 | Five illustrative decision trees forming a (very small) Random Forest for classification. The terminal leaf nodes are shown as squares
and colored red or green according to class. The path taken through each tree by a query instance is shown in orange. Trees A, B, C, and E predict
that the instance belongs to the red class, tree D dissenting, so that the Random Forest will assign it to the red class by a 4–1 majority vote.

associated with a group of molecules with similar
values of the property to be predicted. Each split
within a tree is created based on the best partitioning
that is possible according to the Gini criterion,40 using
any single-valued attribute from a randomly chosen
subset of descriptors. The number of descriptors in
this random subset is the parameter mtry, and the
subset is freshly chosen for each node. The tree
building continues until all training instances have
been assigned to a terminal leaf node, see Figure 2.

Secondly, each tree is randomized by basing it on
a bootstrap sample of the training data. From a pool
consisting of N distinct objects, a sample of N objects
is chosen with replacement, so that each object may
be chosen zero, one, two, or occasionally more times.
The probability of a given molecule not being chosen
for a given tree’s bootstrap sample is (1 – 1/N)N, which
tends to a limit of 1/e, or approximately 0.37, as N
becomes large. Thus, for each tree, approximately
37% of the training set molecules do not appear in
that tree’s bootstrap sample, and constitute the so-
called out-of-bag data; conversely, every molecule is
out-of-bag for about 37% of the trees. The out-of-bag
sample can be used as an internal validation set for
each tree; the performance on the different out-of-
bag samples of each tree provides a fair test of the
predictivity of the RF.

The RF consists of ntree stochastically different
trees, each built from its own bootstrap sample
of the training data. The trained forest is then
used to predict unseen test data. In the case
of predicting a binary or a multiclass categorical
variable, the classifications are determined by majority

vote amongst the trees. The proportion of votes
cast for a class may provide an indication of the
probability of a label being correctly assigned, or
of confidence in a prediction, but this should be
considered an informal estimate only.41 Similarly,
a RF of regression trees can be used for predicting
numerical quantities, with the predictions from the
different trees being averaged. For classification,
the default value of mtry recommended by Svetnik
et al.39 is the square root of the total number of
descriptors; for regression, they advise using mtry
equal to one third of the number of descriptors.
If mtry were increased to equal the full number of
descriptors, RF would become equivalent to another
machine-learning method, the bootstrap aggregating
technique known as bagging. Alternatively, mtry
could be treated as an optimizable parameter. A
typical default value of ntree is 500, though there
is a case for using an odd number of trees in binary
prediction to avoid ties (which would be resolved
randomly). Often, RF calculations are relatively cheap
and a larger number of trees could be afforded;
however, the improvement in prediction accuracy with
additional trees is small. RF is generally considered
relatively robust against overfitting. Svetnik et al.
demonstrate that, unlike ANN, the test set error of
RF does not increase but converges to a limiting
asymptotic value as the training error is reduced
toward zero, one of many interesting observations
contained in an excellent paper that describes RF in
full detail.39

RF has proven a very successful method in
chemoinformatics and has been used in many different

© 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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contexts. These include prediction of athletic perfor-
mance enhancement,42 QSAR,43–45 mutagenicity,46

phospholipidosis,47 hERG blockade,48 and skin
sensitization.49 Applications in physicochemical prop-
erties include discovery of new crystalline solvates50

and solubility,51 the prediction of which has also
been systematically compared with those of melting
point and logP.52 RF has also found applications in
the area of postdock scoring functions and predicting
protein–ligand binding affinity.53–56

Support Vector Machine
Support Vector Machine (SVM)57 maps the data
into a high-dimensional space, using a kernel func-
tion that is typically nonlinear. The SVM seeks to
find an optimal separation between two classes, such
that each in their entirety lie on opposite sides of
a separating hyperplane. This is achieved by maxi-
mizing the margin between the closest points, known
as support vectors, and the hyperplane. SVM can
be adapted to either multiclass classification58,59 or
to regression. SVMs are one of the most pop-
ular machine-learning methods in chemoinformat-
ics. Uses in bioactivity prediction include drug
repurposing,60,61 kinase inhibition,25 estrogen recep-
tor agonists,23 and opioid activity.62 The SVM is
often used to predict toxicity-related properties such as
hERG blockade,47,63,64 mutagenic toxicity,65 toxicity
classification,66 and phospholipidosis.47,67 Applica-
tions in physicochemical property prediction include
solubility,33,52,68 pKa,29 logP, and melting point.52

The interested reader is referred to Noble’s instructive
article for further discussion of SVMs.57

k-Nearest Neighbors
The k-nearest neighbors (kNN) algorithm is one of
the simplest machine-learning methods to understand
and explain, the principle being that an instance is
classified by a majority vote of its neighbors, see
Figure 3. Each test instance is predicted to belong to
the class most commonly found amongst its k closest
neighbors, where k is a positive integer. Most often,
k is chosen to be small; if k = 1, the instance is simply
assigned to the same class as its nearest neighbor in
a feature space. The instances, which in chemical
applications are typically molecules, are described
as position vectors in the feature space, which is
usually of high dimensionality. It is helpful to scale
the features so that distances measured in different
directions in the space are comparable. Neighbors are
identified on the basis of distance in the feature space.
This is usually taken to be the Euclidean distance,
though other metrics such as the Jaccard distance

k = 1

k = 3

k = 5

FIGURE 3 | Illustration of a kNN classification model. For k = 1, the
model will classify the blue query instance as a member of the red class;
for k = 3, it will again be assigned to the red class, this time by a 2–1
vote; however, since the fourth and fifth nearest neighbors are both
green, a k = 5 model would classify it as part of the green class by a
3–2 majority.

could be used. In binary classification problems, it
is helpful to choose k to be an odd number as this
reduces the risk of tied votes, though depending on
the granularity of the space multiple neighbors may
share the same distance. Once the labeled instances
and their positions in the feature space are available,
no explicit training phase is required. Because of this,
kNN is considered a ‘lazy learning’ algorithm.

The same method can be used for regression.
This is most simply achieved by assigning the
property for the test instance to take the mean value
calculated from its k closest neighbors. However, it
can be helpful to weight the contributions of the
neighbors, the closest neighbor contributing most
to the average and the kth neighbor contributing
least; a procedure for doing this was published by
Nigsch et al.69 This effectively smooths the transition
between neighboring instances being counted and
non-neighboring instances being ignored.

The kNN algorithm is sensitive to the local
structure of the data. Thus it is ideal for calculating
properties with strong locality, as is the case with
protein function prediction.70 If a single neighbor
with, say, 90% identity to the test sequence is found,
it is highly likely that the functional label can be safely
transferred to the query sequence; a dozen neighbors
each with 25% identity would be much less useful.
Despite its locality, kNN can still give global coverage,
so long as the instances are distributed throughout
the feature space. In principle, the distance to the
neighbors, or the proportions of neighbors having
a given label, could be used to measure prediction
confidence, though this is rarely done in practice.

© 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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TABLE 1 Some Other Machine-Learning Methods Used in Chemoinformatics

Algorithm Description

Ant Colony87 Uses virtual pheromones based on ant behavior for optimization

Relevance Vector Machine (RVM)88 Sparse probabilistic binary classifier related to SVM; gives probabilities
rather than all-or-nothing classification

Parzen-Rosenblatt Window82,83,89 Kernel density estimation method that allows molecular similarities to be
transformed into probabilities of class membership

Fuzzy Logic90 Designed to give interpretable rules based on descriptor values

Rough Sets91 Rule-based method designed to give interpretable rules

Support Vector Inductive Logic Programming (SVILP)84 Rule-based method incorporating SVM ideas

Winnow47,85,92,93 For every class, Winnow learns a vector of weights for each feature. Test
instances are compared with these using score thresholds

Decision Tree23,76,94,95 Like one tree from a Random Forest, but without randomization

Linear Discriminant Analysis (LDA)96,97 Models statistical differences between classes in order to make a
classification

kScore98 Analogous to a weighted kNN scheme in which the weights are optimized
by Leave-One-Out cross-validation

Projection to Latent Structures (PLS)29,52,68 Obtains a linear regression by projecting x and y variables to a new
space. Also called Partial Least Squares

Many studies use some kind of internal
validation to optimize the value of k, with the
optimum value dependent upon the dataset at
hand. kNN has been used in bioactivity studies
of anticonvulsants and dopamine D1 agonists71

of kinase inhibition,25 cannabinoid psychoactivity,72

steroids, anti-inflammatories and anti-cancer drugs,73

athletic performance enhancement,42 and estrogen
receptor agonists.23 Studies of toxicological and
pharmacological relevance have looked at drug
clearance,28 mutagenic potency,74 and percutaneous
drug absorption.75 kNN has been used to predict
the odor characteristics of compounds.76,77 Studies
using kNN to investigate physicochemical properties
have considered melting point,52,69 boiling point,78

logP,52,78 aqueous solubility,52,79 and the analysis of
mixtures.80

Naïve Bayes
The naïve Bayes classifier provides a rather different
kind of algorithm, one based on estimating the
probabilities of class membership. Application of
Bayes’ theorem, together with the assumption that
the features xi are conditionally independent of
one another given the output class y, leads to the
formula

P
(
y|x1, x2, . . . xn

) ∝ P
(
y
) n∏

i=1

P(xi|y).

The decision rule is to assign a test instance to the class
with the highest estimated probability. Undoubtedly,
the assumption of conditional independence of the
features is not strictly valid. Nonetheless, naïve
Bayes often performs well enough to be competitive
with other machine-learning methods, and has the
advantage of conceptual simplicity compared to most.
As early as 1974, Cramer et al. published a method of
computing the conditional probability of a molecule
being bioactive given the fragments it contained.81

Naïve Bayes classifiers are now frequently used in
chemoinformatics, usually for predicting biological
rather than physicochemical properties, naïve Bayes
often being used alongside and compared against
other classifiers. This has been done in studies of
athletic performance enhancement,42 toxicity,66 the
mechanism of phospholipidosis,82 and also for protein
target prediction and bioactivity classification for
drug-like molecules.83–85 It is in principle possible
to use naïve Bayes for regression,86 but this is rarely
seen in chemoinformatics (Table 1).

VALIDATION

Study Design

Test Sets
Chemoinformatics models are only useful if they are
predictive. It is not sufficient simply to fit known
data, a useful model must be able to generalize to
unknown data, and thus must be validated.99 The

© 2014 The Authors. WIREs Computational Molecular Science published by John Wiley & Sons, Ltd.
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traditional way of doing this is to have the total
dataset divided into two parts, the training set and
the test set. The training set is used to build the
model, and its property values are known to the
algorithm. The model is then tested on the test set,
whose property values are not given to the machine-
learning algorithm. However, many machine-learning
approaches produce models sufficiently complex to
contain internal variable parameters. Often it is
helpful to optimize these parameters by holding back
part of the training set as an internal validation set,
which is used to find the parameter values giving the
best predictivity.

This approach to validation is a good one,
though it requires that the test set falls within the
applicability domain of the model.100 This means
that the training and test data should span the same
region of chemical space. A test instance is unlikely
to be predictable if there is no instance like it in
the training set. ‘Real life’ usage of QSAR and other
chemoinformatics models may well involve training
and model building at one time, followed by testing
on newly available data at some later date. In such
cases, it is important to ensure that the new test data
are within the applicability domain of the model.

Cross-Validation
One common and effective approach is cross-
validation. In n-fold cross-validation, the data are
distributed, either randomly or in a stratified way, into
n separate folds, with one fold being the initial test set.
If relevant, a second fold is used for internal validation.
The remaining folds are the initial training set. The
identities of the folds are then cyclically permuted,
such that every fold is the test fold once—and
hence each instance is predicted exactly once,99 see
Figure 4. Thus n separate models are generated, and
critically each instance is predicted from a model built
without knowledge of that instance’s property value.
This requirement means that any feature selection
needs to be carried out separately for each of the
n models, ensuring that no information about the
test instances finds its way directly or indirectly into
the model building process. Typically, fivefold or 10-
fold cross validation will be carried out. It is also
fairly common to use Leave-One-Out (LOO) cross-
validation, in which a separate model is built to
predict each instance, trained on the remaining (n − 1)
instances. An alternative is to use Monte Carlo cross-
validation,68,69,101 in which a number of different
training-test set splits are chosen randomly. Bootstrap
resampling99 is a related approach to randomizing
datasets for cross-validation, which is similar to
assessing RF models by their predictivity for out-
of-bag data,39 as discussed above. Cross-validation,

Run 1

Test

Run 2

Run 3

Run 4

Run 5

Run 6

Run 7

Run 8

Training

Internal validation

FIGURE 4 | Design of a cross-validation exercise, here shown for
eight-fold cross-validation. The identities of the six training, one test,
and one internal validation folds are cyclically permuted.

Monte-Carlo or otherwise, has the advantage that it
can in most study designs be repeated many times with
randomly different fold definitions, with the results
being averaged, leading to a more robust conclusion.

y-Randomization
One powerful test of a machine-learning model is
y-randomization, also known as y-scrambling.99,102

The real model is compared with alternative models,
which are generated from datasets in which the
property values y are repeatedly randomly reassigned
amongst the instances. The process of randomization
breaks the true chemical link between the features
x and the output property y, so that there is no
meaningful signal left to model. If the machine
learning method is still able to produce good
validation statistics for the randomized models then
we should be highly suspicious, as we know that it
must be modeling noise rather than signal.

Measuring Success
Measuring the success of a classification model is
not as straightforward as it might initially seem. For
a binary classification exercise, predictions can be
classed as true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN). These
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are combined into a confusion matrix of actual
against predicted classes, the diagonal elements being
the numbers of TP and TN, and the off-diagonal
ones the numbers of FP and FN. For a multi-
class classification problem, the confusion matrix is
analogous to this, with correct predictions again being
on the diagonal and incorrect ones off-diagonal, but
it has higher dimensionality. There are numerous
recipes for extracting single valued measures of
prediction success from the multiple numbers in a
confusion matrix, as discussed in several excellent
articles.103–105 For regression models, the square of
the Pearson correlation coefficient R2, together with
its cross-validated counterpart Q2, are often used, as
discussed by Consonni et al.106 Most often, the root
mean squared error (RMSE) is used as the numerical
measure of the prediction accuracy of a regression
model, as it naturally accounts for errors of either sign.
The average absolute error (AAE) is sometimes used
instead and often gives substantially lower numerical
values by avoiding the quadratic contributions from
poorly modeled instances, as can be seen from papers
such as16 which tabulate both measures. It is also
possible to assess the number of ‘correct’ predictions
if an arbitrary threshold is defined; for example,
the Solubility Challenge107 defined any prediction of
logS with an absolute error within 0.5 log10 units as
successful.

Interpretability
When we have identified suitable descriptors, built a
chemoinformatics predictor from them, and assessed
its predictive accuracy, how far can we interpret the
resulting model? The model tells us that descriptor x
is correlated with property y. For instance, Ploemen
et al.108 found that induction of phospholipidosis
is correlated with a molecule’s acid dissociation
constant pKa. Knowing that x can predict y does
not tell us how or why molecules with feature x
exhibit property y. There are probably several possible
explanations. Maybe induction of phospholipidosis
involves acid–base chemistry. Maybe it involves
molecules obtaining a particular charge state, perhaps
to help dissolve in an aqueous phase, or perhaps
to bind to some receptor, or possibly to sequester
ligands of the opposite charge? The correlation
revealed by the model doesn’t on its own prove
one particular mechanistic hypothesis. This is what
we mean when we say that QSAR, QSPR, and
other chemoinformatics models ‘reveal correlation,
not causation’.

So is a QSAR model useless for understanding
what is going on? Clearly not. The absence of
an expected correlation may allow us to reject a

mechanistic hypothesis, while the presence of unantic-
ipated correlations can suggest new hypotheses. These
will need proper testing, either by direct experiment
or by more sophisticated computational studies lever-
aging existing mechanism-relevant experimental data,
as performed by Lowe et al. for phospholipidosis.82

So a QSAR can be a step along the road to a
mechanistic understanding of a biological or chemical
phenomenon, but never the final step.

Chemoinformatics models are sometimes
described as ‘black boxes’. The archetypal black box
would be a (virtual) machine that predicted properties
excellently, but that offered no clue as to how or why
they occurred. In practice, a chemoinformatics model
is unlikely ever to be a completely black box. Some
methods, such as multilinear regression, immediately
tell us what descriptors contribute to the model; RF,
at least in its implementation in R,109 allows this
information to be extracted very easily via calculation
of descriptor importance. Even for methods without
an inherent simple measure of importance, we could
(though possibly at some computational cost) build a
set of models in which each descriptor is successively
randomized, just as is done when a RF is ‘noised
up’.39 Such a procedure will work best, maximizing
the effect of descriptor randomization and minimizing
the number of models to be built, if we first remove
correlated descriptors. The fundamental point is
that for any machine-learning model, even a neural
network, we can examine the effect that removing
input information has on the final model. Thus, we
can measure and extract the importance values of
descriptors from any model if we are prepared to try
hard enough, as Carlsson et al. demonstrated in two
cleverly designed studies that allowed them to extract
chemical substructure contributions to toxicity and
bioactivity from SVM and RF models.110,111

Conclusion
Although numerous articles cited herein have
compared performances of the various machine-
learning algorithms used in chemoinformatics, there
is no single best method for all problems. The relative
abilities of methods will depend on the size and
distribution in chemical space of the dataset, the
linearity or otherwise of the chemical problem to
be solved, the nature and internal correlation of
the descriptor set available, and the relevance of
nonlocal data, amongst several other factors. For
linear problems, simple linear regression may be as
effective as complex machine learning algorithms.18

For nonlocal problems, SVM and RF are probably
at least as good as any other algorithm and often
perform similarly when compared.47,52 The frequency
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with which these algorithms have been used and
discussed in chemoinformatics, together with their
easy availability via platforms such as R,109 makes
SVM and RF good starting points for chemists
beginning to incorporate machine learning into their
work. For problems where only local data are likely
to be relevant, kNN is an excellent and simple
approach.69,70

Validation is seen to be a critical part of any
machine-learning project and the design of the in
silico experiment is crucial to the robustness of the
study. A traditional training-test split of the data
is a good validation strategy, provided that the

two sets span the same regions of chemical space.
Cross-validation is also a popular strategy, and still
allows models to be tested on data unseen in their
generation. y-randomization provides a useful test of
a chemoinformatics model; a predictor that can find
a signal in random data is not to be trusted. Various
different metrics are used for measuring success, with
RMSE and R2 typically being used for regression
studies. Several different metrics for binary and multi-
class classification exist, all being derived from the
confusion matrix. QSAR and QSPR models reveal
correlation between descriptors and properties, but
do not by themselves prove mechanistic hypotheses.
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