
Workflow Principles Applied to Multi-Solution Analysis of Dependable
Distributed Systems

Francesco Moscato,
Dip. di Ing. dell’Informazione
Seconda Universitá di Napoli

Aversa, Italy
francesco.moscato@unina2.it

Nicola Mazzocca
Dip. di Ing, dell’Informazione
Seconda Universitá di Napoli

Aversa, Italy
nicola.mazzocca@unina2.it

Valeria Vittorini
Dip. di Ing. dell’Informazione

Universitá di Napoli Federico II
Napoli, Italy

vittorin@unina.it

Abstract

Real world dependable distributed systems are often het-
erogeneous, not only in their physical composition, but also
from a modeling and analysis perspective. Indeed, differ-
ent components may be modeled by using the most suit-
able modeling formalism and multi-solution strategies may
be applied to analyze the resulting multi-formalism model
since no single solution method is adequate to solve all sub-
models. In this paper we present the architecture of an ex-
tensible multi-formalism framework for the modeling and
design of distributed dependable system. We show that the
process needed to solve/analyze a model expressed through
different formalisms may be described as it were a busi-
ness process and executed by means of a workflow engine.
We apply the proposed technique to a fault tolerant remote
SCADA (Supervisory Control And Data Acquisition) sys-
tem.

1. Introduction

Modeling and simulation are becoming increasingly im-
portant to enable the analysis and design of real distributed
dependable systems whose components and aspects cannot
be expressed by a single modeling or simulation formal-
ism. To cope with the complexity of such systems multi-
formalism approaches are emerging that allow to use dif-
ferent formalisms to model and analyze different subsys-
tems and also to promote models reuse. Indeed, multi-
formalism multi-solution approaches are very appealing,

but proper modeling methodology and technology must be
developed. Some results in this line have been described in
the literature. For example SHARPE [11] and SMART [2]
are software tools that can be considered a first step to-
wards the development of multi-formalism multi-solution
frameworks. Nevertheless, to the best of our knowledge,
the only environment that implements an integrated multi-
formalism multi-solution approach is the Möbius frame-
work [4] where the semantics of the formalism is expressed
by coding a number of predefined C++ methods, adhering
to a given Abstract Functional Interface. A recent trend in
multi-formalism modeling is to take advantage from meta-
modeling (i.e. the process of modeling formalisms) [14],
that greatly promotes the availability of CASE tools sup-
porting multi-formalism modeling (e.g. [10], [3], [5], [8]).
In particular, AToM3 [3] implements a modeling approach
based on the combination of meta-modeling and graph
transformation techniques. This approach allows to ana-
lyze the models by translating all components into a com-
mon formalism (in [3, 13]). This paper discusses the use of
workflow management to automatize the solution process
needed to solve the multi-formalism model of a dependable
distributed system. We show that such process may be de-
scribed as it were a business process and executed by means
of a workflow engine. The proposed workflow-based solu-
tion is part of the OsMoSys (Object-based multi-formaliSm
MOdeling of SYStems) project which aims at defining and
implementing an extensible multi-formalism multi-solution
framework for the modeling and design of distributed de-
pendable systems. This work focuses on multi-solution and
applies the proposed workflow-based technique to a fault

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

tolerant remote SCADA (Supervisory Control And Data
Acquisition) system of a robotic cell involved in a palletiz-
ing process. The rest of the paper is organized as follows.
Section 2 briefly describes the overall OsMoSys modeling
framework and outlines the architecture of the OsMoSys
workflow engine that is currently under development. Sec-
tion 3 introduces the case study application and its multi-
formalism model. In Section 4 the mapping between work-
flow process and solution process definition is defined and
applied to the SCADA system. Section 5 reports some ex-
perimental results. Finally, Section 6 contains few closing
remarks.

2. Solving multi-formalism models with a
multi-solution approach

The work described by the present paper has being de-
veloped within a larger research project on multi-formalism
modeling and analysis of complex systems. The workflow-
based approach firstly introduced by this paper is going to
be integrated in the OsMoSys framework. In this section we
briefly describe the main ideas behind the OsMoSys multi-
formalism multi-solution approach. In particular the model-
ing methodology is outlined, and the overall OsMoSys ar-
chitecture is presented.

2.1. The Modeling Methodology

The OsMoSys modeling methodology stemmed from the
need to support compositionality both within a single for-
malism and among different formalisms. The relevant as-
pects of the methodology are the possibility of defining
any graph based formalism by using a meta-language called
metaformalism, and the possibility of organizing a model as
a hierarchy of sub-models. Formalisms definitions, called
metaclasses, can be organized in a hierarchy, so that differ-
ent dialects (or extensions) stemming from a parent formal-
ism can be easily derived in a consistent way. An instance of
a model class is said to be a model object. In the practice, li-
braries of parametric sub-models could be constructed, re-
lated with a specific application domain or problem class,
from which sub-models can be extracted and composed in
different configurations to model different scenarios.

A metaclass can be used both to express the syntax
of well known formalisms such as Generalized Stochas-
tic Petri Nets (GSPN), Queuing Networks (QN), and Fault
Trees(FTs) , or to define the syntax of new formalisms that
could be used to express sub-models composition opera-
tors and to compose several sub-models expressed in dif-
ferent formalisms, allowing to build multi-formalism mod-
els. This type of metaclasses have been called bridge meta-
classes. Here we will use a bridge metaclass to build the fi-
nal model of the SCADA system in Section 4.

2.2. Overall OsMoSys Architecture

The OsMoSys framework has been designed to effec-
tively support the solution and the analysis of the multi-
formalism models built according to the modeling method-
ology briefly described in Section 2.1. The solution we
propose to achieve multi-solution relies on a three-tier ar-
chitecture depicted in Fig 1. A graphical user interface
(DrawNET++) runs on the client and provides the sup-
port to develop the multi-formalism models. The middle-
tier server is a workflow engine that enacts the process
required to solve a multi-formalism model. The applica-
tions(on server side) are legacy simulation/analysis tools or
other tools involved in the solution process. The legacy si-
multaion/analysis tools are integrated into the framework by
the definition of proper Adapter modules.

client

Workflow
Engine

Solution
Process

Repository

Applications

Legacy
Mantained

Tool

Adapter

Result
Manager

Post/Pre
Processors

Figure 1. OsMoSys Conceptual Architecture

2.3. DrawNET++

The OsMoSys framework includes DrawNET++ [7, 6],
a configurable GUI for graph-based formalisms used to de-
fine multi-formalism models. DrawNET++ supports the
multi-formalism modeling methodology we have men-
tioned before and generates reusable models that can be
used to build libraries of models.

2.4. The Workflow Engine and the Process Defini-
tion Meta-Model

In order to analyze multi-formalism models proper so-
lution processes must be defined and applied through the
OsMoSys framework. To cope with the problem of multi-
solution when analyzing/simulating multi-formalism mod-
els and to automate the execution of the solution processes,
a mapping between workflow processes and solution pro-
cesses is introduced. The workflow engine is in charge of
enacting the solution processes according to their specifica-
tions. A workflow process definition is defined in [15].
In the same way we define a solution process definition

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

in the OsMoSys framework as a representation of the so-
lution process needed to solve/analyze a multi-formalism
model. It consists of a networks of activities too, that may
refer to solvers or tools (i.e. Applications) in order to per-
form, even concurrently, some tasks of the solution process
in the multi-solution environment. In Fig. 2 an UML dia-
gram is shown representing the main components of a solu-
tion process definition and their relationships. The Process
Definition entity in the diagram provides information that
applies to the other entities and information about the ad-
ministration of the process, such as time limits, execution
priority etc. The other entities, corresponding to the enti-
ties of a workflow process definition meta-model [15], are:
Participants; Applications; Activities; Transitions and Rel-
evant Data.
In a multi-formalism/multi-solution domain we define a

Work-Flow
Process

Definition

Relevant
Data

Process
Activity

Application TransitionPartecipant
Node

Partecipant
Solvers-Tools
Data-Base

SubProcess

General
Activity

Loop
Activity

Route
Activity

Refers to

Use

Performed By

Formal
Param

From

To

Execute

Refers to
Refers to

Figure 2. Solution process definition

Participant to be a physical elaborative node where appli-
cations are executed. It is possible to create more than one
application instance on a participant node, but a single in-
stance refers to only one activity. Activities, instead, com-
prise logical, self-contained unit of work within the project.
A general activity performs a set of tasks, invoking one
(or more) application services. Attributes may be defined
to specify activity control information and data used as in-
put or output (such as input or output files) parameters.
A process definition itself consists of a network of Activ-
ity nodes, and it may be represented by a directed graph
whose edges, named Transition, are represented by a cou-
ple: (FromActivity, T oActivity) An Activity, may define
JOIN conditions on incoming transitions and SPLIT condi-
tions on outgoing transitions. A JOIN describes the seman-
tics of an activity with multiple incoming transitions. The
SPLIT of an activity describes the semantics with multiple
outgoing transitions.
As shown in Figure 2, activities may also be: Route, Loop or
Subflow Activities. The semantics of these activities is ex-

plained in [15]. The OsMoSyS workflow engine architec-
ture is shown in Fig.3. To manage the solution process, the
workflow engine performs the following tasks:

Waiting Manager

Ready Manager

Running Manager

Terminated Manager

SCHEDULER

Wait List
ReadyQueue
Run List

Term Queue

KERNEL

Location Manager
Performance
Evaluator

Data
Collector SPDL

Interpreter

Participant Participant

Applications Applications

Process
Definition

Model
and

Results
Requests Participant

Solver Tools

Data-Base

Figure 3. OsMoSys Engine architecture

• Instantiates the applications needed to perform the so-
lution process activities;

• Performs a dynamical load balancing on participant
nodes;

• Performs routing of data needed by the applications to
accomplish their tasks.

The Kernel fetches a process definition (expressed in
SPDL), a model definition and its related results re-
quest (both express in the DrawNET++ XML format) and
performs the solution process. The kernel instances the
activity-related applications on participant nodes. The par-
ticipant is chosen on the basis of the informations pro-
vided by the Performance Evaluator that dynamically
estimates the load of the participant node and other perfor-
mance parameters.
The Scheduler consists of four manager processes, and four
lists/queues to manage the activities. The activities wait on
the incoming transition condition variables. When a con-
dition variable becomes true, the scheduler wakes up the
wait manager to control if one or more waiting activi-
ties can be inserted in the ready queue.
Activities in the ready queue refer to applications ready
to be instantiated to perform the activity work. Once in-
stantiated (the participant physical location is retrieved by
the Location Manager), a ready application becomes run-
ning and it is inserted in the running list.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

At the state, a prototype implementation of the work-
flow engine has been developed.

2.5. The Application Programs

The application programs are grouped in the follow-
ing classes: a) legacy analysis/simulation tools that actually
solve the (sub)models; b) adapters needed to integrate the
legacy solvers into the framework; c) the Results Manager
that is in charge of allowing the visualization of solution re-
sults on the GUI by interpreting the requests coming from
DrawNET++ and collecting the results to forward to it ac-
cording to a predefined XML format; d) pre/post processors,
i.e. tools that may participate in the solution process (e.g. to
translate the XML representation of the DrawNET++ mod-
els into a syntax suitable for the specific analysis tool).
The adapters and the Result Manager play a key role in the
solution process execution, but their description is out of the
aim of this work.

3. Case Study Application: A fault tolerant
remote SCADA system for a robotic cell

3.1. System Description

The case study application is a fault tolerant remote
SCADA system for a robotic cell which performs a palletiz-
ing process. A PLC locally supervises the process. Fig. 4
shows the configuration of the fault tolerant SCADA sys-
tem of the described robotic cell installed at the Univer-
sity of Naples. It consists of three general purpose PCs: two

Figure 4. SCADA architecture

of them have a module interface Int towards the PLC on-
board and act as primary and back-up front-end to the cell
respectively; the third one works as remote SCADA: it de-
mands to the local front-ends the interaction with the PLC.
The remote SCADA communicates with the primary front-
end over two (redundant) network links (link1 and link2 in
Fig. 4), and with the back-up front-end over just one link

(simply denoted link in Fig. 4).
The (active) front-end interface card driver reads and writes
status and control variables from and to the PLC memory
using a polling protocol. The variables are stored in the
front-end shared memory accessed by the PLC driver and
other front-end processes.
Remote SCADA reads from front-end the process status
performing control and configuration operations if needed
and visualizes a graphical representation of the process. In
this paper three different classes of failure are considered
when modeling the system:

link failures: If both If both link1 and link2 fail or back up
link fails.

machine failures: If one of the machines fails.

timing failures: If deadline expirations of (soft) real-time
occur while processes are executed on the machines.

3.2. System Model

Analyzing, tuning and recognizing bottlenecks of the de-
scribed system is a very hard task: it is necessary to model
the hardware and software behavior of highly heteroge-
neous components such as different tasks behaviors, oper-
ating system scheduling policies, communication protocols,
concurrency among tasks, IPC mechanisms and so forth. A
multi-formalism approach allows to cope with the complex-
ity of the problem and model both qualitative and quantita-
tive characteristics of each component of the systems by us-
ing the appropriate formalism to analyze each subsystem.
The goals of our analysis are to evaluate bootlenecks and
the availability of the whole system and to provide the pa-
rameters (number of control and configuration threads and
the width of polling interval) to be used in the system tun-
ing in order to guarantee that the required real-time dead-
lines will be met. At this aim is necessary to develop and
integrate both a performability and an availability model of
the system.

Measurements
(DATA)

Whole System
Fault Tree

Model

Operating System
Scheduler and
Communication

protocols
QN models

Thread
GSPN
Model

exec times
without

scheduling

exec
times

exec
times

network
traffic

System Load

Availability

Performability
Model

Availability
Model

Figure 5. Modeling Strategy

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

As shown in Fig. 5, the performability model is used to
evaluate: 1) the distribution of the response time of each
thread, 2) the network traffic, and 3) the system load. Three
GSPN models are used to describe the threads on the two
front-end and the remote SCADA. Since PNs do not pro-
vide native mechanisms to represent queuing effects, two
QN-based models are developed to represent the operating
system scheduling and the communication protocols behav-
iors (such as TCP/IP). The service times in the QN models
are obtained by solving the GSPN models.
The availability model instead is developed by using the FT
formalism.

GSPN models. The GSPN model of a front-end describes
four types of tasks: (1) read and write operations on PLC
memory; (2) send and receive operations (to and from the
remote SCADA); (3) fault prediction tasks; and (4) re-
configuration task after a fault detection. Furthermore, the
GSPN model of the remote SCADA describes: (1) threads
responsible for the processing of the status variables and the
alarm variables to update the process graphical representa-
tion on remote SCADA (GUI threads); (2) communication
of control and configuration signals to the active front-end;
(3) requests of information about the status of the palletiz-
ing process to the active front-end; and (4) reconfiguration
tasks required to reset the processes after a fault detection.
For brevity’s sake in the following we only report the part
of the GSPN models of the front-end the points (1) and (2)
of the front-end model.
The model of two concurrent tasks of the front-end is re-
ported in Fig. 6. The first task performs the send and re-

Preq

twrite_req
tread_req

T_W_req

T_R_req

PDDE_W

PDDE_R

tDDE_W tDDE_R

T_DDE_W

T_DDE_R

P_write_from_D
tsync2

P_waitOP2

tstart_R

tstart_W

P_SEMP_READ P_WRITE

T_preelab

T_READ T_WRITE

tsync1

P_waitOP

T_waitOP

P_OP

t_read_op

t_write_op

T_read_PLC

T_write_PLC

T_prep_pkt

T_send_pkt

T_waitOP3

P_waitOP3

P_prep_pkt

P_send_pkt

Figure 6. GSPN model of two front-end
threads

ceive operations towards the remote SCADA system and
interacts with the second task (PLC interface card driver)

through read and write operations on the front-end shared
memory. On the left of Fig.6 is modeled the protocol used
by the first task to access to the shared memory. The mid-
dle part of the model in Fig.6 describes read-write contests
in a shared memory managed by a semaphore (Psem). Tran-
sitions T−read−PLC and T−write−PLC represent read and
write operations from and to the PLC memory respectively.
Transitions T−prep−pkt and Tsend−pkt represent the opera-
tions of sending data and feedback information to the re-
mote SCADA.
Notice that read-write conflicts affects the execution time
of each thread. In Fig. 7 the model of two concurrent thread

Psend_req

Tsend_req

Pwait_resp

Tget_resp

Pw

tw
Pwrite

Twrite

Pdone_var

Tother_var

PSem

Pgui

tgui

Pr

tr

Pread

Tread

Pdone_read

Tgui

Pdone_gui

Tother_varGUI

Figure 7. GSPN model of two SCADA threads

on the remote SCADA is reported . The first thread(on the
top of the figure) sends requests to get the process status
variables from the front-end and stores them in the remote
SCADA shared memory. The second thread(on the bottom
of the figure) reads from this shared memory and upgrades
the graphical representation of the pallettizing process on
the remote SCADA Graphical User Interface.

Requests

Req

PLC

Alarm;State;Config

Sched

Round-robin

a1

a2

a3

sink

PLC

TCP send

Figure 8. Front End QN model

QN models. The QN model of the front-end is reported in
Fig. 8. The remote SCADA sends requests to the front-end
to : a) get process alarm variables; b) get process status vari-
ables; c) perform control and management operation on the
process. These three kind of requests are managed by dif-
ferent threads that are scheduled by the operating system
together with the PLC interface card driver. The schedul-
ing policy used by operating system is a preeemtive round-
robin one (represented in Fig.8 by the rectangle at the left of
server Sched). In Fig.8 ak k ∈ {1, 2, 3} represents the per-
centage of scheduled operation requiring : (a1) send opera-

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

tions towards remote SCADA; (a2) tasks that do not ask for
further operations; (a3) PLC operations. Communication-
related queues (Req and TCPsend) are modeled by a M/M/1
queue. A time slice q is associated to the round-robin pre-
emptive scheduler queue. In the following :

• ni*q+hi (h<q) is the time units used by thread i to ac-
complish its task;

• t0 is the service time of scheduled activities requiring
a whole time slice (all (sub)task preempted);

• tsi ,i ∈ 1, ..ntask the service time of scheduled activi-
ties requiring less than a time slice to terminate;

• pi , i ∈ 0, ..ntask the relative frequency of each
(sub)task.

It is possible to prove [9] that our model can be studied as
an M/G/1 queue with :

ts =
∑

i>=0

tsi∗pi; σ2
s =

∑

i>=0

(tsi−ts)pi; C2
s =

σ2
s

t2s
(1)

The proof is omitted owing the lack of space.

SCADA LINK_FE_BACK LINK2_FE LINK1_FE FE_BACK_OS_CRASH FE_BACK_HW THREAD PLC_INTERFACE FE_OS_CRASH FE_HW

FE_BACK FE1

SCADA FAIL LINK FAIL
LINK_FE_BACK_FAIL

LINK_FE_FAIL FE_FAIL

SYSTEM_FAIL

Figure 9. Fault Tree of the whole system

Fault Tree model. Finally, the fault tree model of the
whole system is reported in Fig.9. The rectangles with a cir-
cle on the top (basic events) represent system component
faults and are characterized by an occurrence proba-
bility. Basic Events are combined by using OR and
AND gates. The results of these operations are sim-
ply called events and represents subsystem faults. The lat-
est composition level have only one event (top event)
and represents the whole system fault probability. At sys-
tem level, in Fig.9, there a fault occurs if at least one
of subsystem of the previous level faults. The follow-
ing faults are considered in Fig.9:

a) hardware and operating system machine (FE−HW,
FE−OS−CRASH, PLC−INTERFACE, FE−BACK−HW,
FE−BACK−OS−CRASH);
b) Link (LINK−FE−BACK, LINK1−FE, LINK2−FE);
c) Thread (THREAD) due to three consecutive dead-
line overcomings.
Notice that the fault probability of the basic event at point c)
is obtained from the performability model reported in Fig.5.

4. Solution Process Definition

Modeling the SCADA system by the OsMoSys frame-
work requires that the GSPN, QN and FT models de-
scribed in Section 3 are built by using the DrawNET++
GUI. Since the models of the system components are gen-
eral enough to be reused it is useful to create new model
classes from whom model objects can be instantiated and
used as building blocks in different configurations. As an
example, Fig. 10 shows the DrawNET++ GSPN model class
which has the same structure of the model in Fig. 6. The

Figure 10. OsMoSys GSPN front end model

final model of the SCADA system depicted in Fig 11 is
built by using a bridge metaclass, in which composition
operators are defined. In Fig 11 the nodes represented by
squares are sub-models and the nodes represented by cir-
cles or diamonds are instances of two different types of
connection operators. The final model is obtained by in-
tegrating the GSPN and QN models by the operator in-
stances named operator1, operator2 and operator3 and
by realizing a communication between the performability
model and the availability model through the operator in-
stances named operator4 and operator5. Indeed, the oper-
ation needed to compose a GSPN model and a QN model is
a data exchange. Instead the operation needed to integrate

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Figure 11. OsMoSys system model

the availability model is more complex. It consists of a data
exchange after the solution of the associated QN model and
the evaluation of a joint probability starting from the QN
model results.

4.1. Definition of the Fault-Tolerant remote
SCADA System Solution Process

In this Section we describe the solution process used
to solve the multi-formalism model of the SCADA sys-
tem. The graphical formalism used in Fig.12 to describe the

GSPN_
Instancer GSPN2Great

ParGSPN_FE.xml

GSPN_FE_mod.xml

C1 C2

GreatSPN
Input files

GreatSPN C3

Solved
ModelGSPN_FE.net/def

request.xml

GSPN_FE_result.xml

GSPN_FE_result.xml

C8

C4

GSPN_
result
adapter

QN_
Instancer

QN_FE_model.xml

ParQN_FE.xml QN2QNToolC5 C6

QNTool
Input files

QNTool

C7
Solved
Model

QNTool_
res_adapter

request.xml
C9

ParFT.xml

FT_
Instancer

Other Submodels

Other Submodels Inputs

Figure 12. Remote SCADA solution process

workflow process is defined in [12]. A Square Box repre-
sents an activity, while arrows represents transitions. Circle
are used to store token generated by transition activations
as they were arcs of a PN, where activities may be treated
as transitions. In Fig. 12 only a part of the whole work-
flow process is represented because of lack of space. At the
Start Point, the XML model description is passed to the pro-
cess activities. Here we use the GreatSPN [1] to solve the
GSPN models and Sharpe [11] to solve the FT model. A

preprocessor application translates the XML representation
of the GSPN models to the GreatSPN format. It is instanced
by the GSPN2Great activity. The activity GreatSPN invokes
the tool to solve the GSPN sub-model. Then the GreatSPN
adapter (GSPN−result−adapter) is invoked to translate
the solution provided by the tool in the OsMoSys XML syn-
tax. The obtained results (GSPN−FE−result.xml) are
used to solve the QN sub-model: a post-processor instan-
tiated by the QN−Instancer activity inserts the parame-
ters calculated by solving the GSPN sub-model into the QN
sub-model and the preprocessor instantiated by the activ-
ity QN2QNTool translates the XML format of the resulting
DrawNET++ model to the input format of the QN solver.
The activity QNTool invokes the tool to solve the front-end
QN model. The QN solver adapter QNTool−res−adapter
translates the solution in the XML format used as input data
for the Fault Tree sub-model. The workflow described in

Figure 13. SPDL example

Fig. 12 is expresses the procedural aspect of a solution pro-
cess, that is fully specified by means of SPDL, a proper
language based on the XML Process Definition Language
(XPDL) [16]. Fig. 13 presents the SPDL section (pruned
of all XML tag) of the SCADA solution process which de-
fines the workflow reported in Fig. 12.

5. Experimental Results

Table 5 reports some (partial) results obtained by solv-
ing the multi-formalism model in Section 4. For brevity we
only report the results obtained by solving the performabil-
ity model.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Table 1: Some Experimental Results

Parameter Model Measured Variation
on System

tsAL,sST,sC 3.27msecs 3.39msecs 3.8%
tsGUI 20.03msecs 20.83msecs 4.0%
tr 15.89msecs 16.62msecs 4.6%
Deadline expiration
Probability(tr) 0.004 —- —

The values of tsAL,sST,sC represents the mean values of
services times for the scheduler Sched in Fig.8 of the remote
SCADA (Alarm, State and Config) requests. These values
are the outputs of the GSPN submodel reported in Fig.6.
Likewise tsAL,sST,sC , tsGUI represents the mean value of
service times for GUI operations for remote SCADA and
is obtained by solving the model in Fig.7. Finally tr repre-
sents the mean value of the response time to requests sent by
the remote SCADA to the active front-end. These requests
are scheduled under (soft)real-time constraints: the dead-
line for a request operation is set at 30 msecs. The prob-
ability of a deadline expiration for a request operation is
evaluated on the basis of the distribution of the requests re-
sponse time obtained by solving the submodel QN−SCADA
in Fig.11.

6. Conclusions and Future Work

In this paper we have discussed the application of work-
flow management principles to the multi-solution problem
which arises when using a multi-formalism approach to the
modeling of distributed dependable systems. We propose
to express the solution process needed to solve a multi-
formalism model by using workflow concepts and technolo-
gies. The main advantages of the proposed solution are the
flexibility and the extensibility of the framework, that al-
lows to integrate a wide number of modeling formalism and
analysis/simulation tools, and the possibility of defining li-
braries of reusable models. At the state, the OsMoSys archi-
tecture only addresses the WfMC Interface 1 (Process Defi-
nition Interchange) [16]. Some works will be done to make
it compliant with Interface 2 (Client Application Interface)
and Interface 3 (Invoked Application Interface).

References

[1] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo.
Greatspn 1.7: Graphical editor and analyzer for timed and
stochastic petri nets. Performance Evaluation, 924(1-2):47–
68, November 1995.

[2] G. Ciardo, R. Jones, A. Miner, and R. Siminiceanu. Smart:
Stochastic model analyzer for reliability and timing. Proc.

of the International Multiconference on Measurement, Mod-
elling and Evaluation of Computer-Communication Systems,
pages 29–34, September 2001.

[3] J. de Lara and H. Vangheluwe. Atom3: A tool for multi-
formalism and meta-modelling. Proc. of the European Joint
Conference on Theory And Practice of Software (ETAPS),
Fundamental Approaches to Software Engineering (FASE),
LNCS, (2306):174–100, April 2002.

[4] D. Deavours, G. Clark, T. Courtney, D. Daly, S. Risavi,
J. Doyle, W. Sanders, and P. Webster. The mobius frame-
work and its implementation. IEEE Transactions on Soft-
ware Engineering, 28(10):956–969, 2002.

[5] E. Engstrom and J. Krueger. Building and rapidly evolv-
ing domain-specific tools with dome. Proc. IEEE Interna-
tional Symposium on Computer-Aided Control Systems De-
sign, pages 83–88, 2000.

[6] G. Franceschinis, M. Gribaudo, M. Iacono, N. Mazzocca,
and V. Vittorini. Drawnet++ : Model objects to support per-
formance analysis and simulation of complex systems. Proc.
of Performance TOOLS, (2324):233–238, April 2002.

[7] M. Gribaudo and A. Valente. Framework for graph-based
formalisms. Proc. of the first International Conference on
Software Engineering Applied to Networking and Parallel
Distributed Computing, pages 233–236, May 2000.

[8] G. Karsai, G. Nordstrom, A. Ledeczi, and J. Sztipanovits.
Specifying graphical modeling systems using constraint-
based meta models. Proc. IEEE International Symposium on
Computer-Aided Control System Design, pages 89–94, 2000.

[9] F. Moscato. Realizzazione e validazione di un sistema re-
moto per il controllo di una cella robotizzata (in italian).
Master’s thesis, Universita’ di Napoli Federico II, May
2002.

[10] M. Remelhe. Simulation and visualization support for user-
defined formalisms using meta-modeling and hierarchical
formalism transformation. Proc. IEEE International Con-
ference on Control Applications, pages 750–755, 2001.

[11] R. Sahner, K. Trivedi, and A. Puliafito. Performance and
reliability analysis of computer systems, an example-based
approach using the sharpe software package. Kluwer Aca-
demic, November 1995.

[12] W. van der Aalst. The application of petri nets to workflow
management. The Journal of Circuits, System and Comput-
ers, 8:21–66, 1998.

[13] H. Vangheluwe. Devs as a common denominator for multi-
formalism hybrid systems modelling. Proc. IEEE Interna-
tional Symposium on Computer-Aided Control System De-
sign, pages 129–134, 2000.

[14] H. Vangheluwe, J. de Lara, and P. Mosterman. An introduc-
tion to multi-paradigm modelling and simulation. Proc. of
the AI, Simulation and Planning in High Autonomy Systems
Conference, pages 9–20, April 2002.

[15] WFMC. Workflow Management Coalition Terminology and
Glossary (WFMC-TC-1011). 1999.

[16] WFMC. Workflow Management Coalition: Interface 1 -
Workflow Process Definition Interchange - XML Process
Definition Language (XPDL), (WFMC-TC-1025). 2002.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

