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Abstract

Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD) and
involve CD4+ T cells, which are activated by major histocompatibility complex class II (MHCII) molecules on antigen-
presenting cells (APCs). However, it is largely unexplored how inflammation-induced MHCII expression by intestinal
epithelial cells (IEC) affects CD4+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how
epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to
colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of
MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus
and administration of interleukin (IL)-10 receptor-blocking antibodies (anti-IL10R mAb). To assess the role of interferon (IFN)-
c in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII
expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate
immune cells and expression of proinflammatory cytokines. CD4+ T-helper type (Th)1 cells - but not group 3 innate
lymphoid cells (ILCs) or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4+ T cells and
forkhead box P3 (FoxP3)+ regulatory T (Treg) cells. IFN-c produced mainly by CD4+ T cells is required to upregulate MHCII
expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-c exerts a critical anti-
inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain
the failure of anti-IFN-c treatment to induce remission in IBD patients, despite the association of elevated IFN-c and IBD.
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Introduction

IBDs are chronic and recurring inflammatory disorders

affecting the human gastrointestinal tract. There are two major

clinical forms of IBD, Crohn’s disease and ulcerative colitis.

Progression of Crohn’s disease is mainly driven by CD4+ Th1 and

Th17 cells, and IFN-c is a signature cytokine of the disease [1,2].

MHCII-mediated antigen presentation is fundamental for

driving CD4+ T cell orchestrated immune responses. MHCII is

primarily expressed on professional APCs, which induce both

effector T cell activation and FoxP3+ Treg cell-mediated tolerance

[3]. However, under inflammatory conditions, MHCII is typically

also induced on nonhematopoietic cells [4]. IECs are able to

process and present gut luminal antigens as they express the

MHCII antigen-presentation machinery and antigens in the

context of MHCII molecules [5,6,7,8,9,10]. However, as it

remains debated whether IECs are able to provide sufficient

costimulation for immunogenic T cell activation [11,12,13], it is

controversial whether their function as nonprofessional APCs

promotes CD4+ T cell-dependent tolerance or boosts immune

responses in situ. Previous observations obtained mainly from

in vitro or ex vivo studies might not reflect the more complex

situation in vivo [14,15,16].

Cell-type-specific expression of the MHCII antigen-presenta-

tion machinery is directed by the class II transactivator (CIITA).

CIITA expression is tightly regulated by the differential usage of

three independent promoters, pI, pIII and pIV [4]. pI is active in

myeloid cells. pIII activity is mainly restricted to lymphoid cells.

Importantly for this study, pIV2/2 mice display a selective

abrogation of inducible MHCII expression in nonhematopoietic

cells, including IECs. These mice lack positive selection of CD4+ T

cells due to the absence of MHCII on cortical thymic epithelial

cells (cTECs) [17]. However, CD4+ T cell development is restored

by introducing a CIITA transgene (Tg) driven by the keratin-14

(K14) promoter: The resulting pIV2/2 K14 CIITA Tg mice

harbour normal repertoires of CD4+ T cells and display normal

levels of MHCII on professional APCs, which depend on pI and

pIII, but lack inducible MHCII expression on nonhematopoietic

cells [4,17,18].

To investigate the in vivo role of nonhematopoietic MHCII

expression on the outcome of gut-specific immune responses and

pathology, we administered interleukin (IL)-10 receptor-blocking
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antibodies (anti-IL10R mAb) to pIV2/2 K14 CIITA Tg and

control mice infected chronically with H. hepaticus. In comparison

to the control mice, the absence of epithelial MHCII expression

led to colitis characterised by enhanced colonic infiltration of

innate effector cells and elevated expression of proinflammatory

chemokines and cytokines. This resulted in increased infiltration of

inflammatory CD4+ Th1 cells and an increased ratio between

CD4+ T cells and FoxP3+ Treg cells. A deficiency in IFN-c, or its

neutralization, resulted in the absence or reduced levels of

epithelial MHCII expression, respectively, suggesting that mainly

T cell-derived IFN-c is required to induce epithelial MHCII

expression. These findings reveal a critical role of IFN-c-induced

epithelial MHCII expression in contributing to intestinal homeo-

stasis by exerting an anti-inflammatory effect in vivo, which is

consistent with the failure to attenuate IBD with anti-IFN-c
treatment.

Materials and Methods

Animals
Mice were on a C57BL/6 background and were used between

6–10 weeks of age. pIV2/2 K14 CIITA Tg mice were described

previously [18]. C57BL/6 mice were obtained from Harlan

Laboratories. Heterozygous control mice were obtained by

crossing pIV2/2 K14 CIITA Tg with WT C57BL/6 mice.

pIVfl/fl vil-Cre Tg mice and pIVfl/fl littermates were generated by

crossing Vil-Cre-ERT2 mice [19] and pIVfl/fl mice [17]. Rag12/

2 IFN-c2/2 mice were obtained by crossing Rag12/2 mice

[20] and IFN-c2/2 mice [21]. Mice were housed in specific-

pathogen-free (SPF) facilities at the Universities of Lausanne or

Bern. All experiments were approved by the institutional, Swiss

federal and cantonal veterinary authorities (Permit number

1521.3), and all efforts were made to minimise suffering.

Anti-IL-10R mAb-induced Colitis Model
Experimental mice were obtained from H. hepaticus infected

parents. Prior and during in vivo experiments, the intestinal flora of

mice was synchronized by repeatedly exchanging feces among

experimental groups. Comparable H. hepaticus loads in individual

mice were confirmed by qPCR (details in Methods S1). Mice were

treated i.p. with 0.5 mg per injection of mAb 1B1.3a (anti–IL-

10R), or isotype control mAb Y13-259 (anti-p21 Ras Epitope

within amino acids 62–76), in PBS on days 0, 4, 7, 11, 14, 18, 21,

and 25. For in vivo IFN-c neutralization, mice were treated i.p.

with 400 mg per injection of mAb XMG1.2 (anti-IFN-c), or

isotype control mAb Y13-259, in PBS on days 11, 14, 18, 21, 25,

and 28. Weight of mice was followed daily during treatment until

day 28. Mice were sacrificed for analysis 1 wk after the last anti-

IL-10R mAb injection.

CD4+ T-cell Transfer Colitis Model
Colitis was induced by adoptive transfer of 26105 CD4+

CD252 CD45RBhi FACS-sorted T cells from WT or IFN-c2/2

mice into Rag12/2 or Rag12/2 IFN-c2/2 mice. Animals

were sacrificed at days 21–26 post CD4+ T cell transfer at the

onset of severe clinical signs of colitis (diarrhoea, severe weight

loss).

Colon Histopathological Analysis
Intestinal tissues of the mid-colon were immediately frozen in

Tissue-Tek O.C.T. compound (Sakura). 4–5 mm cross-sections

were stained with hematoxylin and eosin, and inflammation was

assessed blinded by a clinical pathologist on a scale of 0–15

according to the following criteria: Presence of lymphocyte

infiltration in the mucosa (0–1 score), submucosa (0–1 score)

and/or muscularis propia (0–1 score), cryptitis (0–3 score),

ulceration (0–3 score), crypt erosion/destruction (0–3 score). The

degree of inflammation was graded semi-quantitatively from 0 to 3

as follows: 0, no evidence of inflammation; 1, mild inflammation;

2, moderate inflammation; 3, severe inflammation. Microscopic

images were acquired using a DFC295 camera connected to a

DMIL LED light microscope via the FireCam Software (Leica

Microsystems).

Detection of Fecal Serum Albumin
Fresh feces were collected, lyophilized, and suspended in PBS.

Fecal albumin levels were determined using the ‘‘Mouse albumin

ELISA kit’’ (Bethyl Laboratories).

Cell Preparations and Purifications
Single cell suspensions from colonic epithelial and lamina

propria tissue fractions were obtained using a modification of an

established protocol [22]. Briefly, longitudinally-cut colon samples

were washed in PBS, further cut into small pieces, and incubated

twice in Hank’s balanced-salt solution (HBSS) containing 5 mM

EDTA and 2 mM DTT in a shaking incubator (37uC, 220 rpm)

for 30 minutes to isolate cells from the intestinal epithelium. To

derive lamina propria mononuclear cells, the tissue was further

incubated in HBSS containing 0.1 U/mL collagenase D and

50 U/mL DNase I (both Roche) in a shaking incubator (37uC,

220 rpm) for 2–3 cycles of 30–40 minutes. After each incubation

cycle, the collected fraction was sequentially filtered through a

70 mm and 40 mm cell strainer (BD Biosciences). For eventual

further enrichment of lymphocytes via gradient centrifugation,

derived cell fractions were resuspended in 40% Percoll (v/v) (GE

Healthcare), layered on top of 80% Percoll (v/v) and centrifuged

for 20 min at 10006g at RT. Lymphocytes were recovered at the

40%/80% Percoll interphase. Single cell suspensions from

lymphoid organs were obtained by mashing the organs through

a 40 mm cell strainer.

Flow Cytometry
Single cell suspensions were incubated with anti-FccRII/III

(2.4G2). The following antibodies (clones) were used for surface

staining: anti-CD3e (145-2C11), anti-CD4 (RM4-5), anti-CD8

(53-6.7), anti-CD11b (M1/70), anti-CD11c (N418), anti-CD25

(PC61.5), anti-CD40 (1C10), anti-CD44 (IM7), anti-CD45.2 (104),

anti-CD62L (MEL-14), anti-CD90.2 (53-2.1), anti-Ly-6C

(HK1.4), anti-Sca-1 (D7), anti-EpCAM (G8.8) (all from

eBioscience), anti-CD80 (16-10A1), anti-CD86 (GL-1), anti-

MHCII (M5/114.15.2), anti-Ly-6G (1A8) (all from Biolegend).

Dead cells were excluded by eF506 viability staining. For

transcription factor staining, cells were fixed and permeabilized

using the transcription factor staining kit and were stained with

anti-FoxP3 (FJK-16s) (both eBioscience). Samples were measured

on an LSR II flow cytometer (BD Biosciences), and analysed via

the FlowJo software (Tree Star).

qPCR
Small colonic explants were shock frozen in liquid nitrogen

before homogenisation using the Tissue Lyser II. RNA was

isolated by the RNeasy mini kit (both Qiagen). cDNA was

generated with the Superscript II reverse transcriptase kit (Life

Technologies) and random nonamer primers. cDNA concentra-

tions were adjusted and qPCR reactions were performed using the

SYBR Green Master Mix (Roche) on a LightCycler 480 machine

(Roche). The following primer sequences were used (from 59 to 39):
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ccl3 forward CCAAGTCTTCTCAGCGCCAT, reverse

TCCGGCTGTAGGAGAAGCAG; ccl4 forward

TCTTGCTCGTGGCTGCCT, reverse GGGAGGGTCA-

GAGCCCA; ccl5 forward CCTCACCATCATCCTCACTGC,

reverse TCTTCTCTGGGTTGGCACACA; ifn-g forward

GGATGCATTCATGAGTATTG, reverse

CTTTTCCGCTTCCTGAGG; il-1b forward CAACCAA-

CAAGTGATATTCTCCATG, reverse

GTGCCGTCTTTCATTACACAG; il-6 forward GAGGA-

TACCCTCCCAACAGACC, reverse AAGTGCAT-

CATCGTTGTTCATACA; Il-23p19 forward AGCGGGACA-

TATGAATCTACTAAGAGA, reverse

GTCCTAGTAGGGAGGTGTGAAGTTG; t-bet forward CAA-

CAACCCCTTTGCCAAAG, and reverse TCCCCCAAG-

CAGTTGACAGT; ror-ct forward CCGCTGAGAGGGCTT-

CAC, and reverse TGCAGGAGTAGGCCACATTACA; tbp

forward CCTTCACCAATGACTCCTATGAC, reverse

CAAGTTTACAGCCAAGATTCAC; b-actin forward GCA-

CAGCTTCTTTGCAGCTCCTTCG, reverse TTTGCA-

CATGCCGGAGCCGTTG. Gene expression for each individual

sample was normalised to the housekeeping genes TBP and b-

actin via the qBASE PLUS software (Biogazelle).

Detection of Secreted Cytokines in Colon Explants
Longitudinally-cut specimens of the mid-colon were rinsed with

PBS and cultured for 6 h in IMDM +10% FCS +561025 M 2-

ME at 37uC, 5% CO2. Debris was removed by centrifugation.

IFN-c (BD Biosciences) and IL-17A (eBioscience) were measured

by ELISA. All other molecules were detected using the Mouse

cytokine 20-Plex (Life Technologies) on a Luminex xMAP

analyser (Merck Millipore). Concentrations were normalized to

the weight of the colon explants.

Statistical Analysis
Differences in weight gain between groups of mice were assessed

by a repeated two-way analysis of variance (ANOVA), followed by

a Bonferroni post-hoc test. For all other experiments, differences

between groups were determined by the student’s unpaired t test

or, when the normality test failed, by the Mann-Whitney Rank

Sum test. P values are indicated when considered statistically

significant (*P,0.05, **P,0.01, and ***P,0.001).

Results

Characterisation of T cells in pIV2/2 K14 CIITA Tg Mice
It was previously shown that pIV2/2 K14 CIITA Tg mice are

deficient in nonhematopoietic MHCII expression but harbour

normal thymic and peripheral CD4+ T cell populations displaying

WT T cell receptor Vb-chain repertoires [18]. Frequencies of

CD4+ T cells, including FoxP3+ Treg cells, in colon-draining

mesenteric and caudal lymph nodes, the colonic intestinal

epithelium (cIE) and lamina propria (cLP) were found to be

comparable between pIV2/2 K14 CIITA Tg, heterozygous and

WT mice (Figure S1). We also observed a normal distribution of

CD4+ effector, memory, naı̈ve and FoxP3+ T cell subsets in the

thymus, spleen and peripheral lymph nodes (Figure S2). Finally,

we examined CD4+ T cell-dependent B cell responses in vivo in

pIV2/2 K14 CIITA Tg mice upon immunisation with 4-

Hydroxy-3-nitrophenylacetyl-hapten-23-conjugated chicken c-

globulin (NP23-CGG) or ovalbumin. Systemic antigen-specific

antibody responses in pIV2/2 K14 CIITA Tg mice were

comparable to WT mice (Figure S3). In line, affinity maturation,

assessed by detection of NP4-specific total serum IgG in NP23-

CGG immunised mice, was similar to WT mice (Figure S3A).

These results confirm that the phenotypes and functions of CD4+

T cells, including FoxP3+ Treg cells, in the colon and in primary

and secondary lymphoid organs of pIV2/2 K14 CIITA Tg mice

are comparable to those of WT mice.

Anti-IL-10R mAb Treatment during Chronic H. hepaticus
Infection in the Absence of Inducible Nonhematopoietic
MHCII Expression Leads to Colitis

To assess susceptibility to bacterial-driven intestinal inflamma-

tion, experimental mice chronically infected since birth with H.

hepaticus were treated with anti-IL-10R mAb. Prior and during the

treatment period, we synchronized the microbiome by repeatedly

exchanging feces among mice, based on the recent observation

that co-housed mice adopt each others’ microbial configuration in

the fecal content [23,24]. In addition, the low to undetectable

colonic MHCII expression in the steady state (shown below)

should not influence the flora. Notably, H. hepaticus loads were

comparable in all experimental mice before and after anti-IL10R

mAb treatment (Figure S4). It is important to mention that this

experimental system is different from the previously published

colitis model based on induction of chronic colitis by acute H.

hepaticus infection [25]. In contrast, in our setting, chronically

infected WT mice should not develop colitis.

To evaluate whether the absence of inducible nonhematopoietic

MHCII expression (shown below) alters susceptibility to bacterial-

driven colitis, pIV2/2 K14 CIITA Tg mice and heterozygous

controls chronically infected since birth with H. hepaticus were

treated with anti-IL-10R mAb. In contrast to MHCII-competent

controls, pIV2/2 K14 CIITA Tg mice gained significantly less

weight (Figure 1A), displayed significantly elevated fecal serum

albumin levels reflecting augmented protein-losing enteropathy

(Figure 1B), and developed a mild but prominent diarrhoea that

was not observed in heterozygous control mice (not shown).

Histopathological examinations of colon sections revealed an

exacerbated inflammation in pIV2/2 K14 CIITA Tg mice

(Figures 1C–D). pIV2/2 K14 CIITA Tg mice exhibited a diffuse

colonic mononuclear cell infiltration, whereas heterozygous

controls displayed only focal infiltration (not shown).

We next used a conditional knockout system to determine

whether the observed pathology is due to the lack of inducible

MHCII expression on IECs. Mice in which pIV is flanked by loxP

sites (pIVfl/fl) were crossed with mice harbouring a transgene in

which expression of tamoxifen-inducible Cre-recombinase is

controlled by an IEC-specific villin promoter (vil-Cre Tg). In

pIVfl/fl vil-Cre Tg mice, tamoxifen induces pIV excision

exclusively in IECs. Upon the administration of tamoxifen and

anti-IL-10R mAb pIVfl/fl vil-Cre Tg mice displayed increased

colitis susceptibility (Figures S5A–C), indicating that the absence of

inducible MHCII expression specifically on IECs significantly

exacerbates chronic H. hepaticus-mediated colitis. However, we

noted that tamoxifen altered the homeostatic composition of gut

lymphocytes (not shown) and affected colitis in control mice. This

is consistent with the fact that tamoxifen substantially affects the

murine gastrointestinal tract [26,27]. Due to the adverse effects of

tamoxifen we focussed on the constitutively pIV-depleted mice for

further experiments.

Colitic pIV2/2 K14 CIITA Tg Mice Display Increased
Innate Effector Cell Infiltration and Elevated Expression of
Proinflammatory Chemokines and Cytokines

We next sought to identify the major cellular and molecular

players mediating exacerbated inflammation and tissue damage in

colitic pIV2/2 K14 CIITA Tg mice. Infiltration of Ly6G+

Colitis in Absence of Epithelial MHCII
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neutrophils was increased in the colons of colitic pIV2/2 K14

CIITA Tg mice, which was significant in the cIE but not the cLP

(Figure 2A). CD11b+ Ly6C+ inflammatory monocytes were

significantly elevated in both the cIE and cLP (Figure 2B). These

innate effector cell subsets are also augmented in IBD patients [2].

We also noted a mild increase in CD11c+ DCs in the inflamed

colons (Figure S6). mRNA quantification revealed a significant

elevation of mRNAs encoding the proinflammatory chemokines

CCL3, CCL4 and CCL5 in the colons of colitic pIV2/2 K14

CIITA Tg mice (Figure 2C). These chemokines recruit innate

effector cells and T cells to sites of inflammation [28]. Moreover,

mRNAs encoding the inflammatory cytokines IL-1b and IL-6

were significantly increased (Figure 2C). We also found enhanced

colonic secretion of proinflammatory IL-1b, tumour necrosis

factor (TNF)-a and IL-12p40, as well as CXCL9 and vascular

endothelial growth factor (VEGF) in colitic pIV2/2 K14 CIITA

Tg mice (Figure 2D). Increased expression of IL-1b, TNF-a, IL-6

and IL-12p40 was previously observed in IBD patients [1,2].

CXCL9 secreted by innate effector cells was shown to promote T

cell activation and recruitment [29]. VEGF is known to increase

vascular permeability and inflammatory leukocyte extravasation in

IBD and experimental colitis [30]. In summary, the cellular and

molecular mediators of intestinal inflammation in colitic pIV2/2

K14 CIITA Tg mice display similarities to those in IBD,

underlining the physiological relevance of the applied colitis

model.

Exacerbated Colitis in pIV2/2 K14 CIITA Tg Mice
Correlates with the Inability of IECs to Upregulate MHCII
Expression

We next examined whether exacerbated colitis in pIV2/2

K14 CIITA Tg mice correlates with the loss of inducible MHCII

expression by IECs. IECs in anti-IL-10R-treated heterozygous

control mice upregulated MHCII expression, while this was not

observed in colitic pIV2/2 K14 CIITA Tg mice or healthy

isotype-treated controls (Figure 3). The same was true in the

inducible IEC-specific MHCII knock-out system (Figure S5D).

Confocal microscopy revealed that IECs from anti-IL-10R-treated

heterozygous mice expressed MHCII molecules on the basolateral

and apical surface (Figure S7). Since the provision of costimulation

by APCs is a prerequisite for immunogenic T cell activation, we

Figure 1. Chronic H. hepaticus infection plus anti-IL10R mAb treatment induces colitis in pIV2/2 K14 CIITA Tg mice. (A) Development
of body weight during anti-IL-10R mAb or isotype treatment of H. hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2 K14 CIITA Tg controls
(n= 9–11 per group). (B) Serum albumin concentrations in feces collected on days 26–30 (n= 6–8 per group). Data are shown as mean and s.d. and
represent two pooled experiments. (C–D) Colon histopathological analysis on day 32; (C) colitis scores, data displayed as mean, and (D) representative
photomicrographs of colon sections, stained with hematoxylin and eosin. Bar, 100 mm. Data represent three pooled experiments (n= 9–11 per
group). aIL10R, anti-interleukin-10 receptor monoclonal antibodies;
doi:10.1371/journal.pone.0086844.g001
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examined whether IECs express costimulatory molecules in

healthy and/or colitic mice. We did not detect induction of the

classical costimulatory molecules CD40, CD80 and CD86 (Figure

S8). Collectively, these results confirm that exacerbated colitis in

pIV2/2 K14 CIITA Tg mice correlates with the inability of

IECs to express MHCII.

Colitic pIV2/2 K14 CIITA Tg Mice Display Elevated
Frequencies of Colonic CD4+ Th1 Cells and an Increased
CD4+ T cell: FoxP3+ Treg Cell Ratio

We next investigated the impact of deficient epithelial MHCII

expression on intestinal T cells during colitis. We observed an

increase in colonic CD4+ but not CD8+ T cells in colitic pIV2/2

K14 CIITA Tg mice, which was significant in the cIE but not the

cLP (Figures 4A–B). Colitic heterozygous mice only displayed a

mild elevation of CD4+ T cells. Similarly, CD4+ T cells were

significantly elevated in colitic pIVfl/fl vil-Cre Tg mice, which lack

MHCII expression specifically on IECs (Figure S5E). Examination

of T cell polarization revealed significantly augmented expression

of mRNAs encoding the Th1 signature factors T-bet and IFN-c,

as well as IFN-c secretion, in inflamed colons of pIV2/2 K14

CIITA Tg mice (Figures 4C–D).

Natural cytotoxicity-triggering receptor (NCR2) group 3 innate

lymphoid cells (ILC) cells were recently identified as important

cellular mediators of H. hepaticus-driven innate colitis [31,32].

However, we did neither detect a specific increase in these cells

(Figure S6B) nor in the expression of ror-ct, il23p19 or IL-17A,

which are diagnostic for group 3 ILCs and Th17 responses (Figure

S9). Thus, although we do not exclude a contribution of these cells

to the inflammatory process, they are unlikely to play a dominant

role in the increased pathology observed in our system.

Interestingly, we observed that colonic CD4+ T cells from colitic

pIV2/2 K14 CIITA Tg mice displayed a mildly reduced

expression of the co-inhibitory marker programmed cell death

(PD)-1 when compared to heterozygous mice (not shown). We also

found a significantly increased CD4+ T cell: FoxP3+ Treg cell ratio

in the cIE of colitic pIV2/2 K14 CIITA Tg mice compared to

identically treated heterozygous control mice (Figure 4E). The

majority of FoxP3+ cells lacked neuropillin (Nrp)-1 expression in

both anti-IL-10R-treated groups (not shown), suggesting that the

Figure 2. Innate effector cells and proinflammatory cytokines are elevated in colitic pIV2/2 K14 CIITA Tg mice. (A–B) Frequency of
Ly6G+ neutrophil granulocytes (A) and CD11b+ Ly6C+ inflammatory monocytes (B) isolated from the colonic intestinal epithelium (cIE, left panel) and
the colonic lamina propria (cLP, right panel) of H. hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2 K14 CIITA Tg controls. (C) ccl3, ccl4, ccl5,
il1b and il6 mRNA expression levels in colon explants. (D) IL-1b, TNF-a, IL-12p40, CXCL9 and VEGF secretion upon ex vivo organ culture of colon
explants. All data represent three pooled experiments (n= 9–11 per group). aIL10R, anti-interleukin-10 receptor monoclonal antibodies; IL,
interleukin; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor;
doi:10.1371/journal.pone.0086844.g002
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majority of colonic Treg cells were generated peripherally [33].

Taken together, these results indicate that MHCII expression by

IECs attenuates bacterial-driven colitis by preventing exacerbated

effector Th1 cell accumulation and the establishment of an

unfavourably altered ratio between conventional CD4+ T cells and

FoxP3+ Treg cells.

Epithelial MHCII Expression is Induced by IFN-c Mainly
Derived from CD4+ T cells

To examine whether IFN-c is responsible for inducing epithelial

MHCII expression we made use of the adoptive transfer colitis

model in which lymphocyte-deficient mice develop colitis upon

transfer of CD4+ CD45RBhi T cells [34]. Transfer of WT CD4+ T

cells into Rag12/2 IFN-c2/2 mice resulted in prominent

upregulation of epithelial MHCII expression, which was markedly

reduced when IFN-c2/2 CD4+ T cells were transferred into

IFN-c-competent Rag12/2 mice (Figure 5A). Notably, IECs did

not upregulate MHCII expression when both donor and recipient

mice lacked IFN-c (Figure 5A). Importantly, all experimental

groups developed severe colitis as assessed by histopathology

(Brasseit et al., manuscript in preparation). These results indicate

that IFN-c is the major cytokine driving MHCII expression on

IECs during adoptive transfer colitis, and that CD4+ T cells

represent the major source of IFN-c in this process.

To evaluate whether IFN-c-induced epithelial MHCII expres-

sion protects against colitis we administered neutralizing anti-IFN-

c mAb to pIV+/2 K14 CIITA Tg mice 11 days after initial anti-

IL-10R treatment to avoid interference with T cell polarization.

Neutralization of IFN-c in anti-IL-10R-treated pIV+/2 K14

CIITA Tg mice reduced MHCII expression by IECs as compared

to isotype-treated mice (Figure 5B). Importantly, this resulted in

elevated frequencies of CD4+ T cells in the cIE of anti-IFN-c
mAb-treated mice, comparable to pIV2/2 K14 CIITA Tg mice

(Figure 5C). In addition, preliminary data indicates that the CD4+

T cell: FoxP3+ Treg cell ratio is mildly elevated in anti-IFN-c-

administered pIV+/2 K14 CIITA Tg mice compared to isotype-

treated mice (not shown). Collectively, these findings suggest that

IFN-c-mediated MHCII expression by IECs plays an anti-

inflammatory role by reducing the accumulation of colitogenic

CD4+ T cells during chronic bacterial-driven colitis.

Discussion

We report here that the abrogation of inducible MHCII

expression on IECs during chronic H. hepaticus infection and anti-

IL-10R mAb treatment leads to overt colitis associated with an

augmented accumulation of CD4+ Th1 cells and an increased

CD4+ T cell:FoxP3+ Treg cell ratio. In contrast, heterozygous

control mice do not develop intestinal pathology as assessed by

clinical parameters, despite the fact that they display increased

MHCII expression by IECs and exhibit mildly elevated levels of

infiltrating CD4+ T cells. Finally, we show that epithelial MHCII

expression is induced by IFN-c produced mainly by CD4+ T cells.

We also examined whether NCR2 group 3 ILCs - which were

recently described to have a major role in murine innate colitis

[31,32] - or Th17 cells might be responsible for promoting

intestinal inflammation in the absence of nonhematopoietic

MHCII. However, we observed comparable group 3 ILC

frequencies in all anti-IL-10R mAb-administered animal groups,

and no increase in associated factors ROR-ct, IL-23 and IL-17A.

Thus, albeit group 3 ILCs and Th17 cells may play an important

role in colitis, we exclude a decisive role in determining disease

severity in our model.

Induction of MHCII on IECs correlated with a protection

against colitis in heterozygous mice, indicating that the low-levels

of IFN-c observed in heterozygous mice were sufficient to

maintain intestinal homeostasis via the upregulation of MHCII

expression during chronic H. hepaticus infection and anti-IL-10R

treatment. IECs are well known to fulfil diverse functions crucial

for intestinal homeostasis, including the capacity to modulate

intestinal immune responses [3]. Here we expand these previous

findings by reporting an MHCII-dependent anti-inflammatory

role of IECs that confers protection against colitis induced by

chronic H. hepaticus colonization.

Previous studies examining potential antigen-presentation func-

tions of IECs and their consequences for intestinal inflammation

generated conflicting results and relied almost exclusively on

in vitro or ex vivo assays [14,15,16]. One recent in vivo study using a

mouse model in which MHCII is expressed solely on IECs

indicated that antigen presentation by bone marrow-derived APCs

is indispensable for triggering severe bacterial-driven intestinal

pathology [35].

Immunogenic T cell activation requires TCR-MHCII-depen-

dent signals, the presence of polarizing cytokines and the provision

of costimulation. Whether IECs can express classical costimulatory

molecules remains a matter of debate [11,12,13]. In our model we

did not observe expression of the classical costimulatory molecules

CD40, CD80 or CD86 on MHCII+ IECs. Antigen-presentation in

Figure 3. Colitic pIV2/2 K14 CIITA Tg mice lack inducible
MHCII expression by colonic IECs. (A–B) Frequency of CD45.22

EpCAM+ MHCII+ IECs isolated from anti-IL-10R mAb or isotype treated,
H. hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2 K14 CIITA Tg
controls. Representative histograms (A) and summarized data as mean
(B) from three pooled experiments (n= 8–11 per group). aIL10R, anti-
interleukin-10 receptor monoclonal antibodies; IEC, intestinal epithelial
cell;
doi:10.1371/journal.pone.0086844.g003
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the absence of costimulatory molecules has been proposed to limit

CD4+ T cell responses [36], which is consistent with the finding

that IECs are not bona fide professional APCs capable of promoting

severe colitis in vivo [35]. However, non-classical costimulatory

molecules, such as IcosL, PD-L1 or LFA3 have been proposed to

be used by IECs to interact with CD4+ T cells [12,37].

The anti-inflammatory cytokine IL-10 is critical for maintaining

local tissue homeostasis in the presence of intestinal H. hepaticus

infection. First indications for this came from early observations in

IL-10-deficient mice that developed spontaneous colitis under

conventional housing conditions which was significantly less severe

(or even absent) when mice were held under SPF conditions [38].

Deliberate infection of SPF-housed IL-102/2 mice with H.

hepaticus significantly exacerbated the development of colitis [39],

and susceptibility to colitis induction is re-established in WT mice,

treated with anti-IL-10R mAb following H. hepaticus infection [25].

Figure 4. Colitic pIV2/2 K14 CIITA Tg mice display elevated Th1 cells, IFN-c, and CD4+ T cell: FoxP3+ Treg cell ratios. (A–B) Frequency
of CD3+ CD4+ and CD8+ T cells isolated from anti-IL-10R mAb or isotype treated, H. hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2 K14 CIITA
Tg controls. Representative histograms from the colonic intestinal epithelium (cIE) (A) and summarized data (B) from cIE (left) and the colonic lamina
propria (cLP) (right) as mean. (C) ifng and tbet mRNA expression levels in colon explants. (D) IFN-c secretion upon ex vivo organ culture of colon
explants as means and s.d. (A–D) Data represent three pooled experiments (n= 9–11 per group). (E) Ratio of absolute numbers of CD4+ T
cells:absolute numbers of CD25+ FoxP3+ Treg cells from cIE (left) and cLP (right) as mean from two pooled experiments (n= 7–10 per group). aIL10R,
anti-interleukin-10 receptor monoclonal antibodies; FoxP3, forkhead box P3; IFN, interferon;
doi:10.1371/journal.pone.0086844.g004
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Furthermore, H. hepaticus was shown to induce colitis in

lymphocyte-deficient 129/SvEv Rag22/2 mice [32,40,41].

However, adoptive transfer of Treg cells inhibits the development

of gut inflammation in this colitis model [41,42,43], which

depends on the ability of transferred cells to express IL-10

[43,44]. Similarly, IL-10 is important to prevent colitis in humans,

as certain variants of early-onset IBD observed in infants and small

children appear to be a monogenic diseases caused by deleting

mutations in IL-10 or its receptor (reviewed in [45]).

In contrast, the complex role of IFN-c during H. hepaticus-

induced colitis is incompletely understood. Injection of IFN-c-

neutralizing mAb into H. hepaticus-infected IL-102/2 mice

suggested that IFN-c is required for disease onset but not for the

chronicity of colitis [39,46]. Similarly, H. hepaticus-infected IFN-

c2/2 mice treated with anti-IL-10R mAb developed less

intestinal inflammation than WT mice [25], suggesting a

contribution of IFN-c to colitis development. In contrast, the

severity of H. hepaticus-induced colitis in mice lacking both IL-10

and IFN-c was comparable to mice lacking IL-10 alone [46],

indicating that IFN-c does not favour colitis development.

Recently, it was reported that during the course of H. hepaticus-

mediated colitis, induced Th17 cells switch phenotype to become

IFN-c+ ex-Th17 cells [47]. These results imply A) the potential

existence of alternative pathways affecting colitis development

following acute H. hepaticus infection, e.g. via the increase of

inflammatory Th17 cells in the absence of IFN-c, and B) that IFN-

c may have both pro- and anti-inflammatory effects on the

outcome of H. hepaticus-mediated colitis [25]. Our results expand

these previous observations by demonstrating that IFN-c-mediated

upregulation of MHCII molecules on IECs plays an anti-

inflammatory role that reduces infiltrating CD4+ effector T cell

frequencies and avoids the establishment of a pathologically

altered CD4+ T cell:FoxP3+ Treg cell ratio in the colon. Of note,

IFN-c was reported to feature anti-inflammatory properties in the

context of oral tolerance [48].

Our findings may help to explain why anti-IFN-c treatments

have consistently failed to induce remission in patients with active

IBD despite the association of enhanced IFN-c expression with

IBD [49]. Moreover, this study paves the way for further work on

the MHCII-dependent tolerogenic function of IECs as a potential

therapeutic target in patients suffering from inflammatory

disorders of the intestine.

Supporting Information

Figure S1 Intestinal FoxP3+ Treg cell frequencies in
healthy pIV2/2 K14 CIITA Tgmice. (A–D) Healthy pIV2/

2 K14 CIITA Tg, pIV+/2 K14 CIITA Tg and C57BL/6 WT

mice were subjected to flow cytometry. (A) Mesenteric lymph node

(mLN), (B) caudal lymph node (cLN), (C) colonic intestinal

epithelium (cIE) and (D) colonic lamina propria (cLP) cells were

gated on CD45.2+ CD4+ cells, and from there on FoxP3+ cells.

Data shown represents mean and s.d. (n= 3 per group). FoxP3,

forkhead box P3; WT, wild type;

(TIF)

Figure S2 Lymphoid organ T cell frequencies in healthy
pIV2/2 K14 CIITA Tg mice. (A–C) Thymus (THY), spleen

(SPL) and pooled peripheral lymph nodes (LN) of healthy pIV2/

2 K14 CIITA Tg, pIV+/2 K14 CIITA Tg and C57/BL6 wild

type (WT) mice were subjected to flow cytometry. Dead cells were

excluded and CD3+ cells were gated on (A) CD4 and CD8. (B)

CD4+ CD82 T cells were gated on CD44 and CD62L to identify

effector (Teff, CD44+ CD62L2), memory (Tmem, CD44+ CD62L+)

and naı̈ve T (Tnaive, CD442 CD62L+) cells. (C) CD4+ T cells were

gated on CD25 and FoxP3. Data shown represents mean and s.d.

(n = 3 per group) from one experiment out of at least two

experiments.

(TIF)

Figure S3 Similar specific total IgG responses upon
exogenous antigen immunisation in pIV2/2 K14 CIITA
Tg mice. (A–B) pIV2/2 K14 CIITA Tg, pIV+/2 K14 CIITA

Tg and B6 WT mice were immunised with 4-Hydroxy-3-

nitrophenylacetyl hapten-conjugated chicken gamma globulin

(NP23-CGG) or ovalbumin. Serum was analysed for the presence

of antigen-specific total IgG against either (A) NP4 and (B)

ovalbumin. Data represent mean and s.d. (n = 7–8 per group) from

two pooled experiments. IgG, immunoglobulin G;

(TIF)

Figure S4 H. hepaticus colonization levels before and
after anti-IL-10R treatment. Fresh fecal specimens from

pIV2/2 K14 CIITA Tg and pIV+/2 K14 CIITA Tg mice were

Figure 5. IFN-c induces MHCII expression on IECs. (A) Frequency
of CD45.22 EpCAM+ MHCII+ intestinal epithelial cells (IEC) isolated from
Rag12/2 or Rag12/2 IFN-c2/2mice that were adoptively transferred
with CD4+ CD45RBhi T cells from WT or IFN-c2/2mice shown as means
and SEM in representative histograms (n= 3 mice per group). (B–C)
Frequency of CD45.22 EpCAM+ MHCII+ IECs (B) and CD4+ T cells from
the colonic intestinal epithelium (C) isolated from H. hepaticus-infected,
anti-IL-10R mAb-administered pIV2/2 K14 CIITA Tg, pIV+/2 K14 CIITA
Tg or pIV+/2 K14 CIITA Tg that were treated with neutralizing anti-IFN-
c mAb. Shown are representative FACS plots, means and SEM from two
pooled experiments (n=4–7 mice per group). aIFN-y, anti-interferon-c
monoclonal antibodies; FSC, forward scatter; IFN, interferon; Rag,
recombination activating gene; WT, wild type;
doi:10.1371/journal.pone.0086844.g005
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collected on days 24 to 22 before anti-IL-10R administration,

and on days 26–28 of the experiment. Total fecal DNA was

isolated and H. hepaticus DNA was quantified by qPCR and

normalized to the dry weight of the fecal pellet. Each symbol

represents a single animal. aIL10R, anti-interleukin-10 receptor

monoclonal antibodies;

(TIF)

Figure S5 H. hepaticus infection plus anti-IL10R mAb
treatment induces exacerbated colitis in pIVfl/fl vil-Cre
Tg mice. (A) Development of body weight during anti-IL-10R

mAb or isotype treatment of H. hepaticus-infected, tamoxifen-

administered pIVfl/fl vil-Cre Tg mice or pIVfl/fl controls. Data are

shown as mean. (B) Serum albumin concentrations in feces

collected on days 26–30. Data are shown as mean and s.d. (C)

Colitis scores upon organ collection on day 32. Data displayed as

mean. (D) Frequency of CD45.22 EpCAM+ MHCII+ IECs.

Representative histograms (left) and summarized data (right) as

mean. (E) Frequency of CD3+ CD4+ and CD8+ T cells in the cIE.

Representative histograms (left) and summarized data (right) as

mean. All data represent n = 3–5 per group. aIL10R, anti-

interleukin-10 receptor monoclonal antibodies;

(TIF)

Figure S6 Levels of colonic DC and group 3 ILCs in
colitic pIV2/2 K14 CIITA Tg. (A) Frequency of Ly6C2

CD11c+ conventional DCs in the cIE and cLP and (B) CD45.2+

Lin2 (CD11b, Gr-1, B220) CD3e2 Thy1high Sca-1+ group 3 ILCs

in the cLP isolated from anti-IL-10R mAb or isotype treated, H.

hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2 K14

CIITA Tg controls. (A) Representative histograms (left) display the

cIE and data (right) represent mean (n = 9–11 per group) from

three pooled experiments. (B) dot plots showed represent n = 3–

4 per group. aIL10R, anti-interleukin-10 receptor monoclonal

antibodies;

(TIF)

Figure S7 Colonic IECs from anti-IL-10R-treated pIV+/
2 K14 CIITA Tg mice express MHCII molecules apically
and basolaterally. (A and B) H. hepaticus-infected pIV2/2 K14

CIITA Tg or pIV+/2 K14 CIITA Tg control mice were treated

with anti-IL-10R mAb or isotype control mAb. Mid-colon sections

were stained with DAPI (blue) to label nuclei and anti-MHCII

mAb (red). (A) Representative pIV2/2 K14 CIITA Tg mouse

and (B) representative pIV+/2 K14 CIITA Tg mouse. Right

upper panel depicts a region with MHCII2 IECs; Right lower

panel depicts a region with MHCII+ IECs. Bar, 20 mm.

(TIF)

Figure S8 Colitic mice do not induce the expression of
CD40, CD80 and CD86 on colonic IECs. (A–C) CD45.22

EpCAM+ IECs isolated from anti-IL-10R mAb or isotype treated,

H. hepaticus-infected pIV2/2 K14 CIITA Tg mice or pIV+/2

K14 CIITA Tg controls were analysed for the expression of

classical costimulatory molecules by flow cytometry. (A) Frequency

of CD40, (B) CD80 or (C) CD86. Histograms represent n = 3–

5 per group. aIL10R, anti-interleukin-10 receptor monoclonal

antibodies;

(TIF)

Figure S9 Expression levels of Th17- and group 3 ILC-
associated factors. (A–B) H. hepaticus-infected pIV2/2 K14

CIITA Tg or pIV+/2 K14 CIITA Tg control mice were treated

with anti-IL-10R mAb or isotype control mAb. (A) ror-ct and

il23p19 mRNA expression levels in colon explants. Data represent

n = 9–11 per group from three pooled experiments. (B) IL-17A

secretion upon ex vivo organ culture of colon explants. Data

represent n = 6 per group from two pooled experiments. Data

displayed as mean and s.d. aIL10R, anti-interleukin-10 receptor

monoclonal antibodies;

(TIF)

Methods S1 Additional methods applied to generate
supporting figures.
(DOC)
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