ON ZEROS OF RECIPROCAL POLYNOMIALS

PIROSKA LAKATOS

ABSTRACT. The purpose of this paper is to show that all zeros of the reciprocal polynomial

$$P_m(z) = \sum_{k=0}^m A_k z^k \quad (z \in \mathbb{C})$$

of degree $m \ge 2$ with real coefficients $A_k \in \mathbb{R}$ (i.e. $A_m \ne 0$ and $A_k = A_{m-k}$ for all $k = 0, \dots, \left\lfloor \frac{m}{2} \right\rfloor$) are on the unit circle, provided that the "coefficient condition"

$$|A_m| \ge \sum_{k=1}^{m-1} |A_k - A_m|$$

is satisfied.

Moreover, if the "coefficient condition" holds, then all zeros e^{iu_j} (j = 1, 2, ..., m) can be arranged such that

$$\left| e^{i\frac{2\pi j}{m+1}} - e^{iu_j} \right| < \frac{\pi}{m+1} \quad (j = 1, \dots, m).$$

If m = 2n + 1 is odd, then $-1 = e^{iu_{n+1}}$ is always a zero, and all zeros of P_{2n+1} are single. If m = 2n is even, if the "coefficient condition" holds with equality and if

$$\operatorname{sgn} A_{2n} = \operatorname{sgn} (-1)^{k+1} (A_k - A_{2n})$$

for all k = 1, 2, ..., n with $A_k - A_{2n} \neq 0$, then $u_n = u_{n+1} = \pi$, the number $-1 = e^{iu_n} = e^{iu_{n+1}}$ is a double zero of P_{2n} . Otherwise all zeros of P_{2n} are single.

1. INTRODUCTION

The Coxeter transformation was introduced in the representation theory of finite dimensional algebras (see [2]). The characteristic polynomial of the Coxeter transformation of an oriented graph whose underlying graph is a wild star is a Salem polynomial (see [3], [4]).

Allowing circles in the underlying graph, the spectral properties of the Coxeter transformations get much more complicated. These properties are related to polynomials of the form

$$l(z^m + z^{m-1} + \dots + z + 1) + (z^k + z^{m-k}) \quad (z \in \mathbb{C})$$

where m, k are fixed non-negative integers with $m \ge 2, 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$ and l is a fixed real number.

The zeros of the first expression $l(z^m + z^{m-1} + \cdots + z + 1)$ are

$$\epsilon_j = e^{i \frac{j}{m+1} 2\pi}$$
 $(j = 1, 2, \dots, m)$

the (m + 1)st roots of unity except 1, they are on the unit circle. It is surprising that adding $z^k + z^{m-k}$ to the first expression the polynomial obtained inherits this property. Moreover, not just all zeros remain on the unit circle but they move away from ϵ_j just a little even if we add a

Date: August 14, 2008.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C15, Secondary 12D10, 42C05.

Key words and phrases. reciprocal, semi-reciprocal polynomials, Chebyshev transform, zeros on the unit circle. Research partially supported by Hungarian NFSR grant No.TO 29525.

linear combination $\sum_{k=1}^{\left\lfloor\frac{m}{2}\right\rfloor} a_k(z^k + z^{m-k})$ to the expression $l(z^m + z^{m-1} + \dots + z + 1)$, provided that |l| is large enough. This leads to the main result of the paper: giving a sufficient condition for reciprocal polynomials to have all of their zeros on the unit circle and also giving the location of the zeros.

Our basic tool is a transformation of semi-reciprocal polynomials called the Chebyshev transformation. Although this transformation seems to be well known we could not find a suitable reference. In Section 2, based on [1], we summarize the properties of the Chebyshev transformation. In Section 3 we formulate our results and prove them. In Section 4 we discuss the necessity of our sufficient condition.

2. The Chebyshev transformation

A polynomial p of the form $p(z) = \sum_{j=0}^{m} a_j z^j$ $(z \in \mathbb{C})$ where $a_j \in \mathbb{C}$ are given numbers with $a_m \neq 0, \ a_j = a_{m-j} \ \left(j = 0, \dots, \left[\frac{m}{2}\right]\right)$ is called a *reciprocal polynomial of degree* m. We need a more general class of reciprocal polynomials (of even degree).

Definition 1. A polynomial p of the form

(1)
$$p(z) = \sum_{j=0}^{2n} a_j z^j \quad (z \in \mathbb{C})$$

where $n \in \mathbb{N}, a_0, \ldots, a_{2n} \in \mathbb{R}$ and

(2)
$$a_j = a_{2n-j} \ (j = 0, \dots, n-1)$$

is called a real semi-reciprocal polynomial of degree at most 2n. If $a_{2n} \neq 0$ we call p a real reciprocal polynomial of degree 2n.

Denote by \mathcal{R}_{2n} the set of all real semi-reciprocal polynomials of degree at most 2n.

If $p \in \mathcal{R}_{2n}$, $p \neq o$ (o=the zero polynomial), then there is an integer k, $0 \leq k \leq n$, such that

(3)
$$a_{2n} = a_{2n-1} = \dots = a_{n+k+1} = 0 = a_{n-k-1} = \dots = a_0$$
 but $a_{n+k} = a_{n-k} \neq 0$

Hence

(4)
$$p(z) = \sum_{j=0}^{2n} a_j z^j = z^n \left[a_{n+k} \left(z^k + \frac{1}{z^k} \right) + \dots + a_{n+1} \left(z + \frac{1}{z} \right) + a_n \right].$$

Let T_j be the *j*th Chebyshev polynomial of the first kind, defined by

$$T_{j}(\cos x) = \cos jx \ (j = 0, 1, ...).$$

With $z + \frac{1}{z} = x$ we have $z^{j} + \frac{1}{z^{j}} = C_{j}(x) \ (j = 1, 2, ...)$ (see e.g. [6], p. 224) where
 $C_{j}(x) := 2T_{j}\left(\frac{x}{2}\right) \quad (x \in \mathbb{C}, \ j = 1, 2, ...)$

are the normalized Chebyshev polynomials of the first kind. For us it will be now more convenient to define C_0 by

$$C_0(x) := T_0(x) \quad (x \in \mathbb{C}).$$

Hence, from (4)

(5)
$$p(z) = z^n \sum_{j=0}^k a_{n+j} C_j(x) = a_{n+k} z^n \prod_{j=1}^k (x - \alpha_j)$$

where $\alpha_j \in \mathbb{C}$ (j = 1, ..., k) are the zeros of the polynomial $\sum_{j=0}^{k} a_{n+j}C_j(x)$. Equation (5) remains true in the case when k = 0, i.e. $p(z) = a_n z^n$ if we agree that

(6)
$$\prod_{j=1}^{0} b_j := 1$$

Going back to the variable z we get that

$$p(z) = a_{n+k} z^{n-k} \prod_{j=1}^{k} z \left(z + \frac{1}{z} - \alpha_j \right) = a_{n+k} z^{n-k} \prod_{j=1}^{k} (z^2 - \alpha_j z + 1).$$

With this we have justified

Proposition 1. Every non-zero polynomial $p \in \mathcal{R}_{2n}$ has the decomposition

(7)
$$p(z) = a_{n+k} z^{n-k} \prod_{j=1}^{k} (z^2 - \alpha_j z + 1)$$

where $\alpha_1, \ldots, \alpha_k \in \mathbb{C}$, $a_{n+k} \neq 0$ for some k with $0 \leq k \leq n$ and the convention (6) is adopted. If $p \in \mathcal{R}_{2n}$ is a reciprocal polynomial of degree 2n, then (7) holds with k = n.

Definition 2. The Chebyshev transform of a non-zero polynomial $p \in \mathcal{R}_{2n}$ having the decomposition (7) is defined by

(8)
$$\mathcal{T}p(x) = a_{n+k} \prod_{j=1}^{k} (x - \alpha_j)$$

(with (6) adopted) while for the zero polynomial p = o let

(9)
$$\mathcal{T}o(x) = 0.$$

It is clear that \mathcal{T} maps \mathcal{R}_{2n} into the set \mathcal{P}_n of all polynomials of degree $\leq n$ with real coefficients.

Proposition 2. The Chebyshev transform \mathcal{T} is an isomorphism of the (real) vector space \mathcal{R}_{2n} onto \mathcal{P}_n .

Proof. (i) \mathcal{T} preserves the addition and the multiplication by a real constant. Using (5) and (3) (to include also the zero coefficients into the sum) we can write $\mathcal{T}p$ into the form

$$\mathcal{T}p(x) = a_{n+k} \prod_{j=1}^{k} (x - \alpha_j) = \sum_{j=0}^{k} a_{n+j} C_j(x) = \sum_{j=0}^{n} a_{n+j} C_j(x)$$

and the last form of $\mathcal{T}p$ is valid also for the zero polynomial. Taking now another $q \in \mathcal{R}_{2n}$ with $q(z) = \sum_{j=0}^{2n} b_j z^j$ $(b_j = b_{2n-j} \text{ for } j = 0, \dots, n-1)$ and constants $\alpha, \beta \in \mathbb{R}$ we have

$$(\alpha p + \beta q)(z) = \sum_{j=0}^{2n} (\alpha a_j + \beta b_j) z^j$$

thus

$$\mathcal{T}(\alpha p + \beta q)(x) = \sum_{j=0}^{n} (\alpha a_{n+j} + \beta b_{n+j}) C_j(x) = \alpha \sum_{j=0}^{n} a_{n+j} C_j(x) + \beta \sum_{j=0}^{n} b_{n+j} C_j(x) = \alpha \left(\mathcal{T}p(x)\right) + \beta \left(\mathcal{T}q(x)\right).$$

(ii) \mathcal{T} maps onto \mathcal{P}_n . Every polynomial $\tilde{r} \in \mathcal{P}_n$ can uniquely be written as a (real) linear combination of C_0, C_1, \ldots, C_n in the form $\tilde{r}(x) = \sum_{j=0}^n A_{n+j}C_j(x)$ $(A_{n+j} \in \mathbb{R})$. With $r(z) := \sum_{j=0}^n A_{n+j}C_j(x)$ where $A_i := A_{n-j}$ for j = 0, n = 1 we have $r \in \mathcal{P}_n$ and

$$\sum_{j=0} A_j z^j \text{ where } A_j := A_{2n-j} \text{ for } j = 0, \dots, n-1 \text{ we have } r \in \mathcal{R}_{2n} \text{ and}$$
$$\mathcal{T}r = \tilde{r}$$

proving our claim.

(iii) \mathcal{T} is one-to-one. Namely, if $\mathcal{T}p = \mathcal{T}q$ for $p, q \in \mathcal{R}_{2n}$, then $\mathcal{T}p - \mathcal{T}q = \mathcal{T}(p-q) = o$ hence, by (8), (9) p - q = o, p = q.

Lemma 1. (i) Let p be a real reciprocal polynomial of degree 2n. Then all zeros of p are on the unit circle if and only if all zeros of its Chebyshev transform Tp are in the closed interval [-2, 2].

(ii) Moreover, if all zeros α_j of $\mathcal{T}p$ are in [-2, 2], written as $\alpha_j = 2 \cos u_j$ with $u_j \in [0, \pi]$ (j = 1, 2, ..., n), then all zeros of p are given by

$$e^{\pm iu_j} \ (j=1,2,\ldots,n).$$

The multiplicity of $\alpha_j \neq \pm 2$ is the same as the multiplicities of e^{iu_j} and e^{-iu_j} (j = 1, 2, ..., n)while in the case of $\alpha_j = \pm 2$ the multiplicities of the corresponding zeros $e^{iu_j} = \pm 1$ of p are doubled.

Proof. (i) Necessity. Suppose that all zeros of p are on the unit circle. They can be arranged in conjugate pairs $(\beta_1, \bar{\beta}_1), (\beta_2, \bar{\beta}_2) \dots (\beta_n, \bar{\beta}_n)$. By assumption $|\beta_j|^2 = \beta_j \bar{\beta}_j = 1, \bar{\beta}_j = \frac{1}{\beta_j}$ $(j = 1, \dots, n)$, hence

$$p(z) = a_{2n} \prod_{j=1}^{n} (z - \beta_j) (z - \bar{\beta}_j) = a_{2n} \prod_{j=1}^{n} (z^2 - (\beta_j + \bar{\beta}_j) z + 1)$$

and

$$\mathcal{T}p(x) = a_{2n} \prod_{j=1}^{n} \left(x - (\beta_j + \bar{\beta}_j) \right).$$

It is clear that $|\beta_j + \overline{\beta}_j| = |2 \operatorname{Re}(\beta_j)| \le 2|\beta_j| = 2.$

(i) Sufficiency. Assume that the Chebyshev transform has the form

$$\mathcal{T}p(x) = a_{2n} \prod_{j=1}^{n} (x - \alpha_j)$$

where $a_{2n} \neq 0$ and $\alpha_j \in [-2, 2]$ $(j = 1, \dots, n)$. Then

$$p(z) = a_{2n} \prod_{j=1}^{n} (z^2 - \alpha_j z + 1).$$

Since $\alpha_j \in [-2, 2]$ we have $z^2 - \alpha_j z + 1 = (z - \beta_j)(z - \overline{\beta}_j)$ with $\beta_j \overline{\beta}_j = 1 = |\beta_j|^2$ proving that all zeros $\beta_1, \overline{\beta}_1, \beta_2, \overline{\beta}_2 \dots \beta_n, \overline{\beta}_n$ of p are on the unit circle.

(ii) We have $\alpha_j = 2 \cos u_j = \beta_j + \overline{\beta_j}$. Writing β_j as e^{iq_j} (here we may suppose that $0 \le q_j \le \pi$) we obtain that $2 \cos u_j = e^{iq_j} + e^{-iq_j} = 2 \cos q_j$ hence $u_j = q_j$ (j = 1, 2, ..., n). The statement concerning the multiplicities is obvious.

3. Results and proofs

Theorem 1. All zeros of the (real reciprocal) polynomial

(10)
$$h_m(z) = l(z^m + z^{m-1} + \dots + z + 1) + \sum_{k=1}^{\left[\frac{m}{2}\right]} a_k \left(z^{m-k} + z^k \right) \quad (z \in \mathbb{C})$$

of degree m where $l, a_1, \ldots, a_{\left\lfloor \frac{m}{2} \right\rfloor} \in \mathbb{R}, l \neq 0, m \in \mathbb{N}, m \geq 2$, are on the unit circle if

(11)
$$|l| \ge 2\sum_{k=1}^{\left[\frac{m}{2}\right]} |a_k|.$$

Moreover, if (11) is satisfied, then for even m = 2n all zeros of h_m can be given as

$$e^{iu_j}, e^{-iu_j} \quad (j = 1, 2, \dots, n)$$

where

$$\frac{j-\frac{1}{2}}{m+1}2\pi < u_j < \frac{j+\frac{1}{2}}{m+1}2\pi \quad (j=1,2,\ldots,n-1)$$
$$\frac{n-\frac{1}{2}}{m+1}2\pi < u_n \leq \pi.$$

In the last inequality $u_n \leq \pi$, we have equality if and only if

(12)
$$|l| = 2 \sum_{k=1}^{\left\lfloor \frac{m}{2} \right\rfloor} |a_k| \text{ and } \operatorname{sgn} l = \operatorname{sgn} (-1)^{k+1} a_k \text{ for all } k = 1, 2, \dots, n \text{ with } a_k \neq 0.$$

If (12) holds, then $-1 = e^{i\pi} = e^{-i\pi}$ is a double zero of h_m and all other zeros are single. For odd m = 2n + 1 all zeros of h_m are single, they can be given as

$$-1, e^{iu_j}, e^{-iu_j} \quad (j = 1, 2, \dots, n)$$

where

$$\frac{j - \frac{1}{2}}{m+1} 2\pi < u_j < \frac{j + \frac{1}{2}}{m+1} 2\pi \quad (j = 1, 2, \dots, n).$$

Remark 1. The statement concerning the location of the zeros of h_m can also be formulated as follows.

If (11) is satisfied, then all the zeros e^{iu_j} (j = 1, 2, ..., m) of h_m can be arranged such that

$$\left|\epsilon_{j}-e^{iu_{j}}\right|<\frac{\pi}{m+1}\quad(j=1,\ldots,m)$$

where, as in the introduction, ϵ_i are the (m+1)st roots of unity, except 1.

Namely, for even m = 2n, let u_j (j = 1, 2, ..., n) be the same as in Theorem 1 and $u_{n+j} := 2\pi - u_{n+1-j}$ (j = 1, 2, ..., n). If (12) does not hold, then all zeros of h_m are single. If (12) holds, then $u_n = u_{n+1} = \pi$ and $-1 = e^{iu_n} = e^{iu_{n+1}}$ is a double zero and all other zeros are single.

For odd m = 2n + 1 let u_j (j = 1, 2, ..., n) be the same as in Theorem 1, $u_{n+1} := \pi$ and $u_{n+1+j} := 2\pi - u_{n+1-j}$ (j = 1, 2, ..., n). The number $-1 = e^{iu_{n+1}}$ is always a zero and all zeros are single.

Proof. The basic idea of our proof is the following. Assume that (11) holds and let

$$x_j = 2\cos\frac{j+\frac{1}{2}}{m+1}2\pi$$
 $(j = 0, \dots, \left[\frac{m}{2}\right]).$

If m = 2n is an even number, we show that $\operatorname{sgn} \mathcal{T}h_{2n}(x_j) = \operatorname{sgn} (-1)^j \operatorname{sgn} l \ (j = 0, 1, \ldots, n-1)$ and $\mathcal{T}h_{2n}(x_n) = 0$ if (12) holds, otherwise $\operatorname{sgn} \mathcal{T}h_{2n}(x_j) = \operatorname{sgn} (-1)^j \operatorname{sgn} l \ (j = 0, \ldots, n)$. If m = 2n + 1 is odd, then $h_{2n+1}(z) = (z+1)\bar{h}_{2n}(z)$ with a suitable reciprocal polynomial \bar{h}_{2n} from \mathcal{R}_{2n} . We show that $\operatorname{sgn} \mathcal{T}\bar{h}_{2n}(x_j) = \operatorname{sgn} l \operatorname{sgn} (-1)^j \ (j = 0, 1, \ldots, n)$.

Applying Lemma 1 completes the proof.

Case 1: m = 2n.

With the notation $v_j(z) = z^j + z^{j-1} + \dots + 1 = \frac{z^{j+1} - 1}{z - 1}$, $e_j(z) = z^j$, $w_j(z) = z^j + 1$ $(j = 0, 1, \dots)$ we have

$$h_{2n}(z) = lv_{2n}(z) + \sum_{k=1}^{n} a_k e_k(z) \cdot w_{2n-2k}(z),$$

$$\mathcal{T}h_{2n}(x) = l\mathcal{T}v_{2n}(x) + \sum_{k=1}^{n} a_k \mathcal{T}(e_k \cdot w_{2n-2k})(x).$$

 $\mathbf{6}$

The zeros of v_{2n} are the (2n+1)st roots of unity, except 1: $e^{\frac{2j\pi i}{2n+1}}$ $(j=1,2,\ldots,2n)$. They can be arranged into conjugate pairs: $\left(e^{\frac{2j\pi i}{2n+1}}, e^{\frac{2(2n+1-j)\pi i}{2n+1}}\right) = \left(e^{\frac{2j\pi i}{2n+1}}, e^{-\frac{2j\pi i}{2n+1}}\right)$ $(j=1,\ldots,n)$, thus

$$v_{2n}(z) = \prod_{j=1}^{2n} \left(z - e^{\frac{2j\pi i}{2n+1}} \right) = \prod_{j=1}^{n} \left(z - e^{\frac{2j\pi i}{2n+1}} \right) \left(z - e^{-\frac{2j\pi i}{2n+1}} \right)$$
$$= \prod_{j=1}^{n} \left(z^2 - 2\cos\frac{2j\pi}{2n+1}z + 1 \right),$$
$$\mathcal{T}v_{2n}(x) = \prod_{j=1}^{n} \left(x - 2\cos\frac{2j\pi}{2n+1} \right).$$

Similarly, for each $0 \le k \le n$ the zeros of w_{2n-2k} are the (2n-2k) st roots of -1: $e^{\frac{(2j-1)\pi i}{2n-2k}}$ $(j = 1, \ldots, 2n-2k)$. They can be arranged into conjugate pairs

$$\left(e^{\frac{(2j-1)\pi i}{2n-2k}}, e^{\frac{(2(2n-2k+1-j)-1)\pi i}{2n-2k}}\right) = \left(e^{\frac{(2j-1)\pi i}{2n-2k}}, e^{-\frac{(2j-1)\pi i}{2n-2k}}\right) \ (j=1,\dots,n-k).$$

Therefore

$$w_{2n-2k}(z) = \prod_{j=1}^{2n-2k} \left(z - e^{\frac{(2j-1)\pi i}{2n-2k}} \right) = \prod_{j=1}^{n-k} \left(z^2 - 2\cos\frac{(2j-1)\pi}{2n-2k}z + 1 \right)$$
$$\mathcal{T}(e_k w_{2n-2k})(x) = \prod_{j=1}^{n-k} \left(x - 2\cos\frac{(2j-1)\pi}{2n-2k} \right).$$

Denote by U_n the *n*th Chebyshev polynomial of the second kind (see for example in [6]), defined by

$$U_n(\cos x) = \frac{\sin(n+1)x}{\sin x}$$
 $(n = 0, 1, ...).$

We claim that

(13)
$$\mathcal{T}v_{2n}(x) = U_n\left(\frac{x}{2}\right) + U_{n-1}\left(\frac{x}{2}\right)$$

(14)
$$\mathcal{T}(e_k \cdot w_{2n-2k})(x) = 2T_{n-k}\left(\frac{x}{2}\right).$$

To justify the first identity we note that

(15)
$$U_n(\cos y) + U_{n-1}(\cos y) = \frac{\sin(n+1)y + \sin ny}{\sin y} = 2\frac{\sin\frac{(2n+1)y}{2}\cos\frac{y}{2}}{\sin y} = \frac{\sin\frac{(2n+1)y}{2}}{\sin\frac{y}{2}}$$

The right hand side is zero if and only if $y = \frac{2j\pi}{2n+1}$ $(j \in \mathbb{Z} \setminus \{0\})$ hence all zeros of $U_n\left(\frac{x}{2}\right) + U_{n-1}\left(\frac{x}{2}\right)$ are $2\cos\frac{2j\pi}{2n+1}$ (j = 1, ..., n). Since both sides of (13) are monics which have the same zeros, they are identical.

The zeros of T_p can be calculated easily from their definition, for $p \in \mathbb{N}$ they are

$$\cos\frac{(2j-1)\pi}{2p} \quad (j=1,\dots p)$$

Thus for k < n the zeros of the monic $2T_{n-k}\left(\frac{x}{2}\right)$ are $2\cos\frac{(2j-1)\pi}{2n-2k}$ $(j = 1, \ldots, n-k)$. They are the same as the zeros of $\mathcal{T}(e_k \cdot w_{2n-2k})$, hence (14) holds. It also holds for k = n since then both sides of (14) are equal to 2.

Next we evaluate $\mathcal{T}h_{2n}$ at the points

$$x_j = 2\cos\frac{j+\frac{1}{2}}{m+1}2\pi$$
 $(j=0,\ldots,n)$

of the interval [-2, 2]. Since $x_j = 2\cos y_j$ with $y_j = \frac{j+\frac{1}{2}}{2n+1}2\pi$ we have by (13), (14)

$$\mathcal{T}h_{2n}(x_j) = l\left(U_n\left(\frac{x_j}{2}\right) + U_{n-1}\left(\frac{x_j}{2}\right)\right) + \sum_{k=1}^n 2a_k T_{n-k}\left(\frac{x_j}{2}\right)$$
$$= 2\left[\frac{\frac{l}{2}\sin\frac{2n+1}{2}y_j}{\sin\frac{1}{2}y_j} + \sum_{k=1}^n a_k\cos(n-k)y_j\right] = 2\left[\frac{\frac{l}{2}(-1)^j}{\sin\frac{y_j}{2}} + \sum_{k=1}^n a_k\cos(n-k)y_j\right].$$

If j = 0, 1, ..., n - 1, then $0 < \sin \frac{y_j}{2} < 1$, $\sum_{k=1}^{n} |a_k \cos(n-k)y_j| \le \sum_{k=1}^{n} |a_k|$ and by (11) the ign of the expression in the breeket is $(-1)^j \operatorname{sgn} l$

sign of the expression in the bracket is $(-1)^j \operatorname{sgn} l$.

If j = n, then $y_n = \pi$ and the expression in the bracket is

$$\frac{l}{2}(-1)^n + \sum_{k=1}^n a_k(-1)^{n-k} = (-1)^n \left(\frac{l}{2} + \sum_{k=1}^n a_k(-1)^k\right).$$

Its sign is $(-1)^n \operatorname{sgn} l$ if in (11) strict inequality holds or if in (11) we have equality and at least for one k $(1 \leq k \leq n)$ we have $\operatorname{sgn} l = \operatorname{sgn} (-1)^k a_k$. If we have equality in (11) and $\operatorname{sgn} l = \operatorname{sgn} (-1)^{k+1} a_k$ for all $k = 1, \ldots, n$ such that $a_k \neq 0$, then the expression in the bracket is zero.

Thus either sgn $\mathcal{T}h_{2n}(x_j) = \text{sgn}(-1)^j \text{sgn} l \ (j = 0, ..., n)$ or sgn $\mathcal{T}h_{2n}(x_j) = \text{sgn}(-1)^j \text{sgn} l \ (j = 0, 1, ..., n-1)$ and $\mathcal{T}h_{2n}(x_n) = 0$. In both cases $\mathcal{T}h_{2n}$ has *n* distinct zeros in the interval [-2, 2]. Writing these in the form $2 \cos u_j$ with $0 \le u_1 \le u_2 \le \cdots \le u_n \le \pi$ and applying Lemma 1 we can complete the proof in the first case.

Case 2: m = 2n + 1. We have $h_{2n+1}(z) = (z+1)\bar{h}_{2n}(z)$ with

$$\bar{h}_{2n}(z) = l\bar{v}_{2n}(z) + \sum_{k=1}^{n} a_k z^k \bar{w}_{2n-2k}(z)$$

where

$$\bar{v}_{2n}(z) = z^{2n} + z^{2n-2} + \dots + z^2 + 1 = v_n(z^2),$$

$$\bar{w}_{2n-2k}(z) = \frac{w_{2n+1-2k}(z)}{z+1} = \frac{z^{2n+1-2k}+1}{z+1}.$$

Using the factorization of v_n we get

$$\bar{v}_{2n}(z) = v_n(z^2) = \prod_{j=1}^n \left(z^2 - e^{\frac{2j\pi i}{n+1}} \right) = \prod_{j=1}^n \left(z - e^{\frac{j\pi i}{n+1}} \right) \left(z - e^{\frac{j\pi i}{2n+1} - \pi i} \right).$$

Arranging the zeros of \bar{v}_{2n} into conjugate pairs $\left(e^{\frac{j\pi i}{n+1}}, e^{-\frac{j\pi i}{n+1}}\right)$ $(j = 1, \ldots, n)$ we have

$$\bar{v}_{2n}(z) = \prod_{j=1}^{n} \left(z - e^{\frac{j\pi i}{n+1}} \right) \left(z - e^{-\frac{j\pi i}{n+1}} \right) = \prod_{j=1}^{n} \left(z^2 - 2\cos\frac{2j\pi}{2n+1}z + 1 \right)$$

therefore

$$\mathcal{T}\bar{v}_{2n}(x) = \prod_{j=1}^{n} \left(x - 2\cos\frac{j\pi}{n+1} \right).$$

We can easily calculate the zeros of \bar{w}_{2n-2k} (we omit this elementary calculation) and obtain the factorization

$$\bar{w}_{2n-2k}(z) = \prod_{j=1}^{n-k} \left(z - e^{\frac{(2j-1)\pi i}{2n-2k+1}} \right) \left(z - e^{-\frac{(2j-1)\pi i}{2n-2k+1}} \right) = \prod_{j=1}^{n-k} \left(z^2 - 2\cos\frac{(2j-1)\pi}{2n-2k+1}z + 1 \right)$$

therefore

$$\mathcal{T}(e_k \cdot \bar{w}_{2n-2k})(x) = \prod_{j=1}^{n-k} \left(x - 2\cos\frac{(2j-1)\pi}{2n-2k+1} \right).$$

Next we show that

(16)
$$\mathcal{T}\bar{v}_{2n}(x) = U_n\left(\frac{x}{2}\right)$$

(17)
$$\mathcal{T}(e_k \cdot \bar{w}_{2n-2k})(x) = U_{n-k}\left(\frac{x}{2}\right) - U_{n-k-1}\left(\frac{x}{2}\right).$$

where we have to adopt the convention

(18)
$$U_{-1}(x) = 0 \quad (x \in \mathbb{C})$$

The first identity follows from the fact that the zeros of both sides are the same. To justify the second we note that

$$U_{n-k}(\cos y) - U_{n-k-1}(\cos y) = \frac{\sin(n-k+1)y - \sin(n-k)y}{\sin y}$$
$$= \frac{2\cos\frac{(2n-2k+1)y}{2}\sin\frac{y}{2}}{\sin y} = \frac{\cos\frac{(2n-2k+1)y}{2}}{\cos\frac{y}{2}}$$

for all k = 0, ..., n provided that the convention (18) is adopted.

If k = n, then both sides of (17) are equal to 1 thus (17) holds. For k < n the right hand side of (17) is zero if and only if $y = \frac{(2j-1)\pi}{2n-2k+1}$ $(j \in \mathbb{Z})$ hence all zeros of $U_{n-k}\left(\frac{x}{2}\right) - U_{n-k-1}\left(\frac{x}{2}\right)$ are $2\cos\frac{(2j-1)\pi}{2n-2k+1}$ $(j = 1, \ldots, n-k)$, they are the same as the zeros of $\mathcal{T}(e_k \cdot \bar{w}_{2n-2k})$ proving (17).

By the linearity of the Chebyshev transform and by (16),(17) we have

$$\mathcal{T}\bar{h}_{2n}(x) = l\mathcal{T}\bar{v}_{2n}(x) + \sum_{k=1}^{n} a_k \mathcal{T}(e_k \cdot \bar{w}_{2n-2k})(x) = l U_n\left(\frac{x}{2}\right) + \sum_{k=1}^{n} a_k \left[U_{n-k}\left(\frac{x}{2}\right) - U_{n-k-1}\left(\frac{x}{2}\right)\right].$$

Next we evaluate $\mathcal{T}\bar{h}_{2n}$ at the points

$$\bar{x}_j = x_j = 2\cos\frac{j+\frac{1}{2}}{2n+2}2\pi \quad (j=0,\dots,n)$$

of the interval [-2, 2]. Since $\bar{x}_j = 2 \cos \bar{y}_j$ with $\bar{y}_j = \frac{j + \frac{1}{2}}{2n+2} 2\pi$ we have

$$\mathcal{T}\bar{h}_{2n}(\bar{x}_j) = 2\left[\frac{l}{2}\frac{\sin(n+1)\bar{y}_j}{\sin\bar{y}_j} + \frac{\sum_{k=1}^n a_k \cos\frac{2n-2k+1}{2}\bar{y}_j}{2\cos\frac{\bar{y}_j}{2}}\right]$$

$$= 2\left[\frac{l}{2}\frac{(-1)^{j}}{\sin\bar{y}_{j}} + \sum_{k=1}^{n} a_{k}\frac{\cos\frac{2n-2k+1}{2}\bar{y}_{j}}{2\cos\frac{\bar{y}_{j}}{2}}\right] = 2\frac{\frac{l}{2}(-1)^{j} + \sum_{k=1}^{n} a_{k}\sin\frac{\bar{y}_{j}}{2}\cos\frac{2n-2k+1}{2}\bar{y}_{j}}{\sin\bar{y}_{j}}$$

Since $\bar{y}_j \in]0, \pi[$ we have $\sin \bar{y}_j > 0, \ 0 < \sin \frac{\bar{y}_j}{2} < 1, \ |\cos \frac{2n-2k+1}{2}\bar{y}_j| \le 1$ for all $k = 1, \ldots, n$ therefore the sign of the expression in the bracket is sgn l sgn $(-1)^j$. Thus sgn $(\mathcal{T}\bar{h}_{2n}(x_j)) =$ sgn l sgn $(-1)^j$ $(j = 0, 1, \ldots, n)$ proving that $\mathcal{T}\bar{h}_{2n}$ has n different zeros in [-2, 2]. Writing these zeros in the form $2\cos u_j$ with $0 \le u_1 \le u_2 \le \cdots \le u_n \le \pi$ and applying Lemma 1 the proof is completed in the second case as well.

We can formulate Theorem 1 in a more symmetric way. This formulation explains, in a certain way, the appearance of the factor 2 in (11).

Theorem 2. All zeros of the reciprocal polynomial

(19)
$$P_m(z) = \sum_{k=0}^m A_k z^k \quad (z \in \mathbb{C})$$

of degree $m \ge 2$ with real coefficients $A_k \in \mathbb{R}$ (i.e. $A_m \ne 0$ and $A_k = A_{m-k}$ for all $k = 0, \ldots, \lfloor \frac{m}{2} \rfloor$) are on the unit circle, provided that

(20)
$$|A_m| \ge \sum_{k=1}^{m-1} |A_k - A_m|.$$

If (20) holds, then all zeros e^{iu_j} (j = 1, 2, ..., m) of P_m can be arranged such that

$$\left|\epsilon_{j}-e^{iu_{j}}\right|<\frac{\pi}{m+1}\quad(j=1,\ldots,m).$$

If m = 2n + 1 is odd, then $-1 = e^{iu_{n+1}}$ is always a zero and all zeros of P_m are single. If m = 2n is even

(21)
$$\begin{cases} |A_{2n}| = \sum_{k=1}^{2n-1} |A_k - A_{2n}| \quad and \\ \operatorname{sgn} A_{2n} = \operatorname{sgn} (-1)^{k+1} (A_k - A_{2n}) \text{ for all } k = 1, 2, \dots, n \text{ with } A_k - A_{2n} \neq 0 \end{cases}$$

holds, then $u_n = u_{n+1} = \pi$, the number $-1 = e^{iu_n} = e^{iu_{n+1}}$ is a double zero of P_m and all other zeros are single. Otherwise (i.e. if m = 2n, (21) does not hold) all zeros of P_m are single.

Proof. Comparing the coefficients of z^j in h_m and P_m we see that for even m = 2n

$$A_{2n} = A_0 = l, A_{2n-1} = A_1 = l + a_1, \dots, A_{n+1} = A_{n-1} = l + a_{n-1}, A_n = l + 2a_n$$

thus $l = A_{2n}, a_k = A_{2n-k} - A_{2n} = A_k - A_{2n}$ for k = 1, 2, ..., n-1 and $2a_n = A_n - A_{2n}$. Therefore the condition (11)

$$|l| \ge 2\sum_{k=1}^{n} |a_k|$$

can be written as

$$|A_{2n}| \ge 2\sum_{k=1}^{n-1} |A_k - A_{2n}| + |A_n - A_{2n}| = \sum_{k=1}^{2n-1} |A_k - A_{2n}|$$

which is the same as (20).

For odd m = 2n + 1 the comparison of the coefficients gives that

$$A_{2n+1} = A_0 = l, A_{2n} = A_1 = l + a_1, \dots, A_{n+1} = A_n = l + a_n$$

thus $l = A_{2n+1}, a_k = A_{2n+1-k} - A_{2n+1} = A_k - A_{2n+1}$ for k = 1, 2, ..., n and (11) can be written as

$$|A_{2n+1}| \ge 2\sum_{k=1}^{n} |A_k - A_{2n+1}| = \sum_{k=1}^{n} (|A_k - A_{2n+1}| + |A_{2n+1-k} - A_{2n+1}|) = \sum_{k=1}^{2n} |A_k - A_{2n+1}|$$

proving (20). The statement concerning the location of the zeros follows from Remark 1. \Box

4. Necessary and sufficient conditions

If the degree m of P_m is small we can easily obtain necessary and sufficient conditions for all zeros of P_m to be on the unit circle.

If m = 2, then $P_2(z) = A_2 z^2 + A_1 z + A_2 = z \left(A_2(z + \frac{1}{z}) + A_1\right)$ hence $\mathcal{T}P_2(x) = A_2 x + A_1$. The only zero of $\mathcal{T}P_2$ is in [-2, 2] if and only if

(22)
$$|A_2| \ge \frac{1}{2}|A_1|.$$

This is the criteria for P_2 to have all zeros on the unit circle.

If m = 3, then $P_3(z) = A_3 z^3 + A_2 z^2 + A_2 z + A_3 = (z+1) (A_3 z^2 + (A_2 - A_3)z + A_3)$. By (22) the zeros of P_3 are on the unit circle if and only if

(23)
$$|A_3| \ge \frac{1}{2}|A_2 - A_3|.$$

If m = 4, then $P_4(z) = A_4 z^4 + A_3 z^3 + A_2 z^2 + A_3 z + A_4 = z^2 \left(A_4(z^2 + \frac{1}{z^2}) + A_3(z + \frac{1}{z}) + A_2\right)$ hence with $x = z + \frac{1}{z}$ we get that $\mathcal{T}P_4(x) = A_4(x^2 - 2) + A_3 x + A_2$. By Lemma 1 all zeros of P_4 are on the unit circle if and only if the discriminant of $\mathcal{T}P_4$ is non-negative :

(24)
$$A_3^2 - 4A_4(A_2 - 2A_4) \ge 0$$

and

(25)
$$-2 \le x_1, \ x_2 \le 2$$

hold where $x_1 \leq x_2$ are the real zeros of $\mathcal{T}P_4$. A simple calculation shows that (24) and (25) are equivalent to

(26)
$$2\sqrt{\max\{A_2A_4 - 2A_4^2, 0\}} \le |A_3| \le \min\{4|A_4|, |A_4| + \frac{1}{2}A_2 \operatorname{sgn} A_4\}.$$

This is the criterion for P_4 to have all of its zeros on the unit circle.

For m = 2 (22) holds if and only if

$$A_1 \in [-2|A_2|, 2|A_2|]$$

while (20) gives only the smaller interval

$$A_1 \in [A_2 - |A_2|, A_2 + |A_2|].$$

This shows that (20) for m = 2 is not necessary. The situation is similar for m = 3.

For m = 4 the necessary and sufficient condition (26) is non-linear in the coefficients, while our sufficient condition (20) is linear for all $m \ge 2$. In some special cases we get necessary and sufficient conditions.

Corollary 1. All zeros of the polynomial

$$l(z^{m} + z^{m-1} + \dots + z + 1) + (z^{k} + z^{m-k}) \quad (z \in \mathbb{C})$$

where m, k are fixed non-negative integers with $m \ge 2, 1 \le k \le \left\lfloor \frac{m}{2} \right\rfloor$ and l is a fixed positive number, are on the unit circle for all $m \ge 2$ and for all $k = 1, 2, \ldots, \left\lfloor \frac{m}{2} \right\rfloor$ if and only if

 $l \geq 2.$

Namely, taking m = 2, k = 1 by (22) all zeros of the resulting polynomial $lz^2 + (l+2)z + l$ are on the unit circle if and only if $l \notin (-\frac{2}{3}, 2)$ therefore $l \ge 2$. On the other hand if $l \ge 2$, then by Theorem 1 all zeros of the polynomial $l(z^m + z^{m-1} + \cdots + z + 1) + (z^k + z^{m-k})$ are on the unit circle.

Remark 2. A preliminary version of some parts of this paper was reported in [5].

A. Schinzel [7] generalized Theorem 2 to the case of self-inversive polynomials over \mathbb{C} , i.e. polynomials $P_m(z) = \sum_{k=0}^n A_k z^k$ for which $A_k \in \mathbb{C}, A_m \neq 0, \epsilon \bar{A}_k = A_{m-k}$ for all $k = 0, \ldots, m$ with a fixed $\epsilon \in \mathbb{C}, |\epsilon| = 1$. He proved that all zeros of P_m are on the unit circle, provided that

$$|A_m| \ge \inf \sum_{k=0}^m |cA_k - d^{m-k}A_m|,$$

where the infimum is taken over all $c, d \in \mathbb{C}$ and |d| = 1.

ON ZEROS OF RECIPROCAL POLYNOMIALS

References

- [1] Cannon, J. W., Wagreich, P., Geowth function of surface groups, Math. Ann. 293 (1992), 239–257.
- [2] Dlab, V., Ringel, C. M., Indecomposable representations of graphs and algebras, Memoirs of the Amer. Math. Soc. 173 (1976), 1–57.
- [3] McKee, J.F., Rowlinson, P., Smyth, C.J., Salem numbers and Pisot numbers from stars, Number theory in progress. Proc. Internat. Conf. Banach Internat. Math. Center. Vol. 1: Diophantine problems and polynomials (Eds. K. Győry, et al.) 309–319, de Gruyter, Berlin. (1999).
- [4] Lakatos, P., Salem numbers, PV numbers and spectral radii of Coxeter transformations, C. R. Math. Acad. Sci. Soc. R. Can. 23, no. 3, (2001), 71–77.
- [5] Lakatos, P., On polynomials having zeros on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 24, no. 2, (2002), 91–96.
- [6] Rivlin, T. J., Chebyshev polynomials, A Wiley-Interscience Publication, 1990.
- [7] Schinzel, A., Self-inversive polynomials with all zeros on the unit circle, (to appear)

INSTITUTE OF MATHEMATICS AND INFORMATICS, DEBRECEN UNIVERSITY, 4010 DEBRECEN, PF.12, HUNGARY *E-mail address*: lapi@math.klte.hu