ON ZEROS OF RECIPROCAL POLYNOMIALS

PIROSKA LAKATOS

ABSTRACT. The purpose of this paper is to show that all zeros of the reciprocal polynomial
Pn(z) = Z Apz® (2 €0Q)
k=0

of degree m > 2 with real coefficients Ar € R (i.e. A #0and Ay = Ay for allk =0,.. ., [%]) are
on the unit circle, provided that the ”coefficient condition”

m—1
|Am| > D Ak — A
k=1
is satisfied. .
Moreover, if the ”coefficient condition” holds, then all zeros e/ (5 = 1,2,...,m) can be arranged
such that )
i i < T j=1 m)
e m —_— = PICECIRIEY .
m+1 J

If m =2n + 1 is odd, then —1 = e¢™“»+1 is always a zero, and all zeros of Ps, 1 are single.
If m = 2n is even, if the ”coefficient condition” holds with equality and if

sgn Asp, = sgn (—1)'1”1(A;C — Aay)

for all k = 1,2,...,n with Ay — A, # 0, then u, = un1 = 7, the number —1 = e'n = ¢™n+1 ig a
double zero of P»,. Otherwise all zeros of P», are single.

1. INTRODUCTION

The Coxeter transformation was introduced in the representation theory of finite dimensional
algebras (see [2]). The characteristic polynomial of the Coxeter transformation of an oriented
graph whose underlying graph is a wild star is a Salem polynomial (see [3], [4]).

Allowing circles in the underlying graph, the spectral properties of the Coxeter transforma-
tions get much more complicated. These properties are related to polynomials of the form

W(zm 42" 24+ 1)+ (4277 (2 €C)

where m, k are fixed non-negative integers with m > 2,1 < k < [m] and [ is a fixed real

2
number.
The zeros of the first expression [(z™ + 2™ ! 4 -+ 4+ 2 + 1) are

¢ =ema (j=1,2,...,m)

the (m + 1)st roots of unity except 1, they are on the unit circle. 1t is surprising that adding
2%+ 2™ to the first expression the polynomial obtained inherits this property. Moreover, not
Just all zeros remain on the unit circle but they move away from €; just a little even if we add a
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linear combination Z,[Ci ap(2*+2™7F) to the expression [(z™+ 2™ 14 .. +2z+1), provided that

|| is large enough. This leads to the main result of the paper: giving a sufficient condition for
reciprocal polynomials to have all of their zeros on the unit circle and also giving the location
of the zeros.

Our basic tool is a transformation of semi-reciprocal polynomials called the Chebyshev trans-
formation. Although this transformation seems to be well known we could not find a suitable
reference. In Section 2, based on [1], we summarize the properties of the Chebyshev transfor-
mation. In Section 3 we formulate our results and prove them. In Section 4 we discuss the
necessity of our sufficient condition.

2. THE CHEBYSHEV TRANSFORMATION
A polynomial p of the form p(z) = > a;27 (2 € C) where a; € C are given numbers with
j=0
m
m # 0, aj = G (j =0,..., [3]) is called a reciprocal polynomial of degree m.
We need a more general class of reciprocal polynomials (of even degree).

Definition 1. A polynomial p of the form
2n

1) p(x) =3 a7 (z€C)
j=0

where n € N, aq,...,as, € R and
(2) aj:agn_j(j:(),...,n—l)

is called a real semi-reciprocal polynomial of degree at most 2n. If as, # 0 we call p a real
reciprocal polynomial of degree 2n.

Denote by R, the set of all real semi-reciprocal polynomials of degree at most 2n.
If p € Ropn, p # o (o=the zero polynomial), then there is an integer k, 0 < k < n, such that

(3) a2":a2n—1:"':an+k+1:OZan—k—1:"':CLQ but an+k:an—k7'£0.
Hence

2n 1 1
4 = 2 =" a, ko * i ta, 1 1.
(4) p(2) jZOa]Z < {a%(z +zk)+ +a+1<z+z)+a]

Let T; be the jth Chebyshev polynomial of the first kind, defined by
Tj(cosz) =cosjz (j=0,1,...).

1 . 1
With z + — = x we have 27 + — = Ci(z) (j=1,2,...) (see e.g. [6], p. 224) where
z P2

Cy(x) = 2T, (g) (xeC,j=1,2...)

are the normalized Chebyshev polynomials of the first kind. For us it will be now more conve-
nient to define C by
Co(x) :=To(x) (z € C).
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Hence, from (4)

(5) p(z) = 2" Z an1;C;(2) = i 2" H (z — o)

k

where a; € C (j = 1,..., k) are the zeros of the polynomial ) a,+,;C;(z). Equation (5) remains
=0

true in the case when k = 0, i.e. p(z) = a,2" if we agree that

(6) [Io; =1

Going back to the variable z we get that

k k
1
p(2) = anp 2" H z (Z + P ozj) = i 2"F H (2% —ajz+1).

j=1 j=1

With this we have justified

Proposition 1. Every non-zero polynomial p € Ro, has the decomposition

k
(7) p(z) = Qp+k Zn_k H (ZQ —0; 2 + 1)
j=1
where ay, ..., 0 € C, apyx # 0 for some k with 0 < k < n and the convention (6) is adopted.

If p € Ra, is a reciprocal polynomial of degree 2n, then (7) holds with k = n.

Definition 2. The Chebyshev transform of a non-zero polynomial p € R, having the decom-
position (7) is defined by

(8) Tp(x) = anyk H (z — ay)

(with (6) adopted) while for the zero polynomial p = o let
(9) To(z) = 0.

It is clear that 7 maps Rs, into the set P, of all polynomials of degree < n with real
coefficients.

Proposition 2. The Chebyshev transform T is an isomorphism of the (real) vector space Ry,
onto P,.

Proof. (i) T preserves the addition and the multiplication by a real constant. Using (5) and (3)
(to include also the zero coefficients into the sum) we can write 7 p into the form

k n

Tp(z) = ank H (=) =D an;Ci(x) =D any;C5(x)

J=0 J=0
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and the last form of 7p is valid also for the zero polynomial. Taking now another g € R,,, with
2n )

q(z) = > b;z? (bj =bgy—; for j=0,...,n—1) and constants o, 3 € R we have
j=0

2n

(ap+ Bq)(2) = Y _(aa; + Bb;)’

j=0
thus

T(ap+ o)(z) = z (g + Bbos ;) Cs(2)

az tn5C5() + ﬁZ by ;C(x) = o (Tp(x)) + B (Tq(x)).

(ii) 7 maps onto P,. Every polynomial 7 € P, can uniquely be written as a (real) linear

combination of Cy,CY,...,C, in the form 7(z) = > A,+,;Ci(z) (Aps; € R). With r(z) =
j=0

2n
>~ A;z7 where Aj := Ag,—; for j=0,...,n—1 we have r € Ry, and
=0

Tr=r

proving our claim.
(iii) 7 is one-to-one. Namely, if Tp = T q for p,q € Ra,, then Tp —Tq =T (p — q) = o hence,
by (8), (9) p—g=0,p=g¢. O

Lemma 1. (i) Let p be a real reciprocal polynomial of degree 2n. Then all zeros of p are on
the unit circle if and only if all zeros of its Chebyshev transform Tp are in the closed interval
[—2,2].

(ii) Moreover, if all zeros o of Tp are in [—2,2], written as o; = 2cosu; with u; € [0, 7]
(1 =1,2,...,n), then all zeros of p are given by

et (j=1,2,...,n).

The multiplicity of o; # £2 is the same as the multiplicities of €™ and e‘i“{' (1=1,2,...,n)
while in the case of a; = £2 the multiplicities of the corresponding zeros e = £1 of p are
doubled.

Proof. (1) Necessity. Suppose that all zeros of p are on the unit circle. They can be arranged in
. . = = = . = = r
conjugate pairs (31, 51), (B2, B2)...(Bn, Bn). By assumption |5;|* = 8;8; = 1, §; = 3 (J =
J

1,...n), hence

n

p(2) = as [ (2 = B)) (2 = B3;) = azn | (2% = (8 + Bj)z +1)

J=1 J=1

and

Tp(x) = agy, | (x — (B + By)) :

7j=1

It is clear that |3; + 3;| = [2Re (3;)] < 2|8;] = 2.

n
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(i) Sufficiency. Assume that the Chebyshev transform has the form
Tp(x) = az [ [ (= = o)
j=1
where ag, # 0 and a; € [-2,2] (j =1,...,n). Then
p(z) = ag, H (2 —ajz+1).
j=1
Since aj € [—2,2] we have 22 — a;z + 1 = (2 — 8;)(z — ;) with 3;3; = 1 = |3;]* proving that
all zeros (31, 51, B2, B2 - - . By, B of p are on the unit circle.
(ii) We have a; = 2cosu; = 3; + 3;. Writing f3; as €'% (here we may suppose that 0 < ¢; < )
we obtain that 2cosu; = €'¥ + e™'% = 2cosq; hence u; = ¢; (j =1,2,...,n). The statement
concerning the multiplicities is obvious. ([l

3. RESULTS AND PROOFS
Theorem 1. All zeros of the (real reciprocal) polynomial
5]

(10) hn(2) =1(Z" 4+ 2"+ 2+ 1)+ Y ap (242 (2 €0)
k=1

—

of degree m where l,aq, . .. @[] eER, I #0,meN, m>2 are on the unit circle if
2

(3]
(11) 1] >2) " al.

Moreover, if (11) is satisfied, then for even m = 2n all zeros of h,, can be given as

et e (j=1,2,...,n)
where
=3 Jt3
2 < < 2 =12 —1
m+1 ™ uj m+1 ™ (] )~ ,TL )

m+1
In the last inequality u,, < w, we have equality if and only if
E
(12) | = 22 lax| and sgnl = sgn (—1)""ay, for all k =1,2,...,n with ax # 0.
k=1

If (12) holds, then —1 = '™ = ¢~ is a double zero of h,, and all other zeros are single.
For odd m = 2n + 1 all zeros of h,, are single, they can be given as

—1, €M, e™  (j=1,2,...,n)
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where

Remark 1. The statement concerning the location of the zeros of h,, can also be formulated as
follows.
If (11) is satisfied, then all the zeros ¢ (j = 1,2,...,m) of h,, can be arranged such that

T
m—+1

|ej—ei“f|< (j=1,...,m)

where, as in the introduction, ¢; are the (m + 1)st roots of unity, except 1.

Namely, for even m = 2n, let u; (j = 1,2,...,n) be the same as in Theorem 1 and wu,; :=
2T —Ups1-; (j =1,2,...,n). If (12) does not hold, then all zeros of h,, are single. If (12) holds,
then u, = u,41 = ™ and —1 = e¥n = ¢+ is a double zero and all other zeros are single.

For odd m = 2n+1let u; (j = 1,2,...,n) be the same as in Theorem 1, u,+; := 7 and
Upi14j =27 — Upt1—; (7 =1,2,...,n). The number —1 = e"+! is always a zero and all zeros
are single.

Proof. The basic idea of our proof is the following. Assume that (11) holds and let

1
xj:2cos7‘;+2127r (ij,...,[T}).

If m = 2n is an even number, we show that sgn 7 ha,(z;) = sgn (—=1)? sgn i (j =0,1,...,n—1)
and 7 ho,(x,) = 0 if (12) holds, otherwise sgn 7 ha,(z;) = sgn (—1)? sgnl (j =0,...,n).
If m = 2n + 1 is odd, then hg,11(2) = (2 + 1)ha,(2) with a suitable reciprocal polynomial ha,
from Rs,. We show that sgn 7 hy,(z;) = sgnl sgn (—=1)! (j =0,1,...,n).

Applying Lemma 1 completes the proof.

Case 1: m = 2n.

With the notation v;(z) = 274214 - +1 =

we have

Thon(r) = 1T vg(x) + > axT (ex - wan—ok) ().

k=1
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The zeros of vy, are the (2n + 1)st roots of unity, except 1: e ot (j =1,2,...,2n). They can

. . . 257 2(2n+1—j)m: 2jmi _2jmi .
be arranged into conjugate pairs: (e2n+1 ,e  2nfl ) = (e2n+1 ,€ 2n+1> (j=1,...,n), thus

7 2jmi 2w
(2_62n+1> (Z_e 2n+1)
=1

2n P
von(2) = I (Z_ezn+1> _

=1 j
n 29T
— j];[l (2% — 2cos s 2 1),
Tuy(x) = Hl (z —2cos 23311) :
]:
(2j—)mi
Similarly, for each 0 < k < n the zeros of ws,_o are the (2n — 2k) st roots of —1: ¢ i (j =
1,...,2n — 2k). They can be arranged into conjugate pairs

@i—1)mi  (22n—2k+1—j)—1)mi (2j—mi _ (2j—1)mi ]
e -2 ¢ 2n—2k = (e 2n—2k g 2n-2 (j=1,...,n—k).

Therefore

2TL—2]€ (2]-_1)7”- n—k (2 1)
—D)m
U)Qn_gk(2’> = H <Z — € 2n—2k ) = H (,2’2 — 2cos ﬁz + ].) s
j=1 j=1

n—k

T (epwan—ok)(xz) =[] (x — 2cos (32:12);) :
j=1

Denote by U, the nth Chebyshev polynomial of the second kind (see for example in [6]),
defined by

i 1
Un(cosz) = S+ DT 0 )
sin x
We claim that
x x
(13) Tvsa(@) = Un (5) + Ut (5).
2 2
x
(14) T(er, - wan-2)(x) = 2Ty (§> .
To justify the first identity we note that
. . - (2n+l)y y - (2n+1)y
1 sin ~——<cos 5  sin ———=
(15) Up(cosy) + U,_1(cosy) = sin(n + .)y rsmny 2 2 2 — - 121
siny siny sin §

The right hand side is zero if and only if y = 231]11 (j € Z\ {0}) hence all zeros of U, (%) +

Up—1 (%) are 2cos ;nj—f:l (j = 1,...n). Since both sides of (13) are monics which have the same

zeros, they are identical.
The zeros of T}, can be calculated easily from their definition, for p € N they are
(25 — )m

MR =1, ).
cos ——_ (j=1,...p)
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Thus for k < n the zeros of the monic 27),_ (£) are 2 cos (2J 1) (j=1,. — k). They are
the same as the zeros of 7 (e, - way,_2x), hence (14) holds. It also holds for k = n since then
both sides of (14) are equal to 2.

Next we evaluate 7 hs,, at the points

+
xj:2cos7‘;+2127r (j=0,...,n)

of the interval [—2,2]. Since z; = 2cosy; with y; = +1 2 27 we have by (13), (14)

2

Thoa(z;) =1(Un (%) + Unot () + 32 20T (%)

k=1
l o3 2n+1 n l j
5 sin s(—1)7
=2 2.—%+ apcos(n — k)y; | =2 3 yJ) —{—Zakcosn—k)y :
sin 1y; p sin P
. Yj
Ifj=0,1,...,n—1, then0<81n2]<1 Z|akcosn— y]|<;|ak| and by (11) the

sign of the expression in the bracket is (—1) sgn l
If y = n, then y, = 7 and the expression in the bracket is

n l n
D"+ ) ap(-D)"F=(=1)" =+ a(-1)F].
);()()(2“())

Its sign is (—1)™ sgn [ if in (11) strict inequality holds or if in (11) we have equality and at
least for one k (1 < k < n) we have sgnl = sgn (—1)¥a;. If we have equality in (11) and
sgn | = sgn (—1) 1, for all k = 1,...,n such that a; # 0, then the expression in the bracket
Is zero.

Thus either sgn T hy,(z;) = sgn (—1) sgnl (j =0,...,n) or sgn 7 hy,(z;) = sgn (—1)7 sgn
(j=0,1,....,n—1) and T ho,(z,) = 0. In both cases Thgn has n distinct zeros in the interval
[—2,2]. Writing these in the form 2cosu; with 0 < uy < uy < --- < u,, < 7 and applying
Lemma 1 we can complete the proof in the first case.

Case 2: m =2n+ 1. -
We have ho,i1(2) = (2 4+ 1)han(2) with

l_lm( = U9, (2) + Z T ok (

where
Ugn(2) = 22"+ 22072 4 £ 22+ 1 = 0, (27),

Wan+1-2k(2) _ Z2n =2k 4
z+1 z+1

Won—ok(2) =
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Using the factorization of v, we get

n

_ 2jmi i gmi
Uon(2) = v,(2%) = H <22 — en+1> = H (z — en+1> <z — el 7”) .

=1 j=1
Arranging the zeros of vy, into conjugate pairs (eﬁil , e*r{fl> (j=1,...,n) we have
n . . n
Uon(2) = E (z - en+1) (z — e_n+1> = 11 (z2 — 2cos 51T 1)

therefore

We can easily calculate the zeros of ws, o, (we omit this elementary calculation) and obtain
the factorization

n—Fk n—k .
i—1)7i j—1)mi 2 - 1
an—Zk(z) — | | (Z — @2(31]—21137%) (z — e éij—2lk)+1> —_ | | (22 — 2 COS %gi—%?az + ].)

j=1 j=1

therefore

Next we show that

(16) T772n(x) = U, (g) )
(17) T (e - Wan—ow)(x) = Up_s (g) Uy s (g) .

where we have to adopt the convention
(18) U_i(x)=0 (zeC).
The first identity follows from the fact that the zeros of both sides are the same.
To justify the second we note that
sin(n — k+ 1)y —sin(n — k)y
sin y

Up—i(cosy) — Up—g_1(cosy) =

2n—2k+1)y . 2n—2k+1

2
= . = 7
sin y COS 35

for all k =0,...,n provided that the convention (18) is adopted.
If £ = n, then both sides of (17) are equal to 1 thus (17) holds. For k < n the right hand

side of (17) is zero if and only if y = 2(3];,1?);1 (j € Z) hence all zeros of Un_, (£) — Up—k—1 (%)
(2j—D)m

ot (J = 1,...,n — k), they are the same as the zeros of 7 (e, - Way,—21) proving

are 2 cos
(17).
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By the linearity of the Chebyshev transform and by (16),(17) we have

TE%JI):ZTGMCG—%jiayT&%ww%,%)@ﬁ::lUn<§)%— akﬁzhk(f)-yﬁw_l(f)}.

Next we evaluate 7 hs, at the points
oS J + %
2n + 2

x]’:l‘jZQ

2r (7=0,...,n)

1
of the interval [—2,2]. Since Z; = 2 cos y; with g; = % 27 we have

B l IR — 2 J
Tho(y) =2 |20 D0 5
2 siny; 2cos ¥

n _
é(—l)j + > agsin %] COS %%

l _1 J n Cosw_. —
B NGV N T st =
2 sin y; P 2cos 5 S Yj
Since y; €]0,7[ we have siny; > 0, 0 < sin% <1, |0052”_2¢gj| <lforallk=1,....,n

therefore the sign of the expression in the bracket is sgn ! sgn (—1)7. Thus sgn (7 has(z;)) =
sgn | sgn (—1)7 (j = 0,1,...,n) proving that 7 hy, has n different zeros in [—2,2]. Writing
these zeros in the form 2cosu; with 0 < u; < wuy <--- < w, < 7 and applying Lemma 1 the
proof is completed in the second case as well.

0

We can formulate Theorem 1 in a more symmetric way. This formulation explains, in a
certain way, the appearance of the factor 2 in (11).

Theorem 2. All zeros of the reciprocal polynomial

(19) Pu(z) =) 42" (z€0)

k=0
of degree m > 2 with real coefficients Ay € R (i.e. A, # 0 and Ay, = Ay for all k =
0,..., [%]) are on the unit circle, provided that

m—1

k=1

If (20) holds, then all zeros ¢ (j =1,2,...,m) of P,, can be arranged such that

T
m—+1

ej — ™| < (j=1,...,m).
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If m = 2n+1 is odd, then —1 = e™n+1 4s always a zero and all zeros of P, are single.
If m = 2n is even

2n—1

(21) =1
sgn Ay, = sgn (—1)* (A, — Ag,) for all k =1,2,...,n with A, — Ag, # 0

holds, then wu, = un11 = m, the number —1 = e = e+l 45 q double zero of P,, and all other
zeros are single. Otherwise (i.e. if m = 2n, (21) does not hold) all zeros of P,, are single.

Proof. Comparing the coefficients of 2/ in h,, and P,, we see that for even m = 2n
Ayp=Ao =LAy 1 =A1=l+ay,..., A=A 1 =1l+an 1, Ay =1+ 2a,

thus | = Ao, ar, = Aoy — Aoy = Ay — Ay, for k. = 1,2,...,n — 1 and 2a, = A, — As,.
Therefore the condition (11)
1> 2 |l
k=1

can be written as

n—1 2n—1
A 22> " [Ap — Ay + |4y — Ay = > A — Ay,
k=1 k=1

which is the same as (20).
For odd m = 2n 4 1 the comparison of the coefficients gives that
A2n+l :AOZZ,AQn:Al :l+a1,...,An+1 :An:l—i—an

thus | = Agyi1,ak = Aoy — Aopr1 = A — Agpeg for k=1,2, ..., n and (11) can be written
as

n

n 2n
| Agpy1| > 22 |Ap — Aogpia| = Z (|Ax — Aopgr| + |A2nt1—k — Aonsa]) = Z |Ax — Aopta]
=1

k=1 k=1

proving (20). The statement concerning the location of the zeros follows from Remark 1. [

4. NECESSARY AND SUFFICIENT CONDITIONS

If the degree m of P, is small we can easily obtain necessary and sufficient conditions for all

zeros of P, to be on the unit circle.
If m =2, then Py(2) = Axz? + A1z + Ay = 2 (Az(z + %) + Al) hence T Py(x) = Asx + Aj.
The only zero of 7P, is in [—2, 2] if and only if

1
(2 4s] > 2|l
This is the criteria for P to have all zeros on the unit circle.
If m = 3, then P3(2) = A32® + Ap2? + Agz+ Az = (2 +1) (A32% + (Ay — A3)z + A3) . By (22)

the zeros of P3 are on the unit circle if and only if

1
(23) | As| > glA2 — As].
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If m =4, then Py(z) = Agz + A323 + Ag2? + Azz + Ay = 22 (A4(,22 + z%) + As(z + %) + Ag)
hence with z = z + 1 we get that 7 Py(z) = A4(2* — 2) + Asz + Ay. By Lemma 1 all zeros of
P, are on the unit circle if and only if the discriminant of 7 P, is non-negative :

(24) A3 — 4A4(Ay —244) >0
and
(25) —2 S Ty, T2 < 2

hold where z; < x5 are the real zeros of 7 P,. A simple calculation shows that (24) and (25)
are equivalent to

(26) 2\ /max{ A A; — 242,0} < | Ay| < minf4| Ay, |44 + %AQ sgn A},
This is the criterion for P, to have all of its zeros on the unit circle.
For m = 2 (22) holds if and only if
Aq € [-2|As],2|As]
while (20) gives only the smaller interval
Ay € [Ay — |As], As + |As]] -

This shows that (20) for m = 2 is not necessary. The situation is similar for m = 3.

For m = 4 the necessary and sufficient condition (26) is non-linear in the coefficients, while
our sufficient condition (20) is linear for all m > 2. In some special cases we get necessary and
sufficient conditions.

Corollary 1. All zeros of the polynomial
I(z" 42" 2+ )+ (2R (e C)

where m, k are fized non-negative integers with m > 2,1 < k < [%} and | is a fized positive
number, are on the unit circle for all m > 2 and for all k =1,2,. .., [%] if and only if
l>2.

Namely, taking m = 2, k = 1 by (22) all zeros of the resulting polynomial 2% + (I +2)z + 1
are on the unit circle if and only if [ ¢ (—%, 2) therefore [ > 2. On the other hand if [ > 2, then

by Theorem 1 all zeros of the polynomial I(z™ + 2™~ + .-+ 4+ z 4+ 1) + (2 4+ 2™7*) are on the
unit circle.

Remark 2. A preliminary version of some parts of this paper was reported in [5].
A. Schinzel [7] generalized Theorem 2 to the case of self-inversive polynomials over C, i.e.

polynomials P,,(z) = Y Agz* for which A, € C, A,, # 0,€A;, = A, _p forallk =0, ..., m with
k=0
a fixed € € C, |¢| = 1. He proved that all zeros of P, are on the unit circle, provided that
[Ap| > inf > " [cAy — d™F Ay,

k=0

where the infimum is taken over all ¢,d € C and |d| = 1.
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