CHARACTERIZATIONS OF SOME CLASSES OF QUASI-HEREDITARY ALGEBRAS

Piroska Lakatos

ABSTRACT. Inspired by the work of Mirollo and Vilonen [MV] describing the categories of perverse sheaves as module categories over certain finite dimensional algebras, Dlab and Ringel introduced [DR2] an explicit recursive construction of these algebras in terms of the algebras $A(\gamma)$. In particular, they characterized the quasi-hereditary algebras of Cline-Parshall-Scott [PS] and constructed them in this way. The present paper provides a characterization of lean, shallow and replete algebras in terms of this recursive process. A detailed presentation of the results will appear elsewhere.

Let D be a division K-algebra, C a basic K-algebra, $_DS_C$ and $_CT_D$ finitedimensional bimodules with K acting centrally. Let $\gamma : _CT_D \otimes_D S_C \rightarrow_C C_C$, be a bimodule homomorphism whose image lies in rad C. Let $B = D \ltimes (_DS_C \otimes_C T_D)$ the "split" K-algebra with the coordinate-wise addition and multiplication given by

$$(d_1, s_1 \otimes t_1)(d_2, s_2 \otimes t_2) = (d_1d_2, d_1s_2 \otimes t_2 + s_1 \otimes t_1d_2 + s_1\gamma(t_1 \otimes s_2) \otimes t_2).$$

Clearly, *B* is a local *K*-algebra with rad $B = S_C \otimes_C T$. It follows that *S* has the structure of a *B*-*C*-bimodule by $(d, s \otimes t) \cdot s' = ds' + s\gamma(t \otimes s')$ and *T* the structure of a *C*-*B*-bimodule by $t' \cdot (d, s \otimes t) = t'd + \gamma(t' \otimes s)t$. In [DR2], the 2×2 matrix $A = \begin{pmatrix} B & S \\ T & C \end{pmatrix}$ with multiplication given by

$$\begin{pmatrix} b & s \\ t & c \end{pmatrix} \begin{pmatrix} b' & s' \\ t' & c' \end{pmatrix} = \begin{pmatrix} bb' + (0, s \otimes t') & b \cdot s' + sc' \\ t \cdot b' + ct' & \gamma(t \otimes s') + cc' \end{pmatrix},$$

is shown to be a $A(\gamma)$ ring, viz. the quotient of the tensor algebra over the $(C \times D) - (C \times D)$ -bimodule $T \otimes S$ by the ideal generated by the elements $t \otimes s - \gamma(t \otimes s)$.

Let $e_1 = \begin{pmatrix} (1,0) & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{e}_C = (e_2, e_3, \dots, e_n)$ be a complete sequence of primitive orthogonal idempotents of C so that $\sum_{i=1}^n e_i = 1 : A_A = \bigoplus_{i=1}^n e_i A$. Write $\mathbf{e} = \mathbf{e}_A = (e_1, e_2, \dots, e_n), \ \varepsilon_i = e_i + e_{i+1} + \dots + e_n$ for $1 \le i \le n$ and

 $\varepsilon_{n+1} = 0.$

Let $\Delta_C(i)$ and $\Delta_C^o(i)$ be the right and left standard modules of (C, \mathbf{e}_C) , respectively (see [D] for the basic definitions and notation). Dlab and Ringel

Research partially supported by NSERC grant No A-7257. The author is indebted to Vlastimil Dlab for introducing her to the subject during her visit to Carleton University.

P.Lakatos

have shown in [DR2] that (A, \mathbf{e}) is quasi-hereditary if and only if (C, \mathbf{e}_C) is quasihereditary and S_C and $_CT$ have Δ_C -filtration and Δ_C^o -filtration, respectively; in fact, they have shown that all basic quasi-hereditary algebras over a perfect field K can be obtained by iterating this construction, starting with a division K-algebra C. In the present note, we are going to characterize lean algebras, as well as shallow and replete quasi-hereditary algebras A in terms of properties of C, $_DS_C$, $_CT_D$ and the homomorphism γ .

Recall that (A, \mathbf{e}) is *lean* (see [ADL]) if

 $e_i(\operatorname{rad} A)^2 e_j = e_i(\operatorname{rad} A) \varepsilon_m(\operatorname{rad} A) e_j$ for all $1 \le i, j \le n$ and $m = \min\{i, j\}$.

Equivalently, (A, \mathbf{e}) is lean if and only if (C, \mathbf{e}_C) is lean and for $i, j \geq 2$, the products $e_i A e_1 A e_j$ ($\subseteq e_i (\operatorname{rad} A)^2 e_j$) belong to $(\operatorname{rad} C)^2$. Since these products generate the image of γ , we have the following statement.

PROPOSITION 1. The algebra (A, \mathbf{e}) is lean if and only if (C, \mathbf{e}_C) is lean and $\operatorname{Im} \gamma \subseteq (\operatorname{rad} C)^2$.

Denoting the *standard* right and left modules of A by $\Delta(i) = \Delta_A(i)$ and $\Delta^o(i) = \Delta_A^o(i)$, respectively, (A, \mathbf{e}) said to be *quasi – hereditary* if

$$\dim_K A = \sum_{i=1}^n (1/d_i) \dim_K \Delta(i) \dim_K \Delta^o(i), \qquad (*)$$

where $d_i = \dim_K \operatorname{End} S(i)$; here, and in what follows, S(i), P(i) and V(i) denote the simple right A-module, $P(i) \simeq e_i A$ its projective cover and V(i) the kernel of the canonical epimorphism $P(i) \to \Delta(i)$. The equality (*) is equivalent to the fact that $\operatorname{End} \Delta(i) \simeq \operatorname{End} S(i)$ for all $1 \leq i \leq n$ and that the regular representation A_A has a Δ -filtration (which has been the original definition of Cline-Parshall-Scott; see also [DR1]). Indeed, this follows from the following series of statements (A) - (C) (cf.[D2]):

(A) For every A-module X, $[X : S(i)] = (1/d_i) \dim_K Xe_i$; thus

$$[A_A:S(n)] = (1/d_n) \dim_K Ae_n = (1/d_n) \dim_K \Delta^o(n).$$

(B) Always, $\dim_K Ae_n A \leq (1/d_n) \dim_K \Delta(n) \dim_K \Delta^o(n)$.

(C) The equivality $\dim_K Ae_n A = (1/d_n) \dim_K \Delta(n) \dim_K \Delta^o(n)$ holds if and only if $\operatorname{End}_A \Delta(n) = \operatorname{End}_A S(n)$ and $Ae_n A \simeq \bigoplus_{\text{finite}} \Delta(n)$.

The quasi-hereditary algebra (A, \mathbf{e}) is called *shallow* if all rad $\Delta(i)$ and rad $\Delta^{o}(i)$ $(1 \leq i \leq n)$ are semi-simple. This is equivalent to the fact (see [ADL]) that

$$e_i(\operatorname{rad} A)^2 A e_j = e_i(\operatorname{rad} A) \varepsilon_M(\operatorname{rad} A) e_j \text{ for all } 1 \le i, j \le n \text{ and } M = \operatorname{Max}\{i, j\}.$$

As a consequence, both Δ_C -filtration of S_C and Δ_C^o -filtration of $_CT$ are in this case *top* filtrations (see [ADL]), and (C, \mathbf{e}_C) is a shallow quasi-hereditary algebra. The following example shows that these properties are not sufficient for (A, \mathbf{e}) to be shallow.

EXAMPLE. Let (A, \mathbf{e}) be the path algebra of the quiver $2 \longrightarrow 1 \longrightarrow 3$; then (A, \mathbf{e}) is quasi-hereditary (in fact, hereditary). Since $e_2(\operatorname{rad} A)^2 e_3 \neq 0$ and $e_2(\operatorname{rad} A)e_3(\operatorname{rad} A)e_3 = 0$, (A, \mathbf{e}) is not shallow. However, $C = \varepsilon_2 A \varepsilon_2$ is shallow quasi-hereditary algebra and both S_C and $_CT$ are simple C-modules. The key missing property is leanness.

PROPOSITION 2. The algebra (A, \mathbf{e}) is a shallow if and only if (C, \mathbf{e}_C) is a shallow quasi-hereditary algebra, S_C has a top Δ_C -filtration, $_CT$ has a top Δ_C° -filtration and Im $\gamma \subseteq (\operatorname{rad} C)^2$.

Proof (of sufficiency). We need only to show that, under the conditions for C, $_{SC}$, $_{C}T$ and γ ,

 $e_i(\operatorname{rad} A^2)e_j \subset e_i(\operatorname{rad} A)\varepsilon_M(\operatorname{rad} A)e_j$ for all $1 \leq i, j \leq n$ and $M = \operatorname{Max}\{i, j\}$.

First, let $i, j \geq 2$. Then, in view of the fact that (C, \mathbf{e}_C) is shallow,

 $e_i(\operatorname{rad} A)\varepsilon_M(\operatorname{rad} A)e_j = e_i(\operatorname{rad} C)\varepsilon_M(\operatorname{rad} C)e_j = e_i(\operatorname{rad} C)^2e_j,$

which, in turn equals to $e_i(\operatorname{rad} A)\varepsilon_2(\operatorname{rad} A)e_j$. Since, by Proposition 1, (A, \mathbf{e}) is lean, we get

$$e_i(\operatorname{rad} A)^2 e_j = e_i(\operatorname{rad} A)\varepsilon_m(\operatorname{rad} A)e_j \subset e_i(\operatorname{rad} A)\varepsilon_2(\operatorname{rad} A)e_j,$$

as required.

If $i = 1, j \ge 2$, the inclusion $e_1(\operatorname{rad} A)^2 e_j \subset e_1(\operatorname{rad} A)\varepsilon_j(\operatorname{rad} A)e_j$ follows from the fact that the Δ -filtration of rad P(1), induced by the top Δ_C -filtration of S_C (which exists by [DR2]), is a top filtration. A similar argument can be applied to $i \ge 2, j = 1$.

Recall that the quasi-hereditary algebra (A, \mathbf{e}) is said to be *replete* if all $V(i) = e_i A \varepsilon_{i+1} A$ are projective, top submodules of rad $P(i) = e_i (\operatorname{rad} A)$, and all $V^o(i) = A \varepsilon_{i+1} A e_i$ are projective, top submodules of rad $P^o(i) = (\operatorname{rad} A) e_i$ (see [ADL]). If (A, \mathbf{e}) is a replete quasi-hereditary algebra, then (C, \mathbf{e}_C) is a replete quasi-hereditary algebra and both S_C and $_CT$ are projective C-modules. Again, these conditions alone do not imply that (A, \mathbf{e}) is replete. In the above Example, (C, \mathbf{e}_C) is replete and both S_C and $_CT$ are simple (projective) C-modules, but (A, \mathbf{e}) is not replete. The missing property is leanness again.

P.Lakatos

PROPOSITION 3. The algebra (A, \mathbf{e}) is a replete quasi-hereditary algebra if and only if (C, \mathbf{e}_C) is a replete quasi-hereditary algebra S_C and $_CT$ are projective C-modules and Im $\gamma \subseteq (\operatorname{rad} C)^2$.

Proof (of sufficiency) We want to show that V(i) is a projective, top submodule of rad P(i). Consider first $i \ge 2$. Since $V_C(i) = e_i(\operatorname{rad} A)\varepsilon_{i+1}A\varepsilon_2$ is projective, top C-submodule of the C-module rad $P_C(i) = e_i(\operatorname{rad} A)\varepsilon_2$, $V(i) = V_C(i) \otimes_C \varepsilon_2 A$ is a projective A-module.

Moreover, since A is lean by Proposition 1, we have the equality

$$e_i(\operatorname{rad} A)^2 e_{i+1} = e_i(\operatorname{rad} A)\varepsilon_2(\operatorname{rad} A)\varepsilon_{i+1},$$

and thus can identify the top of V(i) in the top of rad P(i) with the top of $V_C(i)$. This yields a top embedding of V(i) in rad P(i). Furthermore, since S_C is projective C-module, $V(1) = \operatorname{rad} P(1) = S_C \otimes_C \varepsilon_2 A$ is projective A-module (trivially embedded in rad P(1) as a top submodule).

One can use similar arguments to the deal with the left A-modules $V^{o}(i)$.

Let us conclude our brief note with the remark that similar characterizations of the left and right medial algebras (for a definition, see [ADL]) can be made combining the conditions of Propositions 2 and 3.

References

- [ADL] Ágoston, I., Dlab, V., Lukács, E., Lean quasi-hereditary algebras, Can. Math. Soc. Conference Proceedings 13 (1993), 1-14.
 - [D1] Dlab, V., Quasi-hereditary algebras, Appendix to Drozd, Yu.A., Kirichenko, V.V., Finite dimensional algebras, Springer-Verlag 1994.
 - [D2] Dlab, V., Elements of quasi-hereditary algebras, Proc. Conf. Repr. Theory, Constanta 1995; to appear.
- [DR1] Dlab, V., Ringel, C.M., Quasi-hereditary algebras, Illinois J. of Math. 35 (1989), 280–291.
- [DR2] Dlab, V., Ringel, C.M., A construction for quasi-hereditary algebras, Compositio Math. 70 (1989), 155–175.
- [MV] Mirollo, R., Vilonen, K., Berstein-Gelfand-Gelfand reciprocity on perverse sheaves, Ann. Scient. Ec. Norm. Sup. 20 (1987), 311–324.
- [PS] Parshall, B.J., Scott, L.L., Derived categories, quasi-hereditary algebras, and algebraic groups, Proc. Ottawa–Moosonee Workshop, Carleton–Ottawa Math. Lecture Note Series 3 (1988), 1–105.

INSTITUTE OF MATHEMATICS AND INFORMATICS,

LAJOS KOSSUTH UNIVERSITY

P.O.Box 12, 4010 DEBRECEN, HUNGARY *E-mail address:* lapi@math.klte.hu