
  

 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap  

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

http://go.warwick.ac.uk/wrap/59703 

 

 

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to 
cite it. Our policy information is available from the repository home page.  

 
 

 

 

http://go.warwick.ac.uk/wrap


JHG 05/2011 

 

 

Library Declaration and Deposit Agreement 

 
1. STUDENT DETAILS 

Please complete the following: 

Full name: ……………………………………………………………………………………………. 

University ID number: ……………………………………………………………………………… 

 
 
2. THESIS DEPOSIT 

2.1  I understand that under my registration at the University, I am required to deposit my thesis with the 
University in BOTH hard copy and in digital format. The digital version should normally be saved as a 
single pdf file. 
 
2.2  The hard copy will be housed in the University Library. The digital version will be deposited in the 
University’s Institutional Repository (WRAP). Unless otherwise indicated (see 2.3 below) this will be made 
openly accessible on the Internet and will be supplied to the British Library to be made available online via 
its Electronic Theses Online Service (EThOS) service. 
[At present, theses submitted for a Master’s degree by Research (MA, MSc, LLM, MS or MMedSci) are 
not being deposited in WRAP and not being made available via EthOS. This may change in future.] 
 
2.3  In exceptional circumstances, the Chair of the Board of Graduate Studies may grant permission for 
an embargo to be placed on public access to the hard copy thesis for a limited period. It is also possible to 
apply separately for an embargo on the digital version. (Further information is available in the Guide to 
Examinations for Higher Degrees by Research.) 
 
2.4  If you are depositing a thesis for a Master’s degree by Research, please complete section (a) below. 
For all other research degrees, please complete both sections (a) and (b) below: 

 
(a) Hard Copy 

 
I hereby deposit a hard copy of my thesis in the University Library to be made publicly available to 
readers (please delete as appropriate) EITHER immediately OR after an embargo period of 
……….................... months/years as agreed by the Chair of the Board of Graduate Studies.  
 
I agree that my thesis may be photocopied.        YES / NO (Please delete as appropriate) 

 
(b) Digital Copy 

 
I hereby deposit a digital copy of my thesis to be held in WRAP and made available via EThOS.  
 
Please choose one of the following options: 
 
EITHER   My thesis can be made publicly available online.      YES / NO (Please delete as appropriate) 

 
OR   My thesis can be made publicly available only after…..[date]  (Please give date) 

                YES / NO (Please delete as appropriate) 

 
OR   My full thesis cannot be made publicly available online but I am submitting a   separately 
identified   additional, abridged version that can be made available online. 

          YES / NO (Please delete as appropriate) 

 
OR   My thesis cannot be made publicly available online.          YES / NO (Please delete as appropriate) 

 

 

 



JHG 05/2011 

3. GRANTING OF NON-EXCLUSIVE RIGHTS 

Whether I deposit my Work personally or through an assistant or other agent, I agree to the following: 
 
Rights granted to the University of Warwick and the British Library and the user of the thesis through this 
agreement are non-exclusive. I retain all rights in the thesis in its present version or future versions. I 
agree that the institutional repository administrators and the British Library or their agents may, without 
changing content, digitise and migrate the thesis to any medium or format for the purpose of future 
preservation and accessibility. 

 

4. DECLARATIONS 
 

(a) I DECLARE THAT: 
 

 I am the author and owner of the copyright in the thesis and/or I have the authority of the 
authors and owners of the copyright in the thesis to make this agreement. Reproduction 
of any part of this thesis for teaching or in academic or other forms of publication is 
subject to the normal limitations on the use of copyrighted materials and to the proper and 
full acknowledgement of its source. 

 

 The digital version of the thesis I am supplying is the same version as the final, hard-
bound copy submitted in completion of my degree, once any minor corrections have been 
completed. 

 

 I have exercised reasonable care to ensure that the thesis is original, and does not to the 
best of my knowledge break any UK law or other Intellectual Property Right, or contain 
any confidential material. 

 

 I understand that, through the medium of the Internet, files will be available to automated 
agents, and may be searched and copied by, for example, text mining and plagiarism 
detection software. 

 
(b) IF I HAVE AGREED (in Section 2 above) TO MAKE MY THESIS PUBLICLY AVAILABLE 

DIGITALLY, I ALSO DECLARE THAT: 
 

 I grant the University of Warwick and the British Library a licence to make available on the 
Internet the thesis in digitised format through the Institutional Repository and through the 
British Library via the EThOS service. 

 

 If my thesis does include any substantial subsidiary material owned by third-party 
copyright holders, I have sought and obtained permission to include it in any version of 
my thesis available in digital format and that this permission encompasses the rights that I 
have granted to the University of Warwick and to the British Library. 

 
 
5. LEGAL INFRINGEMENTS 
 

I understand that neither the University of Warwick nor the British Library have any obligation to take legal 
action on behalf of myself, or other rights holders, in the event of infringement of intellectual property 
rights, breach of contract or of any other right, in the thesis. 

 
 

 
 
Please sign this agreement and return it to the Graduate School Office when you submit your thesis. 
 
 
 
Student’s signature: ......................................................…… Date: .......................................................... 

 



www.warwick.ac.uk

AUTHOR: Stephen Jowan Gallagher DEGREE: Ph.D.

TITLE: Zonal flow generation through four wave interaction in reduced mod-
els of fusion plasma turbulence

DATE OF DEPOSIT: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I agree that this thesis shall be available in accordance with the regulations
governing the University of Warwick theses.

I agree that the summary of this thesis may be submitted for publication.
I agree that the thesis may be photocopied (single copies for study purposes

only).
Theses with no restriction on photocopying will also be made available to the British

Library for microfilming. The British Library may supply copies to individuals or libraries.
subject to a statement from them that the copy is supplied for non-publishing purposes. All
copies supplied by the British Library will carry the following statement:

“Attention is drawn to the fact that the copyright of this thesis rests with
its author. This copy of the thesis has been supplied on the condition that
anyone who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information derived
from it may be published without the author’s written consent.”

AUTHOR’S SIGNATURE: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

USER’S DECLARATION

1. I undertake not to quote or make use of any information from this thesis
without making acknowledgement to the author.

2. I further undertake to allow no-one else to use this thesis while it is in my
care.

DATE SIGNATURE ADDRESS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Zonal flow generation through four wave interaction

in reduced models of fusion plasma turbulence

by

Stephen Jowan Gallagher

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Physics

August 2013



Contents

List of Tables iv

List of Figures v

Acknowledgments xiii

Declarations xiv

Abstract xv

Abbreviations xvi

Chapter 1 Introduction 1

1.1 Thermonuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Motion in a Magnetic Field . . . . . . . . . . . . . . . . . . . 5

1.3.2 Particle Drifts . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Fluid Drifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Fluid models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Magnetic Confinement Fusion . . . . . . . . . . . . . . . . . . . . . 17

1.6 Collisional Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.7 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7.1 A physical mechanism for drift waves . . . . . . . . . . . . . 30

1.7.2 Zonal Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 2 Nonlinear Physics 35

2.1 Weak Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Strong Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



2.2.1 Hydrodynamic turbulence and the Richardson model . . . . . 37

2.2.2 Two-Dimensional Cascades . . . . . . . . . . . . . . . . . . . 38

2.3 Weak Turbulence Wave-Spectra . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Examples of wave spectra . . . . . . . . . . . . . . . . . . . . 42

2.4 The Modulational Instability . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3 Reduced equations of laboratory plasma transport 47

3.1 The Hasegawa-Mima equation . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.3 The Extended Hasegawa-Mima equation . . . . . . . . . . . . 53

3.1.4 Linear Dispersion Relation . . . . . . . . . . . . . . . . . . . 55

3.1.5 Fourier space representation . . . . . . . . . . . . . . . . . . . 56

3.2 The Extended-Hasegawa-Wakatani Equation . . . . . . . . . . . . . 57

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Fourier Space Representation . . . . . . . . . . . . . . . . . . 62

3.2.4 The Hasegawa-Wakatani linear dispersion relation . . . . . . 63

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 4 Numerical Methods 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 The Courant-Friedrichs-Lewy condition . . . . . . . . . . . . . . . . 68

4.3 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Explicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Implicit schemes . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Pseudospectral schemes . . . . . . . . . . . . . . . . . . . . . 71

4.4 The Karniadakis method . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 The Arakawa Poisson bracket . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Fourier Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 5 The Modulational Instability in the Hasegawa-Mima Sys-

tem 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 A truncated four-mode system . . . . . . . . . . . . . . . . . . . . . 78

5.3 A linear dispersion relation for the truncated system . . . . . . . . . 83

5.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ii



5.3.2 The linear growth rate . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 The two dynamical regimes accessible by varying ρs . . . . . 90

5.4.2 Oscillations in off-axis modes . . . . . . . . . . . . . . . . . . 96

5.4.3 The effect of additional modes in off axis simulations . . . . . 100

5.5 Streamers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6 Four-Mode Interactions in the Hasegawa-Wakatani Sys-

tem 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 A truncated model for the Hasegawa-Wakatani equations . . . . . . 111

6.3 The linear growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.1 The EHM limit . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.4.2 The EHW regime . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.5 Energy Transfer functions . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 The EHM limit . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.2 The EHW regime . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Chapter 7 Driving the Extended-Hasegawa-Mima System 138

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Adding forcing to the four-mode system . . . . . . . . . . . . . . . . 139

7.3 The linearised growth rate . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4.1 The high-α limit . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.2 The low-α case . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 Energy transfer functions . . . . . . . . . . . . . . . . . . . . . . . . 152

7.5.1 The high-α limit . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5.2 The low-α case . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 8 Conclusions 161

iii



List of Tables

4.1 Coefficients for use in the Karniadakis method . . . . . . . . . . . . 72

iv



List of Figures

1.1 Reaction cross sections for Detuerium–Tritium (D–T), Deuterium-

Deuterium (D–D) and Deuterium–Helum–3 (D–He3) reactions. Fig-

ure from [Wesson, 2004, p.5]. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Particle orbits in a density gradient. The expanded section shows an

impalance in upwards and downwards moving particles. This leads

to the diamagnetic drift. Figure from [Wesson, 2004, p.87]. . . . . . 10

1.3 A diagram demonstrating tokamak directions (left) and the two radii

of a torus (right). The dotted line indicates a ploidal cross seciton . 18

1.4 A cartoon of the ITER tokamak, under construction in France. The

contained plasma is shown in pink[ITER Organisation, 2013]. . . . 19

1.5 Equilibrium magnetic flux surfaces (left) and midplane profiles of

toroidal current density, plasma pressure and toridal magnetic field

(right). Image from [Wesson, 2004, p.111]. . . . . . . . . . . . . . . 20

1.6 Diagram showing tokamak fields and the coils used to produce them[EFDA,

2013b]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 A cartoon showing the coil and plasma configuration in a stellara-

tor[EFDA, 2013a]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.8 A mechanism for drift waves[Horton, 1999]. . . . . . . . . . . . . . . 31

1.9 A diagram of the perturbed density surface showing how small per-

turbations can lead to a moving wave. Figure from[Wesson, 2004,

p.420]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.10 A diagram of zonal flows in a tokamak as viewed from a poloidal

cross section, the hatched region denotes positive charge, the dotted

negative. The large arrows give the direction of the flow[Diamond

et al., 2005]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 The imaginary part of ω when solving the EHW primary dispersion

relation, equation (3.80), for a) α = 0.7, κ = 10 and b) α = 10, κ = 10. 65

v



5.1 An example of the ODE system showing the satellite and zonal modes

growing linearly at the same rate and then oscillating. Pictures of

potential created by inverse Fourier transforming the amplitudes de-

scribed by the ODEs are shown in the bottom panels. A change in

the importance of modes with kx = 1 can clearly be seen, although

the satellite modes ensure that waves with ky = 10 remain clearly

visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 The growth of the zonal mode for identical initial conditions in ODE

simulations of the EHM and CHM systems for the case ~p = (0, 10),

ρs = 0.6m, ψ0 = 0.01m
2

s and v? = 10ms . Both have been normalised

using the analytical linear growth time of the EHM system. It can

clearly be seen that the zonal mode grows faster for the EHM system. 82

5.3 The analytical linear growth rate maps for various ρs with ~p = (0, 10),

v? = 10ms and ψ0 = 0.001m
2

s . It can be seen that as ρs is increased

growth is predicted for modes further away from the resonant curve. 86

5.4 The growth of an additional mode (~k = (−1, 10)) as mesured from

a full PDE simulation in a system seeded with ~p = (0, 10) and ~q =

(1, 10). This completes the set of modes that would be seeded in a

system with ~q = (1, 0). The linear growth predicted for these two

systems is indicated with straight lines. . . . . . . . . . . . . . . . . 88

5.5 Maps of the analytical linear growth rate for the case ~p = (0, 10),

ρs = 0.4m, ψ0 = 0.01m
2

s and v? = 10ms . Unlike the EHM (a) the

CHM (b) has no predicted growth for values near ~q = (0, 0). . . . . 89

5.6 The potential at various times in a simulation initialised with ~p =

(0, 10), ~q = (1, 0), ρs = 1.0m, v? = 10ms and φ0 = 0.01m
2

s . It is

strongly nonlinear with Mρ = 1, therefore a transition to a zonal flow

that saturates can be seen. The average velocity in the y (vertical)

direction is shown overlaid. . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 The potential at various times in a simulation initialised with ~p =

(0, 10), ~q = (1, 0), ρs = 1.25m, v? = 10ms and φ0 = 0.001m
2

s . It is

weakly nonlinear with Mρ ≈ 0.16. A transition to a zonal flow that

stretches back to a drift wave dominated system can be seen. The

average velocity in the y (vertical) direction is shown overlaid. . . . 94

vi



5.8 The amplitude of the zonal mode for various ρs (in metres) with (a)

ψ0 = 0.001m
2

s and (b) ψ0 = 0.01m
2

s , other parameters were identical,

v? = 10ms , p = (0, 10), q = (1, 0). Each case has been scaled by its

own linear growth time. ODE predictions are shown with solid lines,

full simulations with markers. . . . . . . . . . . . . . . . . . . . . . 95

5.9 The amplitudes of the perturbing mode, ~q, in an off axis simulation.

The line with markers shows the full numerical simulation, the other

is the prediction made by the ODE equations, (5.14) to (5.17). The

initial conditions were ψ0 = 0.01m
2

s , ~p = (0, 10) ~q = (2, 2), ρs = 1m,

v? = 10ms , and Mρ = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 The amplitudes of the perturbing mode, ~q = (3, 2), and the driving

mode ~p in an off axis simulation. The markers show the full numerical

simulation and the dashed lines the predictions made by the ODE

equations. A line demonstrating the linear growth rate is shown.

The initial conditions were ψ0 = 0.01m
2

s , ρs = 1m, v? = 10ms , and

Mρ = 1. A combination of oscillations and linear growth can be seen. 97

5.11 Real space images of potential for the system in figure 5.10. The

formation of vortex streets at an angle to the axes can be seen. . . . 98

5.12 The amplitudes of the perturbing mode, ~q = (6, 1), and the driving

mode ~p in an off axis simulation. The markers show the full numerical

simulation and the dashed lines the predictions made by the ODE

equations. A line demonstrating the growth rate is shown. The initial

conditions were ψ0 = 0.01m
2

s , ρs = 1m, v? = 10ms , and Mρ = 1.

The system grows at approximately the linear growth rate before

saturating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.13 Real space images of potential for the system in figure 5.12. The

formation of vortex streets at an angle to the axes can be seen before

they merge to form an off axis drift wave. . . . . . . . . . . . . . . . 100

5.14 Real space images of potential for an EHM simulation with ψ0 =

0.01m
2

s , ~p = (0, 10) ~q = (2, 2), ρs = 0.6m, v? = 10ms , and M = 0.36.

The growth of selected modes from this system is shown in figure

5.15(b). The images of potential are taken at times a), t/τ = 2.26,

and b), t/τ=2.58. A change in angle of the vortex streets can be seen. 101

vii



5.15 A comparison of the growth of various modes for the off axis system

shown in figure 5.14. For the EHM case, b), on axis modes clearly

grow faster than in the corresponding CHM, a), case. The initial

conditions were ψ0 = 0.01m
2

s , ~p = (0, 10) ~q = (2, 2), ρs = 0.6m,

v? = 10ms , and M = 0.36 . . . . . . . . . . . . . . . . . . . . . . . . 102

5.16 A map of the growth rate of perturbing mode ~q for a system with

~p = (10, 11), ρs = 0.6m, v? = 10ms and φ0 = 0.1m
2

s . . . . . . . . . . 103

5.17 A streamer case initialied with ~p = (10, 11), ~q = (0, 1), ρs = 0.6m,

v? = 10ms and φ0 = 0.05m
2

s . It can be seen that at t ∼ 0.25τ the real

system rapidly diverges from both the ODEs and the linear prediction.104

5.18 Real space images of potential corresponding to the case presented in

figure 5.17. Dispite being intiallised with a perturbation designed to

form a streamer, the system develops a mostly zonal configuration. 105

5.19 A fourier transform of the same simulation as figures 5.17 and 5.18

at t = 0.26τ . It can be seen that a number of modes not in the initial

conditions have been grown. . . . . . . . . . . . . . . . . . . . . . . 107

5.20 ODE and linear predictions for the growth of the zonal mode by

treating the system as if it has ~p = (17, 5) and ~q = (1, 0). The satellite

modes, ~p±, and the pump wave, ~p, have been driven to simulate their

growth in the real system. . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 The evolution of potential and density in a system with with α = 10

and κ = 10. The roll up of drift waves to form zonal flows can be

seen most clearly in potential. . . . . . . . . . . . . . . . . . . . . . 118

6.2 The potential in a EHW simulation with α = 10 and κ = 10 at
t
τ ∼ 8.1. From the potential (left) it can be seen that the system has

developed drift waves. From the Fourier transform of this potential

(right) it can be seen that the set of modes formed with ~p = (0,−1.41)

and ~q = (0.157, 0) form a possible resonant set for use in the ODE

equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 A comparison between the ODE predictions (lines) and the PDE

simulation (markers) for a high α = 10 case. The line labelled linear

is positioned arbitrarily but grows at the twice the rate predicted by

the primary dispersion relation for ϕp. . . . . . . . . . . . . . . . . 120

viii



6.4 A comparison between the ODE predictions (lines) and the PDE

simulation (markers) for a high α = 10 case. Density and potential

were seeded independently with white noise. The line labelled linear

is positioned arbitrarily but grows at twice the primary growth rate

of ϕp. The inset figure shows the evolution at early times. . . . . . 122

6.5 The evolution of potential and density in a system with with α = 0.5

and κ = 10. The roll up of broad drift waves to form wide zonal flows

can be seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 The potential in a EHW simulation with α = 0.5 and κ = 10 at
t
τ ∼ 6.2. From the potential (left) it can be seen that the sys-

tem has developed drift waves. From the Fourier transform of this

potential (right) it can be seen that the set of modes formed with

~p = (0,−0.471) and ~q = (0.157, 0) form a possible resonant set for

use in the ODE equations. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.7 A comparison between the ODE predictions (lines) and the PDE

simulation (markers) for a low α = 0.5 case. The line labelled linear

is positioned arbitrarily but grows twice the rate predicted by the

primary dispersion relation for ϕp. . . . . . . . . . . . . . . . . . . . 126

6.8 A comparison between the ODE predictions (lines) and the PDE

simulation (markers) for a low α = 0.5 case. Density and potential

were seeded independently with white noise. The line labelled linear

grows at twice the primary growth rate of ϕp. The inset figure shows

the saturation of potential, ϕq, in more detail. . . . . . . . . . . . . . 128

6.9 The transition from a drift-wave dominated system to a zonal-flow as

seen in Fourier space for a case with α = 10. It can be seen that the

low k modes, which cause the zonal flow, remain separated from the

high k modes which form the drift waves. . . . . . . . . . . . . . . . 131

6.10 The transition from a drift wave dominated system to a zonal flow as

seen in Fourier space for a case with α = 0.5. It can be seen that there

are a large number of modes with a moderate amplitude between the

high k (drift wave) and low k (zonal flow) regions. . . . . . . . . . . 132

6.11 Energy transfer functions for α = 10. Crosses mark modes that are

referred to in the text. . . . . . . . . . . . . . . . . . . . . . . . . . 133

ix



6.12 A comparison between the ODE predictions (lines) and the PDE sim-

ulation (markers) for a high α = 10 case for modes ~p = (0, −9×2π
L ) =

(0,−1.4137) and ~q = (3×2π
L , 0) = (0.47124, 0). Density and potential

were seeded independently with white noise. The line labelled linear

grows at twice the primary growth rate of ϕp. The inset figure shows

the saturation of potential, ϕq, in more detail. . . . . . . . . . . . . . 134

6.13 Energy transfer functions for α = 0.5. Crosses mark modes that are

referred to in the text. . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.14 A comparison between the ODE predictions (lines) and the PDE sim-

ulation (markers) for a high α = 10 case for modes ~p = (0, −4×2π
L ) =

(0,−0.62832) and ~q = (2×2π
L , 0) = (0.31416, 0). Density and potential

were seeded independently with white noise. The line labelled linear

grows at twice the primary growth rate of ϕp. The inset figure shows

the saturation of potential, ϕq, in more detail. . . . . . . . . . . . . . 136

7.1 A subset of the profiles used to drive the EHM system. In both cases

the mode numbers have been normalised to the box size, which was

identical for both simulations. It can be seen that the EHM limit

case (a), with α = 10, is centred around higher mode numbers than

the EHW case (b), with α = 0.5. In both cases κ = 10, and beyond

the region shown the driving rapidly decays. . . . . . . . . . . . . . . 143

7.2 Real space images of potential in a driven system where the driving

profile was generated using α = 10 and κ = 10. It can be seen that

the drift wave spectrum supersedes the high frequency components

of the initial condition, before transitioning to a zonal structure. The

times shown correspond to figure 7.4. . . . . . . . . . . . . . . . . . . 145

7.3 A Fourier transform of the potential presented in the first panel

of figure 7.2. The modes ~p = (0,−9×2π
L ) = (0,−1.41) and ~p± =

(±2π
L ,−

9×2π
L ) = (±0.157,−1.41) are clearly present and can form a

coupled set of modes for use in the analytical models. . . . . . . . . 146

7.4 Comparing the ODE and linear predictions to the PDE simulation in

the α = 10 case. Markers indicate output from the full simulation,

dashed lines predictions from the ODEs, and the line labelled linear is

arbitrarily positioned but grows at the linear growth rate. The forcing

(ν) used for each mode is shown in the legend. Without artificially

forcing φq (bottom), the ODE does not capture the growth between

t = 0 and t = 4τ . In both cases the linear growth rate of φq is γ = 2.1.147

x



7.5 Real space images of potential in a driven system where the driving

was generated using α = 0.5 and κ = 10. It can be seen that the

drift wave spectrum supersedes the high frequency components of

the initial condition, before transitioning to a zonal structure. The

times shown correspond to figure 7.7(a). . . . . . . . . . . . . . . . . 148

7.6 A Fourier transform of the potential presented in the second panel

of figure 7.5. The modes ~p = (0,−3 × 2π
L ) = (0,−0.471) and ~p± =

(±2π
L ,−3 × 2π

L ) = (±0.157,−0.471) are clearly present and form a

coupled set of modes for use in the analytical models. . . . . . . . . 149

7.7 Comparing the ODE and linear predictions to the PDE simulation in

the α = 0.5 case. Markers indicate output from the full simulation,

dashed lines predictions from the ODEs, and the line labelled linear

is arbitrarily positioned but grows at the linear growth rate. The

forcing (ν) used for each mode is shown in the legend. The linear

growth rate is γ = 2.28 Unlike the high α case the ODEs must be

solved after the system has started growing linearly, shown in panel

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.8 Energy transfer functions for the α = 10 case. They have been pro-

duced by averaging over the section that grows at the linear growth

rate, t/τ ∼ 7 to t/τ ∼ 9. Crosses mark modes that are referred to in

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.9 Comparing the ODE and linear predictions to the PDE simulation

in the α = 10 case for modes ~p = (0,−1.26) = (0, −8×2π
L ) and ~q =

(0.471, 0) = (3×2π
L , 0) as indicated by the ETF plot . Markers indicate

output from the full simulation, dashed lines predictions from the

ODEs, and the lines labelled linear are arbitrarily positioned but

grow at the linear growth rate. The forcing (ν) used for each mode

is shown in the legend. The ODEs use initial values taken at time
t
τ ∼ 3.5, after the system has made some initial adjustments. Unlike

the case in figure 7.4, the full simulation does not strongly deviate

from linear growth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.10 Energy transfer functions for the α = 0.5 case. They have been

produced by averaging over the section that grows at the linear growth

rate, t/τ ≈ 7 to t/τ ≈ 11. Crosses mark modes that are referred to

in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xi



7.11 Comparing the ODE and linear predictions to the PDE simulation

in the α = 0.5 case for modes ~p = (0,−0.785) = (0, −5×2π
L ) and

~q = (0.157, 0) = (2π
L , 0) as indicated by the ETF figures. Markers

indicate output from the full simulation, dashed lines predictions from

the ODEs, and the line labelled linear is arbitrarily positioned but

grows at the linear growth rate. In this case the initial condition had

φq(t = 0) � φp(t = 0) so the initial conditions for the ODEs was

taken at t
τ ∼ 7 when this was no longer the case. . . . . . . . . . . . 159

xii



Acknowledgments

First and foremost, I thank my PhD supervisor, Dr. Bogdan Hnat, for his im-

measurable support and unending patience over these last few years. Without his

guidance I would not have completed this thesis.

I would like to express my gratitude to Professor Sergey Nazarenko and Dr.

Colm Connaughton, without their advice this thesis would contain considerably less

maths. Also, to Dr. Christopher Brady. Without our many coffee break conversa-

tions I would still be trying to debug computer codes.

I have been blessed with great friends at Warwick University, Pete, Rachel,

Simon, Matt, and all the rest. Thank you for your encouragement, help and enter-

tainment; you made my time at Warwick fun.

I would like to acknowledge the staff in the CFSA and Physics department,

many thanks to all of you who have helped me in any way during my time there.

Also the staff of the CSC, for keeping the computers running.

I am also grateful to the EPSRC for funding my PhD research.

Finally, I thank my family for their unwavering support in all of my endeav-

ours. Without you I could not have come so far.

xiii



Declarations

I declare that the work contained in this thesis is my own except where otherwise

stated. Chapters 1, 2 and 3 contain no original work but provide a theoretical

background to the subjects of fusion plasma, zonal flows, drift waves and the reduced

models of plasma turbulence used in subsequent chapters. Chapter 4 describes the

techniques used to write the numerical codes used throughout this work. The only

original work in chapter 4 is the summary, which describes how the techniques are

combined to produce the final codes. Chapters 5 to 7 all contain original work.

The numerical simulations presented therein were carried out by the author, using

codes written by the author. The mathematical analysis carried out in chapters 5

to 7 is based on [Connaughton et al., 2010] and was carried out by the author in

collaboration with the authors of [Connaughton et al., 2010] and [Gallagher et al.,

2012]. The work presented in chapter 5 has been published in [Gallagher et al.,

2012]. This thesis has not been submitted for a degree at another university.

xiv



Abstract

In tokamaks, turbulence is a key contributor to cross field transport. How-
ever, it is also responsible for the spontaneous generation of large scale structures
such as zonal flows. These are of relevance to fusion plasmas as they can create trans-
port barriers which aid plasma confinement. The interaction between drift waves
and zonal flows can be investigated using reduced models such as the Hasegawa-
Mima and Hasegawa-Wakatani equations.

A four-wave truncated model is developed for the Extended-Hasegawa-Mima
(EHM) equation. This produces a set of four ordinary differential equations (ODEs)
that are used to investigate the modulational instability (MI), a mechanism by which
drift waves can produce a zonal flow. These equations are linearised to produce a
dispersion relation for the MI which is used to produce a set of maps of the linear
growth rate of the MI. These show how additional modes become unstable as the
gyroradius is increased. The truncated model and dispersion relation are then com-
pared to measurements taken from simulations of the full EHM partial differential
equation (PDE) which has been seeded with an appropriate initial condition. Good
agreement is found when the pump wave has no component in the direction of the
density gradient.

A similar truncated model is derived for the Extended-Hasegawa-Wakatani
(EHW) equations. As the EHW system has separate equations for density and
potential this leads to a set of eight ODEs. The linearisation technique used for the
EHM system cannot be applied here. Instead, approximations based on the built in
EHW instability are made to calculate a linear growth rate for the zonal flow using
the ODEs describing it. These analytical predictions are then compared to a full
PDE simulation of the system, which is initialised using random noise. It is found
that for particular sets of waves the ODEs provide a good prediction of the linear
growth rate.

A driving term is added to the EHM equation to reproduce the effect of
the built in instability of the EHW equations. This causes a drift wave spectrum to
grow when full EHW PDE simulations are seeded with random noise. The four-wave
ODE model is updated to include this driving. The ODE model again produces good
predictions for the growth rate of the zonal flow.
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Chapter 1

Introduction

1.1 Thermonuclear Fusion

In recent decades it has become apparent that the burning of fossil fuels is having

a detrimental effect on the global climate. An increase in the burning of fossil fuels

in order to satisfy the growing energy needs of the planet is therefore not a feasible

option. As a result of this many ‘green’ technologies have been developed in order

to produce electricity without increasing carbon-dioxide output. However, there

are many drawbacks to these clean power plants, the most pressing of which are

perhaps the amount of land needed to produce an equivalent amount of energy to a

conventional power station, and the intermittence of the supply.

Currently the only comparable clean method of producing energy is nuclear

fission reactors. These however produce active waste products that cannot be re-

leased into the environment. Nuclear fusion provides a possible solution to this

problem. Like a conventional fossil fuel plant it has the capacity to produce a steady

supply of energy, yet, the waste products produced should be more manageable than

those from nuclear fission.

Nuclear fusion is known to be operating inside the Sun, where hydrogen is

fused to produce helium. The Sun uses gravitational confinement to contain plasma

at densities that are not achievable on earth. The principle of energy production via

fission and fusion is the same. Fusion combines light elements to produce a heavier

element, whereas fission splits heavy elements, however, in both cases the products

of the reaction have a lower total mass than that of the reactants and the loss of

mass is converted to energy in accordance with Einstein’s

E = mc2
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mass-energy equivalence formula. In order for this to happen in nuclear fusion,

nuclei of light elements must come sufficiently close together that the strong force

can overcome coulomb repulsion to form a new nucleus. In thermonuclear fusion

collisions at high temperatures bring nuclei close enough together that they can

quantum mechanically tunnel through the coulomb barrier. These requirements are

included in the definition of the fusion cross section, which gives the probability of

a reaction between a pair of colliding particles[Azteni and Meyer-ter-Vehn, 2004,

p.4]. A graph of cross sections of power generation relevant fusion reactions is given

in figure 1.1. It can be seen that the highest cross section is for Deuterium–Tritium

(D–T) reactions at a temperature of approximately 100keV. It is not necessary to

heat the plasma to this temperature however, as particles in the high energy tail of

a Maxwellian temperature distribution, peaked at around 10keV, will be hot enough

for fusion to take place. At such temperatures a D–T gas mixture will become fully

ionised and form a plasma[Wesson, 2004, p.2].

Figure 1.1: Reaction cross sections for Detuerium–Tritium (D–T), Deuterium-
Deuterium (D–D) and Deuterium–Helum–3 (D–He3) reactions. Figure from [Wes-
son, 2004, p.5].

In order to achieve self sustained nuclear fusion the Lawson criterion must be

satisfied. This states that the energy produced by the fusion reactions taking place
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must be great enough maintain the temperature of the plasma, despite losses and

without any other energy input. For confinement fusion it is convenient to write

this as [Wesson, 2004, p.10],

neτE >
12kB
Ech

T

〈σv〉
(1.1)

where ne is the electron density, τE is the energy confinement time, T is the temper-

ature, Ech is the energy of the charged fusion products, σ is the fusion cross section

and v is the relative velocity. From this point onwards the usual plasma convention

of using energy units for temperature will be used and the Boltzmann constant, kB,

will be suppressed. The right hand side of (1.1) is a function of temperature which

has a minimum at T = 30keV where the inequality becomes[Wesson, 2004, p.11]

nτE > 1.5× 1020m−3s. (1.2)

There are two main approaches to creating fusion plasmas that satisfy (1.2). Firstly

inertial confinement fusion attempts to rapidly achieve high densities via the com-

pression of a pellet of Deuterium-Tritium (D–T) fuel using lasers. Secondly, mag-

netic fields can be used to confine low density D–T plasmas to achieve high energy

confinement times. This is known as magnetic confinement fusion.

1.2 Plasma

Plasma is a state of matter where at least some of the electrons have disassociated

from their atoms to leave a system to positively charged ions and negatively charged

electrons. As these particles are all charged they respond to electric and magnetic

fields, including any that they set up themselves via charge separation. As the

electrons have less mass than the ions in the system they move more rapidly, and

therefore distribute themselves so as to counteract any potentials that build up.

This process is called screening. The result is that inside the plasma, fields only act

over a short distance known as the debye length[Wesson, 2004, p.36]

λD =

(
ε0Te
nee2

) 1
2

, (1.3)

where Te is the electron temperature, ε0 is the permittivity of free space, e is the

charge of an electron and ne is the electron density.

A plasma in which the density of positive charges in the plasma is equal to
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the density of the negative charges, when averaged over the entire system, is called

quasineutral. This can be seen by considering that a plasma in thermal equilibrium

must have electrostatic energy roughly comparable to thermal energy[Hazeltine and

Meiss, 2003, p.35]

eφ ∼ T,

where φ is electrostatic potential and T is temperature. When we restrict ourselves

to considering only processes that are slow in comparison to electromagnetic waves

the electrostatic approximation allows us to define the electrostatic potential using

~E = −∇φ, (1.4)

where ~E is the electric field. Poisson’s equation can then be written as,

∇2φ = −ρc
ε0
, (1.5)

where ρc is the charge density. A few algebraic steps allows us to find a relation

between charge separation and λD,

∇ · ~E =
ρc
ε0

⇒
1

L2
φ ∼ e(ne − ni)

⇒

ne − ni
ne

∼
(
λD
L

)2

, (1.6)

where ni is the density of ions with unit charge. When the length scale for potential

variation, L, is much greater than the Debye length the right hand side of equation

(1.6) tends to zero and the quasineutrality approximation is given as

ne − ni ≈ 0. (1.7)

Quasineturality is a property of the bulk plasma and does not preclude strong local

electric fields, perturbations in the charge density will lead to the creation of a

potential and, via (1.4), an electric field. Charged particles are accelerated by such

fields so as to counteract them. This produces a current with a corresponding local

magnetic field, however, for the magnetised plasmas considered in this work, the

background magnetic field is so strong that it is only slightly perturbed by these
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local fields. Having gained kinetic energy whilst being accelerated by the local

electric field, charged particles will overshoot the point where the field becomes 0

and instead reverse the direction of the field and direction of acceleration. This

process is cyclical and leads to a wave in the plasma at a frequency

ωp =

√
n0e2

mε0
=

1

λD

√
T

m
,

known as the plasma frequency. Having a lower mass than ions, electrons will move

rapidly and screen out charge imbalances on a timescale 1
ωp

, in effect they form

electron clouds around the ions. In order for a plasma to maintain quasineutrality

the time between collisions of particles in the plasma, τc must be greater than the

inverse plasma frequency, τc >
1
ωp

.

1.3 Transport

1.3.1 Motion in a Magnetic Field

In the absence of an electric field charged particles will spiral around magnetic field

lines. This can be shown with the Lorentz force law,

~F = q( ~E + ~v × ~B), (1.8)

where ~F is the force experienced by a particle, q is its charge, ~v its velocity and

~E and ~B are the electric and magnetic fields present. Splitting the velocity into

components parallel to the magnetic field, ~v‖, and perpendicular to it, ~v⊥, and in

the case where there is no electric field, this becomes

~F⊥ = m
d ~v⊥
dt

= q ~v⊥ × ~B. (1.9)

As ~v‖ × ~B = 0 there is no force parallel to the magnetic field and particles are free

to move along field lines. Perpendicular to the field the particles experiences a force

perpendicular to both the field lines and the velocity of the particle. The particle

motion can be split into two parts, a motion along the magnetic field and a rapid

gyration around it; the particle traces out a helix. The position of the centre of this

helix, known as its guiding centre, is given by[Helander and Sigmar, 2005]

~R = ~r − 1

ωc
~b× ~v, (1.10)
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where ~b is a unit vector pointing along the magnetic field, ~b =
~B
| ~B|

, and ~r is the

position of the particle. ωc is the angular frequency of circular motion and is known

as the gyrofrequency or cyclotron frequency and is given by

ωc =
qB0

m
. (1.11)

Differentiating (1.10) and using equation (1.9) an equation for the velocity of the

guiding centre can be obtained,

d

dt
~R = ~v − m

eB
~b× d

dt
~v = v‖~b, (1.12)

which shows that the guiding centre moves along the magnetic field.

Equating the perpendicular force to the centripetal force experienced by a

particle undergoing circular motion, an equation for the radius, at which the particle

orbits the field line, can be derived. This radius is known as the Larmor radius, or

equivalently the gyroradius, and is given by

ρ =
mv⊥
qB0

, (1.13)

where m is the mass of the particle, v⊥ is the velocity perpendicular to the field

line, q is the charge of the particle and B0 is the magnitude of the magnetic field.

As the particle is a charge moving in a circle it is effectively a current loop

and has an associated magnetic moment

µ =
mv2
⊥

2B
. (1.14)

This quantity is an adiabatic invariant and is conserved to first order, it has been

shown that higher order system have an equivalent conserved property[Hazeltine

and Waelbroeck, 2004, p.29].

1.3.2 Particle Drifts

There are a number of drifts in magnetised plasmas that can cause the guiding

centre of individual particles to cross field lines. The general formula for a particle

drift is given as

~vf =
1

q

~F × ~B

B
(1.15)

where q is the charge on the particle, ~F is the force it is experiencing and ~B is the

magnetic field. The general principle is that a force on a particle will accelerate it in
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a given direction and once it is in motion it will be deflected by the magnetic field.

The ~E × ~B Drift

When there is an electric field present as well as a magnetic field particles will

experience a drift parallel to both the magnetic and electric fields called the ~E × ~B

drift. This can easily be shown by taking the electric field contribution to the

Lorentz force law (1.8) and substituting it into the general drift equation (1.15) to

give.

~vE =
~E × ~B

B2
(1.16)

This drift is independent of both particle mass and charge so the entire

plasma will drift in this direction. The electric field in this drift can be set up

locally by fluctuations and is important for the phenomenon of drift waves discussed

in section 1.7.1.

The ∇ ~B Drift

Gradients in fields can also produce drifts. Here the example of a small transverse

gradient, in the ŷ direction, of a magnetic field, in the ẑ direction, is presented. In

this case the force experienced by the particle as it orbits magnetic field lines is

not constant and the orbit has a smaller radius of curvature in regions of stronger

magnetic field.

The ∇ ~B drift for a particle can be calculated by considering its equation of

motion in the direction parallel to the magnetic field gradient,

m
dvy
dt

= −qvxB. (1.17)

If the gradient in the magnetic field is small the total magnetic field can be written

as

B = B0 +
dB

dy
y,

where y=0 is at the midplane of the orbit. Considering the total velocity in the

direction perpendicular to the magnetic field as a combination of the ∇ ~B drift

velocity and the existing perpendicular velocity gives,

vx = vx0 + vd,
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where vd � vx0. This means that equation (1.17) can be written as

m
dvy
dt

= −qvx0(B0 +
dB

dy
y)− qvdB0 − qvd

dB

dy
y. (1.18)

The final term in this equation contains two small parameters, vd and dB
dy , and is

therefore negligible. Considering the equations of motion for a particle moving in

an unperturbed circle perpendicular to the magnetic field gives

vx0 = v⊥ sin(ωct)

and

y =
v⊥
ωc

sin(ωct)

which can be combined with equation (1.18) to give

m

q

dvy
dt

= −v⊥ sin(ωct)

(
B0 +

dB

dy

v⊥
ωc

sin(ωct)

)
− vdB0. (1.19)

Time averaging such that

<
dvy
dt

>= 0

gives

vd = −1

2

v⊥
ωc

1

B

dB

dy
v⊥,

or in vector notation

~vd =
1

2

v⊥
ωc

~B ×∇B
B2

v⊥. (1.20)

ωc is given by equation (1.11) and changes sign depending on the charge of the

particle under consideration. This means that the ∇B drift will cause electrons and

ions to drift in opposite directions. This can cause charge separation and therefore

an electric field.

The Polarisation Drift

The polarisation drift occurs when there is a time varying electric field perpendicular

to the magnetic field. In this case the guiding centre will accelerate at

d

dt
~vE =

d

dt

~E × ~B

B2
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which is equivalent to a force in the frame of the guiding centre of

~F = −m d

dt

~E × ~B

B2
.

Once again this can be substituted into the general equation (1.15) to give

the polarisation drift velocity

~vp =
1

ωcB0

d ~E

dt
(1.21)

where ωc changes sign with the charge of the particle, meaning that ions and elec-

trons drift in opposite directions, setting up a current.

A drift that causes charge separation, such as the aforementioned ∇B drift,

will create a time varying electric field which in turn will lead to a polarisation

drift. The new polarisation drift will act to cancel the original drift and maintain

quasineutrality, hence, ~vp = −~vd. This allows the calculation of the electric field via

d ~E

dt
= −~vdωcB0.

1.3.3 Fluid Drifts

Fluid drifts come from the collective behaviour of particles in a fluid element. In

the presence of a gradient in the plasma the number of particles passing through the

reference cell will vary across it. For example, it can be seen in figure 1.2 that in the

presence of a density gradient a given cell will have more particles moving in one

direction than the other, in this case downwards. The net effect in this this example

is a downwards momentum causing the cell to drift downwards, perpendicularly to

the density gradient and the magnetic field. The velocity of this drift is

~vD = −∇p×
~B

qnB2
(1.22)

where p = nT is the pressure and n is density. In the case of a constant temperature

this defines the diamagnetic drift, which is the drift that provides advection in the

reduced models that will be discussed in chapter 3. In the presence of either a

temperature or a magnetic field gradient the Larmor radius of particles will vary

across the cell, again leading to a net imbalance in momentum.

In order to capture these drifts correctly with a particle description it is

necessary to include the effects from charged particle gyration[Garcia, 2003]. We

first define a magnetic moment

~M = n〈~µ〉 (1.23)
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Figure 1.2: Particle orbits in a density gradient. The expanded section shows an im-
palance in upwards and downwards moving particles. This leads to the diamagnetic
drift. Figure from [Wesson, 2004, p.87].

where the <> brackets denote a weighted average over the particle velocity distri-

bution. Then considering the plasma as a collection of magnetic moments, as given

by equation (1.14), a magnetisation current can be defined

~jµ = ∇× ~M. (1.24)

Defining the magnetisation drift as

〈 ~uµ〉 =
〈~jµ〉
qn

(1.25)

results in a total drift of

〈 ~uB + ~uµ〉 =
1

qnB
~b×∇p⊥ +

p‖ − p⊥
qnB

∇×~b. (1.26)

Here 〈 ~uB〉 is the velocity average of the ∇B and curvature drifts as given in [Garcia,

2003]. Replacing the scaler pressure in equation (1.22) with an anisotropic pressure

distribution, represented by the gyrotropic pressure tensor[Chew et al., 1956]

P = p⊥(I−~b ·~b) + p‖~b ·~b, (1.27)

where I is the unit tensor, the original diamagnetic drift becomes

~vD =
1

qnB
~b×∇p⊥ +

p‖ − p⊥
qnB

∇×~b. (1.28)

This is identical to equation (1.26) confirming that the diamagnetic drift is in fact

a consequence of particle gyration.
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1.4 Fluid models

To see the origin of the fluid description of a plasma it is first necessary to consider

a kinetic description. The kinetic equation is

∂fs
∂t

+∇~v · fs + ~as ·
∂fs
∂~v

= Cs(f), (1.29)

where fs = fs(~r,~v, t) is a distribution function. For each particle species s, fs is the

density of particles near point ~r with velocity ~v at time t, and ~as is the acceleration

given by the Lorentz force as

~as =
es
ms

(
~E + ~v × ~B

)
. (1.30)

When the collision operator is approximated by the Boltzmann collision operator,

C(f, f), (1.29) is known as the Boltzmann equation. C(f, f) is bilinear and considers

binary collisions between both like species and different species in a neutral gas.

The long-range of the Coulomb interaction means that approximating the collisions

as purely binary is not strictly correct, however, Debye shielding means that it is

normally a good approximation[Hazeltine and Waelbroeck, 2004, p.49]. Note that

(1.29) does not take into account the creation or destruction of particles, nor the

changing of particles from one species to another, via ionisation for example. To do

this an appropriate source term must be added to its right hand side.

Fluid models are obtained by taking moments of the kinetic equation. To do

this (1.29) is multiplied by ~vN , where N is an integer and represents the moment

being calculated, and then integrated over ~v.

Density is defined as

ns =

∫
d3vfs (1.31)

and the flux density as,

ns ~Vs =

∫
d3v~vfs, (1.32)

so that the 0-th moment of equation (1.29) describes the conservation of particles

∂

∂t

∫
d3vfs +∇

∫
d3v~v · fs +

∫
d3v ~as ·

∂fs
∂~v

=

∫
d3vCs(f)

⇒ ∂

∂t
ns +∇

(
ns ~Vs

)
= 0 (1.33)

where the term on the right hand side is 0 as the collision operator is symmetric

with respect to velocities, Cs(f(~v)) = Cs(f(−~v)).
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The stress tensor, which describes the flow of momentum in the laboratory

frame, is defined as

~Ps =

∫
d3vms~v~v · fs (1.34)

and the friction force, which describes momentum transfer between particle species,

as

~Fs =

∫
d3v~vmsCs(f), (1.35)

so the 1st moment describes the conservation of momentum

∂

∂t

∫
d3v~vfs +∇

∫
d3v~v~v · fs +

∫
d3v~v ~as ·

∂fs
∂~v

=

∫
d3v~vCs(f)

⇒ ms
∂

∂t
ns ~Vs +∇ ~Ps − esns

(
~E + ~Vs × ~B

)
= ~Fs. (1.36)

To take the 2nd moment it is necessary to define the energy flux density as

~Qs =

∫
d3vfs

1

2
msv

2~v, (1.37)

and the pressure tensor, which describes the flow of momentum in the rest frame of

the fluid, as

~ps =

∫
d3vfsms ~ws ~ws. (1.38)

~ws is the relative velocity used to transform from the lab frame to the rest frame of

the fluid,

~ws = ~vs − ~Vs. (1.39)

Requiring that energy is conserved in collisions means that the quantity

WLss′ =

∫
d3v

1

2
msv

2Cs(f) (1.40)

must be conserved, the L subscript denotes that the energy is measured in the ’Lab’

frame. This is related to the quantity measured in the rest frame of the fluid using

Wss′ = WLss′ − ~Vs · ~Fs. (1.41)

In total this gives the 2nd moment as

∂

∂t

1

ms

~Ps +
2

ms
∇ ~Qs +

2

ms
esns ~Es · ~Vs =

2

ms

(
Wss′ + ~Vs · ~Fs

)
. (1.42)
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Using the scalar pressure

ps =
1

3
Tr(~ps), (1.43)

where Tr(~ps) indicates the trace of ~ps, and the relation

~Ps = ~ps +msns ~Vs ~Vs (1.44)

equation (1.42) can be converted to the contracted 2nd moment which describes

energy conservation

∂

∂t

(
3

2
ps +

1

2
msnsV

2
s

)
+∇ · ~Qs − esns ~Es · ~Vs = Ws + ~Vs · ~Fs. (1.45)

For the case of two fluids, one representing electrons and the other ions, a

similar procedure can be used to derive the Braginskii equations[Braginskii, 1965].

For each species these are

∂

∂t
n+∇

(
n~V
)

= 0, (1.46)

mn

(
∂

∂t
+ ~V · ∇

)
~V = −∇p+ en

(
~E + ~V × ~B

)
−∇ ·Π + ~F , (1.47)

3

2

d

dt
p+

5

2
p∇ · ~V = −∇ · ~q −Π : ∇~V +W. (1.48)

The subscripts have been dropped but otherwise the terms correspond to those de-

scribed in the general fluid equation derivation. The only additional terms necessary

are the heat flux density

~qs =

∫
d3vfs

1

2
msw

2
s ~ws (1.49)

and the generalised viscosity tensor Π. This is defined so that

~p = Ip+ Π,

I is again the unit tensor, hence, Π contains the terms in the tensor pressure that do

not come from the scalar pressure. In conventional fluids this includes effects such as

viscous stress, for plasmas additional effects are possible[Hazeltine and Waelbroeck,

2004, p.54].
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The Braginskii equations are coupled to Maxwells equations,

∇ · ~E =
ρc
ε0
, (1.50)

∇ · ~B = 0, (1.51)

∇× ~E = −∂
~B

∂t
, (1.52)

∇× ~B = µ0
~j, (1.53)

through the charge density, ρc, and current density, ~j, expressed as

ρc =
∑
s

esns

and

~j =
∑
s

esns ~Vs.

Maxwell’s correction (+µ0ε0
∂ ~E
∂t ) to equation (1.53) has been dropped as we restrict

ourselves to slow timescales.

From the above general fluid equations, (1.33), (1.36) and (1.45), the general

problem with fluid equations can be seen; each moment of the kinetic equation is

coupled to the two neighbouring moments. An exact solution therefore requires an

infinite number of equations. This is known as the closure problem, there are two

main approaches to solving it. The first is to truncate the series of equations by

assuming that the next moment is 0, or is determined in some way by the previous

moments. The second method is known as asymptotic closure and relies on the

use of some small parameter in the system. The kinetic equation, (1.29), is solved

perturbatively and terms above a certain order in the small parameter are neglected.

The resulting distributions can be combined with moment equations to form a closed

system[Hazeltine and Meiss, 2003]. For example magnetohydrodynamics (MHD)

describes a plasma in the presence of a strong magnetic field where the gyroradius

becomes vanishingly small, ρ→ 0, but the electric drift is retained by requiring

E⊥
B
∼ vt, or

vt
vE
≡ δ ∼ 1

where vt is the thermal velocity.

Here we will discuss ‘drift ordering’ as a way of closing the fluid equations.

In this case the gyroradius is still a small parameter, however we now assume that
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there are moderate electric fields so that

E

B
∼ vt, or

vt
vE
≡ δ � 1.

This is more appropriate for confinement devices, such as tokamaks, in which dia-

magnetic drifts are comparable to ~E × ~B drifts and processes with frequencies near

to the drift frequency, ω?, are no longer negligible. A general description of the drift

frequency is

ω? =
1

qnB
~k · ẑ ×∇p,

which is simply the product of some fluctuation in the plasma, with wave vector ~k,

and the diamagnetic drift, equation (1.22).

In order to adequately describe such a system it is necessary to retain terms

that are O(ρ), the physics described by these terms is known as ‘finite Larmor

radius’, or FLR, effects. The finite size of the Larmor radius means that particles

no longer see the instantaneous field, but rather a smoothed field that averages over

variations on scales smaller than ρ.

In the drift model a dispersion relation can be derived using the conservation

of particles, which remains identical to (1.46), and the drift equation for motion

parallel to the magnetic field lines

min
∂ ~V‖

∂t
+
(
~VE + ~V‖

)
· ∇ ~V‖ +∇‖ (pi + pe − 2χg) = 0. (1.54)

where

χg =
pi

2Ωi

~b · ∇ × ~V⊥

In addition the system is constrained so that electric fields parallel to the magnetic

field are given by

E‖ +
1

en
∇‖pe ≡

F‖e

en
(1.55)

It is assumed that the system is electrostatic so that ~E = −∇φ, the magnetic field

is constant and in the ẑ direction, ~B = ẑB, and the ion temperature is 0. Finally

equations are linearised by assuming that they consist of a perturbation (subscript

1) around an equilibrium quantity (subscript 0) which varies only with x, such that

n = n0(x) + n1(x)e−iωt+ik⊥y+ik‖z. (1.56)

We assume that there are no electron collisions in the parallel direction. In this case

equation (1.55) describes the ability of electrons to equilibrate a parallel electrostatic
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field. They can move along the field lines sufficiency fast compared to the rate at

which the potential φ changes that their motion can be considered instantaneous.

This means that there can be no electron temperature gradient in the parallel di-

rection so that equation (1.55) links the density perturbations to the electrostatic

potential with an adiabatic electron response given by

n1

n0
=
eφ

Te
, (1.57)

where the subscript on φ has been dropped as φ0 = 0. Equation (1.46) can be

linearised to give

− iωn1 + ik‖n0V‖1 + iω?nen0
eφ

Te
, (1.58)

where

ω?ne = −k⊥Te
eB

dlog(n0)

dx
(1.59)

is the drift frequency defined with the density gradient rather than the pressure

gradient, using the ideal gas expression p = nT . The parallel equation of motion is

then linearised to give

− iωmin0
~V‖1 + ik‖pe1 = 0, (1.60)

which can be combined with (1.58) to give(
ω −

k2
‖c

2
s

ω

)
n1

n0
= ω?ne

eφ

Te
, (1.61)

where cs =
√

Te
mi

is the ion sound speed. Combining this with electron adiabaticity,

equation (1.57), gives the drift wave dispersion relation

ω − ω?ne =
k2
‖c

2
s

ω
. (1.62)

If we now allow parallel electron collisions, equation (1.55) will no longer

reduce to an adiabatic response, instead it will take the form

n1

n0
=
eφ

Te
(1− i∆). (1.63)

This describes a phase shift between the density perturbation and the potential

perturbation which results in an unstable drift wave. If the density perturbation

leads the electrostatic potential then ∆ is positive then the wave will grow. This is

the basic form of a drift instability.
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1.5 Magnetic Confinement Fusion

The most promising reaction for fusion power is fusing deuterium and tritium to

produce an alpha particle, the reaction is written as

1D
2 +1 T

3 →2 He
4 +0 n

1.

This requires heating a plasma to around 100 million degrees centigrade, a tem-

perature so hot that confinement by a material wall is not practical. Therefore

magnetic fields are used to contain the plasma and keep it separated from the wall

of a containment vessel which is keep at near vacuum conditions. To do this the

internal pressure of the plasma must be balanced by an appropriate magnetic field.

The mass deficit in this reaction is 0.01875 proton masses, which is equivalent to the

release of 17.6MeV of energy. In a fusion device the 3.5MeV which is released in the

alpha particle will be used to heat the plasma and sustain the temperatures needed

for the reaction, whereas the neutrons will be able to escape the confining magnetic

field so will be used to extract energy from the system for power generation. Ther-

monuclear fusion is a very high density energy source; D-T fusion releases around

17MeV compared to around 1eV from chemical reactions. This high energy density

makes nuclear fusion a very promising source for power generation in the future.

Tokamaks are the most advanced method of producing fusion by magnetic

confinement. They were invented in the Soviet Union in the 1950s[Wesson, 2004,

p.27] and use a helical magnetic field in a torus to balance the outwards pres-

sure of the plasma. This pressure balance can be seen using the ideal MHD equa-

tions[Dendy, 1990, p.58-60],

∂ρm
∂t

+∇ · (ρm~v) = 0, (1.64)

ρm
∂~v

∂t
= ~J × ~B −∇p, (1.65)

~E + ~v × ~B = 0, (1.66)

where ρm is mass density. Faraday’s law, equation (1.52), and Ampère’s law, equa-

tion (1.53), are used to close the system. The system is in equilibrium when the left

hand side of equation (1.65) is zero, giving

∇p = ~J × ~B, (1.67)

which shows that the pressure gradients must be balanced by the Lorentz force law.
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This implies that ~B · ∇p = 0 and ~J · ∇p = 0 so that p must be constant along

magnetic field lines and along current lines. The simplest geometry in which this

requirement can be met whilst Ampères law is still satisfied is a torus.

minor 

radius

toroidal direction

poloidal 

direction
radial

direction

major

radius

Figure 1.3: A diagram demonstrating tokamak directions (left) and the two radii of
a torus (right). The dotted line indicates a ploidal cross seciton

To define the directions in a tokamak, a torus is here considered as a surface

of revolution created by rotating a circle 360◦ around a central axis coplanar with

the circle and where the axis of revolution does not touch the circle. The poloidal

direction points around the circle, the radial direction along its radius and the

toroidal direction points in the direction that it is rotated. Two radii define the

torus, the major radius, from the centre of rotation to the centre of the circle, and

the radius of the small circle, the minor radius. This is shown in figure 1.3. A

computer generated image of a plan for the ITER tokamak, where the pure toroidal

shape has been deformed to better contain the plasma, is shown in figure 1.4.
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Figure 1.4: A cartoon of the ITER tokamak, under construction in France. The
contained plasma is shown in pink[ITER Organisation, 2013].

To calculate the equilibrium fields and currents for a tokamak the Grad–

Shafranov equation,

R
∂

∂R

1

R

∂ψ

∂R
+

∂2

∂z2
= −µ0R

2 dp

dψ
− µ2

0f
df

dψ
,

is used. This is derived by expanding equation (1.67) into components and writing

it in terms of arbitrary functions of a poloidal magnetic field flux function, ψ, where

BR = − 1

R

∂ψ

∂z
, Bz =

1

R

∂ψ

∂R
,

and f is a poloidal current density function

jR = − 1

R

∂f

∂z
, jz =

1

R

∂f

∂R
.

The coordinate system for this system is based around the major radius of the

tokamak, R̂ points along the major radius, φ̂ is in the toroidal direction and ẑ is

perpendicular to these directions. R = 0 is the major axis. Solving the Grad-

Shafranov equation numerically for a typical tokamak regieme produces a set of

nested flux surfaces, with radial profiles in jφ, p and Bφ as shown in figure 1.5.
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Figure 1.5: Equilibrium magnetic flux surfaces (left) and midplane profiles of
toroidal current density, plasma pressure and toridal magnetic field (right). Im-
age from [Wesson, 2004, p.111].

The basic principle of plasma confinement using a tokamak is shown in figure

1.6 and for the remainder of this paragraph italics refer to labels in this figure. D

shaped toroidal field coils are used to create a magnetic field in the toroidal direction.

These coils define the torus in which the plasma will be be confined. A current is

driven through the inner poloidal field coils to produce a changing flux through the

center of the torus. The inner poloidal field coils act as the primary winding on a

transformer, and the plasma itself acts as the secondary winding. This induces a

toroidal current in the plasma. This toroidal current produces a poloidal magnetic

field which combines with the toroidal field to give the resulting helical magnetic

field.
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Figure 1.6: Diagram showing tokamak fields and the coils used to produce
them[EFDA, 2013b].

A helical field is necessary to prevent the charge separation and drifts that

would occur in a purely toroidal field. As the particles travel around the torus they

experience a centrifugal force,

Fc =
mv2
‖

Rc
, (1.68)

where Rc is the radius of curvature. This force is directed outwards, away from

the centre of curvature. The associated drift is calculated using the general drift

equation, (1.15), and is given as

~vc = −m
v2
‖

R2
c

~Rc × ~B

qB2
, (1.69)

where the instantaneous radius of curvature, ~Rc, is directed towards the centre of

curvature.

There is also a gradient in the magnetic field and therefore a ∇B drift. This

can be written as[Gurnett and Bhattacharjee, 2005]

~vG =
m

2
v2
⊥
B̂ ×∇B
qB2

. (1.70)

21



These drifts are in the same direction and in the simple case where

∇B = R̂c
B

Rc
,

they can be written together as

~vd =
m

q

(
v2
‖ +

1

2
v2
⊥

) ~Rc × ~B

R2
cB

2
. (1.71)

In equation (1.71), q denotes the charge of the particle under consideration,

so this drift causes charge separation. In a purely poloidal field this will create a

vertical electric field. The ~E× ~B drift would then cause the plasma to drift radially

leading to a loss of confinement. The helical field prevents this charge separation as

particles are free to flow along the field lines and cancel it out.

Although the helical magnetic field prevents large drifts from charge sepa-

ration, there are still a number of ways in which large scale instabilities can form.

Techniques have been developed experimentally to suppress most of them, for ex-

ample the MHD kink mode, so that they are no longer catastrophic in tokamaks.

However, turbulence driven by micro-instabilities, such as the drift-waves discussed

in section 1.7.1, is still a problem for confinement.

The plasma in a tokamak is initially heated by ohmic heating from the plasma

current itself. The ohmic heating density is given as

PΩ = ηj2

where η is the resistivity of the plasma and j is the current density[Wesson, 2004].

However, as the resistivity varies as T
− 3

2
e , this stops being an efficient heating method

at temperatures of a few keV . After this there are two main schemes for heating

the plasma. The first is neutral beam injection. In this case a beam of neutral

atoms is injected into the plasma where collisions ionise it and transfer energy to

the plasma. The second is to launch radio waves into the plasma at one of the

resonant frequencies at which wave-particle interaction can take place. A number of

resonances can be used, most common are ion cyclotron, lower hybrid and electron

cyclotron heating[Wesson, 2004, p.261].

The other approach to producing a helical magnetic field for magnetic plasma

confinement is the stellarator. In this case there is no induced toroidal current in

the plasma and the twisted magnetic field lines are produced directly using helical

magnetic field coils. A cartoon of the coil configuration is shown in figure 1.7.

This scenario differs from the tokamak case as a stable equilibrium is calculated
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in advance and the stellarator and its magnetic field are designed to impose this

equilibrium on the plasma. The lack of a toroidal current in stellarators removes a

source of instabilities and as such long confinement times have been achieved. In

general, the physics of stellarators, as well as their design and construction, is more

complex than tokamaks and as such they are less well developed as a fusion device.

Figure 1.7: A cartoon showing the coil and plasma configuration in a stellara-
tor[EFDA, 2013a].

1.6 Collisional Transport

To describe the transport across field lines we consider particle and heat transport

using flux models. For particles we write

∂n

∂t
+∇ · ~Γ = ~Sn (1.72)

and for heat we use
3

2

∂p

∂t
+∇ · ~q = ~Sh, (1.73)

where ~Sn and ~Sh represent particle and heat source terms respectively. As we are

interested in the transport of existing particles we will assume the source terms are

negligible. Rather than a formal definition as used in a fluid model we now assume

that the particle flux has the form

~Γ = −D∇n, (1.74)

where D is a diffusion coefficient, and that the heat flux takes the form

~q = −κ∇T, (1.75)

where κ is the thermal conductivity.
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The case of straight magnetic field lines in a cylinder where particles only

deviate from the field due to collisions is known as classical transport. This provides

estimates on confinement time which can be up to two orders of magnitude smaller

than is measured in confinement devices experimentally[Wesson, 2004, p.150].

To estimate the diffusion constant D for classical transport we assume a cross

field density gradient in the x̂ direction. This means that we write the flux in the x̂

direction as

Γx =
1

2
(nx − nx+∆x)Vx, (1.76)

where

Vx =
∆x

τ

is the random walk velocity of the particles. As we are interested collisions that

move particles across field lines they must cause a deviation at least as large as the

Larmor radius, therefore

∆x = ρ.

τ is the time that it takes for multiple small deflections from the result of grazing

collisions to accumulate to a total deflection of ρ[Helander and Sigmar, 2005].

We use

n(x+ ∆x) ' n(x) +
∂n

∂x
∆x

to write

Γx = −1

2

∂n

∂x
∆xVx = −1

2

ρ2

τ
∇xn, (1.77)

giving a diffusion coefficient of the form

D ' 1

2
ρ2ν,

where ν is the collision frequency given by

ν =
1

τ
.

Momentum conservation means that collisions between ions of the same species does

not cause transport, therefore we are only interested in electron-ion collisions. The

electron diffusion coefficient becomes

De '
1

2
ρ2
eνei (1.78)

where the e subscript denotes electrons and the ei subscript denotes electron ion
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collisions. As

ρi =

(
mi

me

) 1
2

ρe (1.79)

and

νie =

(
me

mi

)
νei, (1.80)

the ion diffusion coefficient

Di '
1

2
ρ2
i νie = De

is equal to the electron diffusion coefficient, showing that ions and electrons con-

tribute equally to particle transport.

The heat transport across magnetic field lines is estimated in a similar man-

ner. The heat flux is given by

~q ∼ n(mv2
T /2)~V

and it is assumed that there is now a temperature gradient in the x̂ direction but

no density gradient. This means that a particle making a jump of size ∆x in the x̂

direction will produce a heat flux

qx =
1

2

nm

2

(
v2
Tx − v

2
Tx+∆x

)
Vx (1.81)

where vT is the thermal velocity. Using the definitions given above and

mv2
T

2
= T,

this becomes

qx ∼ −
ρ2νn

2

∂T

∂x
. (1.82)

Unlike the particle case like species collisions do lead to heat transport, therefore

due to equation (1.79) heat transport is dominated by ions and we have

qx ' qi = −ρ
2
in

2τii

∂T

∂x
(1.83)

giving

κ = niχi (1.84)

where χ is the ion heat diffusivity given by

χi =
ρ2
i

2τii
(1.85)
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and τii is the collision time for ion-ion collisions.

For tokamaks an order of magnitude improvement in confinement time esti-

mates can be made by taking into account the curvature of the magnetic field lines

in a torus. This is known as neoclassical transport.

In a tokamak the magnetic field is weaker on the outer edge. A particle mov-

ing along magnetic field lines experiences a changing magnetic field and is subject

to the magnetic mirror effect. This can be seen by considering energy conservation,

E =
mv⊥

2

2
+
mv‖

2

2
,

where E is the total kinetic energy of a particle. In the limit of a slowly varying

magnetic field and no particle collisions this must be conserved[Dendy, 1990, p.30].

In the same limit the magnetic moment, µ, is constant and equation (1.14) shows

that as B increases so must v2
⊥. To keep a constant energy v‖ must therefore decrease.

If v‖ reaches 0 before the particle moves into a region of decreasing magnetic field

it will be reflected back and begin to orbit on the low field side of the torus. When

projected onto the poloidal plane the shape of these orbits leads to the name ’banana

orbits’.

If the plasma is sufficiently hot the collision time τc will be less than the time

needed to complete a banana orbit τb, the particle will only leave the orbit when

collisions have moved it a distance greater than the with of the orbit wb. Using a

random walk estimate for the diffusion coefficient, with ∆x = wb and τ = τb, gives

Db =
(∆x)2

τ
=
w2
b

τb
, (1.86)

which is generally larger than Di and leads to a lower confinement time[Wesson,

2004]. The corresponding heat diffusivity is given by

χbani = ft(∆x)2νeff , (1.87)

where ft ' (2ε)
1
2 is the fraction of particles trapped in banana orbits, ∆x ∼ wb is

the step size necessary to move a particle by more than the width of an orbit and

νeff = νii
ε is the frequency at which collisions causing such a deviation occur. The

width of a banana orbit is approximately wb ∼ ρp
√
ε, where

ρp =
vT
Ωp
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is the gyroradius in the poloidal magnetic field. In total we have

χbani =
√

2ερ2
piνii, (1.88)

where ε = r
R is the inverse aspect ratio of the torus in question with r its minor

radius and R its major radius.

Taking the ratio

χbani
χi

=
√

2ε

(
B

Bp

)2

∼ 1

2
100 (1.89)

shows that the heat transport in the banana regime is higher than in the classical

regime.

Neoclassical theory does not include small-scale fluctuations and therefore

micro-turbulence related phenomena. These make up the remaining order of mag-

nitude difference in confinement between theoretical predictions and experimental

measurements. The diffusion from turbulence is labelled ‘anomalous’. An esti-

mate for anomalous diffusion is given by Bohm diffusion using a random walk es-

timate. It is known that turbulent structures can trap particles and aid spatial

advection[Dubos and Babiano, 2003]. As the ~E × ~B velocity is the dominant ve-

locity in a turbulent plasma, the velocity at which particles move during a random

walk is written as

Vx = vE =
−∇φ
B
∼ φ

∆xB
. (1.90)

The saturation amplitude of turbulent fluctuations is defined as eφ
T = k0 < 1, where

Bhom estimated k0 = 1
16 [Helander and Sigmar, 2005]. The step size in turbulent

diffusion is approximately the size of the electrostatic structures in the plasma, this

means that k0 can be substituted into (1.90) to give

DBohm =
(∆x)2

τ
∼ Tk0

eB
=

1

16

T

eB
.

Bohm diffusion is normally much faster than classical diffusion, for instance

DBohm

D
∼ k0ωceτei. (1.91)

Using values from the appendix of [Wesson, 2004], a temperature of 10keV, a density

of 1019m−3 and a magnetic field of 3.5T this becomes

DBohm

D
∼ 3.1× 106. (1.92)
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For electrons a more complete description in [Helander and Sigmar, 2005] gives

Db = (2ε)
1
2
ρp
τei
, (1.93)

which is also leads to faster diffusion in the Bohm regime than the banana regime,

DBohm

Db
∼ T

eB

τei
ρp

(2ε)−
1
2 = ωceτeiρe

Bp
B

(2ε)−
1
2 ∼ 3× 103. (1.94)

Using the Bohmm diffusion coefficient the Bhom diffusion time can be defined

as

tBohm =
a2

DBohm
, (1.95)

where a is the plasma radius. This quantity is used in scaling relations to make

predictions for new tokamaks, Bohm scaling is when these scaling laws take the

form

tE = tBohmF (β, ν?), (1.96)

where F (β, ν?) is some function of plasma beta, the ratio of pressure to magnetic

field pressure

β =
p

B2/2µ0
, (1.97)

and ν? is the ratio of the effective collision frequency for trapped particles to their

bounce frequency. This scaling occurs when the turbulence scale is comparable with

a. For high confinement, H-mode, discharges the scaling laws take the form

tE = tBohm
1

ρ?
F (β, ν?), (1.98)

which is known as gyro-Bohm scaling, ρ? = ρ
a is the normalised gyroradius[Wesson,

2004, p.193-194].

1.7 Turbulence

Turbulence is perhaps most often associated with fluid dynamics and is included in

the Navier-Stokes equations[Frisch, 1995]

∂t~v + ~v∇~v = −∇p+ ν∇2~v, (1.99)

∇~v = 0. (1.100)
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Turbulence is a seemingly chaotic state of motion that consists of eddies at all

scales. In the case of fully developed homogeneous isotropic turbulence its statistical

properties do not change under translations or rotations[Frisch, 1995].

In the case of hydrodynamic turbulence a control parameter known as the

Reynolds number can be introduced to describe a particular system,

R =
LV

ν
, (1.101)

where L and V are the characteristic length scale and velocity of the system and ν

is its viscosity. Generally, high Reynolds numbers lead to turbulent behaviour while

low Reynolds numbers lead to laminar flow. This is because the Reynolds number

effectively measures the relative strength of the non-linear term (~v∇~v) as compared

to the linear term (ν∇2~v). In the case of a low Reynolds number the Navier-Stokes

equation is effectively linear whereas with a high Reynolds number the nonlinear

terms will be most important in determining the development of the system. Despite

being a deterministic set of equations (1.99) and (1.100) are so highly affected by

initial conditions that no equation for ~v at a given time can be constructed[Frisch,

1995]. However, there are a number of statistical properties of turbulence, includ-

ing Navier-Stokes turbulence, that are reproducible. This generally leads to the

formation of probabilistic descriptions of turbulence.

One way of thinking of turbulence is as a series of cascading eddies. The

system is driven on large scales and forms large eddies that break up into a number

of smaller eddies. These eddies then break up and the process continues until the

eddies are small enough that energy can be dissipated by viscosity. The range of

scales between the energy injection and dissipation is known as the inertial range.

Within this range the energy is transferred from mode k to k′, where k < k′,

without dissipation. This is the basis behind Kolmogorov’s 1941 theory in which it

was shown that for 3D isotropic, homogeneous and incompressible turbulence the

energy spectrum of the system goes as[Frisch, 1995]

E(k) ∼ k−
5
3 . (1.102)

The 3D turbulence model used by Kolmogorov is not appropriate for tokamak

physics, in part because the presence of the magnetic field gives the turbulence a

defined direction. The rapid motion of electrons along the magnetic field lines tends

to suppress parallel gradients and this makes the tokamak turbulence effectively 2D,

in which case enstrophy is also conserved. Enstrophy is the magnitude of vorticity
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squared, for the plasma physics case used here this is

E = |∇2φ|2,

where φ is the potential. Requiring that enstrophy is conserved leads to two cas-

cades in the system[Kraichnan, 1967b]. Energy now performs an ‘inverse cascade’

and transfers energy to large, low wavenumber, structures such as vortices and, po-

tentially, zonal flows. Enstrophy cascades in the usual direction and transfers energy

to fine, high wavenumber, structures. In hydrodynamic turbulence this enstrophy

cascade has a spectrum that goes as

E(k) ∼ k−3.

The situation is more complicated in plasma tubulence as there is multiple scales in

the system, for example there is more than one characteristic velocity, for example

the sound speed and the Alfvén speed. Attempts have been made to find scaling

relations for magnetised plasmas, for example by [Chen, 1965] for low beta plasmas

and by Iroshnikov and Kraichnan for MHD turbulence, who predicted an energy

spectrum[Biskamp, 1993]

E(k) ∼ k−
3
2 .

1.7.1 A physical mechanism for drift waves

Turbulence in fusion plasmas is often treated using a drift wave and drift instability

formulation. In this description drift waves are generated on scales ∼ ρi and, when

their amplitude becomes large, these couple to produce turbulent flows. Here we

present a mechanism by which drift waves, as described by (1.62), can be produced.

We consider the case where fluctuations in density cause a small build up

in charge, via an adiabatic response (1.57), and the associated increase in potential

establishes an electric field according to (1.4). As there is a background magnetic

field an ~E × ~B drift, from equation (1.16), will be established. In the particularly

ideal case, presented in figure 1.8, this will cause particles to drift around the pertur-

bation. In the presence of a background density, denser plasma will be moved into

regions of low density, and vice versa. This is demonstrated in Figure 1.8 where the

higher density is above the perturbation and the particles circulate clockwise. This

means higher density plasma will be moved towards the right (along the positive

direction of the y axis) and lower density plasma to the left, therefore the higher

density of plasma that caused the initial charge perturbation will be moved to the

right. If this process is continuous the density perturbation will propagate along the
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y axis.

Figure 1.8: A mechanism for drift waves[Horton, 1999].

A sequence of these perturbations can form a wave, as shown in figure 1.9,

where the drift wave is considered as a perturbation of a density isobar. In the

example shown, this perturbation is roughly sinusoidal. The resultant ~E × ~B drift

acts to remove the perturbations, as it does so it will increase the momentum of the

plasma causing it to overshoot the unperturbed state, setting up periodic motion.

Again this example is an adiabatic case the the wave travels, in the negative y

direction, without growing.

On its own the process described by figure 1.8 would not lead to a loss of

confinement as the y axis is roughly equivalent to the poloidal direction in a tokamak.

However, a situation where the charge perturbation and the density perturbation

are out of phase, with the density perturbation leading the charge perturbation, will

cause the higher density plasma to be placed in a region where there is already an

excess of density. This is unstable and will cause perturbation to grow. In addition

there will be a net transport of plasma down the density gradient[Horton, 1999], in

the case of a tokamak this corresponds to radial transport and a loss of confinement.
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Figure 1.9: A diagram of the perturbed density surface showing how small pertur-
bations can lead to a moving wave. Figure from[Wesson, 2004, p.420].

1.7.2 Zonal Flows

A characteristic feature of non-equilibrium turbulent systems is the growth of struc-

tures. An example of such a structure, of particular relevance to plasma physics, is

the zonal flow. These are of interest as they may help to confine plasma. Zonal flows

are ‘azimuthally symmetric band-like shear flows’[Diamond et al., 2005], see figure

1.10, which develop from the nonlinear interactions within a plasma. Zonal flows are

of particular interest because they themselves do not reduce confinement. The total

energy of drift waves and zonal flows is conserved[Diamond et al., 2005], therefore

as the zonal flow grows the drift wave energy reduces. The zonal flows themselves

are not subject to Landau damping and can accelerate to high velocities, therefore

they can store energy without causing a deterioration in confinement.

In addition to this zonal flows can shear large vortices and increase their

coupling to small scales where they are dissipated more easily. In some simulations

this actually breaks up the eddies and therefore reduces turbulence[Diamond et al.,

2005].

The transition from drift-waves to zonal-flows is governed by two processes.

The first is an inverse cascade of energy to small scales and the second is non-local

resonant interactions.

32



Figure 1.10: A diagram of zonal flows in a tokamak as viewed from a poloidal cross
section, the hatched region denotes positive charge, the dotted negative. The large
arrows give the direction of the flow[Diamond et al., 2005].

1.8 Outline

Chapter 2 gives derivations of the reduced models used throughout this work. The

first half of the chapter discusses the Charney-Hasegawa-Mima (CHM) equation

and begins with a derivation. The CHM was originally derived for plasmas by Akira

Hasegawa and Kunioki Mima in 1978, the Charney prefix is added as it has the same

form as the Quasi–Geostrophic Vorticity equation derived earlier by J Charney, in

1949, for atmospheric physics. The CHM equation is a two dimensional model of

a plasma slab with a density gradient in the x̂ direction and a constant magnetic

field. The motion of electrons along the magnetic field lines is modelled as instan-

taneous and therefore density and potential fluctuations are linked adiabatically via

a Boltzmann response.

The chapter then proceeds to derive the Extended-Hasegawa-Mima equation,

a form more appropriate to tokamaks, in which the parallel coupling between global

flows and surface fluctuations is removed by altering the density response to potential

variations. The EHM is then linearised to show that it has the same dispersion

relation for a plane wave as the non-extended CHM case.

Finally the transform of the EHM to Fourier space is demonstrated as this

version of the equation is vital to the models derived in later chapters.

The second half of chapter 3 follows a similar structure, only this time
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the Extended-Hasegawa-Wakatani (EHW) equations are derived directly; extended

again indicates the decoupling of global flows and surface fluctuations. The chapter

then proceeds to derive the Fourier space version of the equations and finishes with

the EHW linear dispersion relation, which demonstrates the ability of the EHW to

grow drift waves.

Chapter 4 gives an overview of the numerical techniques used to construct

the numerical codes used to solve the EHM and EHW equations. General categories

of numerical schemes for solving partial differential equations (PDEs) are discussed

at the beginning of the chapter, followed by the specific techniques used in this work.

The chapter finishes by describing how these techniques were combined to produce

the final codes used here.

Chapters 5 to 7 contain the original research in this thesis. They all begin

by deriving a four-mode truncated model and an equation for the linear growth rate

for the system under consideration. These analytical results are then compared to

simulations.

Chapter 5 is based on work published in [Gallagher et al., 2012] and looks at

the EHM system. In the style of [Connaughton et al., 2010] the dispersion relation

of the four–wave zonal flow transition is used to produce maps to predict the growth

rate of various modes in the system under various parameter regimes. After this

four-mode ordinary differential equation (ODE) model is compared to the full PDE

system and the effect of varying the gyroradius is investigated. The chapter ends

with a look at a streamer case.

Chapter 6 compares a truncated model and full PDE simulations of the

Extended-Hasegawa-Wakatani equations. It looks at two cases, the α = 10 adiabatic

limit, where EHM like behaviour is expected, and α = 0.5 non-adiabatic case that is

more relevant to tokamaks. The chapter finishes by using energy transfer functions

to categorise local vs. non-local in k–space interactions.

Chapter 7 attempts to grow drift waves in the Extended-Hasegawa-Mima

system by driving it so as to reproduce the effect of the linear dispersion relation

of the Hasegawa-Wakatani system. A corresponding driving term is added to the

Hasegawa-Mima reduced models so that they can be compared with the full driven

system. Finally, energy transfer functions are used to isolate the strongest growing

mode in the system and it is shown that the truncated model captures the growth

of this mode well.

Chapter 8 is a conclusions chapter which summarises the work in chapters 5

to 7.
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Chapter 2

Nonlinear Physics

2.1 Weak Turbulence

Weak turbulence differs from traditional, strong, hydrodynamic turbulence as it

treats the turbulence as a system of waves rather than vortices. In reality both vor-

tices and waves will be present[Nazarenko, 2011]. Unlike in the Richardson model,

weak turbulence theory does not require interactions to be local, waves at all scales

can interact simultaneously, and the nature of interaction between the waves deter-

mines the spectrum of waves [Zakharov, 1965].

Normally it is assumed that the waves in question are weakly nonlinear and

dispersive. This means that the wave turbulence can be split into two timescales.

There is a linear time which is approximately equal to the period of a linear wave,

τL ∼ 2π
ωk

, and a nonlinear time which is considerably longer than this, τNL � τL. For

time intervals that are considerably shorter than τNL the interacting waves can be

approximated as independent linear waves whose amplitudes are time independent.

Over longer timescales nonlinear interactions will cause their amplitude to vary.

However, there is a large enough scale difference between the period of the linear

variations and the variation caused by the nonlinear interactions that the rapid

linear variation can be averaged over.

Wave turbulence is still described as turbulence as it deals with out of equi-

librium, random nonlinear waves. In wave turbulence formalism it is assumed that

the phases of the waves describing the system are independent random variables,

often the same assumption is made for the amplitudes of the waves. There can be

multiple sources and sinks in the system, at well separated scales. The Random

phase approximation is motivated by the fact that a large number of waves can be

excited across a large number of time and spatial scales and due to this statistical
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techniques are required to describe the system. As with normal turbulence this

description can also take the form of a flux of energy through k-space. In common

with normal normal two-dimensional turbulence, multiple conserved quantities in

wave turbulence can lead to dual cascades.

As an example, the multiple interacting waves of weak turbulence can be

described using a Hamiltonian description. For weakly interacting waves in a box

this allows us to write a general equation describing the system,

i
∂

∂t
ak =

∂H
∂ak

, (2.1)

where ak is the complex conjugate of ak. The field variable ak represents the am-

plitude of an interacting plane wave. The Hamiltonian is given as an expansion in

powers of small amplitudes

H = H2 +H3 +H4... (2.2)

where H2 corresponds to an equation of motion for linear noninteracting waves and

can be diagonalised to give

H2 =
∑
k

ωk|ak|2. (2.3)

Higher orders of H correspond to nonlinear interactions with H3 representing a

three-wave interaction and H4 a four-wave interaction. Higher orders of H can be

included but are usually negligible.

Although they are not written in Hamiltonian form the equations described

in chapter 3 can be used to demonstrate this separation of linear and nonlinear

contributions. For example the Hasegawa-Mima equation can be written in Fourier

space as,

∂tΦ~k + iΩ~kΦ~k −
1

2

∑
~k1, ~k2

T (~k, ~k1, ~k2)Φ ~k1
Φ ~k2

δ~k, ~k1+ ~k2
= 0. (2.4)

The linear interactions, analogous to H2, are described by the second term and the

three-wave nonlinear interactions, analogous to H3, are described by the third term.

This in fact demonstrates the general form of a nonlinear term when it is

represented in Fourier space, it will take the form of a summation over a series

of interacting waves. The third term in equation (2.4) describes how the wave

Φ~k interacts with waves Φ~k1
and Φ~k2

, where ~k = ~k1 + ~k2. Here Φ represents the

amplitude of the wave and T is an interaction coefficient.

In the case of higher order resonances the sum will be taken over more waves,

with the interaction coefficient changed appropriately. Depending on the precise
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system being investigated different order resonances will be present, for example it

is possible for the dispersion relation of a system to exclude three-wave interactions

but permit four-wave interactions[Nazarenko, 2011].

With some considerable manipulation as described in [Nazarenko, 2011; Choi

et al., 2004] it is possible to develop an equation for the evolution of a probability

distribution function (PDF) for wave amplitudes in a weakly turbulent system. For

a single mode this can be written in terms of a flux of probabilities,

∂

∂t
Pk +

∂

∂sk
Fk = 0 (2.5)

where sj is a wave intensity given by sj = |aj |2. Fk is a probability flux which will

be dictated by the system under investigation.

Sources or sinks in the equation of motion do not produce sources or sinks

in the probability flux. Therefore, to find a stationary solution in the inertial range

one solves equation 2.5 with F=0 to give[Choi et al., 2004]

Pk =
1

nKZk
exp

(
− sk
nKZk

)
(2.6)

where nKZk is the Kolmogorov-Zakharov (KZ) spectrum. Ultimately, this means that

the integrated energy spectrum of a weakly turbulent system can be derived from

the equations describing it, a process which is not possible for strong turbulence. A

dimensional derivation for the KZ spectrum will be presented in section 2.3.

2.2 Strong Turbulence

2.2.1 Hydrodynamic turbulence and the Richardson model

The hydrodynamic turbulence described in section 1.7 is based on the Richardson

model of interacting vortices. Turbulence theories generally makes the assumptions

that the turbulence is homogeneous and isotropic. Although this is not always

strictly true as the turbulence is often driven by a gradient in some quantity, such

as velocity, it is generally an appropriate description when dealing with statistically

averaged quantities[Biskamp, 1993].

Kolmogorov’s 1941 prediction of a turbulent energy spectrum in integrated

wavenumber in the form of

E(k) ∼ k−
5
3 (2.7)

can be derived from dimensional arguments. We assume that energy is transferred
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between vortices with similar sizes only, and that we are only describing the inertial

range of scales where there is no energy input or dissipation, only transfer of energy

from scale to scale. It is assumed that under the conditions the only relevant pa-

rameters are the energy dissipation rate ε and the wavenumber k. Firstly E(k) is

defined as energy for unit mass, so has units

[E(k)] =
[energy]

[mass]
=

[length]2

[time]2
.

We then need to combine ε, with units

[ε] =
[energy]

[time]
=

[length]2

[time]3
,

and k, with units

[k] = [length−1],

to give a formula for E(k). The only way this can be done whilst keeping units

consistent is

E(k) = Cε
2
3k−

5
3 , (2.8)

where C is a unitless constant. This is one of the most important predictions of

turbulence theory as it is often observed experimentally, it remains important for

the weak turbulence discussed in section 2.1 as similar cascading states are observed

in both cases.

2.2.2 Two-Dimensional Cascades

As with three-dimensional systems, two-dimensional systems conserve energy. How-

ever, as mentioned in section 1.7, two-dimensional systems also conserve enstropy.

Having two conserved quantities leads to a dual cascade, with energy and enstrophy

cascading in opposite directions. A Fjørtoft argument[Fjørtoft, 1953] can be used

to determine the directions of the cascade.

We first denote the scale at which turbulence is excited as kf . Then, the

enstrophy production rate, η, is related to ε via

η ∼ k2
fε.

Assuming that tubulence is now dissipated at both large wavenumbers, k+, and

small wavenumbers k−, we now have two inertial ranges where energy is neither
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dissipated nor exited,

k− < k < kf

and

kf < k < k+.

We also consider statistically stationary turbulence so that the dissipation rate is

equal to the production rate. Let us first consider a cascade of energy from kf to

k+ where energy must be dissipated at a rate comparable to the injection rate ε.

This means that enstrophy would be dissipated at a rate

∼ k2
+ε� k2

fε ∼ η.

In a steady state this is not possible as it implies that enstrophy is being dissipated

faster than it is being injected into the system. This means that energy must be

dissipated at k− and therefore cascade from kf to k−. It is therefore called an inverse

energy cascade.

Repeating this process for enstrophy we assume that it is dissipated at k−

at a rate comparable to η. This implies that energy would be dissipated at a rate

∼ η

k2
−
� η

k2
f

∼ ε.

Again this is not possible as it would imply that energy would be dissipated faster

than it is created. Therefore enstrophy must be dissipated at k+ and there is a

direct enstrophy cascade from kf to k+.

In a vortex description of turbulence these two cascades determine the evo-

lution of the vortices. Small vortices merge to form large structures from the inverse

energy cascade. Whist the vortices are merging, long thin vorticity filaments are

formed by the direct enstrophy cascade.

The energy spectrum of the two-dimensional system was determined by

Robert Kraichnan in 1967[Kraichnan, 1967a]. As long as both the energy and en-

strophy cascades are local the Kolmogorov dimensional argument presented earlier

can be used. In the inverse energy cascade range the picture is essentially unchanged

and equation 2.8 is recovered, only with a different value of C and different sign of

ε. To find the spectrum in the direct cascade range we note the dimensions of η,

[η] = [k2][ε] = [length−2]
[length2]

[time3]
= [time−3]. (2.9)

As with the energy case, the only way that η can be combined with k to give a
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formula for E(k) whilst keeping units consistent is

E(k) = Cηη
2
3k−3. (2.10)

Dual cascades have been found in both simulations and observations of two-dimensional

turbulence[Boffetta, 2007; Manz et al., 2009b; Frisch and Sulem, 1984; Hasegawa

et al., 1979; Boffetta and Ecke, 2012].

2.3 Weak Turbulence Wave-Spectra

One of the main successes for wave turbulence theory is its ability to predict Kol-

mogorov like spectra, known as the Kolmogorov-Zakharov (KZ) spectra. Here we

present dimensional arguments for the spectra, for details of the mathematics see

[Nazarenko, 2011].

We consider resonant interactions of N waves, where N is the minimum

number of waves for which frequency resonances,

ω(~k1)± ω(~k2)± ...± ω(~kN ) = 0,

and wave vector resonances,

~k1 ± ~k2 ± ...± ~kN = 0,

can be satisfied simultaneously[Nazarenko, 2011]. The signs will change depending

on what type of interaction is occurring. Three-wave processes will have two ‘+’

signs and one ‘−’ sign whereas four-wave processes will have two ‘+’ signs and two

‘−’ signs. For an N wave process the rate of energy transfer is related to the number

of waves via the relation[Nazarenko, 2011]

∂E

∂t
∼ ε ∼ EN−1, (2.11)

where ε is the rate of energy dissipation.

The KZ spectrum is obtained for the case of an incompressible fluid, in which

case the density ρ = m
V is constant. By setting ρ = 1 we define a system where m

and V have the same units, hence [m] = [length3]. In this case we can write

[E] =

[
1

2
mv2

]
=

[length5]

[time2]
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for the units of energy and

[E]

[lengthd]
=

[∫
Ekdk

]
= [Ek][length−1]

for the energy density, where d is the number of dimensions. Combining these gives

[Ek] =
[length6−d]

[time2]
. (2.12)

As we wish to investigate cascades in the inertial range we can write an energy

balance equation,
∂E

∂t
+
∂ε

∂k
= 0, (2.13)

and use this to determine the dimensions of ε as

[ε] =
[length5−d]

[time3]
.

As we are discussing waves we write a general dispersion relation

ω = λkα (2.14)

where λ depends on the particlar system being described. We use this to determine

[λ] = [ω][k−α] = [time−1][lengthα]. (2.15)

Equation (2.11) implies that the energy transfer term must be of the form ε
1

N−1 ,

combining this with k and λ to produce an equation for Ek gives

Ek ∼ λxε
1

N−1ky. (2.16)

To ensure the dimensions are consistent we must have

x = 2− 3

N − 1

and

y = d− 6 + 2α+
5− d− 3α

N − 1
.
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2.3.1 Examples of wave spectra

Capillary Waves

Capillary waves are waves on the surface of a liquid, the surface tension provides

the restoring force for the wave. They interact via three-wave interactions and are

effectively two dimensional, therefore we have N = 3 and d = 2. Their dispersion

relation relies on the surface tension coefficient σ, which is the equivalent of λ in

equation (2.14), it is given by

ω = σ
1
2k

3
2 .

This means that α = 3
2 and equation (2.16) becomes

Ek ∼ ε
1
2σ

1
4k−

7
4

which is known as the Zakharov-Filonenko spectrum[Zakharov and Filonenko, 1967].

Alfvén Waves

Alfvén waves are low frequency plasma waves caused by oscillations in the ions and

the magnetic field. For a weak magnetic field the system of Alfvén waves is three

dimensional and the interactions are three-wave based, so we have N = 3 and d = 3.

The dispersion relation is ω = cAk‖ so we substitute α = 1 and λ = cA into (2.14)

to give

Ek = (εcA)
1
2k−

3
2 .

This is the Iroshnikov-Kraichnan spectrum[Kraichnan, 1965].

When the magnetic field is strong the turbulence becomes very anisotropic

with k⊥ � k‖, in this case the turbulence is essentially two-dimensional so a system

with d = 2 is more appropriate. In this case the spectrum is

Ek ∼ (εcA)
1
2k−2
⊥ .

Langmuir Waves in Isotropic Plasmas

The oscillations described in section 1.2 are also known as Langmuir waves, when

thermal effects are taken into account they have a dispersion relation

ωk = ωp +
3

2
vthλDk

2.

ωp, vth and λD are the plasma frequency, thermal velocity and Debye length re-

spectively. As the system has four-wave interactions the ωp term cancels when the
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system is in resonance. Therefore the λ term can be replaced by 3
2vthλD, α = 2 and

d = 3, to give[Zakharov, 1972]

Ek ∼ vthλDε
1
3k−

1
3 .

2.4 The Modulational Instability

The modulation instability describes the instability of a high frequency carrier wave

when modulated by a low frequency envelope. For a simple description of the process

we use a model for the evolution of the envelope based on the non-linear Schrödinger

equation[Agrawal, 2013]
∂A

∂z
+ iβ

∂2A

∂t2
= iγ|A|2A (2.17)

where A is the slowly varying envelope propagating in the z direction described by

A = ψeiγψ
2z.

The β parameter describes group velocity dispersion and γ the amplitude of the

nonlinearity. ψ2 is the power of the waveform and is assumed to be constant.

Perturbing this solution whilst keeping the phase factor separate gives

A = (ψ + ε(t, z)) eiγψ
2z. (2.18)

This can be substituted in to equation (2.17) to give an equation for the evolution

of the perturbation,
∂ε

∂z
+ iβ

∂2ε

∂t2
= iψ2γ(ε+ ε?), (2.19)

where terms O(ε2) have been dropped as ε� 1. Defining

ε = a1e
i(kx−wt) + a2e

−i(kx−wt) (2.20)

gives a dispersion relation

k = ±
√
β2ω2 + 2γβψ2ω2. (2.21)

It should be noted that equation (2.17) has factored out the frequency of

the carrier waves meaning that ω and k are actually relative to its frequency and

wavenumber, ω0 and k0. Therefore, the absolute frequencies and wave vectors of

the unstable perturbations are ω0 ± ω and k0 ± k. This means that the two terms
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in (2.20) represent two waves with frequency components ω0 +ω and ω0−ω. These

are the sidebands that will be discussed in chapter 5.

For the case of anomalous dispersion β is negative, in which case the the

quantity under the square root in equation (2.21) can be negative and the sideband

frequencies will contain an imaginary part, leading to an unstable envelope. This

implies that the modulation of a system of high frequency waves by a low frequency

envelopes in unstable, hence the name modulational instability.

The Zakharov Equations

For a more physical description of the modulational instability relevant in a plasma

physics context we will use the Zakharov equations[Dendy, 1990],

−2iωp
∂~E

∂t
− 3v2

Te∇
(
∇ · ~E

)
+ c2∇×

(
∇× ~E

)
+ ω2

p

δn

n0

~E = 0, (2.22)(
∂2

∂t2
− c2

s∇2

)
δn− ε0

4M
∇2|~E|2 = 0. (2.23)

These are two fluid equations, one modelling a fluid of electrons and one a fluid of

ions; ωp is the electron plasma frequency, M is the ion mass and cs the ion-acoustic

speed. The large difference between the mass of an electron and an ion mean that

they accelerate very differently in response to an applied force. To model this the

derivation of the Zakharov equations splits the density into an ion density part

ni = n0 + δni (2.24)

and an electron density part

ne = n0 + δne + ñe (2.25)

where n0 is a time independent equilibrium value, the δn terms describe a slow

timescale perturbation and ñe is a rapid electron perturbation. In this case the

quasineutrality condition becomes δni ' δne. Assuming that the electric fields in

the plasma only come from deviations from charge neutrality they are given by
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Poisson’s equation, (1.4), this leads to electric fields given by

~E = ~̃E + ~Eslow (2.26)

∇ · ~̃E =
−eñe
ε0

(2.27)

∇ · ~Eslow =
−e(δne − δni)

ε0
. (2.28)

The electric field related to rapid oscillations can then be split further into

~̃E(~r, t) =
1

2
~E(~r, t)e−iωpet + c.c. (2.29)

where ~E is a slowly varying electric field and c.c indicates the complex conjugate.

This slowly varying electric field is the only one not eliminated during the derivation

the the Zakharov equations.

It is possible to define a dimensionless parameter for this system by taking

the ratio of the average electric field energy to the thermal energy[Dendy, 1990],

W =
ε0 < | ~̃E|2 >

2

1

n0kBTe
=

ε0|~E|2

4n0kBTe
. (2.30)

This is is known as the turbulence parameter.

Dividing equation (2.23) by n0, using this equation for W and the definition

of the ion-acoustic velocity for this system, cs =

√
kB(Te+3Ti)

M , gives

∂2

∂t2
δn

n0
= c2

s∇2

(
δn

n0
+W

)
. (2.31)

This has a stationary solution when δn
n0

= −W which describes a system where

regions of enhanced electric field amplitude correspond to regions of depleted ion

densities. In this situation we have

δn

n0
< 0. (2.32)

In the Zakharov system the equation for the evolution of ~̃E is

∂2 ~̃E

∂t2
+ ω2

pe

(
1 +

δn

n0

)
~̃E − 3v2

Te∇
(
∇ · ~̃E

)
+ c2∇×

(
∇× ~̃E

)
= 0. (2.33)

Neglecting the last term and looking for solutions of the form ei(
~k~r−ωt) leads to a
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dispersion relation

ω2 = ω2
pe

(
1 +

3k2

k2
D

+
δn

n0

)
, (2.34)

where in general k2

k2
D
< 1. There are two cases of interest here, the first has

|δn
n0
| < 3k2

k2
D

(2.35)

in which case equations (2.32) and (2.34) indicate that for a given wavenumber, k, a

wave in a region of density depletion will have a lower frequency, ω, than in a region

where δn = 0. The second case is where

|δn
n0
| > 3k2

k2
D

, (2.36)

in which case equatiosn (2.32) and (2.34) indicate that

ω < ωpe. (2.37)

As waves travel through inhomogeneous materials their frequency tends to stay

constant while their wavenumber changes. This means that if a wave with a small

enough wavenumber to satisfy equation (2.36) tries to propagate to a region without

a density depletion, δn
n0
≥ 0, it cannot satisfy equations (2.34) and (2.37) simultane-

ously whilst maintaining a constant frequency. The result is that waves can become

trapped in regions of depleted density, in the stationary case discussed here this

implies waves are trapped when

W >
3k2

k2
D

. (2.38)

This process is not stable, when an electrostatic wave is trapped it will increase the

local electric field energy and hence the value of W . This will lead to more waves

becoming trapped, this process will continue until the equations we have been using

cease to be appropriate. This is again the modulational instability as it is the result

of the high frequency waves described by ~̃E being modulated by a low frequency

wave, ~E.
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Chapter 3

Reduced equations of

laboratory plasma transport

3.1 The Hasegawa-Mima equation

3.1.1 Introduction

The Hasegawa-Mima equation is a reduced model of plasma that is primarily used to

study plasma turbulence. It assumes that changes in density are linked to changes

in potential adiabatically and can be modelled via a Boltzmann response, equation

(3.2). The system is simplified so that it can be represented as a two dimensional

slab of plasma with a constant magnetic field and fixed density gradient.

This results in a ‘single fluid’ model of plasma potential that can be inves-

tigated using well known numerical and analytical techniques. The shortcoming of

the Hasegawa-Mima model is its reliance on prescribed initial conditions, there is

no instability inherent in the system and energy and enstrophy are conserved. To

study a particular phenomenon, such as the drift wave to zonal flow transition, the

system must be initialised with a potential profile that will trigger the behaviour of

interest.

The Hasegawa-Mima equation, as derived by Akira Hasegawa and Kunioki

Mima in 1978[Hasegawa and Mima, 1978], is the same formula as the Quasi-Geostrophic

Vorticity Equation developed by Jule G. Charney in 1949 for atmospheric physics[Charney,

1949]. Only the meaning of the parameters differs. As such we will refer to the

Hasegawa-Mima equation as the Charney-Hasegawa-Mima (CHM) equation, and

the extended version introduced in section 3.1.3, which is more appropriate for

tokamak plasmas, as the Extended-Hasegawa-Mima (EHM) equation.
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3.1.2 Derivation

We now define a cooridnate system using the normal plasma convention. The ẑ

direction is along the magnetic field so that ~B = B0ẑ. x̂ and ŷ are in the plane

perpendicular to the magnetic field with x̂ pointing along the density gradient.

When relating this back to a tokamak the x̂ direction should be thought of as the

radial direction and the ŷ as the poloidal direction.

Also, it is assumed that the system can be considered electrostatic and the

electric field
−→
E is given by

−→
E = −∇φ, (3.1)

where φ is the electrostatic potential, which is assumed to vary with x and y only.

The density response of the electrons to the magnetic field is modelled as

adiabatic, which is to say their motion along the magnetic field is fast enough to be

considered instantaneous, as described in section 1.4. Density is therefore given by

ne = ne(x) = n0(x)e
eφ
Te , (3.2)

where ne is the density of the electrons (assuming quasi-neutrality gives n = ni =

ne), e is the charge on an electron and Te is the electron temperature. Throughout

this derivation the subscript e denotes electrons and the subscript i denotes ions.

Equation (3.2) can be Taylor expanded to

ne ≈ n0(x)(1 +
eφ

Te
+ · · · ), (3.3)

which is the form that will be used later in this derivation.

Conservation of Momentum

Drifts for the ions are derived using the momentum balance equation. This is

obtained by neglecting collisions and rewriting equation (1.36) as

min(
∂−→vi
∂t

+ (−→vi • ∇)−→vi ) =
d−→vi
dt

= −∇Pi + en(
−→
E +−→vi ×

−→
B ), (3.4)

where mi is the mass of the ions and −→vi is their velocity.
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~E × ~B drift

We assume that the effects of gyrations can be averaged out by restricting ourselves

to processes that occur more slowly than the ion gyrofrequency ωi,

ω � ωi =
eB0

mi
, (3.5)

where ω is the frequency regime we are considering and B0 is the magnitude of
−→
B .

Also, considering only the case of cold ions gives ∇Pi = 0. This means that to first

order, assuming there is no acceleration, equation (3.4) can written as

−→
E +−→vi ×

−→
B = 0.

Hence, taking the cross product with
−→
B of both sides of this equation and using the

vector identity (~C × ~B)× ~A = ( ~A • ~C) ~B − ( ~A • ~B)~C gives

−
−→
E ×

−→
B = (

−→
B • −→vi )

−→
B − (

−→
B •
−→
B )−→vi = −B0

2−→vi ,

where
−→
B • −→vi = 0 as

−→
B is perpendicular to −→vi . This can be rearranged to give

−→vi =
−→
E ×

−→
B

B0
2 = −→vE . (3.6)

−→vE is the
−→
E ×

−→
B drift which can also be written as

−→vE = −∇φ×
−→
ẑ

B0
. (3.7)

Polarisation Drift

Equation (3.6) does not allow for compression of the ions so quasineutrality can not

be satisfied, meaning a second order correction is needed. The polarisation drift is

derived by substituting the
−→
E ×

−→
B drift, equation (3.6), in to the Ion Momentum

balance, equation (3.4), again neglecting the pressure term, hence

d−→vE
dt

=
e

m
(−∇φ+−→v ×

−→
B ).

Again taking the cross product of both sides with
−→
B and using the afore-

mentioned vector identity gives

d

dt
(−→vE ×

−→
B ) =

e

m
{−∇φ×

−→
B + (

−→
B •−→vE)

−→
B − (

−→
B •
−→
B )−→vE} = − e

m
∇φ×

−→
B − e

m
B0

2−→v ,
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−→
B • −→vE = 0 as

−→
B is perpendicular to −→vE , so by expanding the left hand side,

∂

∂t
(−→vE ×

−→
B ) + (−→vE • ∇)(−→vE ×

−→
B ) = − e

m
∇φ×

−→
B − e

m
B0

2−→v .

Substituting for −→vE gives

−1

B0
2

∂

∂t
((∇φ×

−→
B )×

−→
B )− 1

B0
2 (−→vE •∇)((∇φ×

−→
B )×

−→
B ) = − e

m
∇φ×

−→
B − e

m
B0

2−→v .

Using the same vector relation as earlier gives

−1

B0
2

∂

∂t
((
−→
B•∇φ)

−→
B−B0

2∇φ)− 1

B0
2 (−→vE•∇)((

−→
B•∇φ)

−→
B−B0

2∇φ) = − e

m
∇φ×

−→
B− e

m
B0

2−→v .

As φ is a flux function given as φ = φ(x, y) only, this means
−→
B • ∇φ = 0, hence,

1

B0
2

∂∇φ
∂t

+
1

B0
2 (−→vE • ∇)∇φ = − e

mB2
0

∇φ×
−→
B − e

m
−→v .

Rearranging (3.5) and substituting for B0,

e

mωiB0

∂

∂t
∇φ+

e

mωiB0
(−→vE • ∇)∇φ = − e

mB2
o

∇φ×
−→
B − e

m
−→v ,

which can be rearranged to give

−→v =
1

B2
0

∇φ×
−→
B − 1

ωiB0

∂

∂t
∇φ− 1

ωiB0
(−→vE • ∇)∇φ

= −→vE −
1

ωiB0

∂

∂t
∇φ− 1

ωiB0
(−→vE • ∇)∇φ. (3.8)

This is the sum of the
−→
E ×

−→
B drift and the polarisation drift, which is given by

−→vp =
1

ωiB0
(− ∂

∂t
∇⊥φ− (−→vE • ∇)∇⊥ φ). (3.9)

The total velocity of the ions is therefore

−→vi = −→vE +−→vp . (3.10)
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Conservation of Mass

Finally, the CHM equation is derived using the conservation of mass, which is ex-

pressed using the ion continuity equation, (1.33), rewritten as

∂n

∂t
+∇(n • −→vi ) = 0 (3.11)

or
∂n

∂t
= −(−→vi • ∇)n− n(∇ • −→vi ).

This can be rearranged to give

∂n
∂t + (−→vi • ∇)n

n
=
dln(n)

dt
= −(∇ • −→vi ). (3.12)

To continue we take the divergence of both of the drifts derived earlier. As we are

in an electrostatic regime and B0 is a constant this gives

∇ • −→vE = −∇ •
−→
E ×

−→
B

B0
= 0

for the ~E × ~B drift.

We are dealing with an equation to describe a plasma in a two dimensional

slab so we make the assumption that there is no velocity in the direction of the

magnetic field. This gives the divergence of the polarisation drift as

∇ • −→vp = ∇⊥ • −→vp =
1

ωiB
(∇⊥2∂φ

∂t
+ (−→vE • ∇)∇⊥2φ), (3.13)

which can be used as the right hand side of (3.12). The quantity ∇2φ is known as

vorticity.

Now, using equation (3.3) and the Taylor expansion for a natural logarithm,

ln(n) = ln(n0(1 +
eφ

Te
)) = ln(n0) + ln(1 +

eφ

Te
) ≈ ln(n0) +

eφ

Te
, (3.14)

the left hand side of equation (3.12) becomes

∂

∂t
+ (−→vE • ∇)(ln(n0) +

eφ

Te
),

and it can be written as

(
∂

∂t
+ (−→vE • ∇))(ln(n0) +

eφ

Te
− 1

ωiB0
∇⊥2φ) = 0. (3.15)
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Using the definition of ~vE , equation (3.7), and some rearranging gives

(
∂

∂t
− 1

B0

Te
e

(∇eφ
Te
×
−→
ẑ ) • ∇)(ln(n0) +

eφ

Te
− Te
ωiB0e

∇⊥2 eφ

Te
) = 0. (3.16)

Rewriting the gyroradius, equation (1.13), as

ρs
2 =

Te
miωi2

(3.17)

gives

(
∂

∂t
− ρs

2eB0

mi
(∇eφ

Te
×
−→
ẑ ) • ∇)(ln(n0) +

eφ

Te
− ρs

2eB0

ωimi
∇⊥2 eφ

Te
) = 0. (3.18)

Then using the ion gyrofrequency, equation (1.11),

ωi =
eB0

mi

and dividing through by ωi gives

(
1

ωi

∂

∂t
− ρs2(∇eφ

Te
×
−→
ẑ ) • ∇)(ln(n0) +

eφ

Te
− ρs2∇⊥2 eφ

Te
) = 0. (3.19)

Using the normalizations
eφ

Te
→ φ,

x, y

ρs
→ x, y

and

ωit→ t,

equation (3.19) can be simplified to

(
∂

∂t
− (∇φ×

−→
ẑ ) • ∇)(ln(n0) + φ−∇⊥2φ) = 0. (3.20)

Upon expanding and rearranging this becomes

∂

∂t
(φ−∇2

⊥φ)− (
∂φ

∂y

∂ln(n0)

∂x
− ∂φ

∂x

∂ln(n0)

∂y
)− (

∂φ

∂y

∂φ

∂x
− ∂φ

∂x

∂φ

∂y
)

− (
∂φ

∂y

∂∇2
⊥φ

∂x
− ∂φ

∂x

∂∇2
⊥φ

∂y
) = 0. (3.21)
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Using v∗ = ∂ln(n0)
∂x and the condition n0 = n(x) only this can be simplified to

∂

∂t
(φ−∇2

⊥φ)− v∗(
∂φ

∂y
)− [φ,∇2

⊥φ] = 0. (3.22)

This is the Hasegawa-Mima equation, which describes how the potential in

the system will evolve in time and space. The square bracket is a Poisson bracket

defined as

[A,B] =
∂A

∂x

∂B

∂y
− ∂B

∂x

∂A

∂y
. (3.23)

In order to more accurately represent observed phenomena it is possible to

extend the Hasegawa-Mima equation by adding terms to introduce viscosity and

driving. The viscosity term is given as

− ν∇2(∇2φ) (3.24)

where ν is the viscous coefficient. The forcing term can be any physical function of

position and time. It is of particular interest as it can be used to grow structures in

the system. For example it can make drift waves appear in a steady plasma, which

does not happen naturally in equation (3.22)[Connaughton et al., 2010].

In total the final CHM equation with viscosity and forcing terms is written

∂

∂t
(φ−∇⊥2φ)− v∗

∂φ

∂y
− [φ,∇⊥2φ] = −ν∇2(∇2φ)− f(x, y, t). (3.25)

3.1.3 The Extended Hasegawa-Mima equation

While the CHM equation is appropriate for atmospheric physics, the coupling be-

tween global flows and surface fluctuations permitted by it is not a good model

for plasmas in fusion devices. To improve the model it is possible to remove this

coupling by writing the density response, equation (3.3), as

ni,e − n0

n0
=

e

Te
(φ− δs,1φ), (3.26)

where

φ̄ =
1

L

∫ L

0
φdy (3.27)

is the surface averaged potential[Dorland et al., 1990; Smolyakov et al., 2000b,a;

Manfredi et al., 2001; Dewar and Abdullatif, 2007] . δs,1 is a Kronecker delta used
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to select either the extended or non-extended versions of the equation. In the CHM

case we use s = 0 and in the EHM case s = 1.

In this case we have

ln(n) = ln

(
n0

(
1 +

e(φ̃+ δs,0φ)

Te

))
≈ ln(n0) +

e(φ̃+ δs,0φ)

Te
(3.28)

and equation (3.15) becomes

(
∂

∂t
+ ( ~vE∇))(ln(n0) +

e(φ̃+ δs,0φ)

Te
) =

1

ωiB0
(
∂

∂t
∇2
⊥φ+ ( ~vE∇)∇2

⊥φ). (3.29)

Defining a stream function,

Φ =
φ

B0
,

rather than using the normalisations presented in the CHM derivation, equation

(3.29) can be manipulated to give the Extended-Hasegawa-Mima (EHM) equation ,

(
∂

∂t
+ ~vE∇+ ~v?∇)(Φ̃ + δs,0Φ)− (

∂

∂t
+ ~vE∇)ρ2

s∇2
⊥Φ = 0, (3.30)

where ~v? is now given by

~v? = −Teẑ ×∇n0

eB0n0
(3.31)

and

~vE = ẑ ×∇Φ.

Using a stream function rather than normalisation means that all quantities are

measured in SI units, Φ itself then has units m2

s . Using Poisson brackets the EHM

equation can be written as

∂

∂t
(Φ̃ + δs,0Φ− ρ2

s∇2
⊥Φ) + [Φ, Φ̃ + δs,0Φ] + v?∂y(Φ̃ + δs,0Φ)− ρ2

s[Φ,∇2Φ] = 0 (3.32)

where

v? = ρ2
sωi

∂ln(n0)

∂x
. (3.33)

As all of parameters are in SI units this means that v? has units m
s which is as ex-

pected as it represents the electron diamagnetic drift velocity[Dewar and Abdullatif,

2007].
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3.1.4 Linear Dispersion Relation

Equation (3.32) can be linearised by assuming that all parts of the potential can be

written in the form

Φ(x, y, t) = Φc + εΦ1(x, y, t), (3.34)

where Φc is a constant and ε is a small parameter. Remembering that the Poisson

brackets denote taking gradients gives

∂

∂t
ε(Φ̃1+δs,0Φ1−ρ2

s∇2
⊥Φ1)+[εΦ1, εΦ̃1+εδs,0Φ1]+v?∂yε(Φ̃1+δs,0Φ1)−ρ2

s[εΦ1, ε∇2Φ1] = 0.

(3.35)

Dropping terms O(ε2) leaves a linear version of the EHM equation,

∂

∂t
(Φ̃1 + δs,0Φ1 − ρ2

s∇2
⊥Φ1) + v?∂y(Φ̃1 + δs,0Φ1) = 0. (3.36)

We have now removed any terms that provide a coupling between different

waves, so we can assume plane wave solutions,

Φ1 = Φ~ke
−i(~k.~x+Ω~kt) (3.37)

Φ1 = Φ~kδ~ky,0e
−i(~k.~x+Ω~kt). (3.38)

Substituting these into equation (3.36) gives

− iΩ~k(Φ~k −Φ~kδ~ky,0 + δs,0Φ~kδ~ky,0 + ρ2
sk

2Φ~k)− v?iky(Φ~k −Φ~kδ~ky,0 + δs,0Φ~kδ~ky,0) = 0

(3.39)

which can be rearranged as

Ω~k =
−v?ky(1 + δs,1δky ,0)

1 + δs,1δky ,0 + ρ2
sk

2
,

which, on considering the ky in the numerator, becomes

Ω~k =
−v?ky

1 + ρ2
sk

2
. (3.40)

This is the linear dispersion relation for the Extended-Hasegawa-Mima equation. It

is identical to the linear dispersion relation for the non-extended case and is entirely

real, indicating that any change in the amplitude of waves in an unforced system is

due to nonlinear interactions.
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3.1.5 Fourier space representation

The Fourier transform of the potential is given by

Φ =
∑
~k

Φ~ke
−i~k.~x (3.41)

and the surface averaged potential by

Φ̄ =
1

2π

∑
~k

Φ~k

∫ 2π

0
e−i

~k.~xdy =
∑
~k

Φ~kδ~ky,0e
−i~k.~x. (3.42)

These can be substituted into (3.30) and rearranged to give

∂t
∑
~k

(1− δky ,0 + δs,0δky ,0 + ρ2
sk

2)Φ~ke
−i~k.~x − iv?

∑
~k

(1− δky ,0 + δs,0δky ,0)kyΦ~ke
−i~k.~x

+
∑
~k1, ~k2

{ik1xΦ ~k1
e−i

~k1.~xik2y(1− δk2y ,0 + δs,0δk2y ,0 + ρ2
sk2

2)Φ ~k2
e−i

~k2.~x

−ik1yΦ ~k1
e−i

~k1.~xik2x(1− δk2y ,0 + δs,0δk2y ,0 + ρ2
sk2

2)Φ ~k2
e−i

~k2.~x} = 0.

(3.43)

Rewriting the nonlinear term gives

∂t
∑
~k

(1− δ ~ky ,0 + δs,0δ ~ky ,0 + ρ2
s
~k2)Φ~ke

−i~k.~x

−iv?
∑
~k

(1− δ ~ky ,0 + δs,0δ ~ky ,0) ~kyΦ~ke
−i~k.~x

+
∑
~k

∑
~k1, ~k2

( ~k1y
~k2x − ~k1x

~k2y)((1− δ ~k2y ,0
+ δs,0δ ~k2y ,0

+ ρsk
2
2)Φ ~k1

Φ ~k2
δ~k, ~k1+ ~k2

e−i
~k.~x) = 0.

(3.44)

This can be simplified and rearranged to give

∂tΦ~k −
iv?(1− δky ,0 + δs,0δky ,0)ky

(1− δky ,0 + δs,0δky ,0 + ρ2
sk

2)
Φ~k

+
∑
~k1, ~k2

(k1yk2x − k1xk2y)(1− δk2y ,0 + δs,0δk2y ,0 + ρ2
sk2

2)

(1− δky ,0 + δs,0δky ,0 + ρ2
sk

2)
Φ ~k1

Φ ~k2
δ~k, ~k1+ ~k2

= 0,

(3.45)

or

∂tΦk + iΩk − Λkk1,k2
Φk1Φ ~k2

δ~k, ~k1+ ~k2
= 0 (3.46)

where Ωk is given by equation (3.40) and

Λkk1,k2
= −

(k1yk2x − k1xk2y)(1− δk2y ,0 + δs,0δk2y ,0 + ρ2
sk

2
2)

(1− δky ,0 + δs,0δky ,0 + ρ2
sk

2)
. (3.47)
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Next a symmetric version of the nonlinear coupling parameter Λkk1,k2
is de-

fined,

T (~k, ~k1, ~k2) = (Λkk1,k2
+Λkk2,k1

) = −
(k1yk2x − k1xk2y)(ρ

2
s(k

2
2 − k2

1) + δs,1(δk1y ,0 − δk2y ,0))

(1 + ρ2
sk

2 − δky ,0δs,1)
.

(3.48)

This leads to a representation of the EHM in Fourier space,

∂tΦ~k + iΩ~kΦ~k −
1

2

∑
~k1, ~k2

T (~k, ~k1, ~k2)Φ ~k1
Φ ~k2

δ~k, ~k1+ ~k2
= 0, (3.49)

where the factor 1
2 has been added to prevent modes being counted twice due the

symmetrisation of Λkk1,k2
. As for the real space equation, all quantities are measured

in SI units. The only new parameters are ωk and T (~k, ~k1, ~k2) which have units s

and m−2 respectively.

3.2 The Extended-Hasegawa-Wakatani Equation

3.2.1 Introduction

The Hasegawa-Wakatani[Hasegawa and Wakatani, 1983] model relaxes the adiabatic

electron assumption of the Hasegawa-Mima equation and instead models parallel

electron behaviour via electron dynamics in the direction parallel to the magnetic

field. This leads to a two fluid model with coupled equations describing fluctuations

of density and potential around a mean value. This system has a built in instability

that, combined with the nonlinear terms, is capable of growing a broadband spec-

trum of drift waves. This is a much more ‘physical’ model as it can transition to

a zonal flow state without the introduction of a specific initial condition. Here we

will derive the Extended-Hasegawa-Wakatani model[Dorland and Hammett, 1993;

Numata et al., 2007] . We use the term ‘extended’ to indicate the removal of the

zonal components of density and potential from the current describing the electron

dynamics parallel to the magnetic field. Further discussion of the benefits of the

Hasegawa-Wakatani equations in comparison to the Hasegawa-Mima equation will

be given in chapter 6.

3.2.2 Derivation

As with the Hasegaw-Mima equation we define a coordinate system where the ẑ

direction is parallel to the magnetic field and the x̂ direction is along the density

gradient. The ŷ direction is perpendicular to both ẑ and x̂ and corresponds to the
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poloidal direction in a tokamak. We assume that the magnetic field is constant to

give ~B = B0ẑ. In order to simplify the equations we assume that ions are cold,

Ti = 0, and the electron temperature is isothermal, Te = T = constant.

Perpendicular Ion Momentum

We begin by calculating the ion momentum perpendicular to the magnetic field. To

do this we use the Braginskii equation for the conservation of momentum, equation

(1.47). The cold ion assumption means that there is no pressure gradient. We

neglect collisions and assume there are no sources, so that equation (1.47) becomes

mn (∂t + ~v • ∇⊥)~v = ne(−∇⊥φ+ ~v × ~B).

To find the lowest order velocity we set the left hand side to to 0, take the curl with

~B and use the vector identity

(~c×~b)× ~a = (~a • ~c)~b− (~a •~b)~c

to give

0 = (−∇⊥φ+ ~v × ~B)× ~B ⇒

0 = ~B ×∇⊥φ+ ( ~B · ~v) ~B − ( ~B ~B)~v ⇒
~B = B0ẑ.

As we are considering the perpendicular momentum, ~B · ~v = 0 and therefore we

obtain the ~E × ~B velocity

~vE =
~B ×∇⊥φ
B2

0

=
ẑ ×∇⊥φ

B0
.

Substituting this back into the ion momentum equation in a procedure identical to

that used for the Hasegawa-Mima equation gives

~v⊥,i = m
eB2

0
{∂t(∇⊥φ) + (−→vE∇)(∇⊥φ)}+ 1

B0
(ẑ ×∇⊥φ),

where the total perpendicular ion velocity ~v⊥,i is the sum of the polarisation drift

velocity,

~vp =
m

eB2
0

{∂t(∇⊥φ) + (−→vE∇)(∇⊥φ)}

and the ~E × ~B velocity.
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Perpendicular Electron Momentum

As for the perpendicular ion momentum, the perpendicular electron momentum is

calculated from the Braginskii equation for conservation of momentum. We use the

same assumptions as for the ion case, neglect electron inertia and keep a non-zero

electron temperature to obtain

0 = −ne(−∇⊥φ+ ~v × ~B)− T∇⊥n.

Taking the cross product with ~B as before, and neglecting the polarisation drift of

the electrons due to their small mass gives

−→v ⊥,e = ~vE −
ẑ × T∇⊥n

neB0
= ~vE + ~vde, (3.50)

the final term, ~vde = − ẑ×T∇⊥n
neB0

, is the electron diamagnetic drift velocity.

Parallel momentum

Electrons and ions can move freely in the direction of the magnetic field. The

electron/ion mass ratio means that electrons move significantly faster than ions,

which we therefore model as stationary, vi,‖ = 0. We use an electrostatic description

of the electric field and model electron-ion collisions as

ηe2n2(vi − ve) = −ηe2n2 ~ve‖,

where η is a resistivity. The Braginskii momentum equation, (1.47), therefore be-

comes

0 = ne∇‖φ− T∇‖n− ηe2n2~ve‖,

which can be rewritten as a current density,

~J‖ = T
eη

[
∇‖n
n −

e∇‖φ
T

]
. (3.51)

Continuity Equations

We now take the Braginskii continuity equation, (1.46), and substitute using the

quantities derived above. Firstly, for electrons we have

∂tn+ (−→v ⊥,e∇⊥)n+ n(∇⊥−→v ⊥,e)− 1
e∇‖ ~J‖ = 0,
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and, as ∇⊥ · −→v E = 0, ∇⊥ · −→v de = 0 and ~vde · ∇n = 0, this becomes

(∂t +−→v E∇⊥)n− 1
e∇‖ ~J‖ = 0. (3.52)

The ion continuity equation is obtained by following a similar procedure

to the electron case but also neglecting ~vp∇n, the Braginskii continuity equation

becomes

(∂t +−→v E∇⊥)n+ n∇⊥~vp = 0.

The continuity equations are are equated using quasineutrality, equation

(1.7), to give

n∇⊥~vp = −1
e∇‖ ~J‖,

the left hand side of which can be expanded to

n∇⊥
(
m

eB2
0
{∂t(∇⊥φ) + (−→vE∇)(∇⊥φ)}

)
= −1

e∇‖ ~J‖,

which can be rearranged as

(∂t +−→vE∇)(∇2
⊥φ) = −eB2

0

nm

1

e
∇‖ ~J‖. (3.53)

Reduction

Further simplifications are now made to change to a completely two-dimensional

system. First we say that n and φ are in fact fluctuations around a constant back-

ground:

n = n0 + ñ,

φ = φ0 + φ̃.

We also assume there is no background potential, φ0 = 0; the background density is

constant, ∂tn0 = 0; and there is no background density gradient along the magnetic

field, ∇‖n0 = 0. This means that the parallel current equation can be rewritten as

~J‖ =
T

eη

[
∇‖ñ
n0
−
e∇‖φ̃
T

]
.
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To close this set of equations, a parallel closure, that will allow us to calculate

parallel gradients of n and phi, is needed. The simplest closure procedure considers

a single monochromatic fluctuation, with wavevector k in the parallel direction, so

that

∇2
‖ = −k2.

To simplify the notation we now suppress the tildes, hence,

∇‖ ~J‖ = Tk2

eη

[
n
n0
− eφ

T

]
.

At this point we depart from the traditional HW derivation. We are inter-

ested in tokamaks, in which case the zonal components of density and potential do

not contribute to the parallel current [Dorland and Hammett, 1993]. Therefore we

write

φ̃ = φ− < φ >,

ñ = n− < n >,

where <> denotes an average in the poloidal direction, as given by equation (3.27),

and φ̃ and ñ now represent the fluctuating potential and density with the

surface averaged component removed. This means that the parallel current

gradient is

∇‖ ~J‖ = Tk2

eη

[
ñ
n0
− eφ̃

T

]
. (3.54)

Using the slab geometry defined at the beginning of the derivation we write

the density gradient as ∇⊥n0 = −x̂ n0
Ln

where Ln is the lengthscale of the gradient.

This means that equations (3.52) and (3.53) can be written as

(∂t +−→v E∇⊥)(n0 + n)− 1
e∇‖ ~J‖ = 0,

(∂t +−→vE∇)(∇2
⊥φ) = − B2

0
(n0+n)m∇‖ ~J‖

and expanded to

∂tn− 1
B0
∂yφ∂xn0 + (−→v E∇⊥)n− 1

e∇‖ ~J‖ = 0, (3.55)

∂t(∇2
⊥φ) + (−→vE∇)(∇2

⊥φ) = − B2
0

(n0+n)m∇‖ ~J‖. (3.56)

Using Poisson brackets as defined in equation (3.23), substituting for ∇‖ ~J‖
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with equation (3.54), and rearranging gives

∂t
n
n0
− 1

B0

T
e ∂y

eφ
T
∂xn0
n0

+ T
e

1
B0

[
eφ
T ,

n
n0

]
− Tk2

n0e2η

(
ñ
n0
− eφ̃

T

)
= 0,

T
e ∂t

(
∇2
⊥
eφ
T

)
+
(
T
e

)2 1
B0

[
eφ
T ,∇

2
⊥
eφ
T

]
= − B2

0
n0m

Tk2

eη

(
ñ
n0
− eφ̃

T

)
.

The normalisations

eφ

T
→ φ,

eφ̃

T
→ φ̃,

n

n0
→ n,

ñ

n0
→ ñ, ωcit→ t,

x, y

ρs
→ x, y

and the definitions

ωci = eB0
m , ρ2

s =
mT

e2B2
0

,

α =
Tk2

n0e2ηωci
, (3.57)

and

κ = −∂ ln(n0)

∂x
(3.58)

leave us with

∂tn+ κ∂yφ+ [φ, n]− α(ñ− φ̃) = 0

∂t(∇2
⊥φ) + [φ,∇2

⊥φ] = −α(ñ− φ̃).

Due to the normalisations used, all quantities in these equations are dimensionless,

including α and κ. In the style of the Extended-Hasegawa-Mima equation (section

3.1.3) we define a switching parameter s to select the extended, s = 1, and non

extended, s = 0, versions of the equations, which are finally written as

∂tn+ κ∂yφ+ [φ, n]− α(n− δs,1 < n > −φ+ δs,1 < φ >) = 0, (3.59)

∂t(∇2
⊥φ) + [φ,∇2

⊥φ] = −α(n− δs,1 < n > −φ+ δs,1 < φ >). (3.60)

3.2.3 Fourier Space Representation

Writing the Fourier transforms of density and potential as

φ =
∑
~k

Φ~ke
−i~k·~x (3.61)
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and

n =
∑
~k

N~ke
−i~k·~x, (3.62)

along with their corresponding surface averages,

< φ >=
1

2π

∑
~k

Φ~k

∫ 2π

0
e−i

~k·~xdy =
∑
~k

Φ~kδky ,0e
−i~k·~x (3.63)

and

< n >=
1

2π

∑
~k

N~k

∫ 2π

0
e−i

~k·~xdy =
∑
~k

N~kδky ,0e
−i~k·~x, (3.64)

leads to Fourier space versions of equations (3.59) and (3.60):

∂tN~k = −i(1 + k2)ΩkΦ~k + zα(Φ~k −N~k)−
∑
k1,k2

R(k1, k2)Φ−→
k2
N−→
k1
δ~k,
−→
k1+
−→
k2
, (3.65)

∂tΦ~k = −αz
k2

(Φ~k −N~k)−
∑
k3,k4

T (k, k3, k4)Φ−→
k3

Φ−→
k4
δ~k,
−→
k3+
−→
k4
, (3.66)

where z = 1− δs,1δky ,0.

The frequency and coupling parameters are

Ωk =
κky

1 + k2
, (3.67)

R(k1, k2) = (k1xk2y − k2xk1y), (3.68)

and

T (k, k3, k4) =
k2

3(k3xk4y − k4xk3y)

k2
. (3.69)

In this case they are not symmetrised.

3.2.4 The Hasegawa-Wakatani linear dispersion relation

A linear dispersion relation can be obtained for the Extended-Hasegawa-Wakatani

equations,(3.59) and (3.66), by considering potential and density as fluctuations

around some constant value, hence,

φ(x, y, t) = φc + εφ1(x, y, t), (3.70)

n(x, y, t) = nc + εn1(x, y, t), (3.71)

< φ(x, y, t) > = φc + ε < φ1(x, y, t) >, (3.72)

< n(x, y, t) > = nc + ε < n1(x, y, t) >, (3.73)
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where ε is a small parameter.

Substituting equations (3.70) to (3.73) into (3.59) gives

∂t(nc + εn1) = −κ∂y(ϕc + εϕ1) + α(ϕc + εϕ1 − εδs,1 < ϕ1 > −nc − εn1 + εδs,1 < n1 >)

+ [nc, ϕc] + [nc, εϕ1] + [εn1, ϕc] + [εn1, εϕ1]. (3.74)

Dropping terms O(ε2) and simplifying leaves us with

∂t(εn1) = −κ∂y(εϕ1) + α(ϕc + εϕ1 − εδs,1 < ϕ1 > −nc − εn1 + εδs,1 < n1 >).

(3.75)

In the limit ε→ 0 we have φc ≈ nc and equation (3.75) becomes

∂t(n1) = −κ∂y(ϕ1) + α(ϕ1 − δs,1 < ϕ1 > −n1 + δs,1 < n1 >). (3.76)

Repeating the same procedure for the EHW potential equation, (3.60), gives

∂t(∇2ϕ1) = α(ϕ1 − δs,1 < ϕ1 > −n1 + δs,1 < n1 >). (3.77)

Using the single mode versions of (3.61) to (3.64), writing N~k = N~ke
−iωt,

Φ~k = ϕ~ke
−iωt and substituting into (3.76) and (3.77) gives

−iωNk = − iky κϕk + α(ϕk − ϕkδs,1δky ,0 −Nk +Nkδs,1δky ,0) (3.78)

and

iωk2ϕk = α(ϕk − ϕkδs,1δky ,0 −Nk +Nkδs,1δky ,0), (3.79)

where the 1 subscript has been dropped. Rewriting each of these equations to

contain ϕk
Nk

and substituting to eliminate this new term gives a dispersion relation

for the extended Hasegawa-Wakatani system:

ω2k2 − iky κα+ iαω(k2 + 1)(1− δs,1δky ,0) = 0. (3.80)

This reduces to the normal Hasegawa-Wakatani dispersion relation when s = 0 or

ky 6= 0. The α→∞ limit represents the recovery of an adiabatic electron response

and reproduces the Hasegawa-Mima drift wave dispersion relation, equation (3.40).

In fact, in this limit the EHW equations, (3.59) and (3.60), can be combined to

produce the Extended-Hasegawa-Mima equation, (3.32).

Here, and in chapter 6, we will refer to (3.80) as the ‘primary’ dispersion

64



a) b)

k
x

k y

 

 

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40 0

0.2

0.4

0.6

0.8

1

1.2

k
x

k y

 

 

−40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40 0

0.2

0.4

0.6

0.8

1

Figure 3.1: The imaginary part of ω when solving the EHW primary dispersion
relation, equation (3.80), for a) α = 0.7, κ = 10 and b) α = 10, κ = 10.

relation and its associated growth rate and instability will also be labelled ‘primary’.

An example is shown in figure 3.2.4, where the positive imaginary part of the

solution to equation (3.80) is plotted for two different sets of parameters. Panel a)

shows a case with a low value of α, where the parallel electron response is adiabatic,

and panel b) shows a high α case. It can be seen that the dispersion relation has a

similar shape for both cases and rapidly decays with k. However, the high α case is

centred around a higher value of ky. Equation (3.80) is a quadratic and has solutions

ω =
−iα(k2 + 1)(1− δs,1δky ,0)±

√
−α2(k2 + 1)2(1− δs,1δky ,0)− 4iκαk2ky

2k2
. (3.81)

An important feature is that both cases in figure 3.2.4 show no growth for ky = 0.

In this situation the extended version of equation (3.81) indicates ω = 0 and the

non-extended version gives a decaying solution,

ω =
−iα(k2

x + 1)

k2
x

.

This demonstrates that this primary instability can not grow zonal modes, which

are defined to have ky = 0 in our slab model, therefore nonlinear processes must be

involved in the generation of zonal flows in the Hasegawa-Wakatani system.
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3.3 Summary

This chapter has introduced the two reduced models of plasma turbulence that will

be used throughout this work, namely the Extended-Hasegawa-Mima and Extended-

Hasegawa-Wakatani equations. They have been written in such a way that the non-

extended versions can be easily recovered by changing a simple switching parameter,

s. The numerical codes developed to solve these equations, discussed in chapter 4,

and the analytical models described in chapters 5 to 7 also include this switching

parameter and can therefore be used to study both the extended and non-extended

systems.

The Fourier space version of the equations was also presented. This is used

in the derivation of the four-mode truncated models presented later. Finally, the

dispersion relations for each system of equations was derived. These show how a

drift wave in the Extended-Hasegawa-Mima system is stable and will simply prop-

agate, whereas the Extended-Hasegawa-Wakatani equations will linearly grow un-

stable drift waves. It was also highlighted that this primary instability in the EHW

equations cannot grow zonal flows. In both system they must be produced by sec-

ondary instabilities such as cascades or resonant interactions. Four-mode truncated

models are derived in 5 to 7 to study these resonant interactions.
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Chapter 4

Numerical Methods

4.1 Introduction

One of the reasons for using the reduced models discussed in section 3 is the relative

simplicity with which they can be solved numerically. Nevertheless to ensure a stable

code that produces accurate results a number of techniques must be used. These

are discussed in this chapter, along with a summary of how they are combined for

use in the pseudospectral codes used later.

In general the Haseagawa-Mima and Hasegawa-Wakatani equations have the

form
d

dt
u = f(u,

du

dx
,
du

dy
), (4.1)

where f(u, dudx ,
du
dy ) is a nonlinear function. Here we use finite difference techniques

to evolve the quantity ‘u’ in time. The derivations given in chapter 3 are for a

two dimensional Cartesian system and therefore the quantities being evolved are

represented on a two-dimensional grid. Each cell in the grid is labelled with indices

i and j, representing the x and y directions respectively.

Under this finite difference approximation time derivatives must also be dis-

cretised, equation (4.1) is then written

un+1
i,j − uni,j

∆t
= f(uni,j ,

duni,j
di

,
duni,j
dj

), (4.2)

where superscript n represents the value at the current time and ∆t is the small time

increment between time n and time n+ 1. This however is potentially numerically

unstable and solving it directly will produce solutions that grow exponentially, this

is discussed further in section 4.2 and a stable time integration solution is presented

in section 4.4. To discretise spatial derivatives, centred difference approximations

67



are used, in this case
∂

∂x
u

becomes
uni+1,j − uni−1,j

2∆x

where ∆x is the space between grid points in the x direction. The two-dimensional

Laplacian,

∇2u

becomes
1

∆2
(uni+1,j + uni−1,j − 4uni,j + uni,j+1 + uni,j−1),

where we have assumed that the grid spacing is the same in the x and y directions

to give ∆ = ∆x = ∆y.

The nonlinear spacial derivatives, the Poisson bracket terms, cannot be rep-

resented so simply. They are discussed in section 4.5.

4.2 The Courant-Friedrichs-Lewy condition

von Neumann Stability

When writing finite difference codes the stability of a particular numerical solution

must always be considered. This is a complex subject and here we restrict ourselves

to demonstrating the problem using von Neumann stability analysis with a simple

example based on [Press, 1988].

A general one dimensional flux conservative equation,

∂p(y, t)

∂t
= −ν ∂p(y, t)

∂y
, (4.3)

can be written in finite difference form as

pn+1
j − pnj
dt

= −ν
(
pnj+1 − pnj−1

2dy

)
. (4.4)

This is known as the forward time centred space (FTCS) approximation. Von Neu-

mann stability analysis makes the assumption that the eigenmodes of a finite dif-

ference equation are of the form

pnj = ε(k)neikjdy,
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where ε is an amplification factor and, for this example, i =
√
−1 rather than a grid

index. It can easily be seen that if |ε(k)| > 1, p will grow as n increases. This is

what is meant by instability, for example, using this definition and solving equation

(4.4) for ε(k) gives

ε(k) = 1− i
νdt

dx
sin(kdy),

whose modulus is greater than one for all k. This means that any attempt to solve

this equation using the FTCS finite differencing scheme will result in a solution

which grows exponentially. In practice this means that the FTCS is never used for

numerical integration as numerous other integration schemes with better stability

properties exit. The precise scheme used in this work for the time integration of the

Hasegawa-Mima and Hasegawa-Wakatni equations will be described in section 4.4.

The CFL condition

The Courant-Friedrichs-Lewy (CFL) condition is a condition which must normally

be met to ensure stability in explicit numerical schemes. For an N dimensional

flux conservative problem on a square grid the CFL condition can be written[Press,

1988, p.663]

dt ≤ ∆√
N |ν|

(4.5)

where the grid is made of cells of size ∆ × ∆. It appears in the stability analysis

of many finite difference schemes, and is a statement that information must not

propagate at such a rate that it is unavailable to a certain grid point when needed.

The fastest information can propagate in a flux conservative equation such as (4.3)

is ν, so ensuring the inequality in equation (4.5) is true means that in a single time

step dt, information can only move by one grid point.

This is in fact an oversimplification as the precise conditions for stability

depend on the specific equation and finite differencing scheme being used. However,

it is a good guideline for deciding on step size. The codes used in this work use it

as a safety check on the largest permissible time step size with ν replaced by v?,

equation 3.31, and κ, equation 3.58 for the EHM and EHW cases respectively.
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4.3 Numerical schemes

4.3.1 Explicit schemes

Explicit schemes for solving differential equations are those that solve equation (4.1)

by approximating it as
un+1 − un

dt
= f(un),

which can be rearranged to give

un+1 = un + dt ∗ f(un).

In this type of scheme all the information needed to calculate the value at time

n+1 is known at the current time n. While this is perhaps the most straightforward

scheme to use is suffers from problems with numerical stability. To get an accurate

result in highly nonlinear systems this can require the use of an infeasibly small

timestep dt.

4.3.2 Implicit schemes

Implicit schemes avoid problems with numerical stability by calculating the right

hand side of (4.1) at timestep n+ 1. This results in an equation of the form

un+1 − dt ∗ f(un+1) = un.

Rather than a straightforward iteration as was necessary for the explicit case, this

involves solving a linear algebra problem at each timestep. This can be seen by

rewriting the left hand side as an operator, A, to give

Aun+1 = un.

For a two dimensional finite difference code, u becomes a vector describ-

ing values at each grid point and A becomes a matrix describing the gradients

taken. This shows the shortcoming of implicit schemes, they are unconditionally

stable[Press, 1988] but often involve inverting large matrices at each timestep. For-

tunately, matrix inversion is a common problem in physics and mathematics and a

number of techniques have been developed to expedite it. The method used for this

work will be described in section 4.6.
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4.3.3 Pseudospectral schemes

Spectral schemes solve equation (4.1) by transforming to Fourier space so that

u(~x) → u(~k) where ~k is a wavevector. Linear terms are represented as F (k) ∗ u(k)

where gradients are simply k raised to an appropriate power, these can be solved very

rapidly. However, nonlinear terms will involve a complex coupling parameter that

can potentially involve summing contributions from all mode numbers. Such a sum

is difficult to parallelise effectively and calculating it can outweigh the performance

increase gained by the simplicity of the linear terms.

Pseudospectral schemes aim to get the best performance by evaluating linear

terms and timesteps in Fourier space whilst evaluating nonlinear terms directly in

real space. Fast Fourier transforms are used to combine the real and Fourier space

calculations. The pseudospectral scheme used for this work will be discussed in

section 4.4.

4.4 The Karniadakis method

The Karniadakis method[Karniadakis et al., 1991] was initially developed for the in-

compressible Navier-Stokes equations. The Karniadakis recursion relation for solv-

ing Navier-Stokes style equations is given by

γ0
−→v n+1 −

Ji−1∑
q=0

αq
−→v n−q

∆t
= −∇pn+1 +

Ji−1∑
q=0

βq
−→
N (−→v n−q) + ν

−→
L (−→v n+1) (4.6)

where −→v is the velocity vector describing the flow of a fluid element, Ji is the order

to which the equation is being solved, γ0, αq and βq are numerical coefficients given

in Table 4.1.

In the codes written for this work, ~v is replaced by the quantities being

differentiated with respect to time in equations (3.32), (3.59) and (3.60). There are

no pressure gradients in the EHM or EHW equations so the ∇p term is dropped and

~N is replaced with finite difference representations of the gradients in the system.

Poisson brackets are evaluated using the technique discussed in section 4.5. Linear

dissipation and the additional forcing added in chapter 7 replace the final term in

equation (4.6).

It should be noted here that the ~L term is evaluated at timestep n + 1,

therefore its inclusion requires implicit techniques to advance the numerical solution.

This means that the terms under summations are evaluated in real space, whereas
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Coefficient 1st order 2nd Order 3rd Order

γ0 1 3/2 11/6

α0 1 2 3
α1 0 -1/2 -3/2
α2 0 0 1/3

β0 1 2 3
β1 0 -1 -3
β2 0 0 1

Table 4.1: Coefficients for use in the Karniadakis method

dissipation and the time step is done in Fourier space using spectral methods. Fast

Fourier transforms are used to change between real and Fourier space as needed.

4.5 The Arakawa Poisson bracket

The problem with Poisson brackets in finite difference algorithms is that when writ-

ten directly in finite difference form they are inherently unstable. The solution

breaks down in to long thin eddies that are only a few grid spacings in size[Arakawa,

1966].

In order to avoid this it is necessary to specially design a finite difference

expansion for Poisson brackets. In [Arakawa, 1966] three finite difference represen-

tations of a Poisson brackets are derived, J(A,B)++, J(A,B)×+ and J(A,B)+×.

The previous definition of a Poisson bracket, equation (3.23), is related to J(A,B)

via J(A,B) = [A,B].

Each of the forms of J meet a necessary requirement of a Poisson bracket,

J(A,B)++ satisfies J(A,B) = −J(B,A),

J(A,B)×+ conserves square vorticity, and

J(A,B)+× conserves kinetic energy.

To satisfy all of the requirements the various forms can be combined as

1

3

{
J(A,B)++ + J(A,B)+× + J(A,B)×+

}
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to give

Ji,j = (4.7)

1

12∆2
{(Ai+1,j −Ai−1,j)(Bi,j+1 −Bi,j−1)− (Ai,j+1 −Ai,j−1)(Bi+1,j −Bi−1,j)

+Ai+1,j(Bi+1,j+1 −Bi+1,j−1)−Ai−1,j(Bi−1,j+1 −Bi−1,j−1)

−Ai,j+1(Bi+1,j+1 −Bi−1,j+1) +Ai,j−1(Bi+1,j−1 −Bi−1,j−1)

+Ai+1,j+1(Bi,j+1 −Bi+1,j)−Ai−1,j−1(Bi−1,j −Bi,j−1)

−Ai−1,j+1(Bi,j+1 −Bi−1,j) +Ai+1,j−1(Bi+1,j −Bi,j−1)}

where the i,j subscript denotes a value at gridpoint i,j. This is the form used in the

numerical codes developed for this work.

4.6 Fourier Decomposition

To solve the final timestep of the Karniadakis method Fourier decomposition[Potter,

1973, p.92] is used. To demonstrate this we first rewrite equation (4.6). Dropping

the pressure term and rearranging gives

γ0
−→v n+1 − ν∆t

−→
L (−→v n+1) =

Ji−1∑
q=0

αq
−→v n−q + ∆t

Ji−1∑
q=0

βq
−→
N (−→v n−q), (4.8)

the right hand side of which relies on information from the current and previous

timesteps and is therefore known. For simplicity we rewrite it as a source term.

Explicitly writing out the gridpoint indices, equation (4.8) becomes

γ0v
n+1
i,j − νL(vn+1

i,j ) = Si,j , (4.9)

which can be written as

Pvn+1
i,j = Si,j , (4.10)

where P is an operator describing the left hand side of (4.8).

To describe Fourier synthesis we now switch to the CHM case and neglect

any linear forcing or damping described by the L term, the numerical code used

in this work then evolves the quantity φ − ρ2
s∇2φ in time. The finite difference

representation of this is

− ρ
2
s

∆2
(φi+1,j + φi−1,j − 4φi,j + φi,j+1 + φi,j−1) + φi,j ,
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which means that we can write (4.10) as

− ρ2
s(φ

n+1
i+1,j + φn+1

i−1,j − 4φn+1
i,j + φn+1

i,j+1 + φn+1
i,j−1) + ∆2φn+1

i,j = ∆2Sni,j , (4.11)

where S is the source term described earlier. The left hand side of (4.11) is used to

define P , it is the operator that gives

Pφi,j = −ρ2
s(φi+1,j + φi−1,j − 4φi,j + φi,j+1 + φi,j−1) + ∆2φi,j ,

and we therefore have

Pφn+1
i,j = ∆2Sni,j . (4.12)

P can then be applied to the double Fourier harmonic[Potter, 1973],

si,j(k, l) = φ̂(k, l)sin(
πkj

J
)sin(

πli

I
), (4.13)

where I and J are the maximum values of i and j. This gives

Psi,j(k, l) = αk,lsi,j(k, l), (4.14)

where α is an eigenvalue given by

αk,j = ρ2
s(2cos(

πl

I
) + 2cos(

πk

J
− 4))− 2∆2.

Using the transform

F (φi,j) =
∑
i,j

φ̂(k, l)sin(
πkj

J
)sin(

πli

I
) =

∑
i,j

si,j

and

F (Si,j) =
∑
i,j

Ŝ(k, l)sin(
πkj

J
)sin(

πli

I
),

equation (4.12) indicates

PF (φi,j) = P
∑
i,j

si,j = ∆2F (Si,j).

This means that, for each individual mode, the value of φ̂(k, l)n+1 can be calculated

as

φ̂(k, l)n+1 =
∆2Ŝ(k, l)n

αk,j
. (4.15)
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Different sets of boundary conditions will require a different sets of Fourier harmon-

ics. A different operator P will lead to different eigenvalues (αk,j), as will including

the linear term L. Each equation solved by the numerical codes used in this work

has had the relevant formula for eigenvalues calculated analytically.

The steps listed above are a demonstration of the mathematics behind the

Fourier decomposition technique. In practice Ŝn is calculated from S using a fast

Fourier transform library, then equation (4.15) is solved for φ̂n+1, and finally an

inverse fast Fourier transform is used to find φn+1.

4.7 Summary

The techniques listed above were used to create C++ codes for solving the ex-

tended and non-extended versions of the Hasegawa-Mima and Hasegawa-Wakatani

equations. The combination of the Arakawa Poisson bracket and the Karniadakis

time stepping technique was described in [Naulin, 2003] and tested in [Naulin and

Nielsen, 2003], a detailed discussion is given in [Scott, 2008]. Throughout this work

they will referred to as ‘full simulations’ or ‘partial differential equation (PDE) sim-

ulations’. Both codes have been parallelised using a message passing interface (MPI)

library.

The basic structure of the two codes is identical, first the initial values needed

to set up the simulations is read from a setup file, this includes constants from the

equations as well as constants relevant to the code such as the timestep and grid

spacing. All the PDE simulations in this work were carried on on a square domain

discretised into 512x512 grid spaces. For the EHM equations solved in chapter 5 the

box had sides of length 2π, with the domain running from −π to π. As the Larmor

radius is retained in this chapter the length scales are in SI units. The smallest

Larmor radius investigated is ρs = 0.35m ∼ 0.06L where L is the length of the box,

it is approximately 30 times larger than the grid spacing. The largest Larmor radius

investigated is ρs = 4m ∼ 0.64L In chapters 6 and 7, simulations of the Extended-

Hasegawa-Wakatani and driven-Hasegawa-Mima equations respectively, the domain

ran from -20 to 20 and lengths were normalised to the Larmor radius. In chapter 6

time was normalised to ωi. The initial values for potential and density can be read

in from an input file, or, in the case of the modulational instability used in chapter

5, specified in the first setup file.

Once the initial setup is complete quantities that are not part of the time

derivative term in equations (3.32) or (3.59) and (3.60) are calculated. Nonlinear

terms are calculated using the Arakawa method described in section 4.5. These
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newly calculated values are added to versions calculated on the previous time step

to calculate the terms under summations in the Karnadakis method, equation (4.6)

and hence the source term in equation (4.9).

A fast Fourier transform is then applied to the source term to calculate its

k-space representation. The Fourier-decomposition technique described in section

4.6 is then used to step the solution forward in time , find values of potential from

vorticity, and in the Hasegawa-Wakatani case, density. An inverse fast Fourier

transform is used to calculate new values in real space.

Finally pointers to arrays are moved to store data for use as ‘previous timesteps’

in the Karniadakis method. Output files are generated as specified in the initial

setup file and the process is repeated.

Aliasing is not a problem due to the nature of the simulations performed. In

5 the system is initialised with modes that all have k � 512
2 . Even though resonant

interactions and energy cascades can produce modes with larger k values, these do

not approach the 512
2 before the simulation is stopped and aliasing is therefore not

a concern. For the simulations performed in chapters 6 and 7 the instability and

driving profile drops off rapidly with |k| and therefore only causes the growth of

modes with k � 512
2 . However, as these systems are initialised with white noise,

viscosity is applied to suppress higher mode numbers.
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Chapter 5

The Modulational Instability in

the Hasegawa-Mima System

5.1 Introduction

It has long been known that the modulational instability (MI) provides a mecha-

nism by which a plasma can transition from drift wave dominated turbulence to a

zonal flow[Chen et al., 2000]. Non-local interactions transfer energy from a driving

drift wave to modes with k-numbers in the zonal direction via resonant interactions

in the presence of one or more ‘sidebands’. In tokamaks this is investigated using

techniques such as heavy ion beam probes, Langmuir probes and beam emission

spectroscopy[Fujisawa, 2009]. Statistical analysis techniques such as averaged bis-

pectra are then used to analyse the data. For example, Langmuir probes have been

used to measure the velocity power spectrum at the edge of the HT-7 tokamak. A

low freqency peak can be found indicating a zonal flow[Fujisawa, 2009]. For further

examples see [Fujisawa, 2009; Diamond et al., 2000; van Milligen et al., 1995]. The

other approach is the use of numerical simulations where the time and length scales

of interest are directly accessible. Here, we do this using a pseudospectral code

that was developed to solve the Extended-Hasegawa-Mima equation, as described

in chapter 4.

The EHM system was chosen as a model of plasma behaviour as it contains

enough physics to investigate the transition from drift wave dominated turbulence to

zonal flows, yet is simple enough to allow an analytical investigation. This simplicity

however has its shortcomings; drift waves do not develop naturally in simulations

and therefore must be introduced as an initial condition.

This chapter begins with an analytical investigation of the Extended-Hasegawa-
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Mima equation. A simplification is made where the system is truncated to contain

only the four modes necessary to create a modulational instability, this is a common

procedure for investigating the MI, for examples see[Manfredi et al., 2001; Lashmore-

Davies et al., 2001; Guzdar et al., 2001; McCarthy et al., 2004] . Under this this

assumption a series of ODEs are developed to model the behaviour of the driving

wave, zonal perturbation and sidebands.

A linearised version of the ODEs is then used to produce a dispersion relation

from which a prediction of the growth rate of the zonal mode can be calculated. At

the end of the chapter the pseudospectral code is used to investigate the effect of

varying ρs and the behaviour of ’off-zonal’ perturbations. Comparisons are made

with the analytical models derived at the start of the chapter.

5.2 A truncated four-mode system

To derive the four-mode truncated (4MT) system describing the modulational in-

stability we use the EHM system but define Φ~k as a sum of four modes, ~p,~q , ~p+, ~p−,

where

Φ~k = φ~p (t) δ~k,~p + φ~q (t) δ~k,~q + φ ~p+
(t) δ~k, ~p+

+ φ ~p− (t) δ~k, ~p− (5.1)

and

~p± = ~p± ~q. (5.2)

It should be noted that when initialising the PDE simulations the waves were ini-

tialised in real space with Φ~k(~x) = A~ksin(2π
L
~k~x), so ~k represents integer wave num-

bers.

These modes can then be substituted in to equation (3.49) to give

∂tφ~p (t) δ~k,~p + ∂tφ~q (t) δ~k,~q + ∂tφ ~p+
(t) δ~k, ~p+

+ ∂tφ ~p− (t) δ~k, ~p− =

− iΩ~k
(
φ~p (t) δ~k,~p + φ~q (t) δ~k,~q + φ ~p+

(t) δ~k, ~p+
+ φ ~p− (t) δ~k, ~p−

)
+

1

2

∑
~k1 , ~k2

T
(
~k, ~k1 , ~k2

)
φ ~k2 (t)φ ~k1 (t) δ~k, ~k1+ ~k2

. (5.3)

Then with ~k defined as each of the four modes in the system in turn, the sum

is expanded over the four modes and their counter-propagating solutions for both
~k1 and ~k2 . Most of the terms produced will be zero due to either the Kronecker
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Delta or cancellations in the coupling parameter,

T (~k, ~k1, ~k2) = −
(k1yk2x − k1xk2y)(ρ

2
s(k

2
2 − k2

1) + δs,1(δk1y ,0 − δk2y ,0))

(1 + ρ2
sk

2 − δky ,0δs,1)
, (5.4)

leaving the following equations

∂tφ~p (t) = T (~p, ~p−, ~q)φ~q (t)φ ~p− (t)

+ T
(
~p, ~−q, ~p+

)
φ ~p+

(t)φ ~−q (t)− iΩ~pφ~p (t) (5.5)

∂tφ~q (t) = T (~q,− ~p−, ~p)φ~p (t)φ− ~p− (t)

+ T (~q,−~p, ~p+)φ ~p+
(t)φ−~p (t)− iΩ~qφ~q (t) (5.6)

∂tφ ~p+
(t) = T ( ~p+, ~q, ~p)φ~p (t)φ~q (t)− iΩ ~p+

φ ~p+
(t) (5.7)

∂tφ ~p− (t) = T ( ~p−,−~q, ~p)φ~p (t)φ−~q (t)− iΩ ~p−φ ~p− (t) (5.8)

Using the definition φ~k = ψ~k(t)e
−iΩ~kt and its conjugate φ~k = ψ~k(t)e

iΩ~kt

equations (5.5) to (5.8) can be expanded to

e−iΩ~pt∂tψ~p (t)− ψ~p (t) iΩ~pe
−iΩ~pt = (5.9)

T (~p, ~p−, ~q)ψ~q (t) e−iΩ~qtψ ~p− (t) e−iΩ ~p− t + T (~p,−~q, ~p+)ψ ~p+
(t) e−iΩ~rptψ~q (t)eiΩ~qt

− ψ~p (t) iΩ~pe
−iΩ~pt,

e−iΩ~qt∂tψ~q (t)− ψ~q (t) iΩ~qe
−iΩ~qt = (5.10)

T (~q,− ~p−, ~p)ψ~p (t) e−iΩ~ptψ ~p− (t)eiΩ ~p− t + T (~q,−~p, ~p+)ψ ~p+
(t) e−iΩ ~p+

tψ~p (t)eiΩ~pt

− ψ~q (t) iΩ~qe
−iΩ~qt,

e−iΩ ~p+
t∂tψ ~p+

(t)− ψ ~p+
(t) iΩ ~p+

e−iΩ ~p+
t = T ( ~p+, ~q, ~p)ψ~p (t) e−iΩ~ptψ~q (t) e−iΩ~qt

− ψ ~p+
(t) iΩ ~p+

e−iΩ ~p+
t, (5.11)

e−iΩ ~p− t∂tψ ~p− (t)− ψ ~p− (t) iΩ ~p−e−iΩ ~p− t = T ( ~p−,−~q, ~p)ψ~p (t) e−iΩ~ptψ~q (t)eiΩ~qt

− ψ ~p− (t) iΩ ~p−e−iΩ ~p− t, (5.12)

which can then be simplified using

∆− = Ω~p − Ω~q − Ω~p− ,

∆+ = Ω~p + Ω~q − Ω~p+
.

(5.13)
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The system is in resonance when ∆± = 0.

This gives a set of ordinary differential equations (ODEs):

∂tψ~p (t) = eit(∆−)T (~p, ~p−, ~q)ψ~q (t)ψ ~p− (t) + eit(∆+)T (~p,−~q, ~p+)ψ ~p+
(t)ψ~q (t),

(5.14)

∂tψ~q (t) = e−it(∆−)T (~q,− ~p−, ~p)ψ~p (t)ψ ~p− (t) + eit(∆+)T (~q,−~p, ~p+)ψ ~p+
(t)ψ~p (t),

(5.15)

∂tψ ~p− (t) = e−it(∆−)T ( ~p−,−~q, ~p)ψ~p (t)ψ~q (t), (5.16)

∂tψ ~p+
(t) = e−it(∆+)T ( ~p+, ~q, ~p)ψ~p (t)ψ~q (t) , (5.17)

which can model the EHM system if it is initialized with four appropriate waves.

An example of this is shown in figure 5.1 for a system initialised with a driving

wave with modenumber ~p = (0, 10) and a zonal perturbing wave with ~q = (1, 0).

The driving wave is alternately referred to as the pump wave. Satellite modes,

alternately referred to as sidebands, are initialised with the same amplitude as the

zonal mode. The growth and subsequent oscillation of the zonal mode can be seen.

The oscillations seen in this system in fact shows similarities to those in

[Manfredi et al., 2001], where a spectral simulation was used to solve the EHM

system. It should be noted that in [Manfredi et al., 2001] all modes except those

involved in the four-wave interactions were suppressed, therefore the saturation of

the zonal flow seen in our PDE simulations is not seen.

The effect of the extension to the CHM model is demonstrated in figure 5.2,

which compares the amplitude of the perturbing mode, ~q, from ODE simulations

of the EHM and CHM cases. It is clear that the EHM system grows more rapidly.

This is an expected effect from the modification of the coupling term, equation (5.4),

where it can be seen that enabling the extension enhances coupling to modes with

ky = 0.
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Figure 5.1: An example of the ODE system showing the satellite and zonal modes
growing linearly at the same rate and then oscillating. Pictures of potential created
by inverse Fourier transforming the amplitudes described by the ODEs are shown
in the bottom panels. A change in the importance of modes with kx = 1 can clearly
be seen, although the satellite modes ensure that waves with ky = 10 remain clearly
visible.
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Figure 5.2: The growth of the zonal mode for identical initial conditions in ODE
simulations of the EHM and CHM systems for the case ~p = (0, 10), ρs = 0.6m,

ψ0 = 0.01m
2

s and v? = 10ms . Both have been normalised using the analytical linear
growth time of the EHM system. It can clearly be seen that the zonal mode grows
faster for the EHM system.
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5.3 A linear dispersion relation for the truncated sys-

tem

5.3.1 Derivation

Linearised equations

The ODE equations (5.14) to (5.17) can be linearised by treating modes ~q, ~p+, ~p−

as first order perturbations of the system with ~p ∼ O(0). We write this as

~ψ =


ψ~p

ψ~q

ψ ~p+

ψ ~p−

 =


ψ0

0

0

0

+ ε


0

ψ~q

ψ ~p+

ψ ~p−

 (5.18)

where ε is a small parameter.

First equation (5.14) gives:

∂tψ0 = ε2eit(∆−)T (~p, ~p−, ~q)ψ~qψ ~p− + ε2eit(∆+)T (~p,−~q, ~p+)ψ ~p+
ψ~q (5.19)

where keeping only terms O(ε) and larger means

∂tψ0 = 0. (5.20)

Then using equations (5.20) and(5.18) in each of equations (5.15),(5.16) and (5.17)

in turn gives

∂tψ~q = e−it(∆−)T (~q,− ~p−, ~p)ψ0ψ ~p− + eit(∆+)T (~q,−~p, ~p+)ψ ~p+
ψ0, (5.21)

∂tψ ~p− = e−it(∆−)T ( ~p−,−~q, ~p)ψ0ψ~q, (5.22)

∂tψ ~p+
= e−it(∆+)T ( ~p+, ~q, ~p)ψ0ψ~q. (5.23)

The Dispersion Relation

To obtain a dispersion relation for the MI we seek solutions to the linearised equa-

tions, (5.21) to (5.23), of the form

ψ~q(t) = A~qe
−iω~qt,

ψ ~p+
(t) = A ~p+

e−iω ~p+
t,

ψ ~p−(t) = A ~p−e
−iω ~p− t, (5.24)
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which gives us

∂tA~qe
−iω~qt = e−it(∆−)T (~q,− ~p−, ~p)ψ0A ~p−e

−iω ~p− t

+ eit(∆+)T (~q,−~p, ~p+)ψ0A ~p+
e−iω ~p+

t

⇒

−iω~qA~q = T (~q,− ~p−, ~p)ψ0A ~p−e
i(ω ~p−+ω~q−∆−)t

+ T (~q,−~p, ~p+)ψ0A ~p+
e−i(ω ~p+

−ω~q−∆+)t, (5.25)

∂tA ~p−e
−iω ~p− t = e−it(∆−)T ( ~p−,−~q, ~p)ψ0A~qe

−iω~qt

⇒

−iω ~p−A ~p− = T ( ~p−,−~q, ~p)ψ0A~qe
i(ω~q+ω ~p−−∆−)t, (5.26)

∂tA ~p+
e−iω ~p+

t = e−it(∆+)T ( ~p+, ~q, ~p)ψ0A~qe
−iω~qt

⇒

−iω ~p+
A ~p+

= T ( ~p+, ~q, ~p)ψ0A~qe
−i(ω~q+∆+−ω ~p+

)t. (5.27)

We now remove the time dependence of these equations by requiring

ω ~p− + ω~q = ∆− (5.28)

and

−ω~q + ω ~p+
= ∆+ (5.29)

so that equations (5.25) to (5.27) can be simplified to give

− iω~qA~q = T (~q,− ~p−, ~p)ψ0A ~p− + T (~q,−~p, ~p+)ψ0A ~p+
,

− iω ~p−A ~p− = T ( ~p−,−~q, ~p)ψ0A~q ,

− iω ~p+
A ~p+

= T ( ~p+, ~q, ~p)ψ0A~q .

This can be written as

A

 A~q

A ~p+

A ~p−

 = 0 (5.30)
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where

A =

 −iω~q −T (~q,−~p, ~p+)ψ0 −T (~q,− ~p−, ~p)ψ0

−T ( ~p−,−~q, ~p)ψ0 0 iω ~p−

−T ( ~p+, ~q, ~p)ψ0 −iω ~p+
0

 . (5.31)

Equation (5.30) has a non trivial solution when

det(A) = 0, (5.32)

hence

det(A) =iω~qω ~p−ω ~p+
+ iω ~p− |ψ0|2T (~q,−~p, ~p+)T ( ~p+, ~q, ~p)

− iω ~p+
|ψ0|2T (~q,− ~p−, ~p)T ( ~p−,−~q, ~p) = 0. (5.33)

Using equations (5.28), (5.29) and (5.13), we can rewrite equation (5.33) as

ω~q(Ω~p − Ω~q − Ω ~p− − ω~q)(Ω~p + Ω~q − Ω ~p+
+ ω~q)

+ (Ω~p − Ω~q − Ω ~p− − ω~q)|ψ0|2T (~q,−~p, ~p+)T ( ~p+, ~q, ~p)

− (Ω~p + Ω~q − Ω ~p+
+ ω~q)|ψ0|2T (~q,− ~p−, ~p)T ( ~p−,−~q, ~p) = 0, (5.34)

which can be rearranged to give a dispersion relation for the 4MT system,

(Ω− Ω~q) +
|ψ0|2T (~q,−~p, ~p+)T ( ~p+, ~q, ~p)

(Ω + Ω~p − Ω ~p+
)

− |ψ0|2T (~q,− ~p−, ~p)T ( ~p−,−~q, ~p)
(−Ω + Ω~p − Ω ~p−)

= 0,

(5.35)

where Ω = Ω~q + ω~q.

5.3.2 The linear growth rate

Analytical predictions of growth rates

Solving equation (5.35), whilst holding all parameters other than ~q and ρs constant,

allows maps of predicted growth rates to be produced. This is shown if figure 5.3

for increasing ρs. It can be seen that as ρs is increased the number of growing

modes increases and they begin to extend off the resonant curve seen in figure

5.3(a). This is due to the ρs terms in the coupling parameter, equation (5.4). As

ρs → ∞ the coupling between modes will be enhanced and the additional terms

from the extension to the CHM equation will become negligible. This leads to

larger numerators in equation (5.35) and an increased growth rate. This trend has

85



been observed previously in simulations of the CHM equation [Connaughton et al.,

2010] where increasing ψ0 also leads to larger numerators in equation (5.35). We

treat ρs and v? as independent parameters here, though it should be noted that

equation (3.33) indicates that this in reality requires an adjustment to the density

gradient to keep v? constant.
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Figure 5.3: The analytical linear growth rate maps for various ρs with ~p = (0, 10),

v? = 10ms and ψ0 = 0.001m
2

s . It can be seen that as ρs is increased growth is
predicted for modes further away from the resonant curve.

These maps allow for an informed selection of modes when running full MI

simulations. However, as the derivation presented in section 5.3.1 makes assump-

tions about the resonances of the modes in the system, equations (5.28) and (5.29),

86



that may not necessarily be satisfied at all in the full simulation, or may be better

satisfied by a different set of modes, it is not always accurate. An example is pre-

sented in figure 5.4. The system was initialised with ~p = (0, 10) and ~q = (1, 10).

Solving equation (5.35) produces an incorrect linear growth rate prediction, shown

in figure 5.4 as the line labelled ‘linear q = (1, 10)’. In this case the PDE system

rapidly grows an extra mode ~k = (−1, 10), by t ∼ 10τ its amplitude is comparable

to that of the zonal mode. This completes the set of four modes that would be

formed by a system initialised with ~p = (0, 10) and ~q = (1, 0). In this new system

∆± is closer to 0 and resonance conditions (5.28) and (5.28) ensure that ~q, ~p+ and

~p− all grow at the rate given by assuming ~q = (1, 0) which is shown in figure 5.4

as the line labelled ‘linear q = (1, 0)’. It can be seen that the zonal mode grows

at this new growth rate. [Connaughton et al., 2010] showed how the 4MT was a

better model for zonal flow transition than a 3 mode truncation as a full simulation

would rapidly grow the additional fourth mode. This result was reported earlier in

[Manfredi et al., 2001] where the link between the drift-wave to zonal-flow transition

in [Smolyakov et al., 2000a,b] and the three wave interactions in Terry and Horton

[1982]; Waltz [1983]; Biskamp and Kaifen [1985] was discussed. Combined with

the situation presented here, this demonstrates the limitations of these truncated

models. Full systems can grow additional modes, and in certain circumstances they

can interact more strongly than the modes prescribed in the initial conditions. In

this case the 4MT model will produce incorrect predictions.
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Figure 5.4: The growth of an additional mode (~k = (−1, 10)) as mesured from a full
PDE simulation in a system seeded with ~p = (0, 10) and ~q = (1, 10). This completes
the set of modes that would be seeded in a system with ~q = (1, 0). The linear growth
predicted for these two systems is indicated with straight lines.

The effect of the EHM equation

It can be seen from the coupling parameter, equation (3.48), that the extension to the

CHM equation enhances coupling to modes with ky = 0. This can be demonstrated

by plotting a map of the predicted growth rate for an equivalent set of parameters

for both the extended and non-extended cases. This is done by solving equation

(5.35) for every qx and qy pair whilst keeping all other parameters constant. As

equation (5.35) is cubic only the largest negative imaginary solution is plotted. For

the set of parameters chosen to produce figure 5.5 the mode ~q = (1, 0) has a 0, and

therefore oscillatory, solution for the CHM but not the EHM case. In situations

where both the EHM and CHM are expected to grow the growth rate of modes with

ky = 0 is larger for the EHM system.
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Figure 5.5: Maps of the analytical linear growth rate for the case ~p = (0, 10),

ρs = 0.4m, ψ0 = 0.01m
2

s and v? = 10ms . Unlike the EHM (a) the CHM (b) has no
predicted growth for values near ~q = (0, 0).

89



The linear growth time

To allow for comparisons between different simulations we define a linear growth

time

τ =
1

γ

where γ is the growth rate calculated by solving equation (5.35) . As the system is

in SI units for this chapter this is measured in seconds

5.4 Results

5.4.1 The two dynamical regimes accessible by varying ρs

We begin this section by demonstrating the development of zonal flows from the

initial conditions described earlier in this chapter, namely a driving mode ~p = (0, py),

a zonal perturbing mode ~q = (qx, 0) and two satellite modes ~p± = ~p±~q where p� q.

Firstly figure 5.6 shows a case where the system transitions to a strong per-

sistent zonal flow. The overlaid velocity profiles in this figure show that even once

the bands of potential have begun to break apart a zonal flow is still present.

Next a case where a zonal flow forms, but then transitions back to a drift

wave, is shown in figure 5.7. In this case a Kármán like vortex street is formed,

before stretching to form a more drift wave like structure, and finally compressing

again to form another broader set of vortex streets. It should be noted that the

limits on the velocity axis are not fixed and that the initial set of streets had the

strongest zonal flow.

These two regimes have previously been identified for the 4MT system and

related to a dimensionless parameter, Mρ, that measures the strength of the non-

linearity of the system[Connaughton et al., 2010]. Following [Connaughton et al.,

2010] and [Gill, 1974] we define

Mρ =
ρ2
sψ0p

3

v∗
(5.36)

such that larger values of Mρ indicate a more nonlinear system. The v? term in

equation (5.36) is proportional to the β term in [Manfredi, 1999] where it was found

that increasing β, hence lowering Mρ lead to the inhibition of turbulent energy

transfer.

This relation can most easily be demonstrated by rewriting equation (5.35)

in terms of dimensionless parameters. To do this we note that T (k, k1, k2) has units

length−2 and that Ω and Ω~k have units time−1. We therefore write T (k, k1, k2) =
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p2T ′(k, k1, k2), Ω = v?
pρ2
s
Ω′ and Ω~k = v?

pρ2
s
Ω′~k

where quantities with a prime are unit-

less. Substituting these into equation (5.35) gives

v?
pρ2

s

(Ω′ − Ω′~q) +
|ψ0|2p2T ′ (~q,−~p, ~p+) p2T ′ ( ~p+, ~q, ~p)

v?
pρ2
s
(Ω′ + Ω′~p − Ω′~p+

)
(5.37)

− |ψ0|2p2T ′ (~q,− ~p−, ~p) p2T ′ ( ~p−,−~q, ~p)
v?
pρ2
s
(−Ω′ + Ω′~p − Ω′~p−)

= 0

which can be rearranged to give

(Ω′ − Ω′~q) +M2
ρ

(
T ′ (~q,−~p, ~p+)T ′ ( ~p+, ~q, ~p)

(Ω′ + Ω′~p − Ω′~p+
)

− T ′ (~q,− ~p−, ~p)T ′ ( ~p−,−~q, ~p)
(−Ω′ + Ω′~p − Ω′~p−)

)
= 0.

(5.38)

This clearly shows that the dimensionless parameterMρ directly controls the strength

of the nonlinear coupling terms relative to the other parameters in the system. The

first situation demonstrated above, in figure 5.6, when the system saturates with the

bulk of its energy being transferred to the zonal mode occurs for large values of Mρ

and is described in this work as a ‘strongly nonlinear’ case. The second, figure 5.7,

is a ‘weakly nonlinear’ case, where the system oscillates with energy being passed

between the pump and zonal modes. These oscillations are similar to those seen in

predator prey models of drift-wave and zonal-flow interaction[Diamond et al., 1994;

Chen et al., 2000; Berionni and Gürcan, 2011].

In the past [Connaughton et al., 2010] demonstrated these two regimes by

adjusting ψ0, however the same selection can be achieved by adjusting ρs. This

is shown in figure 5.8 where the amplitude of the zonal mode for several different

values of ρs is plotted. It should be noted that we have chosen this expression for

Mρ so that it contains all the parameters in equation (3.32). The v? term could be

written as v? = ρ2
sβ in which case Mρ would reduce to M as given in [Connaughton

et al., 2010].

The weakly nonlinear case was investigated first and is shown in figure 5.8(a).

The systems all have a linear phase in which the zonal mode grows at the rate

predicted by equation (5.35), yet increasing ρs gradually changes the behaviour so

that the zonal mode saturates rather than oscillates. The change between regimes

occurs between ρs = 1.5m and ρs = 2m, which corresponds to a value of Mρ between

0.23 and 0.31. We recognise that this range of parameters does not directly apply

to tokamaks. A range of spatial scales from 10−2 < kρs < 100 is suggested by[Scott,

2006], evidently the cases presented here fall outside this range.

The second case investigated had the initial pump wave amplitude ten times
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larger, ψ0 = 0.01m
2

s , leading to strong nonlinear dynamics. In this case the opposite

procedure was applied and decreasing ρs led to a switch from saturating to oscillating

behaviour, as shown in figure 5.8(b). The change in behaviour now corresponds to

a value of Mρ between 0.16 and 0.25. Despite the two sets of simulations beginning

with very different drift wave amplitudes, the switch between regimes occurs at

roughly the same value of Mρ. This is as expected. As Mρ is dimensionless and

includes all the parameters of the system it controls the state of the system, rather

than the individual parameters in equation (3.33).
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Figure 5.6: The potential at various times in a simulation initialised with ~p = (0, 10),

~q = (1, 0), ρs = 1.0m, v? = 10ms and φ0 = 0.01m
2

s . It is strongly nonlinear with
Mρ = 1, therefore a transition to a zonal flow that saturates can be seen. The
average velocity in the y (vertical) direction is shown overlaid.
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Figure 5.7: The potential at various times in a simulation initialised with ~p = (0, 10),

~q = (1, 0), ρs = 1.25m, v? = 10ms and φ0 = 0.001m
2

s . It is weakly nonlinear
with Mρ ≈ 0.16. A transition to a zonal flow that stretches back to a drift wave
dominated system can be seen. The average velocity in the y (vertical) direction is
shown overlaid.
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Figure 5.8: The amplitude of the zonal mode for various ρs (in metres) with (a)

ψ0 = 0.001m
2

s and (b) ψ0 = 0.01m
2

s , other parameters were identical, v? = 10ms ,
p = (0, 10), q = (1, 0). Each case has been scaled by its own linear growth time.
ODE predictions are shown with solid lines, full simulations with markers.
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5.4.2 Oscillations in off-axis modes

The oblique case, where the perturbation ~q is not perpendicular to the pump wave

vector, ~p, is fundamentally different from purely zonal one. Off-axis modes often

show rapid oscillations, rather than linear amplitude growth, from the beginning of

their evolution. Figure 5.9 demonstrates this for the case of perturbing wave vector

~q = (2, 2), a moderate value of Larmor radius ρs = 1m and a nonlinearity parameter

Mρ = 1. In this case a rapid oscillation of the perturbing mode is clearly seen. The

frequency of these oscillations is correctly captured by the ODE solution, equations

(5.14) to (5.17).
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Figure 5.9: The amplitudes of the perturbing mode, ~q, in an off axis simulation. The
line with markers shows the full numerical simulation, the other is the prediction
made by the ODE equations, (5.14) to (5.17). The initial conditions were ψ0 =

0.01m
2

s , ~p = (0, 10) ~q = (2, 2), ρs = 1m, v? = 10ms , and Mρ = 1.

A similar situation can be seen in figure 5.10 where the perturbing mode

was ~q = (3, 2). At first the system is initially dominated by oscillations, however,

at around 2 linear growth times the system begins growing at roughly the linear
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growth rate. It continues to oscillate, although the oscillations become increasingly

less important as the PDE simulation begins to diverge from the ODE predictions.

Real space images of potential for this system are shown in figure 5.11. The roll up

of the system to Kármán like vortex streets, at an angle to the density gradient, can

be seen.
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Figure 5.10: The amplitudes of the perturbing mode, ~q = (3, 2), and the driving
mode ~p in an off axis simulation. The markers show the full numerical simulation and
the dashed lines the predictions made by the ODE equations. A line demonstrating
the linear growth rate is shown. The initial conditions were ψ0 = 0.01m

2

s , ρs = 1m,
v? = 10ms , and Mρ = 1. A combination of oscillations and linear growth can be
seen.
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Figure 5.11: Real space images of potential for the system in figure 5.10. The
formation of vortex streets at an angle to the axes can be seen.
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This rapid oscillation was not present for all of cases studied. Figure 5.12

shows a case where the system was seeded with ~p = (0, 10) and ~q = (6, 1), in this

case the initial rapid oscillation is not present and the system grows at roughly the

linear growth rate. A sight deviation from linear growth is correctly captured by

the ODE model. The analytical predictions suggest that this should be one of the

fastest growing modes in the system, so dominant linear growth is not unexpected.

Real space images of this system are shown in figure 5.13. It can be seen that the

potential forms vortices, but that as the perturbing mode saturates these merge to

form an off axis drift wave with a strong zonal component.

In these off-axis systems additional modes can be rapidly grown which can

interact more strongly than the initial seed modes. This is explored further in section

5.4.3.
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Figure 5.12: The amplitudes of the perturbing mode, ~q = (6, 1), and the driving
mode ~p in an off axis simulation. The markers show the full numerical simulation and
the dashed lines the predictions made by the ODE equations. A line demonstrating
the growth rate is shown. The initial conditions were ψ0 = 0.01m

2

s , ρs = 1m,
v? = 10ms , and Mρ = 1. The system grows at approximately the linear growth rate
before saturating.
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Figure 5.13: Real space images of potential for the system in figure 5.12. The
formation of vortex streets at an angle to the axes can be seen before they merge to
form an off axis drift wave.

5.4.3 The effect of additional modes in off axis simulations

We now examine numerical simulations of the CHM and the EHM equations for an

off axis, ~q = (2, 2), small Larmor radius case. Real space images of potential for the

EHM case are shown in figure 5.14, where a change the in angle of the vortex streets

formed can be seen . Figure 5.15 shows the evolution of several selected modes for

this case, which has ρs = 0.6m, and Mρ = 0.36. These were obtained from a DNS

of the CHM and the EHM equations, shown in figures 5.15 (a) and (b) respectively.
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It is clear that the behaviour is very different. While both cases grow modes not

included in the initial conditions, the EHM case grows a number of modes with

ky = 0 more rapidly than in the CHM case. Once the system is saturated these

zonal modes have a larger amplitude than in the CHM case. Of particular note

is ~q = (3, 0), this is the fastest growing mode in the EHM case and even becomes

the dominant mode in the system for a period of time. Eventually both system

are dominated by the same mode, ~q = (6, 1), which is the analytically predicted

fastest growing mode for the CHM case. The change in the angle of the vortex

streets seen in figure 5.14 occurs when the dominant mode in the system switches

from ~q = (3, 0) to ~q = (6, 1). In [McCarthy et al., 2004] an additional instability

was described, where waves growing due to the modulational instability were able

to interact nonlinearly and produce a long wavelength zonal flow. In figure 5.15

the mode ~q = (1, 0) shows behaviour similar to that described in [McCarthy et al.,

2004] where the long wavelength mode initially grows slowly before transitioning to

a rapid growth state.
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Figure 5.14: Real space images of potential for an EHM simulation with ψ0 =
0.01m

2

s , ~p = (0, 10) ~q = (2, 2), ρs = 0.6m, v? = 10ms , and M = 0.36. The growth of
selected modes from this system is shown in figure 5.15(b). The images of potential
are taken at times a), t/τ = 2.26, and b), t/τ=2.58. A change in angle of the vortex
streets can be seen.
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Figure 5.15: A comparison of the growth of various modes for the off axis system
shown in figure 5.14. For the EHM case, b), on axis modes clearly grow faster

than in the corresponding CHM, a), case. The initial conditions were ψ0 = 0.01m
2

s ,
~p = (0, 10) ~q = (2, 2), ρs = 0.6m, v? = 10ms , and M = 0.36
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5.5 Streamers

Streamers are radially extended flows. In the context of the EHM solution they may

be viewed as the ‘opposite’ of zonal flows as they have kx = 0 and ky ∼ 1. The

radially extension of streamers could lead to large amounts of radial transport. We

begin investigating streamers here with an analytical growth map generated with

~p = (10, 11), shown in figure 5.16. This map takes a form similar to those presented

in section 5.3.2 but rotated around a point at ~k = (0, 0). In general maps generated

for cases where px 6= 0 can be more complicated than those presented earlier in this

chapter. We designate the streamer as the mode with ~k = (0, 1), figure 5.16 shows

that this mode is far from the region where strong growth is indicated. This will

become important for explaining the failure of the 4MT model later in this section.
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Figure 5.16: A map of the growth rate of perturbing mode ~q for a system with
~p = (10, 11), ρs = 0.6m, v? = 10ms and φ0 = 0.1m

2

s .

First we present the growth of the mode ~q = (0, 1) in a system initialised

with ~p = (10, 11), ~q = (0, 1) and ~p± = ~p ± ~q in figure 5.17. All figures in this
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section are normalised to the linear growth time of this streamer. It can be seen

that at very early times the ODEs capture the oscillations of the streamer, but at

t/τ ∼ 0.25 the full simulation rapidly diverges from the predictions. This can be

better appreciated in the real space images presented in figure 5.18 where it can be

seen that the system in fact transitions from an off axis drift-wave to a largely zonal

configuration at this time.
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Figure 5.17: A streamer case initialied with ~p = (10, 11), ~q = (0, 1), ρs = 0.6m,

v? = 10ms and φ0 = 0.05m
2

s . It can be seen that at t ∼ 0.25τ the real system rapidly
diverges from both the ODEs and the linear prediction.
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Figure 5.18: Real space images of potential corresponding to the case presented in
figure 5.17. Dispite being intiallised with a perturbation designed to form a streamer,
the system develops a mostly zonal configuration.
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Investigating the Fourier space images of this system, for example figure

5.19, it can be seen that the mode ~k = (7,−6) has been grown by the system.

This mode is near the maximum growth rate shown in the analytical growth map

5.16. Assuming that this mode is in fact ~q gives a system with ~p = (10, 11), ~q =

(7,−6), ~p+ = (17, 5), ~p− = (3, 17). This is significant as the mode ~k = (17, 5) can

couple strongly to the zonal flow ~qzonal = (1, 0).

The behaviour of the system is more complex than the zonal flow cases

discussed before in this chapter. Near to resonance (∆± ≈ 0) equations (5.28) and

(5.29) require that the satellite modes grow at the same rate as perturbing mode

~q, hence ~p+ = (17, 5) must grow at the same rate as ~q = (7,−6). In total this

means that the growth of ~qzonal can be described by a system with ~p = (17, 5) where
∂
∂tϕ~p = ∂

∂tϕ0 6= 0.

To take this growth into account a linear forcing term can be added to the

ODEs and the dispersion relation. The derivation of this is left until chapter 7 but

the results are shown here in figure 5.20, an appropriate forcing term has been added

to the driving mode and both satellite modes. It can be seen that the ODEs and

the linear prediction, now calculated using the technique discussed in section 7.3,

capture the correct growth rate. By t/τ ∼ 0.26, where τ is still the linear growth

time of the initial system studied in this section, the system has finished growing

and begun to saturate. This explains the rapid departure from the ODE predictions

for the streamer at this point; the system is already saturating and is influenced by

far more than four modes so that the ODE model is no longer applicable. We were

unable to reproduce the growth of streamers seen in [Manfredi et al., 2001]. As we

do not suppress the growth of modes outside of the initial conditions the system

always grew modes that caused a transition to a zonal flow.
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Figure 5.19: A fourier transform of the same simulation as figures 5.17 and 5.18 at
t = 0.26τ . It can be seen that a number of modes not in the initial conditions have
been grown.
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Figure 5.20: ODE and linear predictions for the growth of the zonal mode by treating
the system as if it has ~p = (17, 5) and ~q = (1, 0). The satellite modes, ~p±, and the
pump wave, ~p, have been driven to simulate their growth in the real system.
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5.6 Conclusions

We have presented a systematic analysis of the finite Larmor radius effects on the

modulational instability of the Extended-Hasegawa-Mima equation. Our approach

was to directly compare predictions of the fully nonlinear four mode truncated model

with pseudospectral simulations of the full EHM equation. We have examined not

only the case where the modulating wave is perpendicular to a purely meridional

(kx = 0) pump wave, but also a more generic oblique case. The main methodology

is that based on comparing linear growth rates of the analytical four mode system

and modes observed in numerical PDE simulations. We have used linear growth

rate maps to demonstrate a broadening of growing modes when the Larmor radius,

ρs, is varied.

It should be noted that, despite the accuracy of the analytical predictions,

in all full simulation cases, higher harmonics of the initial modes and, in the later

stage of the evolution, a broadband spectrum of modes are produced via nonlinear

interactions. This ability to grow additional modes that are not part of the initial

conditions is of particular relevance to the streamer case. We were unable to grow a

streamer in the EHM system as additional modes were grown which coupled strongly

to zonal flows. Once these additional modes were present the growth rate of the

zonal flow was significantly faster than the streamer, and the final state of the system

was therefore predominantly zonal.

A key control parameter Mρ, dependent on the Larmor radius, has been

constructed and it allowed us to alternate between different dynamical regimes of

the MI evolution. For large values of Mρ we find a saturating state that ultimately

settles on a zonal configuration, even if the initial perturbing wave is oblique to

the vector of the pump wave. For small Mρ, the oblique case often deviates from

analytical predictions and shows rapid oscillations. For a weak nonlinearity in the

CHM case, the oblique modes are sometimes the fastest growing modes in the system

and this leads to a final state which is off-axis with respect to the zonal direction.

Interestingly, for the equivalent EHM case the zonal modes grow most rapidly, yet

the system settles on a similar off-zonal final configuration.
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Chapter 6

Four-Mode Interactions in the

Hasegawa-Wakatani System

6.1 Introduction

The major shortcoming of the Hasegawa-Mima model, used in chapter 5, is its inabil-

ity to spontaneously generate drift-waves and large turbulent fluctuations, making

prescribed initial conditions necessary. This initial value approach is not ideal for

describing fusion plasma behaviour, which is always measured in its fully nonlinear

state. The lack of instability in the EHM equation is a result of the adiabatic elec-

tron response to electrostatic perturbations, which can instantaneously enforce an

ideal Boltzmann relation between density and the electrostatic potential, as given

by equations (3.2) and (3.26) for the non extended and extended cases respectively.

The Hasegawa-Wakatani model relaxes this restraint and assumes that the density

response is coupled to the potential via electron dynamics in the direction parallel to

the magnetic field as described in chapter 3. In this work the ‘Extended’-Hasegawa-

Wakatni equation refers to the case where the zonal components of density and

potential have been removed from the current describing the parallel electron dy-

namics[Dorland and Hammett, 1993; Numata et al., 2007], not the addition of a

curvature term as is seen in [Dewhurst et al., 2009].

The removal of the adiabatic assumption leads to a two field model – the

Hasegawa-Wakatani equations – consisting of a coupled set of equations for density

and potential. In addition these now describe fluctuations around a mean value.

This is a much more ‘physical’ model and is considerably more complex than the

one field Hasegawa-Mima model.

The separation of density and potential fluctuations allows their relative
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phases to be shifted, as described in sections 1.4 and 1.7.1, and as such each mode

in the EHW system is linearly unstable. This means that, unlike the Hasegawa-

Mima system, it is neither reasonable nor desirable to consider an initial condition

consisting of four modes. The growth of a spectrum of drift waves by the Hasegawa-

Wakatani equations, as described by equation 3.80, is more applicable to real sys-

tems. Nevertheless, four-wave interactions do occur and are important in describing

the evolution of the system. In the past this model has been used to study the gen-

eration and stability of zonal flows[Numata et al., 2007] as well as the interaction

between zonal-flows and drift-waves[Scott, 2005].

This chapter begins with the derivation of an analytical ODE model. In

this case a truncation to four modes was made for both the density and potential

equations in the EHW system, which results in eight coupled ODEs. As for the

EHM system, these describe the behaviour of a driving wave, zonal perturbation,

and sidebands, however for each of these there is now an equation for density and

potential. Unlike the model used in chapter 5, we do not specify these modes

beforehand in our PDE simulations. Instead we allow the system to grow a drift wave

spectrum and select a resonant set of waves to compare with our ODE equations.

In practice the wave selected for use as the pump wave is one of the most unstable

waves in the system. In this case stationary solutions for the ODEs cannot be found,

but a linear approximation is made by considering the case where the satellites grow

at the same rate as the pump wave.

Finally, a numerical code to solve the Extended-Hasegawa-Wakatani equa-

tions was developed using the techniques described in chapter 4. Predictions from

the ODEs and the linear growth rate were compared to this full PDE simulation.

6.2 A truncated model for the Hasegawa-Wakatani equa-

tions

As with the EHM system the derivation of the 4 mode truncated extended Hasegawa-

Wakattani system starts from the Fourier space representation of the EHW equa-

tions, (3.59) and (3.60), which takes the form:

∂tN~k = −i(1 + k2)ΩkΦ~k + zα(Φ~k −N~k)−
∑
k1,k2

R(k1, k2)Φ−→
k2
N−→
k1
δ~k,
−→
k1+
−→
k2

(6.1)

∂tΦ~k = −αz
k2

(Φ~k −N~k)−
∑
k3,k4

T (k, k3, k4)Φ−→
k3

Φ−→
k4
δ~k,
−→
k3+
−→
k4

(6.2)
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where z = 1 − δs,1δky ,0 and s is a switching parameter, so that s=1 represents the

EHW case and s=0 the non-extended case. Due to the normalisations used in section

3.2.2 this equation is unitless. As with the EHM simulations, the PDE simulations

themselves were initialised in real space and had the form Φ~k(~x) = A~ksin(2π
L
~k~x), so

~k represents integer wave numbers.

For clarity we rewrite the frequency and coupling parameters in equations

(6.2) and (6.1) here as

Ωk =
κky

1 + k2
, (6.3)

R(k1, k2) = (k1xk2y − k2xk1y) (6.4)

and

T (k, k3, k4) =
k2

3(k3xk4y − k4xk3y)

k2
, (6.5)

Again we write

Φ = Φ~p + Φ~q + Φ ~p+
+ Φ ~p− ,

N = N~p +N~q +N ~p+
+N ~p− ,

with

~p± = ~p± ~q, (6.6)

and substitute these into equations (6.1) and (6.2). Following the same procedure

as in section 5.2, defining

Φ~k = ϕ~k(t)e
−iΩkt (6.7)

and

N~k = N~k(t)e
−iΩkt, (6.8)

we write ODE equations for the Fourier mode amplitudes of electrostatic potential
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fluctuations as

d

dt
ϕp (t) = ϕp (t) iΩp +

zα (Np (t)− ϕp (t))

p2
(6.9)

−
(
T (p, p−, q)ϕq (t)ϕp− (t) + T (p, q, p−)ϕp− (t)ϕq (t)

)
eit∆−

−
(
T (p,−q, p+)ϕp+ (t)ϕq (t) + T (p, p+,−q)ϕq (t)ϕp+ (t)

)
eit∆+

d

dt
ϕq (t) = ϕq (t) iΩq +

zα (Nq (t)− ϕq (t))

q2
(6.10)

−
(
T (q,−p−, p)ϕp (t)ϕp− (t) + T (q, p,−p−)ϕp− (t)ϕp (t)

)
e−it∆−

−
(
T (q, p+,−p)ϕp (t)ϕp+ (t) + T (q,−p, p+)ϕp+ (t)ϕp (t)

)
eit∆+

d

dt
ϕp− (t) = ϕp− (t) iΩp− +

zα
(
Np− (t)− ϕp− (t)

)
p−2

(6.11)

−
(
T (p−,−q, p)ϕp (t)ϕq (t) + T (p−, p,−q)ϕq (t)ϕp (t)

)
e−it∆−

d

dt
ϕp+ (t) = ϕp+ (t) iΩp+ +

zα
(
Np+ (t)− ϕp+ (t)

)
p+

2
(6.12)

− (T (p+, q, p)ϕp (t)ϕq (t) + T (p+, p, q)ϕq (t)ϕp (t)) eit∆+ .
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Similarly, for density fluctuations we have:

d

dt
Np (t) =

(
zα− iΩp

(
1 + p2

))
ϕp (t) (6.13)

+ (iΩp − zα)Np (t)

−
(
R (−q, p+)ϕp+ (t)Nq (t) +R (p+,−q)ϕq (t)Np+ (t)

)
ei∆+t

−
(
R (p−, q)ϕq (t)Np− (t) +R (q, p−)ϕp− (t)Nq (t)

)
ei∆−t,

d

dt
Nq (t) =

(
zα− iΩq

(
1 + q2

))
ϕq (t) (6.14)

+ (iΩq − zα)Nq (t)

−
(
R (−p−, p)ϕp (t)Np− (t) +R (p,−p−)ϕp− (t)Np (t)

)
e−it∆−

−
(
R (p+,−p)ϕp (t)Np+ (t) +R (−p, p+)ϕp+ (t)Np (t)

)
eit∆+ ,

d

dt
Np− (t) =

(
zα− iΩp−

(
1 + p−

2
))
ϕp− (t) (6.15)

+
(
iΩp− − zα

)
Np− (t)

−
(
R (p,−q)ϕq (t)Np (t) +R (−q, p)ϕp (t)Nq (t)

)
e−it∆− ,

d

dt
Np+ (t) =

(
zα− iΩp+

(
1 + p+

2
))
ϕp+ (t) (6.16)

+
(
iΩp+ − zα

)
Np+ (t)

− (R (q, p)ϕp (t)Nq (t) +R (p, q)ϕq (t)Np (t)) e−it∆+ .

Symbols ∆+ and ∆− are again given by equation (5.13), and, in this case are:

∆− = Ωp − Ωq − Ωp− ,

∆+ = Ωp + Ωq − Ωp+ .
(6.17)

For all of the ODEs, the vector notation for the subscripts and coupling coefficient

arguments has been dropped.

6.3 The linear growth rate

Unlike chapter 5 it is not possible to derive a linear solution for this ODE model.

The primary instability of the Extended-Hasegawa-Wakatani system means that the

pump wave and sidebands are all time dependant and resonance conditions such as

(5.28) and (5.29) cannot be used to produce an eigenvalue problem.

Instead we consider the smooth form of the primary dispersion relation,

in particular the imaginary part, examples of which were shown in figure 3.2.4.
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Restricting ourselves to cases where q � p we make the statement that p± = p±q ∼
p. In this case the growth rate due to the primary instability, νk, is the same for

the satellite modes as the driving mode, from here on we will label it G.

Using this assumption we state that every wave except the zonal perturba-

tions, ϕq and Nq, grows as

ϕk(t) = ψke
−iωkteGt,

Nk(t) = nke
−iωkteGt,

where ωk ∈ R, G ∈ R, d
dtG = 0 and G > 0.

Substituting these definitions into equations (6.10) and (6.14) leads to

d

dt
ϕq (t) = ϕq (t) iΩq +

zα (Nq (t)− ϕq (t))

q2
−
(
C−e

−it∆− + C+e
it∆+

)
e2Gt (6.18)

and

d

dt
Nq (t) =

(
zα− iΩq

(
1 + q2

))
ϕq (t)+(iΩq − zα)Nq (t)−

(
D−e−it∆− +D+eit∆+

)
e2Gt,

(6.19)

where the nonlinear coupling terms and the ψk and nk constants have been collected

into the C± and D± terms. In section 3.2.4 it was shown that a zonal mode with

ky = 0 could not be grown from the linear terms, therefore only the last term in

each of equations (6.18) and (6.19) will cause the mode to grow. Keeping only this

term, and assuming the system is in resonance (∆± = 0), the only time dependence

remaining on the right hand side is e2Gt. This indicates that ϕq and Nq must grow

linearly, with linear growth rate γ = 2G, as time is normalised in this system γ is

unitless . As with the EHM case discussed in chapter 5, we define a linear growth

time τ = 1
γ .

6.4 Numerical Results

As with the Hasegawa-Mima four mode truncation, the reduced model for the EHW

system was compared to numerical simulations of the full system. It should be

emphasised that we do not truncate the full simulations. All modes are allowed to

evolve and we select sets that fit resonance condition (5.2) for comparison with the

analytical predictions. The simulations are split into two classes, simulations carried

out in the HW regime where α < 1 and the EHM limit where α� 1.
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6.4.1 The EHM limit

In phase initial conditions

Firstly a case with κ = 10 and α = 10 was considered in the EHW system. Low

amplitude random noise was generated at the grid scale and used as the initial

condition for both density and potential. Artificial viscosity was applied to the

higher modenumbers to avoid aliasing problems. The development of the system

in real space is shown in figure 6.1. Three stages are shown, the first is where

the system has developed drift waves, the second is a transitional phase where the

system has begun rolling into vortices, and the final panel shows a zonal state.

Individual vortices are still present, as is particularly visible in the density panel,

but the overall form of the system has bands in the vertical (poloidal) direction.

The potential in a drift wave dominated stage is shown in figure 6.2 (left).

At this point of the dynamical evolution the Fourier transform of potential was

computed and the results are shown in figure 6.2 (right). From this Fourier space

picture a set of modes, namely ~p = (0,−2π
L × 9) = (0,−1.414) and ~q = (2π

L , 0) =

(0.157, 0), were chosen for comparison to the reduced model as they satisfied the

condition q � p, had both satellite modes present, and had a relatively strong

amplitude. The driving mode, ~p, is close to the most unstable mode from the

primary instability, which is at ~kmax = (0,±2π
L × 8).

As with the EHM system the ODEs were solved with a built in Matlab

Rungge-Kutta (RK45) solver. Their values at t = 0 in the full system were used as

initial conditions. The results of these simulations can be seen in figure 6.3 where

amplitudes measured from the full simulation are compared with solutions of the

ODE equations, (6.9) to (6.16). It can be see that at very early times density

grows more rapidly than potential, until a phase difference has been established

between them, at which point the pump waves, ϕ0 and N0, grow linearly. The zonal

modes, ϕq and Nq, show very little growth until t ∼ 5τ , where τ is the inverse of

the linear growth rate defined in section 6.3, at which point they begin to grow

at approximately twice the primary growth rate of ϕp. The linear growth phase

continues until t ∼ 11τ .

The ODEs predict the correct growth rate for density and potential for mode

~p, which matches the primary growth rate predicted by equation (3.81), as well as

capturing the small adjustment they make at t ≈ 0.

For mode ~q the initial agreement is again good, however the time at which

the zonal mode starts to grow differs. Despite this the ODEs capture approximately

the correct growth rate for the system. As with the EHM case the ODEs for the
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zonal modes take some time to begin growing linearly. Considering section 6.3 and

the Mρ parameter discussed in chapter 5 this can be considered as a threshold

problem. The system must be sufficiently nonlinear that its evolution is dominated

by the nonlinear terms in equations (6.18) and (6.19), at which point it will grow

linearly with growth rate γ. Unlike the ODE predictions for the EHM equation,

the full system begins to saturate and oscillate considerably earlier than the ODE

predictions. This is not surprising as the full system in this case has significant

contributions from modes that are not included in the truncated model.

A line denoting twice the primary growth grate of ϕp is also shown in figure

6.3. It shows good agreement suggesting that during the linear growth phase the

approximations made in section 6.3 are valid.
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Figure 6.1: The evolution of potential and density in a system with with α = 10
and κ = 10. The roll up of drift waves to form zonal flows can be seen most clearly
in potential.
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Figure 6.2: The potential in a EHW simulation with α = 10 and κ = 10 at t
τ ∼ 8.1.

From the potential (left) it can be seen that the system has developed drift waves.
From the Fourier transform of this potential (right) it can be seen that the set of
modes formed with ~p = (0,−1.41) and ~q = (0.157, 0) form a possible resonant set
for use in the ODE equations.
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Figure 6.3: A comparison between the ODE predictions (lines) and the PDE sim-
ulation (markers) for a high α = 10 case. The line labelled linear is positioned
arbitrarily but grows at the twice the rate predicted by the primary dispersion re-
lation for ϕp.
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Random initial condition

The system was next initialised with white noise that was generated for potential and

density independently. The primary instability was allowed to develop drift waves as

before, and examining the Fourier space images of potential suggested that this time

the set of waves with ~p = (0,−2π
L × 8) = (0,−1.2566) and ~q = (2π

L , 0) = (0.157, 0)

were most appropriate for investigating the MI.

Figure 6.4 shows the development of the modes ~p and ~q as the simulation pro-

gresses, again measurements taken from the full simulation (markers) are compared

with results from the ODE equations (lines). It can be seen that at early times the

system rapidly adjusts so that the pump waves, ϕ0 and N0, are simply phase shifted,

at which point they begin to grow linearly. The ODEs capture this behaviour well.

The zonal modes however take ∼ 6 linear growth times to adjust, and even when

they have done so the density deviates from pure linear growth, due to interactions

with modes not considered in the four-wave truncation. The ODEs still capture the

correct linear growth rate, which is approximately twice the primary growth rate of

ϕp as demonstrated by the line labelled ‘linear’ in the figure.
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Figure 6.4: A comparison between the ODE predictions (lines) and the PDE
simulation (markers) for a high α = 10 case. Density and potential were seeded
independently with white noise. The line labelled linear is positioned arbitrarily
but grows at twice the primary growth rate of ϕp. The inset figure shows the
evolution at early times.

6.4.2 The EHW regime

In phase initial conditions

The same procedure as section 6.4.1 was carried out, only this time with α = 0.5

and κ = 10. This range of parameters is known to give a reasonable qualitative

agreement between simulated turbulence and that observed in fusion plasma[Horton,

1999; Dudok de Wit et al., 1995].

The development of the system in real space is shown in figure 6.5. As for

the high α case three stages are shown. This time the drift waves developed are

broader as the system is driven at lower k numbers. The transition still shows the

system rolling into vortices, only now they are large, and the final panel shows a

zonal state with broad zones. As before individual vortices are still present.
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Figure 6.6 again shows the potential at a time when drift waves have become

dominant ( tτ ∼ 6.2) and its Fourier transform. This time the centre of the Fourier

space potential profile is closer to |k| = 0 and the best candidates to explore the

4MT are ~p = (0,−2π
L × 3) = (0,−0.471) and ~q = (2π

L , 0) = (0.157, 0).

Again the ODEs are initialised using values from the full simulation at t = 0

and compared to the full simulation, shown in figure 6.7. As before mode ~p shows

the correct growth rate and behaviour at early times, however the agreement for

~q is not as good. Again the system takes a short while (∼ 5 linear growth times)

to settle on the correct eigenvector and whilst this is happening the amplitude of

potential for mode ~q decreases whilst its density amplitude increases. Even during

the linear growth phase the potential for ~q does not grow entirely linearly.

As before the real system begins to oscillate before the ODEs and, while it

is in the linear phase, the zonal wave grows at approximately twice the rate of the

pump wave.
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Figure 6.5: The evolution of potential and density in a system with with α = 0.5
and κ = 10. The roll up of broad drift waves to form wide zonal flows can be seen.
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Figure 6.6: The potential in a EHW simulation with α = 0.5 and κ = 10 at t
τ ∼ 6.2.

From the potential (left) it can be seen that the system has developed drift waves.
From the Fourier transform of this potential (right) it can be seen that the set of
modes formed with ~p = (0,−0.471) and ~q = (0.157, 0) form a possible resonant set
for use in the ODE equations.
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ϕp.
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Random initial condition

As for the high α EHM limit case, the system is now initialised with white noise gen-

erated independently for density and potential. The Fourier space images suggested

that the best system to investigate was formed by ~p = (0,−3×2π
L ) = (0,−0.4712)

and ~q = (2π
L , 0) = (0.157, 0). The results are shown in figure 6.8. As for the previous

case with random initial conditions the system very rapidly adjusts until the density

and potential pump waves are simply phase shifted, at which point they begin to

grow linearly. The exact progression of the zonal modes is different at early times

( tτ ∼ 1− 7), but once they become of comparable amplitude they grow at approxi-

mately the linear growth rate. As before the full system saturates before the ODEs

finish growing linearly. In this case the line labelled ‘linear’ is only a good fit for the

ODE for density. The real system grows at approximately this rate, but deviates

from linear growth and the ODE for potential has a strong oscillating component.

This is perhaps unsurprising as the primary instability is more compressed for the

α = 0.5 case, so there will be a greater difference in the primary growth rate of the

driving and satellite modes.
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Figure 6.8: A comparison between the ODE predictions (lines) and the PDE
simulation (markers) for a low α = 0.5 case. Density and potential were seeded
independently with white noise. The line labelled linear grows at twice the primary
growth rate of ϕp. The inset figure shows the saturation of potential, ϕq, in more
detail.
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6.5 Energy Transfer functions

While investigating the ODE model for the EHW system it was noted that, in the full

PDE simulations, the EHM limit (α = 10), seemed to prefer non-local interactions

over an inverse cascade as a method of producing zonal flows. Figures 6.9 and

6.10 show the progression in Fourier space of a system with α = 10 and α = 0.5

respectively. It can be seen that small α system develops modes which, in k-space,

lie in close proximity, allowing local interactions and the production of zonal flows

via cascades. Conversely, modes grown by the large α case are grouped into four

regions that are separated in k-space so that non-local interactions are required to

cause the zonal flow transition.

This can be characterised more rigorously using energy transfer functions

(ETFs)[Camargo et al., 1995]; these describe the transfer of energy between mode

numbers in Fourier space. ETFs are a general technique and can be applied to

experimental data[Manz et al., 2009a,b]. The change in kinetic energy can be

written as

∂tE
K(~k) =

∑
~k1

T K(~k ← ~k1) + linear contribution, (6.20)

the change in potential energy as

∂tE
N (~k) =

∑
~k1

T N (~k ← ~k1) + linear contribution (6.21)

and the change in enstrophy as

∂tW(~k) =
∑
~k1

T W(~k ← ~k1) + linear contribution. (6.22)

The spectral energy transfer terms T are given by

T K(~k ← ~k1) = 2Re[(kxk1y − k1xky)ϕ
?
~k
ω ~k2

ϕ ~k1
], (6.23)

T N (~k ← ~k1) = 2Re[(kxk1y − k1xky)N
?
~k
ϕ ~k2

N ~k1
], (6.24)

T W(~k ← ~k1) = 2Re[(kxk1y − k1xky)w
?
~k
ϕ ~k2

w ~k1
], (6.25)

where w~k = ~k2ϕ~k is the vorticity and ~k = ~k1 + ~k2. To produce the ETF plots

used later in this section the quantity T is calculated and averaged over a number

of time slices. Normally ETFs are applied to fully developed turbulence where

T will vary in time and space, they are therefore usually averaged over a large

number of ensembles to ensure convergence. This is not possible here as we are

129



investigating the transient state of linear growth, therefore we use limited averaging

over a discrete time window to produce our figures. This makes the amplitudes of

the energy transfer functions less reliable, however, our focus is on the direction

of the energy transfer and its locality. To remove any linear growth due to the

primary instability the data is detrended before calculating the ETF. T (~k ← ~k1) is

a four dimensional quantity, therefore in order to display the results shown later it

is averaged over absolute values of k.

130



t/τ=10.1943

k
x

k y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

t/τ=10.4873

k
x

k y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

t/τ=10.663

k
x

k y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

t/τ=11.0732

k
x

k y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 6.9: The transition from a drift-wave dominated system to a zonal-flow as
seen in Fourier space for a case with α = 10. It can be seen that the low k modes,
which cause the zonal flow, remain separated from the high k modes which form the
drift waves.
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Figure 6.10: The transition from a drift wave dominated system to a zonal flow as
seen in Fourier space for a case with α = 0.5. It can be seen that there are a large
number of modes with a moderate amplitude between the high k (drift wave) and
low k (zonal flow) regions.
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6.5.1 The EHM limit

Figure 6.11 shows the energy transfer functions averaged over 10 iterations during

the linear growth phase of the α = 10 system at t/τ ∼ 7.6. Points adjacent to

the line k = k1 indicate local interactions and therefore cascades. The potential

energy transfer (EN ) in figure 6.11 forms a population transferring energy non-

locally between |k| ≈ 1.41 and |k1| ≈ 0.47, this same population is seen in the

other panels in this figure but is masked by the cascading happening at higher

modenumbers. In particular there are strong local cascades for the enstrophy (W)

as well as strong nonlocal interactions in the regions around k = 3 and k1 = 3. The

mode selected for exploring the MI (k ∼ 1.43, k1 ∼ 0.16 ) is in fact on the edge of

the population showing non-local interactions in the potential energy transfer plot.

This suggests that although it is indeed transferring energy non-locally it is not the

main driving force for the transition from drift waves to zonal flows. There are a

number of other non-local interactions that cause energy to be transferred to the

|k| ≈ 2π
L scale, therefore causing zonal flows.

One of the strongest four-wave interactions at scales of interest indicated

in this figure is between modes with k ∼ 1.41 ∼ 9×2π
L and k ∼ 0.47 ∼ 3×2π

L .

We therefore compared the analtytical models with the growth of the modes ~p =

(0, −9×2π
L ) = (0,−1.4137) and ~q = (3×2π

L , 0) = (0.47124, 0), shown in figure 6.12.

It can be seen that the growth of the zonal mode deviates from linear growth less

than the ~q = (2π
L , 0) case, figure 6.3, and unlike that case the ODEs now begin to

oscillate around approximately the same saturation amplitude as the full simulation.

This suggests that this non-local iteration may be more important for the zonal flow

transition than the first case investigated.
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Figure 6.11: Energy transfer functions for α = 10. Crosses mark modes that are
referred to in the text.
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Figure 6.12: A comparison between the ODE predictions (lines) and the PDE sim-
ulation (markers) for a high α = 10 case for modes ~p = (0, −9×2π

L ) = (0,−1.4137)
and ~q = (3×2π

L , 0) = (0.47124, 0). Density and potential were seeded independently
with white noise. The line labelled linear grows at twice the primary growth rate of
ϕp. The inset figure shows the saturation of potential, ϕq, in more detail.

6.5.2 The EHW regime

Again, figure 6.13 shows the energy transfer function averaged over 10 iterations

during the linear growth phase at t/τ ∼ 9.1. It is immediately clear that, for small

|k|, the majority of the energy transfer is either from cascades of nearby non-local

interactions, for example ∆k = k1 − k ∼ 2×2π
L . Potential energy and vorticity show

non-local interactions between modes with larger mode numbers, however these do

not cause zonal flows. For comparison with the earlier ODE model we are specifically

interested in transfer between |k| ≈ 0.471 and |k| ≈ 0.157. Although there is some

contribution from neighbouring modes the transfer of energy to this mode is non-

local.

Unlike the high alpha case there is no clear region of non-local interaction

that stands out, however, the kinetic energy plot in figure 6.13 suggests that modes
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k ∼ 0.63 ∼ 4×2π
L and k =∼ 0.31 ∼ 2×2π

L are interacting strongly. Comparisons

between ODE models and full simulations for modes ~p = (0, −4×2π
L ) = (0,−0.62832)

and ~q = (2×2π
L , 0) = (0.31416, 0) are therefore shown in figure 6.14. As with the

previous case studied, figure 6.7, it takes approximately 15 linear growth times for

the zonal waves to begin growing linearly, before which the density now oscillates in

the real system. Once in the linear growth phase, the system grows at approximately

twice the primary growth rate of ϕp, as expected. The ODEs now capture the

saturation level better than for the ~q = (2π
L , 0) case, oscillating around the saturation

level of the real system rather than just below it.

EK

k

k1

0 1 2
0

0.5

1

1.5

2

EN

k

k1

0 1 2
0

0.5

1

1.5

2

W

k
k1

0 1 2
0

0.5

1

1.5

2

Figure 6.13: Energy transfer functions for α = 0.5. Crosses mark modes that are
referred to in the text.
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Figure 6.14: A comparison between the ODE predictions (lines) and the PDE sim-
ulation (markers) for a high α = 10 case for modes ~p = (0, −4×2π

L ) = (0,−0.62832)
and ~q = (2×2π

L , 0) = (0.31416, 0). Density and potential were seeded independently
with white noise. The line labelled linear grows at twice the primary growth rate of
ϕp. The inset figure shows the saturation of potential, ϕq, in more detail.

6.6 Conclusions

The methods developed in chapter 5 were used to create analytical descriptions of

the Extended-Hasegawa-Wakatani system. These took the form of a set of ODE

equations and a linear prediction for the drift wave to zonal flow transition. These

analytical techniques were used to investigate four-mode interactions in the presence

of the EHW drift wave spectrum as well as their role in formation of zonal flows.

The primary instability in the EHW system means that the process used to

derive a linear model in chapter 5 can not be applied in this chapter. Therefore

physical arguments were made to suggest that the zonal modes should grow at

approximately twice the rate of the pump waves. This proved to be an accurate

approximation for the cases studied.
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Four-mode truncations were particularly relevant for the high α, EHM limit,

case. Energy transfer functions were used to show that in this setting, during the

linear growth phase, local cascades did not cause a transfer of energy to large scales.

Therefore, non-local couplings were responsible for the generation of zonal flows.

This is not as clear for the low α case, but the ETFs do suggest that the transfer of

energy to the lowest mode (k = 2π
L ) was via non-local couplings.

For both the high and low α cases, the ETFs suggested that the initial modes

investigated were not the best modes for investigating four-wave interactions. New

sets of modes were investigated based on the ETFs, these showed an even better

agreement between the full system and the analytical models.
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Chapter 7

Driving the

Extended-Hasegawa-Mima

System

7.1 Introduction

In chapter 6 we demonstrated how the growth rate of the zonal mode in the

Extended-Hasegawa-Wakatani model could be adequately captured using four-wave

truncated equations, although features such as the onset of the growth and satura-

tion level were not correctly reproduced by such a simple approach. The two field

EHW model, while more appealing due to its built in ‘primary’ instability mech-

anism, is difficult to treat analytically. The next natural step is to reproduce the

effects of the EHW instability within the Extended-Hasegawa-Mima system. We do

this using using a driving term whose features are similar to that of the Extended-

Hasegawa-Wakatani primary instability, in a similar manner to the reproduction of

the ion temperature gradient in [Quinn, 2011].

In this section each wave in the Extended-Hasegawa-Mimia system is driven

at a rate determined by the linear dispersion relation of the EHW system, equation

(3.80). Numerically this is easy to implement in Fourier space when each mode is in-

dividually accessible. Due to the normalisations used, the EHW primary dispersion

relation depends entirely on the values of the adiabaticity parameter, α, defined by

equation (3.57), and the density gradient parameter, κ, defined by equation (3.58).

Using such an approach, the EHM system grows a spectrum of waves and, as in

chapter 6, we select resonant sets of waves to compare to our analytical predictions.

Despite the fact that we now have a spectrum of waves, we continue to use a four-
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wave truncation as it is well known that adding additional sidebands does little to

alter the accuracy of the predictions[Strintzi and Jenko, 2007].

At the beginning of the chapter the ODEs and linear dispersion relation

derived in chapter 5 are extended to include the new driving term. Then, full

numerical simulations, as described in chapter 4 but with an added driving term,

are compared to the analytical models. Initially, modes are selected by inspecting

Fourier space plots of the potential as it evolves. Two cases are considered, one where

the equivalent Extended-Hasegawa-Wakatani system would be considered adiabatic

and one where it would not. The chapter ends by using energy transfer functions

(ETFs) to categorise local and non-local interactions in the two cases. The ETFs

are used to select the most strongly interacting modes in the system and these are

compared to the analytical models.

7.2 Adding forcing to the four-mode system

A linear forcing term can be added to the Fourier space representation of the EHM

equation, (3.49), by writing it as

∂tφ~k + iΩ~kφ~k −
1

2

∑
~k1, ~k2

T (~k, ~k1, ~k2)φ ~k1
φ ~k2

δ~k, ~k1+ ~k2
= νkφ~k. (7.1)

In this chapter the length is normalised to ρs and time to ωi so that the whole

equation is unitless. The additional forcing term, ν~kφ~k, is artificially added to

the end of the equation. It could be incorporated into the advection term, iΩ~kφ~k,

but is left as a separate term to simplify the derivation of the ODEs. This separate

forcing term does not effect the procedure used in the derivation, which was detailed

in section 5.2. In fact, writing the forcing as a separate term means that the only

difference between the ODEs for the forced and unforced systems is an extra term

in each equation. In total this gives

∂tψ~p (t) = eit(∆−)T (~p, ~p−, ~q)ψ~q (t)ψ ~p− (t)

+ eit(∆+)T (~p,−~q, ~p+)ψ ~p+
(t)ψ~q (t) + ν~pψ~p (t) (7.2)

∂tψ~q (t) = e−it(∆−)T (~q,− ~p−, ~p)ψ~p (t)ψ ~p− (t)

+ eit(∆+)T (~q,−~p, ~p+)ψ ~p+
(t)ψ~p (t) + ν~qψ~q (t) (7.3)

∂tψ ~p− (t) = e−it(∆−)T ( ~p−,−~q, ~p)ψ~p (t)ψ~q (t) + ν ~p−ψ ~p− (t) (7.4)

∂tψ ~p+
(t) = e−it(∆+)T ( ~p+, ~q, ~p)ψ~p (t)ψ~q (t) + ν ~p+

ψ ~p+
(t) (7.5)
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where once again φ~k = ψ~k(t)e
−iΩ~kt and φ~k = ψ~k(t)e

iΩ~kt is a conjugate of φ~k. It

should be noted here that the forced linear growth is incorporated into ψ~k(t); an

equally valid solution for substitution into the truncated version of equation (7.1)

would be φ~k = ψ~k(t)e
−i(Ω~k+iν~k)t, where the linear growth has been written explicitly.

In this case a set of ODEs would be produced that did not have the extra forcing

term, but had a modified resonance condition, as defined by ∆±, instead.

The coupling parameter T , now unitless, is given by

T (~k, ~k1, ~k2) = −
(k1yk2x − k1xk2y)(k

2
2 − k2

1 + δs,1(δk1y ,0 − δk2y ,0))

(1 + k2 − δky ,0δs,1)
, (7.6)

∆− = Ω~p − Ω~q − Ω~p− , (7.7)

∆+ = Ω~p + Ω~q − Ω~p+
(7.8)

and Ω~k is

Ω~k = − v?ky
1 + k2

. (7.9)

where v? is now a unitless parameter defining the density gradient of the system.

Although the derivation here is valid for any linear function where ν~k = ν(~k), in

this work the form

ν~k = a(~k)− bk4 (7.10)

was used. The second term, bk4φk is the Fourier space representation of a real space

hyperviscosity term b∇2(∇2φ), b is a hyperviscosity coefficient. The hyperviscosity

is added to model the dissipation that would occur at high mode numbers in a real

system but is not included in the Hasegawa-Mima equation.

Quantity a(~k) is a general representation of a term that drives the system. In

this work a(~k) will become a(~k, α, κ) and will drive the EHM system in such a way

as to reproduce the effect of the extended-Hasegawa-Wakatani primary instability

described in section 3.2.4. A more complete description specific to this chapter is

given in section 7.4.

7.3 The linearised growth rate

Unlike section 5.3, the growth caused by the additional forcing term in equation

(7.1) means that it is not possible to derive a linear dispersion relation for the zonal

flow transition investigated in this chapter. The forcing term means that a time

independent eigenvalue problem cannot be formed. Nevertheless, some linearisation
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can still be performed, and a prediction for the growth rate made in the style of

section 6.3.

As in chapter 5 we linearise the ODEs, (7.2) to (7.5), using

~ψ =


ψ~p

ψ~q

ψ ~p+

ψ ~p−

 =


ψp

0

0

0

+ ε


0

ψ~q

ψ ~p+

ψ ~p−

 , (7.11)

where ε is a small parameter. Firstly, for the pump mode ~p, this gives us

d

dt
ψp = ε2eit(∆−)T (p, p−, q)ψqψp− + ε2eit(∆+)T (p,−q, p+)ψp+ψq + vpψp (7.12)

and keeping only terms O(1) this becomes

d

dt
ψp = νpψp. (7.13)

This is no longer constant in time and has a solution

ψp = ψ0e
νpt.

For consistency with chapter 6, where we used G to represent the total linear growth

rate of the driving wave, we will write

ψp = ψ0e
Gt. (7.14)

Repeating the process for each of the remaining equations in turn, this time keeping

O(ε) terms, leaves us with

d

dt
ψq = e−it(∆−)T (q,−p−, p)ψpψp− + eit(∆+)T (q,−p, p+)ψp+ψp + νqψq, (7.15)

d

dt
ψp− = e−it(∆−)T (p−,−q, p)ψpψq + νp−ψp− , (7.16)

d

dt
ψp+ = e−it(∆+)T (p+, q, p)ψpψq + νp+ψp+ . (7.17)

We now consider the smooth and slowly varying form of the EHW linear

dispersion relation, for example see figure 7.1, as this will be used to calculate the

driving used on each mode. We restrict ourselves to cases where p � q so that

~p± = ~p ± ~q ∼ ~p and therefore νp± ∼ νp = G. We use this as justification to seek
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solutions of the form

ψp+(t) = Ap+e
−iωp+ teGt, (7.18)

ψp−(t) = Ap−e
−iωp− teGt, (7.19)

where ωp± and G are real. We also know that the zonal mode is not being driven,

hence, imposing νq = 0. Using equations (7.18) and (7.19), and considering the

resonant case where ∆± = 0, we can rewrite equation (7.15) as

d

dt
ψq =

{
T (q,−p−, p)ψ0Ap−e

iωp− t + T (q,−p, p+)Ap+ψ0e
−iωp+ t

}
e2Gt. (7.20)

The time dependant parts inside the braces are oscillatory, therefore ϕq must grow

linearly at a rate

γ = 2G, (7.21)

as with chapter 6 this is unitless as time is normalised to ωi.

As with the Extended-Hasegawa-Wakatani case (chapter 6) we define an

associated linear growth time

τ =
1

γ
.

When plotting numerical results, γ is the gradient of the lines labelled ‘linear’.

7.4 Numerical Results

As we wish to recreate the effect of the Hasegawa-Wakatani primary instability we

will drive the Extended-Hasegawa-Mima system, in Fourier space, using a profile

dictated by the EHW dispersion relation, equation (3.80). To do this we solve

equation (3.80) for a given value of adiabaticity parameter α and density gradient

κ, and use the imaginary part of the solution as the a(~k) part of the forcing term

given in equation (7.10). As κ is the EHW equivalent of v? we will use κ = v? = 10

throughout this chapter, due to the normalisations used they are both dimensionless

parameters related to the density gradient in the system.

Here we consider two regimes for driving the Extended-Hasegawa-Mima sys-

tem. The first is the the limit where the adiabaticity parameter α � 1. In the

nomenclature of the Hasegawa-Wakatani system this is known as the Hasegawa-

Mima limit as it represents the recovery of an adiabatic electron response, described

in section 3.2.4. Here we use the term ‘high-α’ to refer to the case where α = 10;

the driving profile used for this limit is shown in figure 7.1(a).
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The other limit, α� 1, is known as the Euler limit and is not explored here.

Instead we look at the regime where α ∼ 1 and the Extended-Hasegawa-Wakani

system would have a non-adiabatic parallel plasma response. We call this the ‘low-

α’ case and use a value of α = 0.5. The relevant profile for driving the EHM system

is shown in 7.1(b).
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Figure 7.1: A subset of the profiles used to drive the EHM system. In both cases the
mode numbers have been normalised to the box size, which was identical for both
simulations. It can be seen that the EHM limit case (a), with α = 10, is centred
around higher mode numbers than the EHW case (b), with α = 0.5. In both cases
κ = 10, and beyond the region shown the driving rapidly decays.

7.4.1 The high-α limit

The first case studied was the high-α case, the EHM system was driven in such a way

as to reproduce the drift waves grown by the primary instability in the Extended-

Hasegawa-Wakatani system when α = 10 and κ = 10. In this case the driving profile

is centred around |k| ≈ 10×2π
L ≈ 1.57. Figure 7.1(a) shows that it tends to 0 before

reaching the ky = 0 axis.

As with chapter 6 the values of ~p and ~q to be used in the ODE system

and analytical growth rate predictions were chosen by looking at the Fourier space

evolution of the system. The evolution of potential in real space is shown in figure

7.2 and the Fourier transform used to chose modes is shown figure 7.3. In this case

~p = (0,−9×2π
L ) = (0,−1.41) and ~q = (2π

L , 0) = (0.157, 0) were chosen, again because
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satellite modes were clearly visible. The pump mode, ~p, is close to the most strongly

driven mode, which is at ~kmax = (0,±2π
L × 8). The results are shown in figure 7.4,

it can clearly be seen that the ODEs correctly capture the linear growth rate of

the driving mode ~p, however there is some initial growth of the perturbing mode,

between t = 0 and t = 4τ , that is not captured by the linear driving. If this extra

growth is measured at early times and applied as a linear driving term the ODEs

capture the initial stage of the evolution better, but with or without it they deviate

after ∼ 4 linear growth times and after short adjustment grow at approximately the

linear growth rate. In both cases the growth rate of mode ~p has been measured from

the full PDE simulation and its value has been assigned to G when solving the ODE

equations, (7.2) to (7.5), as well as when solving equation (7.21) to obtain the linear

growth rate. The measured growth rate is roughly equal to the linear growth rate of

the primary instability described by (3.80). The measured value is νmeasured
p = 1.066

whereas the analytical prediction from equation (3.80) is νanalytical
p = 1.062. This

indicates that there is very little damping on this mode, and its interactions with

other modes are negligible. A line growing linearly with a growth rate γ = 2G,

labelled ‘linear’, is also shown in figure 7.4. This shows reasonable agreement with

the truncated ODE model, indicating that the approximation ν± ≈ νp = G is

reasonable.

It can also be seen in figure 7.4 that after a short period of linear growth,

at around t
τ ∼ 10, the amplitude of ~q in the real system begins to oscillate before

returning to growing linearly. This is discussed further in section 7.5.
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Figure 7.2: Real space images of potential in a driven system where the driving
profile was generated using α = 10 and κ = 10. It can be seen that the drift wave
spectrum supersedes the high frequency components of the initial condition, before
transitioning to a zonal structure. The times shown correspond to figure 7.4.
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Figure 7.3: A Fourier transform of the potential presented in the first panel of
figure 7.2. The modes ~p = (0,−9×2π

L ) = (0,−1.41) and ~p± = (±2π
L ,−

9×2π
L ) =

(±0.157,−1.41) are clearly present and can form a coupled set of modes for use in
the analytical models.
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Figure 7.4: Comparing the ODE and linear predictions to the PDE simulation in
the α = 10 case. Markers indicate output from the full simulation, dashed lines
predictions from the ODEs, and the line labelled linear is arbitrarily positioned but
grows at the linear growth rate. The forcing (ν) used for each mode is shown in
the legend. Without artificially forcing φq (bottom), the ODE does not capture the
growth between t = 0 and t = 4τ . In both cases the linear growth rate of φq is
γ = 2.1.
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7.4.2 The low-α case
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Figure 7.5: Real space images of potential in a driven system where the driving
was generated using α = 0.5 and κ = 10. It can be seen that the drift wave
spectrum supersedes the high frequency components of the initial condition, before
transitioning to a zonal structure. The times shown correspond to figure 7.7(a).

In this case the EHM system was driven so as to reproduce the drift waves

that would be grown by the primary instability in an extended-Hasegawa-Wakatani

system when α = 0.5 and κ = 10. We will refer to this situation as the low-α case.

The resulting driving profile, shown in figure 7.1, shows that modes are now driven

far closer to the ky = 0 line than in the α = 10 case. This difference can be seen by

comparing the Fourier space images from the full simulation in figures 7.6 and 7.3.

Along with the results of chapter 6, this leads us to expect more interactions that

are local in wave number space. These local interactions could provide a secondary
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Figure 7.6: A Fourier transform of the potential presented in the second panel of
figure 7.5. The modes ~p = (0,−3 × 2π

L ) = (0,−0.471) and ~p± = (±2π
L ,−3 × 2π

L ) =
(±0.157,−0.471) are clearly present and form a coupled set of modes for use in the
analytical models.
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mechanism for the production of zonal flows, by gradually transferring energy to

large scales. The real space images in figure 7.5 show broader drift waves, which

is a direct result of the driving profile used in in this case, which drives modes

at lower ~k. We now investigate the modes ~p = (0,−3 × 2π
L ) = (0,−0.471) and

~q = (2π
L , 0) = (0.157, 0), shown in figure 7.6. The evolution of potential in real

space is shown in figure 7.5. The chosen pump mode, ~p, is again close to the most

strongly driven mode, which is at ~kmax = (0,±2π
L × 4). Once again the growth

of the driving mode ~p was measured from the full PDE system and used as G in

the ODEs and linear prediction, the measured value is νmeasured
p = 1.1408. This is

again almost identical to the value used to drive the system, νanalytical
p = 1.1412,

obtained from the linear growth rate of the Extended-Hasegawa-Wakatani primary

instability, equation (3.80).

An immediate difference from the previous section, 7.4.1, is that when ini-

tialising the ODEs at t=0 they produce inaccurate predictions, as shown in figure

7.7(a). In order to get reasonable predictions from the ODEs it is necessary to

initialise them with conditions taken from the real simulation once it has already

entered the linear growth phase. This is shown in figure 7.7(b) where it can be seen

that the ODEs do produce a reasonable prediction for the growth rate of the sys-

tem, but the linear approximation does not. For the real system, this suggests that

other modes are contributing to the growth of φq. Again, this is discussed further

in section 7.5 where energy transfer functions are used to attempt to separate the

cascades from the non-local interactions.
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Figure 7.7: Comparing the ODE and linear predictions to the PDE simulation in
the α = 0.5 case. Markers indicate output from the full simulation, dashed lines
predictions from the ODEs, and the line labelled linear is arbitrarily positioned but
grows at the linear growth rate. The forcing (ν) used for each mode is shown in the
legend. The linear growth rate is γ = 2.28 Unlike the high α case the ODEs must
be solved after the system has started growing linearly, shown in panel (b).
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7.5 Energy transfer functions

As in section 6.5, we now use energy transfer functions to distinguish between cas-

cades and non-local interactions. The energy transfer functions for the EHM equa-

tion can be easily derived from equation (3.49), which is firstly rewritten as

∂t(1− δky ,0δs,1 + k2)φ~k + i(1− δky ,0δs,1 + k2)Ω~kφ~k (7.22)

− (1− δky ,0δs,1 + k2)
1

2

∑
~k1, ~k2

T (~k, ~k1, ~k2)φ ~k1
φ ~k2

δ~k, ~k1+ ~k2
= 0

in order to separate the potential and kinetic energy parts. Then the whole equation

is multiplied by the conjugate of φ~k which we denote as φ?~k
to give

∂t(1− δky ,0δs,1 + k2)|φ~k|
2 + i(1− δky ,0δs,1 + k2)Ω~k|φ~k|

2 (7.23)

− (1− δky ,0δs,1 + k2)
1

2

∑
~k1, ~k2

T (~k, ~k1, ~k2)φ ~k1
φ ~k2

φ?~kδ~k, ~k1+ ~k2
= 0.

(7.24)

The spectral energy transfer terms are then obtained by splitting the nonlin-

ear term into kinetic (T K) and potential (T N ) contributions and writing ~k2 = ~k− ~k1

to give

T K(~k ← ~k1) =
1

2

∑
~k1,~k− ~k1

k2T (~k, ~k1,~k − ~k1)φ ~k1
φ~k− ~k1

φ?~k (7.25)

and

T N (~k ← ~k1) =
1

2

∑
~k1,~k− ~k1

(1− δky ,0δs,1)T (~k, ~k1,~k − ~k1)φ ~k1
φ~k− ~k1

φ?~k (7.26)

Finally the energy transfer functions are obtained by summing over all ~k1, hence

∂tE
K(~k) =

∑
~k1

T K(~k ← ~k1) + linear contribution (7.27)

and

∂tE
N (~k) =

∑
~k1

T N (~k ← ~k1) + linear contribution (7.28)
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7.5.1 The high-α limit

Figure 7.8 shows energy transfer functions for an α = 10 case averaged over a time

window where the perturbing mode ~q = (0, 0.157) was growing. There are clusters

of interacting modes away from the line k = k1 clearly showing a dominance of non-

local interactions. However, the interaction corresponding to a transfer of energy

between ~p = (0,−1.41) and ~q = (0, 0.157) is on the edge of the visible interactions

and has a considerably lower amplitude than other nearby modes. What’s more, it

directly neighbours modes with energy flowing in the opposite direction. Keeping in

mind that these ETF plots involve binning data and averaging over time this may

explain the dip seen in figure 7.4. If during the linear growth phase energy cascades

to the neighbouring mode, which the ETF indicates is happening for mode numbers

k & 1, it could then be transferred in the wrong direction.
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Figure 7.8: Energy transfer functions for the α = 10 case. They have been produced
by averaging over the section that grows at the linear growth rate, t/τ ∼ 7 to t/τ ∼ 9.
Crosses mark modes that are referred to in the text.
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The ETF plots do however suggest that there is a strong non-local coupling

is between modes ~p = (0,−1.26) = (0, −8×2π
L ) and ~q = (0.471, 0) = (3×2π

L , 0). The

evolution of their amplitudes is plotted in figure 7.9. It can be seen that although

the real system does not grow entirely linearly it does grow at roughly the linear

growth rate. In this case both the ODEs and the linear prediction from solving

(7.21) give the correct growth rate, the ODEs even predict the amplitude at which

the system departs from the linear growth phase.
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Figure 7.9: Comparing the ODE and linear predictions to the PDE simulation in
the α = 10 case for modes ~p = (0,−1.26) = (0, −8×2π

L ) and ~q = (0.471, 0) = (3×2π
L , 0)

as indicated by the ETF plot . Markers indicate output from the full simulation,
dashed lines predictions from the ODEs, and the lines labelled linear are arbitrarily
positioned but grow at the linear growth rate. The forcing (ν) used for each mode
is shown in the legend. The ODEs use initial values taken at time t

τ ∼ 3.5, after
the system has made some initial adjustments. Unlike the case in figure 7.4, the full
simulation does not strongly deviate from linear growth.
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7.5.2 The low-α case

We now turn to the case α = 0.5. In contrast with the previous case figure 7.10

indicates that there are a number of local interactions at low modenumbers, there

are strongly interacting modes close to the k = k1 line. This suggests that we are

indeed in a regime where cascades are important. Once again the modes investigated

earlier (in section 7.4.2), ~p = (0,−0.471) and ~q = (0.157, 0), are on the edge of the

nonlocal interaction region. Unlike the high-α case there is a clear region around

k ∼ 0.5 where energy is being transferred from k to k1, however there are a number

of modes transferring energy to k1 ∼ 0.1, this would explain why the system grows

faster than the linear prediction in figure 7.7 but not why the ODE prediction is

more accurate.

Once again there is a suggestion that a different set of modes are coupling

more strongly than the set we initially investigated, in this case ~p = (0,−0.785) =

(0, −5×2π
L ) and ~q = (0.157, 0) = (2π

L , 0). However, the randomly generated initial

conditions for this set of modes did not have φp(t = 0) � φq(t = 0), therefore

the system was left for some time before the ODEs were initialised. The results

are shown in figure 7.11. Again the linear approximation and ODEs give a better

prediction than in the previous case investigated. In this case neither the PDE nor

ODE predictions show a completely linear growth even though it still seems to be

the dominant effect.
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Figure 7.10: Energy transfer functions for the α = 0.5 case. They have been pro-
duced by averaging over the section that grows at the linear growth rate, t/τ ≈ 7
to t/τ ≈ 11. Crosses mark modes that are referred to in the text.
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Figure 7.11: Comparing the ODE and linear predictions to the PDE simulation in
the α = 0.5 case for modes ~p = (0,−0.785) = (0, −5×2π

L ) and ~q = (0.157, 0) = (2π
L , 0)

as indicated by the ETF figures. Markers indicate output from the full simulation,
dashed lines predictions from the ODEs, and the line labelled linear is arbitrarily
positioned but grows at the linear growth rate. In this case the initial condition had
φq(t = 0) � φp(t = 0) so the initial conditions for the ODEs was taken at t

τ ∼ 7
when this was no longer the case.
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7.6 Conclusions

The analytical techniques developed in chapter 5 were extended to model a version of

the Extended-Hasegawa-Mima equation that includes a driving term. This driving

term was used to reproduce the growth of drift waves as seen in the Extended-

Hasegawa-Wakatani system.

Initially attempts were made to find four-wave interactions by examining

Fourier space images of the evolution of potential. This was partially successful, if

the initial conditions were correctly chosen the correct growth rate of the zonal mode

could be found using the ODEs, and for the high–α case with the linear prediction

as well.

Energy transfer functions were then used to investigate the behaviour of the

system during the linear growth phase. These showed the increased importance

of cascades in the low–α case as well as suggesting modes that were interacting

more strongly than those originally investigated. These new modes were modelled

analytically and it was shown that they displayed linear growth that was better

captured by the analytical methods than the modes identified by examining Fourier

space images.
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Chapter 8

Conclusions

Turbulence is one of the major problems that must be overcome in order to build a

tokamak capable of commercial power production. It is such a complicated problem

that although it can be included in numerical simulations, this does not always lead

to a better understanding of physical processes involved. This is where reduced

models of plasma turbulence play a role, despite their apparent simplicity they still

contain enough of the physical processes governing turbulence to make analytically

tractable predictions of plasma behaviour. In this work they are used to investigate

the drift wave to zonal flow transition. The particular models used here were the

Extended-Hasegawa-Mima and Extended-Hasegawa-Wakatani equations.

In chapter 5 the Extended-Hasegawa-Mima system was used to investigate

the transition to zonal flows caused by four-wave interactions. This is particularly

relevant in the EHM system as it has no built in instability, therefore the waves

seeded in its initial condition will dominate the early evolution of the system. A

truncated ODE description of the system was derived along with a linear dispersion

relation for the four-wave zonal flow transition.

The linear dispersion relation was used to produce maps of the linear growth

rate for various parameter regimes of the modulational instability. These clearly

showed that as the nonlinear terms become more important in the evolution of

the system, more modes became unstable. Both the ODEs and linear growth rate

predictions were compared with equivalent partial differential equation simulations

that were not truncated. For cases where the four waves in the system were in

resonance it was shown that both the ODEs and linear dispersion relation accurately

predicted the growth rate of the system. In some cases the ODEs were even capable

of capturing behaviour other than linear growth, such as the oscillatory behaviour at

the beginning of off-axis simulations and the saturation level of moderately nonlinear
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systems.

Chapter 6 extended the analytical technique for deriving truncated equations

developed in chapter 5 for use with the Extended-Hasegawa-Wakatani system. The

EHW system has a separate equation for potential and density, coupled together

by assuming electrons experience a resistivity whilst moving parallel to the mag-

netic field when equilibrating them. The resistivity means that there is a phase

shift between perturbations in potential and density, which has an associated linear

instability leading the growth of a spectrum of drift waves. This thesis investigated

four-mode interactions in the presence of this linearly unstable drift wave spectrum.

A truncated ODE model was produced, this time with 8 equations, four for den-

sity and four for potential. Unlike the EHM system, it is not possible to derive a

stationary dispersion relation for the secondary instability as the time dependence,

introduced by the linear growth from the primary instability, cannot be removed.

It was found that the ODEs could predict the growth rate of the zonal mode,

although they did not capture other features, such as the saturation level of the

full system, as well as for the EHM case. For the cases presented here the zonal

mode always grew at approximately twice the rate of the driving mode, which was

demonstrated mathematically by considering the case where the driving and satellite

modes grew at the same rate.

The chapter finished by using energy transfer functions to investigate whether

non-local couplings or local cascades were causing the transition to a zonal config-

uration. These suggested that the non-local interactions modelled by the ODE

equations were present in both the adiabatic, α = 10, and non-adiabatic, α = 0.5,

cases studied. However, only in the high α case was the transition dominated by

non-local interactions.

As these energy transfer functions directly measure four-wave interactions

from the full simulation they were used to inform the selection of additional in-

teractions to investigate. The ODEs still captured the linear growth rate of these

additional interactions and were better able to capture the saturation amplitude of

the zonal mode.

Chapter 7 tried to reproduce the growing drift wave spectrum of the Extended-

Hasegawa-Wakatani equations in the Extended-Hasegaw-Mima system. To do this

a forcing term was added the the EHM equation which drove modes in Fourier space

at a rate determined by the primary dispersion relation of the EHW system.

As with the EHW case studied in chapter 6, a spectrum of drift waves was

produced and modes from this spectrum were selected for comparison to ODE equa-

tions, which had been modified to include the driving term. This time however, some
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of the simplicity of the EHM system is recovered as there are only four ODEs to

consider.

It was found that the four-mode truncated ODEs once again made reasonable

predictions of the growth rate of the zonal modes, but not their saturation behaviour.

In the full system interactions with drift waves other than those considered in the

four-mode truncation do cause deviations from linear growth. This was particularly

noticeable for the case simulating an adiabatic EHW system. For the non-adiabatic

case, the real system grew linearly, but at a rate slightly faster than predicted by

the ODEs.

Energy transfer functions were again used to contrast local and non-local

energy transfer in k-space. The system for which the driving profile was centred

on a lower k number once again transitioned to a zonal state via both local and

non-local interactions. The energy transfer functions were used to find strongly

interacting modes for which the ODEs could better predict the end of the liner

growth phase.

Despite the relative simplicity of the driven EHM system, it is still not possi-

ble to produce a linear dispersion relation for the drift wave to zonal flow transition.

As for the EHW case the growth of the driving mode means that a time stationary

solution cannot be found, but making the assumption that the satellite modes grow

at the same rate as the driving mode indicates that the zonal mode should grow at

twice the rate of the driving mode. This is true for all but the case with cascading

behaviour, it is likely that the cascade is enhancing the growth of the zonal mode.

In general, this suggests that four-wave ODE truncations can produce reason-

able predictions of the growth rate of the zonal flow in the reduced models studied

in this thesis. This is still true, for selected modes, even when an unstable spectrum

of drift waves is present. However, it is always possible for interactions with modes

not included in the truncation to cause deviations from linear growth, or growth

at a rate not predicted by the ODEs. This is especially the case when a spectrum

of waves is present, yet even the EHM system can spontaneously grow additional

waves that invalidate growth rate predictions.
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