SKaMPI: The Special Karlsruher
MPI-Benchmark

User Manual !

R. H. Reussner
University of Karlsruhe
Department of Informatics
Germany

reussner@ira.uka.de

January 13, 1999

'This document appeared as Interner Bericht (Technical Report) 99/02 at the De-
partment of Informatics, University of Karlsruhe, Germany

Abstract

SKaMPI is the Special Karlsruher MPI-Benchmark. SKaMPI measures the
performance of MPI [3][1] implementations, and of course of the underlying
hardware. It performs various measurements of several MPI functions. SKaMPI’s
primary goal is giving support to software developers. The knowledge of MPI
function’s performance has several benefits: The software developer knows the
right way of implementing a program for a given machine, without (or with
shortening) the tedious time costly tuning, which usually has to take place.
The developer has not to wait until the code is written, performance issues can
also be considered during the design stage. Developing for performance even
can take place, also if the considered target machine is not accessible.

MPI performance knowledge is especially important, when developing portable
parallel programs. So the code can be developed for all considered target plat-
forms in an optimal manner. So we achieve performance portability, which
means that code runs without time consuming tuning after recompilation on a

new platform.

Contents

1 Running SKaMPI

1.1
1.2

1.3

1.4

1.5
1.6

2.1

2.2

Introduction e e e

Installation e

1.2.1
1.2.2

Getting SKaMPI o .
Compiling SKaMPI

Running SKaMPI o oo

Post-processing oo o

Generating areport L o oo

The measurements: A short overview

1.6.1
1.6.2
1.6.3
1.6.4

Ping-pongtests o oL oL
Measurements with the master worker scheme
Collective Operations

Local Operations

Customizing and trouble-shooting

Configuring SKaMPI- The parameter file

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6

2.1.7

The sections o L o e
Example and default values
Grammar for sections oo
The MEASUREMENTS-section
Exampleof anentry
A Note to the preference of the parameters Max _Steps,
Time Suite and Standard error, Time Measurement

Grammar of the MEASUREMENTS-Section

Configuring the report generator

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Comparisons« . v v v vt e e e e
Additional tex-modules L.
More detailed graphso 0oL
Given modulefiles o o oL,

Extra text for suites

2.3 When SKaMPI crashes.

0 =1 ~1 S Ol o ke W W NN

—_ =
S D

18
19
19
21
22
23
26

3 Measurements in detail 34

3.2

3.3

But what is measured? L Lo oL 34
3.1.1 Example. oo o o 35
3.1.2 Point-to-Point pattern 0oL, 37
3.1.3 Master-Worker pattern. 0oL, 37
3.1.4 Collective pattern 0oL, 39
3.1.5 Simplepattern o0 0o oL, 39
The call-back functions, 40
3.2.1 Call-backs of the Point-to-Point pattern 40
3.2.2 Call-backs of the Master-Worker pattern 50
3.2.3 Call-backs of the Collective pattern. 60
3.2.4 Call-backs of the Simple pattern 70
The output file L o oL 72

il

Acknowledgements

This technical report mainly offsprings from my diploma thesis [2]. T would
like to express my gratitude to my advisers P. Sanders and L. Prechelt. Espe-
cially the algorithm for automatic parameter refinement is based on ideas of P.

Sanders. I would like to thank for many fruitful discussions.

Chapter 1

Running SKaMPI

1.1 Introduction

SKaMPI is the Special Karlsruher MPI-Benchmark. SKaMPI measures the
performance of MPI implementations, and of course of the underlying hard-
ware. It performs various measurements of several MPI (Ver. 1.1) functions.
The results are stored in a text file, from which a report can be generated
automatically.

SKaMPI’s primary goal is giving support to software developers. Software
developers are faced with severals problems when designing and implementing
code for parallel environments. First of all the code has to show the best per-
formance. This implies that a program’s performance has to be measured and
tuned during numerous sessions. Further on, cost intensive software develop-
ment is more profitable, when the product can be used on several platforms,
i.e., is portable without a new tuning for each machine. The message passing
interface (MPT) [3][1] is a standard for a library to program message passing ma-
chines. MPI has been created by the MPI-forum, a group of researchers from
academia and industry. MPI is a big step forward towards portable software
for parallel platforms, since programmers no can rely on one interface standard,
instead of several vendor-dependent interfaces. Instead of principal excluding
efficient ways of implementing the MPI standard on certain machines, the MPI
standard comprises several similar functions. So MPI offers many alternatives
when designing and implementing a parallel algorithm. These alternatives offer
a great potential for optimization.

This potential is twofold: First, the knowledge of several MPI function’s
performance allows the software developer the right way of implementing a
program for a given machine, without (or with shortening) the tedious tuning.
Even better, the developer has not to wait until the code is written, performance

issues can also be considered during the design stage. In fact, developing for

1.2. INSTALLATION 3

performance even can take place, also if the considered target machine is not
accessible, or a workstation is used for development, which also can lower cost
of development.

Second, if the programmer knows the MPI function’s performance on sev-
eral machines, the programs can be developed for performance for all considered
target platforms. So we can speak of a performance portability, instead of com-
pile portability. Compile portability means that a parallel program, developed
and tuned on platform A, is recompiled on platform B, and has to be tuned for
platform B. So this in not what we really understand under portability. Unlike
compile portability, performance portability means that a program is developed
with MPI function’s performance on all targeted platforms in mind, so that you
really just have to recompile.

The SKaMPI project tries to support these goal of performance and perfor-
mance portability through two issues: First we offer a user configurable bench-
mark suite and a report generator, down-loadable from the web. So each user
can measure the performance of accessible machines in terms of MPI, gener-
ate a report, and can draw its own conclusions from this. Second, we provide
a public result database, where we store SKaMPI’s results from many ma-
chines, if permitted. So, please, email a copy of your result file to us (that
is: reussner@ira.uka.de). So you can support performance portability and
design for performance, because for these concepts we need the data of many

machines.

1.2 Installation

1.2.1 Getting SKaMPI

The easiest way to obtain the SKaMPI-Packet is to load it down from the
SKaMPI-homepage: http://wwwipd.ira.uka.de/skampi/ The SKaMPI-file you
find there is a gnu-zipped tar-file. Thus you can unpack it with tar -xvzf
skampi.tgzl.

However, this will create the whole directory-tree of SKaMPI:

/skampi
/skampi/report_generator

In the SKaMPI directory are the source files you need for compiling SKaMPI.
In the directory skampi/report_generator you will find the report generator

and its driver files.

LIf your version of tar has no option z, you can call gnu-unzip first (gunzip skampi.tgz
and then tar (tar -xvf skampi.tar)

4 CHAPTER 1. RUNNING SKAMPI

1.2.2 Compiling SKaMPI

The benchmark program itself consists of one source-file (skosfile.c?), so that
you can compile it with just one compiler call.®> This compiler call depends on
your machine. When using mpich, you usually have a makefile, so just call
make skosfile. Or on an IBM SP under AIX call mpcc -1m -o skosfile
skosfile. However, note that the math-library (-1m) is necessary for linking.
You should not request any optimizations by the compiler. Some of SKaMPI’s
function calls do not have many parameters. The compiler would load the
parameter into registers. This would give an unrealistic touch to our data, since
this would not happen in realistic “real” applications. Also SKaMPI contains
empty dummy functions, just created to measure the overhead on a function
call. These function should also no be optimized away.

Please compile the program pposf.c in the same manner. This program is

only used for post processing the results. This will be explained in Section 1.4.

1.3 Running SKaMPI

Unfortunately starting an MPI program is as dependent on your system as
compiling. Usually you can start MPI programs with the mpirun-command, but
there is no standard for its parameters. Using mpich you start the benchmark
with mpirun -np 16 skosfile with 16 processors. Note: Some systems like
the IBM SP have a different command for starting parallel programs (poe) than
mpirun. In case of trouble, you may ask your local administrator.

SKaMPI wants to be started with two or more processors. How many you
use, depends on what you want to measure.* Some operating environments
request further information on the program to start, such as memory or time
requirements. The memory that SKaMPI needs depends on what is given in the
@MEMORY-section in the parameter file (.skampi). (Please see section 2.1 for
further information about the parameter file.) As rule of the thumb you should
give a megabyte extra, for internal buffers, etc. The time that SKaMPI needs to
measure depends on the accuracy you request, and the number of measurements
you asked SKaMPI to perform.’ To say a typical value: SKaMPI runs with

2skampi-in-onesourcefile

3During development we use several modules, which are merged together to skosfile.c.
This eases distribution, versioning, and compiling and on the target platforms. If you are
interested in reusing the code, please send an email to obtain the modules, which probably
eases understanding of the code.

4Well, you may ask, what is measured. For a quick overview please have a look in the
example-report skarep. example.ps or in the Section 1.6. A more detailed technical description
you will find in the Section 3.1.

5You can change them in the @STANDARDERROR- and @MEASUREMENTS-section respectively.
You also can give a time limit for measurements through the sections @ TMESUITEDEFAULT and
@TIMEMEASDEFAULT. (For further information please see Section 2.1.4.)

1.4. POST-PROCESSING 5

all measurements and an accuracy of 3 percent less than half an hour on an
IBM SP using 16 nodes using an 8 MB message buffer.

SKaMPI stores its results in a text file. The name of this text file is skampi.out
by default. To change that edit the @OUTFILE-section in the parameter file (see
2.1.1). While other processes running during measuring, their load may disturb
SKaMPI. So you might find it useful running SKaMPI more than once. For
every run SKaMPI creates a new output file skampi.out. 1, skampi.out.2and
so on. Note that the results of the actual run are always stored in skampi.out.
The other file SKaMPI creates is a log file (skampi.log). ¢ It is used by the
recovery-mechanism. But you may also have a look into. Several warnings and

comments are stored in it.

Before starting the Benchmark we urgently recommend to fill out
the @MACHINE, NODE and @NETWORK sections of the parameter file

.skampi in a detailed manner.

@COMMENT Section for comments. You may enter any text you

want. (Well, text without other section names, of course!)

@MACHINE The text in this section describes the machine, you
run SKaMPI on. You can add any other relevant details of a
measurement here. Note that there are also special sections for
the network (@NETWORK) and the nodes (@NODE). SKaMPI as-
sumes that the first line of the @MACHINE-section contains

just the name of the machine.

@NODE In this section you may describe the type of nodes you

use. If there are several types, please describe them all.

@NETWORK Here you may type in, which network you use. Of-
ten there are several versions of a communication network for

one machine (for example the IBM SP).
@USER Here is your place. The first line of this section is used by

the report-generator (dorep.pl) and should only contain your

name.

The report generator requires this data to create a report of the results.

1.4 Post-processing

Since we may have more than one output file, we would like to merge all these

files together, so that all measurements performed are used. The post-processing

6Its name can be changed in the @LOGFILE section of the parameter file.

6 CHAPTER 1. RUNNING SKAMPI

does exactly this. It reads all output files and creates a new one (concrete: a
new skampi.out). This new file is used for storing the medians of all other
corresponding measurements.

If you do not want SKaMPI to perform the post-processing, you just have to
write @POSTPROCESSING no (instead of yes) in the parameter file. Then you

can call the post-processing manually: post.

1.5 Generating a report

Since we run SKaMPI, we would like to know its results. Lets assume that
the results are stored in skampi.out, which is the default.” Then we just call
dorep.pl to create a postscript report named skampi.out.ps.

Just call dorep.pl other_name if your output file is not named skampi.out

but “other name”. In this case, the result will be stored in other name.ps.

A note to dorep.pl: As you may have seen by the file extension, the
report generator is a perl-script. More exactly: perl 5. There are
several reasons for using perl, perhaps the most important is, that
we do not have to worry about compiling (since perl is interpreted).
But there is still a little point to look at: dorep.pl has to find
the perl-binary. Therefore its first line contains my path to the
perl-interpreter (§!/usr/bin/perl -w). At some systems this path

differs from this one.® So adaption may be required.
dorep.pl needs several programs to work.

Program my Version Purpose

perl version 5.003 interpreting and execution

gnuplot version 3.5, patchlevel 3.50.1.17, Generating eps-graphics

27 Aug 93
latex Version 3.14159 (C version 6.1) Text formatting
dvips dvipsk 5.58f Converting .dvi-files into

.ps-files.

Information on configuring the report generator is given in Section 2.2. Note:
The report generator relies on filled entries @MACHINE and @USER as described

in section 1.3.

“Further on lets say, that if we had several runs of SKaMPI, we would have called the
post-precessing.

8The real perl-freak knows: the is a solution for this problem, a magic line, which forces
the shell to search for perl. But it does not works, when using the C-shell. (So we forget it.)

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 7

1.6 The measurements: A short overview

This section is a short guide through all measurements, which are performed by
the standard-suite. This suite is given in the default SKaMPI parameter file.

Changing the parameters is shown in Section 2.1.

1.6.1 Ping-pong tests

In a ping-pong test one node sends a message to another, which replies it. We
can use for these point-to-point communication different MPI operations.

All ping-pong measurements are varied over the message length.

MPI_Send-MPI Recv

This is the “standard”-ping-pong test. A message is send with MPI_Send from
a node to another receiving with MPI Recv. The receiving nodes replies also
with MPI _Send. As result the bandwidth of a node is given. That is incoming
bandwidth plus outgoing bandwidth.

This measurement serves as reference for all other ping-pong measurements.

MPI_Send-MPI_Iprobe Recv

This ping-pong test waits busily via calling MPI _Iprobe before calling MPI Recv

at the sending and receiving node. It differs in no way else from the standard
ping-pong.
MPI_Send-MPI Irecv

Here we replace the MPI Recvs of the standard ping-pong test with a combined
MPI Irecv and MPI Wait. The idea is to see possible advantages of the non-

blocking version.

MPI_Send-MPI_Recv_with_Any Tag

This measurement is just the standard ping-pong test. It only differs in receiving
without a specified tag. Here we use the tag MPI_ANY_TAG to determine whether

this is more expensive or not.

MPI_Ssend-MPI_Recv

In this measurement we use MPI_Ssend for sending and MPI_Recv for receiving.

Here we can fix the overhead of synchronous sends.

8 CHAPTER 1. RUNNING SKAMPI

MPI_Isend-MPI_Recv

Now we use MPI_Isend for sending and MPI Recv for receiving. After the non-
blocking send we use an MPI Wait. So we can determine the advantage of

non-blocking sends combined with Waits.

MPI_Issend-MPI_Recv

Now we use MPI _Issend for sending and MPI Recv for receiving. After the non-
blocking send we use an MPI Wait. So we can determine the advantage or cost
of non-blocking synchronizing sends combined with Waits. Also comparisons to

MPI_Isend are interesting.

MPI_Bsend-MPI_Recv

In this measurement we use MPI_Bsend for sending and MPI_Recv for receiving.

Here we can fix the overhead of managing user-defined buffers.

MPI_Sendrecv

In this measurement we use MPI Sendrecv for sending and receiving at the
sender and the receiver. This can be compared with the standard-ping-pong

test and with the following test of MPI_Sendrecv_replace.

MPI_Sendrecv_replace

In this measurement we use MPI_Sendrecv_replace for sending and receiving at
the sender and the receiver. This can be compared with the standard -ping-pong

test and with the previous test of MPI_Sendrecv.

1.6.2 Measurements with the master worker scheme

The following measurements correspond to the master worker scheme. The
master dispatches suborders to several workers. These workers send a reply for
every received order. With this way we try to measure the network throughput
and how it can handle simultaneous communication.

This kind of measurements can be varied over the number of suborders
(chunks), the length of the messages sent or the number of workers.

We display the bandwidth reached at the master node.

MPI_Waitsome-nodes

In this measurement we use the MPI Waitsome-routine to coordinate the in-
coming worker messages. This function guarantees a fair coordination of the
workers, because messages of every sending worker will be received. Here the

measurements are varied over the number of workers.

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 9

MPI_Waitsome-chunks

This is the same measurement as above, but now we vary it over the number of

chunks.

MPI_Waitsome-length

This is the same measurement as above, but now it is varied over the message

length.

MPI_Waitany-length

In this measurement we use the MPI Waitany-routine to coordinate the incom-
ing worker messages. This function does not guarantee a fair coordination of
the workers, because possibly a worker’s messages are always overtaken by the
messages of its colleagues. But because of its simplicity it may be faster than
the MPI Waitsome.

We vary over the message length.

MPI Recv_Any_Source-length

In this measurement the master receives the messages of the workers via MPI Recv
using the MPI_ANY_SQURCE as source. Thus this is a master-worker scheme only
realized with point-to-point communication operations. For sending MPI_Send
is used.

Here we vary over the message length.

MPI _Send-length

Here the master uses MPI_Send for sending and MPI Recv for receiving. But con-
trary to the measurement above, the source is specified in the call of MPI Recv.
This measurement serves as reference for the following three measurements. But
you also can compare it with the measurement above.

It is varied over the message length.

MPI _Ssend-length

This measurement only differs in using MPI_Ssend instead of MPI_Send. It shows

the extra costs of the synchronous sending.

MPI Isend-length

This measurement only differs in using MPI_Isend instead of MPI_Ssend. The
non-blocking sending will be faster than the blocking variants, if the network

allows.

10 CHAPTER 1. RUNNING SKAMPI

MPI _Bsend-length

This measurement only differs in using MPI _Bsend instead of MPI_Send. We can
see the costs of extra buffer handling to MPI_Send.

1.6.3 Collective Operations

The following measurements concern collective MPI operations. These opera-
tions synchronize processes MPI Barrier or transmit data between them. The
time until completion on all nodes is measured. In all cases the result is the

bandwidth at one node.

MPI_Bcast-nodes-short

Here we test the MPI Bcast operation with short messages (256 Bytes). We
vary over the number of processes. The results are compared with the results

of the following measurement.

MPI_Bcast-nodes-long

Now we test the MPI_Bcast operation with long messages (64 KBytes). We vary

over the number of processes.

MPI _Bcast-length

This measurement also tests the Broadcast operation. But here we vary over

the message length. The number of the participating nodes is fixed.

MPI_Barrier-nodes

This test synchronizes several processes via MPI Barrier. This measurement
is interesting because this operation usually is called very often. We vary over
the number of nodes. (Since there are no messages sent, we cannot vary over

message length.)

MPI_Reduce-nodes

Here me measure the time MPI _Reduce consumes. This operation performs
a tree-wise data reduction operation (here: bit-wise or) on all participating
processes. The result is stored at a root node. We vary over the number of

nodes.

MPI _Reduce-length

This measurement is the same like the one above. But now we vary over the

message length.

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 11

MPI_Scan-nodes

The MPI_Scan operation performs a prefix reduction on data distributed across
the participating processes. First we vary over the nodes. This measurement

can be compared with MPI Reduce.

MPI_Scan-length

This is the measurement described above. Now it is varied over the message

length.

MPI_Alltoall-nodes-short

The MPI_Alltoall operation sends a message from every node to every node.
We vary over the number of nodes. The messages have the length of 256 Bytes

(for each node).

MPI_Alltoall-nodes-long

This measurement is similar to the above. But now the messages have the length
of 64 KBytes (for each node).

MPI_Alltoall-length

This is the same measurement as above, only that we vary over the message
length.

MPI_Gather-nodes-short

Using the MPI Gather operation a root process collects data distributed on
several nodes and writes the the received data in one contiguous buffer. We
vary over the number of nodes buffer. The messages have the length of 256

Bytes (for each node).

MPI_Gather-nodes-long

Here we also measure the MPI_Gather operation varied over the number of nodes.

But in this case the messages have the length of 64 KBytes (for each node).

MPI_Gather-length

Here we measure MPI_Gather varied over the message length.

12 CHAPTER 1. RUNNING SKAMPI

MPI_Gather_SR-nodes-short

Using a Gather operation a root process collects data distributed on several
nodes and writes the the received data in one contiguous buffer. Here we imple-
mented this operation with MPI_Send and MPI Recv. It is interesting to compare
this implementation with the MPI implemented MPI_Gather or our other im-
plementation of gather (MPI_Gather ISWA). We vary over the number of nodes.
The messages have the length of 256 Bytes (for each node).

MPI _Gather_SR-nodes-long

Here we also measure the Gather operation implemented with MPI_Send and
MPI Recv varied over the number of nodes. But in this case the messages have
the length of 64 KBytes (for each node).

MPI _Gather_SR-length

Here we measure our MPI _Send - MPI Recv implementation of Gather varied

over the message length.

MPI_Gather ISWA-nodes-short

Using a Gather operation a root process collects data distributed on several
nodes and writes the the received data in one contiguous buffer. Here we im-
plemented this operation with MPI _Isend and MPI Waitall. It is interesting
to compare this implementation with the MPI implemented MPI _Gather or our
other implementation of gather (Send-Receive). We vary over the number of

nodes. The messages have the length of 256 Bytes (for each node).

MPI_Gather ISWA-nodes-long

Here we also measure the Gather operation implemented with MPI_Isend and
MPI Waitall varied over the number of nodes. But in this case the messages
have the length of 64 KBytes (for each node).

MPI _Gather ISWA-length

Here we measure our MPI _Isend - MPI Waitall implementation of Gather varied
over the message length.

MPI _Scatter-nodes-short

In the MPI Scatter operation a root process distributes data to every node.
The messages have the length of 256 Bytes (for each node).

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 13

MPI _Scatter-nodes-long

Here we also measure MPI Scatter varied over the number of nodes, but the

messages have the length of 64 KBytes (for each node).

MPI Scatter-length

We measure MPI_Scatter varied over the message length.

MPI_Allreduce-nodes

This operation performs a tree-wise data reduction operation (here: bit-wise
or) on all participating processes and distributes the result to all participating
nodes. This result distribution to all participating nodes is the difference to the
normal MPI Reduce operation, where the result is stored in a single root pro-
cessor. So it is interesting to compare this operation to the normal MPI Reduce
and to a MPI_Reduce followed by an MPI Bcast operation (our measurement
MPI Reduce Bcast), which also distributes the result to all nodes. We vary over
the number of nodes with a message length of 256 Bytes for each node.

MPI_Allreduce-length

Here we also measure the performance of MPI_Allreduce. This time we vary

over the message length.

MPI_Reduce_Bcast-nodes

This operation performs a tree-wise data reduction operation (here: bit-wise
or) on all participating processes with MPI Reduce and then distributes the
result to all participating nodes with MPI Bcast. This result distribution to all
participating nodes is the difference to the normal MPI_Reduce operation, where
the result is stored in a single root processor. So it is interesting to compare
this operation to MPI_Allreduce, which also distributes the result to all nodes
in one call. We vary over the number of nodes with a message length of 256

Bytes for each node.

MPI _Reduce Bcast-length

Here we also measure the performance of MPI Reduce followed by MPI Bcast.
This time we vary over the message length.

MPI _Reduce_scatter-nodes

This operation performs a tree-wise data reduction operation (here: bit-wise or)

on all participating processes with MPI_Reduce_scatter and then distributes the

14 CHAPTER 1. RUNNING SKAMPI

result partially to all participating nodes. Every node receives a different part
of the result-array. This kind of result distribution to all participating nodes
is the difference to the normal MPI Reduce or MPI_Allreduce operation, where
the result is stored in a single root processor or is transferred completely to all
nodes. So it is interesting to compare this operation to MPI_Allreduce, which
distributes the result to all nodes in one call. MPI Reduce_scatter can also
be compared with MPI Reduce followed by MPI Scatterv, which we measure
as MPI Reduce Scatterv. We vary over the number of nodes with a message
length of 256 Bytes for each node.

MPI_Reduce scatter-length

Here we also measure the performance of MPI Reduce _scatter. This time we

vary over the message length.

MPI_Allgather-nodes-short

The MPI_Allgather operation collects data from every node and concats the re-
ceived data in one contiguous buffer. In difference to the MPI_Gather operation,
all nodes collect the data, not only a root process. We vary over the number of

nodes. The messages have the length of 256 Bytes (for each node).

MPI_Allgather-nodes-long

Here we also measure the MPI_Allgather operation varied over the number of
nodes. But in this case the messages have the length of 64 KBytes (for each

node).

MPI_Allgather-length

Here we measure MPI_Allgather varied over the message length.

MPI_Scatterv-nodes-short

In the MPI Scatterv operation a root process distributes data to every node.
In addition to MPI _Scatter a displacement and length can be given, which de-
termine which data from the root process’ buffer is send to the other nodes. It
is interesting to see the extra costs compared to MPI_Scatter. We vary over the

number of nodes. The messages have the length of 256 Bytes (for each node).

MPI _Scatterv-nodes-long

Here we also measure MPI Scatterv varied over the number of nodes, but the

messages have the length of 64 KBytes (for each node).

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 15

MPI _Scatterv-length

We measure MPI_Scatterv varied over the message length.

MPI_Gatherv-nodes-short

In the MPI_Gatherv operation a root process collects data from every node and
concats the received data in one buffer. In addition to the MPI _Gather operation,
we can use per processor receiving from a specific displacement and length, which
determine where to write received data in the root’s buffer and how man bytes
to receive from any processor. Of course, it is interesting to see, what are the
extra costs of this features. We vary over the number of nodes. The messages
have the length of 256 Bytes (for each node).

MPI_Gatherv-nodes-long

Here we also measure the MPI_Gatherv operation varied over the number of
nodes. But in this case the messages have the length of 64 KBytes (for each

node).

MPI_Gatherv-length

Here we measure MPI_Gatherv varied over the message length.

MPI_Allgatherv-nodes-short

The MPI_Allgatherv operation each process collects data from any other process
and concats the received data in one buffer. In addition to the MPI_Allgather
operation, we can use per processor receiving from another processes a specific
displacement and length, which determine where to write received data in the
root’s buffer and how man bytes to receive from any processor. Of course, it is
interesting to see, what are the extra costs of this features. We vary over the

number of nodes. The messages have the length of 256 Bytes (for each node).

MPI_Allgatherv-nodes-long

Here we also measure the MPI_Allgatherv operation varied over the number of
nodes. But in this case the messages have the length of 64 KBytes (for each
node).

MPI_Allgatherv-length

Here we measure MPI_Allgatherv varied over the message length.

16 CHAPTER 1. RUNNING SKAMPI

MPI_Alltoallv-nodes-short

The MPI_Alltoallv operation sends a message from every node to every node.
In addition to the “normal” MPI_Alltoall operation here we able to specify
which data from a process’ sending buffer should be send to any other process
(send displacement and send lengths) and we can specify where a process’ data
received from any other process should be stored (receive displacement and
receives lengths). We vary over the number of nodes. The messages have the
length of 256 Bytes (for each node).

MPI_Alltoallv-nodes-long

This measurement is similar to the above. But now the messages have the length
of 64 KBytes (for each node).

MPI_Alltoallv-length

This is the same measurement as above, only that we vary over the message

length.

MPI_Reduce_Scatterv-nodes

This operation performs a tree-wise data reduction operation (here: bit-wise or)
on all participating processes with MPI Reduce and then distributes the result
partially to all participating nodes with MPI_Scatterv. Every node receives a
different part of the result-array. This result kind of distribution to all partici-
pating nodes is similar to the one of MPI_Reduce_scatter, so it is interesting to
compare this operation to MPI_Reduce_scatter, which distributes the result to
all nodes in one call. We vary over the number of nodes with a message length
of 256 Bytes for each node.

MPI _Reduce_Scatterv-length

Here we also measure the performance of MPI_Reduce_Scatterv. This time we
vary over the message length.

MPI_Commsplit-nodes

The MPI_Commsplit operation splits a given communicator into several others.
In this measurement the communicator is divided it into two new ones. This

measurement can only be varied over the number of nodes.

1.6.4 Local Operations

The following measurements are local. This means that they are executed on

only one processor. Also they do not have any parameters.

1.6. THE MEASUREMENTS: A SHORT OVERVIEW 17

MPI_Wtime

This measurement should fix the time used for one call of MPI Wtime. This MPI
routine is used in the whole benchmark for measuring. The result is a lower

bound of our accuracy.

MPI_Commrank

This routine is used to get the process-id of the calling process. (This ID corre-
sponds to the used MPI communicator.) The costs of this operation are relevant,
because many subroutines have to find out their process-id. Usually this infor-
mation is not given as a parameter to the subroutine, but the communicator

is.

MPI_Commsize

This MPI operation gives the number of processes grouped in a communicator.
We are interested in its costs because of the same reasons for the operation

above.

MPI_Iprobe

Many receiving routines test whether a message came in or not using MPI _Iprobe.
Most calls are not successful in the mean that MPI_Iprobe is called, when no
message arrived.

Here we fix the costs of an unsuccessful MPI Probe.

simple_dummy

This measurement determines the overhead of measuring these local operations.

Chapter 2

Customizing SKaMPI and

trouble-shooting

This is a more detailed chapter containing information about customizing the
measurements to your personal needs. Further on we introduce the recovery-
mechanism of SKaMPI, and what’s to do, when it fails.

But before that, lets clear some expressions.

Single measurement: A single call of a (MPI) routine to be measured in a
pattern (see section 3.1 for patterns). (E.g., MPI_Send-MPI Recv at 1 MB

message length.)

Measurement: A measurement is the determination of a value at an exactly
defined (set of) parameter(s). The result of a measurement is built of sev-
eral single measurements. In this benchmark the number of single mea-
surements necessary for one measurement is determined by the accuracy

wanted (and an upper and lower bound).

Suite of measurements: Measurements varied over their common parameter.
In the report generated by the report generator every subsection repre-
sents a suite of measurements. (E.g., MPI_Send-MPI Recv from 0..16 MB

message length.)

Run: A run of the benchmark is the execution of all selected suites. (Selection

is done in the parameter file.) Usually for each run a report is generated.

18

2.1. CONFIGURING SKAMPI- THE PARAMETER FILE 19

2.1 Configuring SKaMPI- The parameter file

2.1.1 The sections

The parameter file is a ASCII-text file describing the settings to control SKaMPI.
The parameter file should be accessible in the directory, where SKaMPI is
started. Its name is alway .skampi. Thus, do not rename it. Here you can see
how to adapt the parameter file to your personal needs.
The parameter file is divided into sections. Each section sets one parameter
(which may be a list). If one section is omitted, the default value for this pa-
rameter will be assumed. A name of a section always starts with an “@”., A
section reaches to the start of another section (or end of file). The order of the
sections is irrelevant, but it may be considered practical, to use the “@MEA-
SUREMENTS” -section as the last one. So you can see all the other (usually
shorter) sections at the beginning of the parameter file. In all sections ending
with ”...DEFAULT” you can fill in a default value for this parameter, e.g., in
the value given STANDARDERRORDEFAULT is used for the standard error defined
in every suite, when the standard error of the suite is set do Default Value.
We urgently recommend to fill out the @MACHINE, NODE and ONETWORK sec-

tions in a detailed manner.

@COMMENT Section for comments. You may enter any text you want.

(Well, text without other section names, of course!)

@MACHINE The text in this section describes the machine, you run SKaMPI
You can add any other relevant details of a measurement here. Note that
there are also special sections for the network (6NETWORK) and the nodes
(GNODE). SKaMPI assumes that the first line of the @MACHINE-section

contains just the name of the machine.

@NODE In this section you may describe the type of nodes you use. If there

are several types, please describe them all.

@QNETWORK Here you may type in, which interconnection network you use.
Often there are several versions of a communication network for one ma-
chine (for example the IBM SP).

@USER Here is your place. The first line of this section is used by the report-

generator (dorep.pl) and should only contain your name.

@MEMORY This section is just an integer. It describes the amount of mem-
ory in KBytes, which should be reserved for message buffers on each node,
e.g. QMEMORY 8192 == 8 Megabytes message buffers.

on.

20 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

@OUTFILE The name of the output file. This name should also be entered
in the first line (e.g. @OUTFILE skampi.out). Note that there is a blank
between @QOUTFILE and the filename!

@LOGFILE The name of the log file. This name should also be entered in
the first line (e.g. OLOGFILE skampi.log). Note that there is a blank
between @LOGFILE and the filename!

@MAXSTEPSDEFAULT This section is also just an integer. It describes
the number of measurements to be performed in the parameter-range.

This value is the default value for Max_Steps.

@MAXREPDEFAULT This integer describes the maximal number of mea-
surements repetitions can be performed. This value is the default value

for Max Repetition.

@MINREPDEFAULT This integer describes the minimal number of repeti-
tions a measurement can be performed. This value is the default value for

Min Repetition.

@MULTIPLEOF Any argument a measurement is called with has to be a
multiple of this integer value. For example ”8” might be quite useful to
avoid memory alignment effect on 64-bit machines. This integer is the

default value for Multiple_of.

QTIMESUITEDEFAULT This float sets the default value of the parameter

Time Suite.

QTIMEMEASDEFAULT This float sets the default value of the parameter

Time Measurement.

QCUTQUANTILEDEFAULT This float sets the default value of the pa-

rameter Cut_Quantile.

@STANDARDERRORDEFAULT Here you can enter a float, noting the
max allowed standard-error for a measurement. The measurements are
repeated until this accuracy is reached (unless the max. number of repeti-
tions is reached.) @STANDARDERRORDEFAULT 0.05 means that a standard-

error of five percent is allowed.

@ABSOLUTE Please enter just a yes or a no in this section. If “yes”,
SKaMPI will try to correct the measured data, that is subtracting the
overhead. This option should only be activated, if it is clear that there
is low (or better no) other load on the machine. (Otherwise you can get
negative performing-times, because the measurement of the overhead can
be disturbed by the other load.) E.g. @ABSOLUTE yes.

2.1. CONFIGURING SKAMPI- THE PARAMETER FILE 21

@POSTPROC Please enter just a yes or a no in this section. You can do sev-
eral runs of SKaMPI. Each successful run will build a new output file (e.q.
skampi.out, skampi.out.1, skampi.out.2, ...) If “yes”, SKaMPI will
perform the post-processing. That is merging all output files together.
Note if SKaMPI is restarted after an abort, no new output file will be
created. In this case SKaMPI appends the results to the output file
of the previous run. If you do not want SKaMPI to perform the post-
processing (@POSTPROC no), because it is not a truly parallel application,
and you do not want to waste the time of your supercomputer doing text
file manipulations, then you may also call the post-processing separately

with post.

@QMEASUREMENTS This section describes all measurements to be per-
formed by SKaMPI. Since it has its own grammar, there is an extra sec-

tion devoted for it (2.1.4) in the documentation.

2.1.2 Example and default values

First we show the filled text sections. Please use them to describe your machine
in detail. Note that the report generator needs this data, to correctly produce

a report.

OCOMMENT My machines at home

OMACHINE Pentium — 386 Linux Power Workstation Cluster
ONODE Pentium S 133 Mhz, i386-33Mhz

ONETWORK (slow) Ethernet, Western Digital Network adapter
QUSER Ralf Reussner

The following examples initializes all sections with their default values. So
here you can see, which values will be assumed by SKaMPI, if a section is

omitted.

OMEMORY 4096

OOUTFILE skampi.out

OLOGFILE skampi.log

OMAXSTEPSDEFAULT 16

OMAXREPDEFAULT 20

OMINREPDEFAULT 4

OMULTIPLEOFDEFAULT 4

OSTANDARDERRORDEFAULT 0.05

OTIMEMEASDEFAULT 0.0

OTIMESUITEDEFAULT 0.0

@COMMENT

To use TIMEMEASDEFAULT and TIMESUITEDEFAULT please
replace the 0.0 with your required values and change
the "Invalid_Value'" in each measurement to '"Default_Value'.

22 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

OCUTQUANTILEDEFAULT 0.25
O@ABSOLUTE no

OPOSTPROC yes
OMEASUREMENTS

The empty sections (like @COMMENT, or @MACHINE, etc.) are initialized
empty. You may enter free text in them (text without section names). An
exception is the MEASUREMENTS-Section (see section 2.1.4).

2.1.3 Grammar for sections

The grammar used for the above sections is shown below. Only nonterminals
appear.

SECTION ::= TEXT_SECTION SECTION
| INT_SECTION SECTION
| FLOAT_SECTION SECTION
| YESNO_SECTION SECTION
| MEASUREMENTS_SECTION SECTION
| <epsilon>

TEXT_SECTION ::= @COMMENT text
| @MACHINE text
| @NETWORK text
| @NODE text

| @USER text

| @OUTFILE text
| @LOGFILE text

INT_SECTION ::= @MEMORY int
@MAXSTEPSDEFAULT int
@MAXREPDEFAULT int
@MINREPDEFAULT int
@MULTIPLEOFDEFAULT int
FLOAT_SECTION ::= @STANDARDERRORDEFAULT float
| @TIMEMEASDEFAULT float

| @TIMESUITEDEFAULT float

| @CUTQUANTILE float

YESNO_SECTION ::= @ABSOLUTE
| @POSTPROC

Production rules for the nonterminal MEASUREMENTS _SECTION are found in
section 2.1.7. The nonterminals int and float are that what you would expect

as C-Programmer.text means some! strings.

lsome is here 1000hex == 4096, defined through the constant TEXT_LINES in
skampi_tools.h.

2.1. CONFIGURING SKAMPI- THE PARAMETER FILE 23

2.1.4 The MEASUREMENTS-section

The MEASUREMENTS-Section is a list in which every entry describes a suite
of measurements (i.e., measurements varied over their parameter range). An
entry starts with the name of the measurement. This name should be usable as
filename. It is followed by a fixed record, describing the qualities of this suite.

An example is given in section 2.1.5. This record is explained below.

Type Each measurement must have a type assigned. This type (an simple in-
teger) describes the MPI-function and the pattern which should be mea-
sured. Tables 3.1 (page 35) shows which number is assigned to which
MPI-function.

Variation Here you can enter the variable varied. The variables contained by

a pattern you can see in Table 2.1.

Scale This parameter describes the scale of the x- and y-axis (linear or loga-
rithmic) and it determines how to find the arguments for a this suite (fixed

or dynamic). Possible values are:

Fixed linear The arguments begin at Start_Argument and end at End_Argument.
The distance is Stepwidth. Both scales are linear. The variables

Max Steps, Min Distance and Max Distance have no meaning.

Fixed log The arguments are powers of the parameter stepwidth. (stepwidthl,
stepwidth?, stepwidth® ... until End_Argument has been reached.)
Both axis are logarithmic. The variables Max Steps, Min Distance

and Max Distance have no meaning.

Dynamiclinear The arguments begin at Start_Argument and end at
End_Argument. The distance is Stepwidth. After doing the mea-
surements this way, the number Max_Steps of measurements is filled
up with automatically placed measurements. These measurements
are never nearer than Min Distance.

Both axes are linear.

Dynamic log The arguments are powers of the parameter stepwidth.
(stepwidthl, stepwidth?, stepwidth® ... until End_Argument has been
reached.) After having done measurements this way, the number
Max Steps of measurements is filled up with automatically placed
measurements. These measurements are never nearer than Min Distance.

Both axis are logarithmic.

Max_Repetition Here you can enter the maximal number of measurement
repetitions. If you do not want to change this value in every entry, you
just write Default Value instead the number, and the value given in the
@MAXREPDEFAULT-Section is used.

24 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Min_Repetition Here you can enter the minimal number of repetitions per-
formed for a measurement. If you do not want to change this value in
every entry, you just write Default Value instead the number, and the
value given in the @MINREPDEFAULT-section is used.

Multiple of Any argument a measurement is called with has to be a multiple
of this integer value. For example ”8” might be quite useful to avoid
memory alignment effects on 64-bit machines, or 4 for 32-bit systems.
This integer’s default value is set in the section @MULTIPLECF.

Time_Suite The value given here sets the time limit for one suite of measure-
ments in minutes. A suite of measurements is a set of measurements, con-
taining measurements varied over some parameters (compare to definition
at the beginning of this chapter). This means that no new measurements
are started, when the time consumed by the already executed measure-

2 This limit has no influence

ments of this suite exceeds this limit time.
on other suites. So exceeding this limit time means that only this suite
stops measuring. It does not mean, that the whole benchmark is aborted.
Information regarding the preference of this parameter and Max _Steps is
given in subsection 2.1.6. If you do not want to change this value in every
entry, you just write Default Value instead the number, and the value
given in the QTIMESUITEDEFAULT-section is used. If you do not want to

give any time limit at all, please enter Invalid Time instead of a value.

Time_Measurement This value gives the time limit for one measurement in
minutes. (A measurement is the repetition of several single measurements.
Compare to definition at the beginning of this chapter). This means that
no new single measurements is started, when the time consumed by the
already executed single measurements of this measurement exceeds this
limit time.® Information regarding the preference of this parameter and
Standard_error is given in subsection 2.1.6. If you do not want to change
this value in every entry, you just write Default Value instead the num-
ber, and the value given in the @TIMESUITEDEFAULT-section is used. If
you do not want to give any time limit at all, please enter Invalid Time

instead of a value.

Node_Times This boolean value can be set to yes or no. In case of yes

SKaMPI measures besides the result also the execution times of the mea-

2This means that the time of all measurements can be larger than the limit, because the
last measurement will not be aborted when exceeding the limit time.

3This means that the time of all single measurements can be larger than the limit, because
the last single measurement will not be aborted when exceeding the limit time.

2.1. CONFIGURING SKAMPI- THE PARAMETER FILE 25

sured routine on allnodes.* This may be useful to see, whether overlapping
communication and computation can take place, or to measure effects of
contention. In the patterns Simple and Master-Worker this feature will
be ignored, since in the simple pattern the to be measured routine runs
on exactly one processor, and in Master-Worker pattern the workers work
until they receive the stop signal. So it is not interesting to measure, when

the workers stop.

The times are given in microseconds in the output file. Note that the node
times are only given for the last single measurement of a measurement.
This means that node times do not represent a mean value of the execution
times of several results as the measurement’s result does. So is is possible

that the result differs from the node time from processor 0.

Cut_Quantile This value defines the upper and lower quantile of single mea-
surements’ results, which are disregarded, when computing the result of a
measurement. If you do not want to throw any results away, use 0.0. If
you assume that the upper an lower quartile of your results are outliers,
use 0.25. If you do not want to change this value in every entry, you
just write Default Value instead the number, and the value given in the
OCUTQUANTILEDEFAULT-section is used.

Start_Argument If the Variation is linear, this number will be used as start-
ing argument. (In case of logarithmic scale it has no meaning, since mea-

surements always are started by 1.)

End_Argument This is the maximal argument, which is never exceeded. If
you vary over the message length it will depend on the amount of memory
you entered in the @MEMORY-section. If you vary over the number of nodes,
it will depend on the number of nodes, SKaMPI started with. To make it
easier to determine these values, you can just enter Max_Value here, and

SKaMPI computes the actual values during run-time.
Max_Steps explained under Variation.
Min_Distance explained under Variation.
Max_Distance explained under Variation.

Standard_error Measurements are repeated until its standard error has fallen
short of this value here. (But the number of repetitions is never less than

Min Repetition and never larger than Max Repetition. The standard

4The result is the time the routine to measure needs on the measuring root node. The
benchmark assures that the routine to measure has finished on all other nodes, when finished
on the root node. So the execution times on the single nodes is usually lower.

26 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

Pattern Variables to vary over
Point-to-Point Length, Nodes
Master-Worker Length, Nodes, Chunks
Collective Length, Nodes

Simple none

Table 2.1: Which pattern can varied with which variables?

error is a metric for the reliability of a the data, whereas the standard

deviation is a metric for dispersion.

2.1.5 Example of an entry

MPI_Send-MPI_Recv

{
Type = 1;
Variation = Length;
Scale = Dynamic_log;
Max_Repetition = Default_Value;
Min_Repetition = Default_Value;
Multiple_of = Default_Value;
Time_Measurement = Invalid_Value;
Time_Suite = Invalid_Value;
Node_Times = No;
Cut_Quantile = Default_Value;
Default_Chunks = O;
Default_Message_length = 256;
Start_Argument = 1;
End_Argument = Max_Value;
Stepwidth = 128;
Max_Steps = 30;
Min_Distance = 128;
Max_Distance = 512;
Standard_error = Default_Value;
b

2.1.6 A Note to the preference of the parameters Max Steps,

Time Suite and Standard_error, Time Measurement

The termination of a measurement is controlled by four parameters: Standard _error,
Max Repetition, Min Repetition, and Time Measurement. The termination
of a suite of measurements is controlled by the two parameters Max_Steps and
Time Suite. Conflicts between these parameters are resolved in the following

way.

2.1. CONFIGURING SKAMPI- THE PARAMETER FILE 27

Termination of a Measurement

If Time Measurement is set to Invalid Value than (a) the number of sin-
gle measurements is always between Min Repetition and Max Repetition,
(b) if the the standard error of the single measurement’s results fall below
Standard_error the measurement is finished. (If the single measurements are
repeated Max Repetition time, than the measurement is also finished, indepen-
dent of the value of the standard error.)

If Time Measurement is set to any other value as Invalid Value (that is a
float or Default Value), than no further single measurement will be started,
when the sum of the execution times of the already executed single measure-
ments exceeds the value of Time Measurement. The values of Standard error,
and Min Repetition will not be regarded in this case. But in any case, there
will not be more measurements started than Max Repetitions.® If you want to
use only Time Measurement to control the termination, so choose a high value

for Max_Steps.

Termination of a Suite of Measurements

If Time Suite is set to Invalid _Value than the number of measurements in
this suite is equals always Max_Steps.

If Time_Suite is set to any other value as Invalid Value (that is a float or
Default Value), than no further measurement will be started, when the sum
of the execution times of the already executed measurements exceeds the value

of Time Suite.

2.1.7 Grammar of the MEASUREMENTS-Section

The grammar used for the measurement-section is shown below. Terminals are

«@w”

set in “”, nonterminals not.

MEASUREMENTS_SECTION ::=file_name_str
fl{);
‘‘Type =’’TYPE_RANGE®*‘;”’
‘‘Variation =’’VARIATION_STYLE‘‘;’’
‘‘Scale =’’SCALE_STYLE®‘;’’
‘‘Max_Repetition =’’INT_OR_DEFAULT‘‘;’’
‘‘Min_Repetition =’’INT_OR_DEFAULT‘‘;’’

‘‘Multiple_of =’’ INT_OR_DEFAULT‘‘;’’
‘‘Time_Measurement =’’ FLOAT_OR_DEFAULT_OR_INVALID‘¢;’’
“‘Time_Suite =’’ FLOAT_OR_DEFAULT_OR_INVALID®¢;’’

‘‘Cut_Quantile =’’FLOAT_OR_DEFAULT®‘;’’
‘‘Default_Chunks =’’INT_OR_FLOAT®‘;’’
‘‘Default_Message_length =’’INT_OR_FLOAT¢;’’

5This is because SKaMPI uses this values for internal buffer allocation.

28 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

‘‘Start_Argument =’’int‘‘;’’
‘“End_Argument =’’INT_OR_MAX‘‘;’’
‘‘Stepwidth =’’int‘‘;?’

‘‘Max_Steps =’’int‘‘;’’

‘‘Min_Distance =’’int‘‘;’’

‘‘Max_Distance =’’int‘‘;’’

¢ ‘Standard_error =’’FLOAT_OR_DEFAULT‘¢;’’
fl}))

VARIATION_STYLE ::= “Length”
| ¢‘Nodes’’
| ¢‘Chunks’’

SCALE_STYLE ::= ‘‘Fixed_linear’’
| ¢‘Fixed_log’’
| ¢‘Dynamic_linear’’
| ¢‘Dynamic_log’’

int
| ¢‘Default_Value’’

INT_OR_DEFAULT ::

INT_OR_FLOAT ::= int

| float

int
| ¢‘Max_Value’’

MAX_OR_DEFAULT ::

FLOAT_OR_DEFAULT ::= float
| ¢‘Default_Value’’

FLOAT_OR_DEFAULT_OR_INVALID ::= float
| ¢‘Default_Value’’
| ¢‘Invalid_Value’’

file name_str is what your operating system allows as a file name. In the
grammar above file name_str stands for the name of the measurement. In the
report generator dorep.pl there will be some files created temporarily, which
contain this string in their names.
As above, the nonterminals int and float are what you would expect as C-

Programmer.

Tip for editing the @MEASUREMENTS-Section: if you want to skip some
measurements, just write @COMMENT before the measurements you intend to skip,
and GMEASUREMENTS behind them.

2.2,

CONFIGURING THE REPORT GENERATOR

29

Type numbers | Pattern Prefix
1 -9 | Point-to-Point pP2p-
10 — 16 | Master-Worker mw._
17 — 23 | Collective col_
24 — 29 | Simple simple_
29 — 32 | internal measurements -
33 | Collective col_
34 | Point-to-Point pP2p-
35 — 46 | Collective col_

Table 2.2: The mapping of patterns to prefixes

2.2 Configuring the report generator

Usually you do not have to adjust dorep.pl. It inspects which measurements
are performed and processes them. So if you add or omit measurements, they

will appear in (respectively disappear from) the report.

2.2.1 Comparisons

What the generator does not know is, which measurements you want to com-
pare. ® To manipulate the “Comparisons”-Section in skarep.ps you can edit
the .dorep file. This file has a simple structure. Every line describes one com-
parison. The first part of the line is the name of the comparison. This name

9.9

may be a normal string, but it must not contain any ”:”, because that is its

delimiter. After the “” follows a list with names of suites of measurements.

Name of the comparison: suitel, suite2, suite3

[

Note that the lists are separated by “,”. But where to get the names of the
suites from? For that you may have a look in the parameter file . skampi.

As explained in the section 2.1.1 each suite of measurements has its own
name (usually the name of the MPT function measured). It may happen, that
one MPT function is used in two (or more) patterns, so you have to add a prefix,
describing the pattern.”

Table 2.2 shows the patterns prefixes. For example you want to compare the

first two suites in .skampi:

8Here a comparison is a plot of two or more function graphs. The report generator also
creates a table with some results to compare.

“The problem of identifying the suite with a name, which may occur twice, does not exist
in .skampi. Here the corresponding pattern is stored with the name, so that it is always clear,
what suite is called.

30 CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

1. We want to name our comparison: Comp. MPI_Send-MPI Recv and MPI_Iprobe
(followed by MPI Recv).

2. In .skampi you find the name MPI_Send-MPI Recv. This is the name of
one suite we want to see in our comparison.
The other suite is called MPI_Send-MPI Iprobe Recv.

3. Since both suites belong to the point-to-point pattern, table 2.2 tells us
we have to add the prefix p2p_.

4. The resulting line in .dorep is:
Comp. MPI Send-MPI Recv and MPI Iprobe (followed by MPI Recv):
p2p MPI_Send-MPI Recv, p2p MPI_Send-MPI_Iprobe Recv.

Note: this has to be written as one line.

For every comparison you have to ensure that the first suite’s parameter range
includes the parameter ranges of the other suites. dorep does not check the

meaning of a comparison.

2.2.2 Additional tex-modules

Besides the comparisons, there is another simple way to create more individ-
ual reports. If you create a tex-module with the extension .tma (tex module
additional), this file will be included automatically in front of the “Comparison”-
section. Here a “tex-module” is a file which contains tex-commands which can

occur between \begin{document} and \end{document}.

Example

\section{Comments}
My opinion of SKaMPI: delete it!
Oops'!

2.2.3 More detailed graphs

If you want a more detailed graph of a special parameter range, you may edit

the skampi.out in the following way.

/*0@inp2p_MPI_Bsend-MPI_Recv.skix*/

#Description of the MPI_Bsend-MPI_Recv measurement:
#Pattern: Point-to-Point varied over the message length.
#The x scale is linear, automatical x wide adaption,
#range: 0 - 256, stepwidth: 16.000000.

#default values: 2 nodes.

2.3. WHEN SKAMPI CRASHES. 31

#max. allowed standard error is 10.00 %

#Format: message length (%d) <space> time (microsec.)
(%f) (standard error) (%f) count (%d)

#arg result standard_error count

0 7004.000000 1.000000 2

16 7316.000000 3.000000 2

32 11538.000000 2716.566473 6

40 7498.500000 6.500000 2

Edit the range line. For example you may write range: 16 - 128 if you

are only interested in this part of the graph.

2.2.4 Given module files

Another possibility manipulate the reports is to use your own module files.
For every suite suite-name the report generator creates a gnuplot-command
file named suite-name.gpl and a tex module file suite-name.tmd. If the

dorep.pl finds such a file, it uses the your given file.®

2.2.5 Extra text for suites

For every suite of the standard parameter file an extra text is printed as header.

This text is stored in a an ASCII-text file suite-name.dri.”

2.3 When SKaMPI crashes.

10" we have to as-

Since MPI-implementations are no trivial pieces of software
sume that SKaMPI may crash while measuring. In this case all measured suites
are stored, only the actual one is lost.

In this case you can use the automatic recovery mechanism. Simply start
SKaMPI again. Please do not change the output or log file. SKaMPI tries
to find out which measurement caused the trouble. Then SKaMPI skips the
measurement and starts with the measurement behind. The erroneous mea-
surement will be called after all others. So if it crashes again, you will have
completed all other measurements. This mechanism will also work, if several
measurements crash.

If this does not work, you can recover manually.

8To see which files are created temporarily by dorep.pl just comment out its line "unlink
@files_to_delete;”. Then you may have a look into its files. But be careful: Before the
next run of the generator delete these files manually, because the generator does not overwrite
them as explained above. (Delete the files:*.tmd *.gpl *.eps.)

9dri means “dorep-information”.

10And (err) SKaMPI neither...

32

CHAPTER 2. CUSTOMIZING AND TROUBLE-SHOOTING

1. Find out which measurement caused the crash. In order to do this, look
into skampi.out, go to the end of file and backward-search the string
“/*@in” You will find the name of the last completed measurement after

that string.

#/*0inp2p_MPI_Send-MPI_Irecv.skix/
#Description of the MPI_Send-MPI_Irecv measurement:
#Pattern: Point-to-Point varied over the message length.

So the name we look for is p2p MPI_Send-MPI Irecv.

2. Edit .skampi. Here you replace “@QMEASUREMENT” with “@COM-

MENT” (You switch of all measurements).

3. Then find the entry of the crashed measurement. The crashed measure-

ment is the measurement behind the last completed measurement, you
know from above. Write “@GMEASUREMENTS” after the crashed mea-
surement entry. In our case if MPI_Send-MPI Irecv is the last completed
measurement, then MPI_Send-MPI Recv_with Any Tag failed. Therefore
we place “QMEASUREMENTS” before the next entry (i.e., MPI_Ssend-MPI Recv).

MPI_Send-MPI_Recv_with_Any_Tag

{
Type = 4;
Variation = Length;
Scale = Dynamic_log;
Max_Repetition = Default_Value;
Min_Repetition = Default_Value;
Multiple_of = Default_Value;
Time_Measurement = Invalid_Value;
Time_Suite = Default_Value;
Node_Times = Yes;
Cut_Quantile = Default_Value;
Default_Chunks = O;
Default_Message_length = 256;
Start_Argument = O;
End_Argument = Max_Value;
Stepwidth = 1.414213562;
Max_Steps = Default_Value;
Min_Distance = 2;
Max_Distance = 512;
Standard_error = Default_Value;

b

OMEASUREMENTS

2.3.

WHEN SKAMPI CRASHES.

MPI_Ssend-MPI_Recv
{
Type = 5;
Variation = Length;

. Delete the current logfile skampi.log.
. Rename skampi.out to another file.

. Start SKaMPI again with the same command.

old renamed one.

33

. When SKaMPI finished, you can append the new skampi.out file to the

Chapter 3
Measurements in detail

In the last chapter of this manual the measurements are treated in detail. First
we explain how to get the measured code for each measurement. In the last

section we will see the format of the output file.

3.1 But what is measured?

So far we know how to measure, but what is actually measured?

Since we investigate parallel operations, we have to coordinate several processes.
Measurements, which have a similar coordination of its processes, are grouped
to a so called pattern.

To know, which measurements are performed, when measuring with a certain
type, you first should know which pattern and initializer is used in this type.
To do so, have a look in tables 3.3 and 3.1 (page 35).

In the following we will have a look to all four patterns skampi uses. Each
pattern calls one or more call-back functions. You can find these functions in
the next section. To know, which call-backs you are measuring with a type,
simply look at the initializer. They are listed with the call-backs, sorted by

patterns.

34

3.1. BUT WHAT IS MEASURED?

35

Number MPI-function(s) Initializer
1 MPI_Send-MPI_Recv p2p-init_Send_Recv
2 MPI_Send-MPI_Recv_any_tag p2p-init_Send_Recv_AT
3 MPI_Send-MPI_TRecv p2p-init_Send_lIrecv
4 MPI_Send- p2p-nit_Send_Iprobe_Recv
MPI_Iprobe_MPI_Recv
5 MPI_Ssend-MPI_Recv p2p-init_Ssend_Recv
6 MPI_Isend-MPI_Recv p2p-nit_Isend_Recv
7 MPI_Bsend-MPI_Recv p2p-init_Bsend_Recv
8 MPI_Sendrecv p2p-init_Sendrecv
9 MPI_Sendrecv_replace p2p-nit_Sendrecv_replace
10 MPI_Waitsome mw_init_Waitsome
11 MPI_Waitany mw_init_Waitany
12 MPI_Recv_Any_Source mwinit_Recv_AS
13 MPI_Send mw_init_Send
14 MPI_Ssend mw_init_Ssend
15 MPI_Isend mw_init_Isend
16 MPI_Bsend mw_init_Bsend
17 MPI_Bcast col_init_Bcast
18 MPI_Barrier col_init_Barrier
19 MPI_Reduce col_init_Reduce
20 MPI_Alltoall col_init_Alltoall
21 MPI_Scan col_init_Scan
22 MPI_Commsplit col_init_Comm split
23 memcpy (ANSI-C) col_init_memcpy
24 MPI_Wtime simple_init_Wtime
25 MPI_Comm rank simple_init_Comm _rank
26 MPI_Comm size simple_init_Comm size
27 MPI Iprobe (not successful) simple_init_Iprobe
28 MPI_Buffer_attach simple_init_attach
29 Dummy Point-to-point measure- p2p_init_-dummy
ment
30 Dummy Master-Worker mea- mw_nit_.dummy
surement
31 Dummy collective measurement col_init_dummy
32 Dummy simple measurement simple_init_dummy

Table 3.1: The mapping of type-numbers to measured MPI-functions

3.1.1

Example

Lets ask, what is measured in type 16 7 First we have a look in table 3.3, on page

36. We see: The measurement type 16 belongs to the master-worker-pattern.

Table 3.1 (page 35) shows that it is initialized with function mw_init Bsend.
The measured call-back of this pattern is the dispatch-call-back. (What we

know from the description of the pattern on page 37.)

So we have to find

out which dispatch-call-back is used in type 16. We have a look into the ini-

36

33
34
35
36
37

38
39
40
41
42
43
44

45

46

CHAPTER 3.
MPI_Gather
MPI_Issend
MPI_Scatter
MPI_Allreduce
MPI_Reduce follwed by

MPI_Bcast
MPI_Reduce_scatter
MPI_Allgather
MPI_Scatterv
MPI_Gatherv
MPI_Allgatherv
MPI_Alltoallv
MPI_Reduce
MPI_Scatterv
Implementation of Gather with
MPI_Send and MPI_Recv
Implementation of Gather with
MPI_Isend, Mpi_Irecv, and
MPI_Waitall

followed by

MEASUREMENTS IN DETAIL

colinit_Gather
p2pnit_Issend
colinit_Scatter
colinit_Allreduce
col_init_Reduce_Bcast

colinit_Reduce_scatter
col_init_Allgather
col_init_Scatterv
colinit_Gatherv
col_init_Allgatherv
colinit_Alltoallv
colinit_Reduce_Scatterv

Table 3.2: The mapping of type-numbers to measured MPI-functions (contin-

ued)

Range of type numbers | Pattern
1 -9 | Point-to-point
10 — 16 | Master-Worker
17 — 23 | Collective
24 — 28 | Simple
29 — 32 | internal measurements

ments.

33 | new Collective

34 | new Point-to-Point

35— 46

new Collective

Table 3.3: The mapping of type-numbers to patterns
The internal measurements are used to determine the overhead of measure-

The order of new measurements is somehow grown historically.

To

avoid incompatibilities I resigned from reordering the measurements.

tializer (page 50). There we see that the name of our dispatch-call-back is

master dispatch Bsend. This call-back is described on page 50.

3.1. BUT WHAT IS MEASURED? 37

3.1.2 Point-to-Point pattern

The ping-pong-pattern calls the routine_to_be measured to communicate with
the farest node or the nearest node.! These calls are varied over message length.
Every parameter set is called repetitions times and the average value is stored.

We have distinct code for the server (measurement) and the client (just answer-
ing).

/* Server-node */
max_node := node with maximum latency;

do
start_time := MPI_Wtime;
routine_to_be_measured (max_node, message_length);
end_time :=MPI_Wtime;

while to_measure (end_time — start_time);

/* Client code */
actions to answer the max/min_node determination;

if (I am the max_node)
do
client answer for the routine_to_be_measured (message_length);
while not stop

Measured routine: This is the routine, which is used by the server to initiate

communication to the client. The time consumed by it will be measured.

Client routine: This routine answers the communication initiated by the above
routine. If the measured routine depends on an answer of this routine, it

will be measured indirectly.

3.1.3 Master-Worker pattern

The Master-worker-pattern corresponds to the typical master-worker-scheme: a
master process divides a problem in several sub-problems (here called chunks)
and dispatches them several worker processes. When finished a worker sends
his result to the master and requests for a new piece of work (and so on). When
all work is done, the master sends an stop-signal to the workers.

This scheme is important in practice, since it automatically balances load. In

pseudo-code the Master-worker-scheme looks like:

I This means node with the maximum or minimum latency. We use the node with the
maximum latency by default.

38 CHAPTER 3. MEASUREMENTS IN DETAIL

/* master-code */

for each worker
set ready to receive; /* e.g. MPI_Irecv */

chunk :=0;
start_time := MPI_Wtime;

while chunk < all_chunks
dispatch (chunk, msglen);
chunks := chunks + 1;

end_time := MPI_Wtime;

for each worker
send stop signal;

/* worker-code */

forever
send ready signal to master;

receive signal (msglen);

if signal == stop signal
exit;

do work; /* corresponding to the received signal */
send result;

endforever

Every abstract communication “code” in the scheme above can be filled with
concrete MPI_Code. We measure the time consumed by dispatch work. This

code sequence does for example this:

/* dispatch work: */

wait for a worker;

receive work from worker;

send actual piece of work to worker;

set ready to receive next piece of work from worker;
actual piece of work := next piece of work;

Here we have to define the following call-back functions:

Master receive ready: This function can be used for posting the a receive

for each worker.

Master dispatch: This is the routine, which dispatches work (sending to work-

ers) and collects the results (it receives from the workers). Since it is

3.1. BUT WHAT IS MEASURED? 39

something like the “kernel” of this pattern, it is the routine measured.
Master send stop signal: This routine sends the stop signal to a worker.

Worker receive: This routine is used by a worker to receive its signals from

the master process.

Worker send: The worker sends its result via this routine.

3.1.4 Collective pattern
We want to use the following pattern to measure collective operations:

/* server-code */

MPI_Barrier;
do
start_time := MPI_Wtime;
routine_to_be_measured;
MPI_Barrier;
end_time := MPI_Wtime;
while to_measure

/* client code */

MPI_Barrier;

do
client_routine; /* as answer for routine_to_be_measured */
MPI_Barrier;

while not stop;

Usually all the collective operations use the same function whether you are
process zero (which measures and initiates communication) or not. But for the
sake of flexibility we can use different routines. One for process zero (server)

and one for the others (clients).

3.1.5 Simple pattern

Some routines seem to be so simple, that they are measured in a very simple

“pattern”. In this pattern we measure all operations with local effects.

if I am node zero
do
start_time := MPI_Wtime;
routine_to_be_measured;
end_time := MPI_Wtime();
while to_measure;

The only call-back function is the routine to_be _measured.

40 CHAPTER 3. MEASUREMENTS IN DETAIL

3.2 The call-back functions

This section serves as a reference, when you want to know exactly, what is
measured. All call-back functions are listed below. Their role in the different

patterns is explained in the last section.

3.2.1 Call-backs of the Point-to-Point pattern

Document created automatically by documeas.pl at Mon Dec 21 10:04:01 1998.

to be measured.

(p2p_init_...) and routines containing the MPI-Functions to be measured.
{
b

pP2pdinit_dummy
e Measured routine: p2p_dummy.

e Client-routine: p2p_dummy.

pP2p.nit_Send Recv

e Measured routine: server_Send_Recv.

e (Client-routine: client_Recv_Send.

P2p.nit_Send Iprobe_Recv

e Measured routine: server _Send_Iprobe Recv.

e Client-routine: client_Iprobe Recv_Send.

pP2pnit_Send Irecv

e Measured routine: server_Send_Irecv.

e Client-routine: client_Irecv_Send.

pP2pnit_Send Recv_AT

e Measured routine: server_Send Recv_AT.

e (Client-routine: client Recv_AT Send.

3.2. THE CALL-BACK FUNCTIONS 41

P2p.nit_Ssend Recv

e Measured routine: server_Ssend_Recv.

e Client-routine: client Recv_Ssend.

p2pdnit_Isend_Recv

e Measured routine: server_Isend_Recv.

e (Client-routine: client Recv_Isend.

p2pdnit_Issend_Recv

e Measured routine: server_Issend_Recv.

e (Client-routine: client Recv_Issend.

p2p.nit_Bsend _Recv

e Measured routine: server Bsend_Recv.

e Client-routine: client Recv_Bsend.

P2p.nit_Sendrecv

e Measured routine: server _Sendrecv.

e (Client-routine: client_Sendrecv.

P2p.nit_Sendrecv_replace

e Measured routine: server_Sendrecv replace.

e Client-routine: client _Sendrecv replace.

init_empty
init_attach

free_empty

void free_empty (int msglen)
{
return;

3

42 CHAPTER 3. MEASUREMENTS IN DETAIL

free_attach

void free_attach (int msglen)
{
int buflen = msglen * sizeof(char) +
MPI_BSEND_OVERHEAD + MY_OVERHEAD;
MPI_Buffer_detach (_skampi_buffer, &buflen);
return;

3

pP2p_dummy

MPI_Status p2p_dummy (int msglen, int max_node,
MPI_Comm communicator)
{
MPI_Status status;
/* be dummy */
return (status);

3

server_Send_Recv

MPI_Status server_Send_Recv(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator,
&status);

return (status);

server_Send _Iprobe_Recv

MPI_Status server_Send_Iprobe_Recv(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;
int flag;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,

3.2. THE CALL-BACK FUNCTIONS 43

max_node, O, communicator);

do {
MPI_Iprobe (max_node, 1, communicator,
&flag, &status);
twhile (!'flag);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator, &status);

return (status);

3

server_Send _Irecv

MPI_Status server_Send_Irecv(int msglen, int max_node,
MPI_Comm communicator)
{

MPI_Status status;

MPI_Request req;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
max_node, O, communicator);

MPI_Irecv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator, &req);

MPI_Wait (&req, &status);

return (status);

server_Send_Recv_AT

MPI_Status server_Send_Recv_AT(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
max_node, O, communicator);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, MPI_ANY_TAG,
communicator, &status);

return (status);

44 CHAPTER 3. MEASUREMENTS IN DETAIL

server _Bsend _Recv

MPI_Status server_Bsend_Recv(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Bsend (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator, &status);

return (status);

server_Isend_Recv

MPI_Status server_Isend_Recv (int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;
MPI_Request req;

MPI_Isend (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator, &req);

MPI_Wait (&req, &status);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator,&status);

return (status);

server_Issend_Recv

MPI_Status server_Issend_Recv (int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;
MPI_Request req;

MPI_Issend (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator, &req);

MPI_Wait (&req, &status);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator,&status);

3.2. THE CALL-BACK FUNCTIONS

return (status);

3

client Recv_Send

MPI_Status client_Recv_Send (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, 0, communicator, &status);

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
0, 1, communicator);

return (status);

client_Iprobe_Recv_Send

MPI_Status client_Iprobe_Recv_Send (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;
int flag;

MPI_Iprobe (0, O, communicator, &flag, &status);
MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,

0, 0, communicator, &status);
MPI_Send (_skampi_buffer, msglen, MPI_CHAR,

0, 1, communicator);

return (status);

client Irecv_Send

MPI_Status client_Irecv_Send (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;
MPI_Request req;

MPI_Irecv (_skampi_buffer, msglen, MPI_CHAR,

45

46 CHAPTER 3. MEASUREMENTS IN DETAIL

0, 0, communicator,
&req);
MPI_Wait (&req, &status);

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
0, 1, communicator);

return (status);

3

client Recv_AT _Send

MPI_Status client_Recv_AT_Send (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, MPI_ANY_TAG, communicator, &status);
MPI_Send (_skampi_buffer, msglen, MPI_CHAR,

0, 1, communicator);

return (status);

client Recv_Bsend

MPI_Status client_Recv_Bsend (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, 0, communicator, &status);

MPI_Bsend (_skampi_buffer, msglen, MPI_CHAR,
0, 1, communicator);

return (status);

client Recv_Isend

MPI_Status client_Recv_Isend (int msglen, int node,
MPI_Comm communicator)

3.2. THE CALL-BACK FUNCTIONS

MPI_Status status;
MPI_Request req;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, 0, communicator, &status);

MPI_Isend (_skampi_buffer, msglen, MPI_CHAR,
0, 1, communicator, &req);

MPI_Wait (&req, &status);

return (status);

client Recv_Issend

MPI_Status client_Recv_Issend (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;
MPI_Request req;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, 0, communicator, &status);

MPI_Issend (_skampi_buffer, msglen, MPI_CHAR,
0, 1, communicator, &req);

MPI_Wait (&req, &status);

return (status);

server_Ssend_Recv

MPI_Status server_Ssend_Recv(int msglen, int max_node,
MPI_Comm communicator)
{

MPI_Status status;

MPI_Ssend (_skampi_buffer, msglen, MPI_CHAR,
max_node, O, communicator);

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
max_node, 1, communicator,
&status);

return (status);

47

48 CHAPTER 3. MEASUREMENTS IN DETAIL

client Recv_Ssend

MPI_Status client_Recv_Ssend (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR, O, O, communicator,
&status);
MPI_Ssend (_skampi_buffer, msglen, MPI_CHAR, O, 1, communicator);

return (status);

server_Send

MPI_Status server_Send(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Send (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator);

return (status);

3

server_Isend

MPI_Status server_Isend(int msglen, int max_node,
MPI_Comm communicator)

{
MPI_Status status;
MPI_Request req;

MPI_Isend (_skampi_buffer, msglen, MPI_CHAR,
max_node, 0, communicator, &req);

MPI_Wait (&req, &status);

return (status);

server_Ssend

MPI_Status server_Ssend (int msglen, int max_node,

3.2. THE CALL-BACK FUNCTIONS

MPI_Comm communicator)
MPI_Status status;

MPI_Ssend (_skampi_buffer, msglen, MPI_CHAR,
max_node, O, communicator);

return (status);

3

client Recv

MPI_Status client_Recv (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, msglen, MPI_CHAR,
0, 0, communicator, &status);

return (status);

3

server_Sendrecv_replace

MPI_Status server_Sendrecv_replace (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Sendrecv_replace (_skampi_buffer, msglen, MPI_CHAR,
node, 0, node, 1, communicator, &status);
return (status);

3

client_Sendrecv _replace

MPI_Status client_Sendrecv_replace (int msglen, int node,
MPI_Comm communicator)
{

MPI_Status status;

MPI_Sendrecv_replace (_skampi_buffer, msglen, MPI_CHAR,
0, 1, 0, 0, communicator, &status);
return (status);

49

50 CHAPTER 3. MEASUREMENTS IN DETAIL

server_Sendrecv

MPI_Status server_Sendrecv (int msglen, int node,
MPI_Comm communicator)
{

MPI_Status status;

MPI_Sendrecv (_skampi_buffer, msglen, MPI_CHAR, node, O,
_skampi_buffer_2, msglen, MPI_CHAR, node, 1,
communicator, &status);

return (status);

3

client Sendrecv

MPI_Status client_Sendrecv (int msglen, int node,
MPI_Comm communicator)

{
MPI_Status status;

MPI_Sendrecv (_skampi_buffer, msglen, MPI_CHAR, O, 1,
_skampi_buffer_2, msglen, MPI_CHAR, 0, O,
communicator, &status);

return (status);

3

3.2.2 Call-backs of the Master-Worker pattern

Document created automatically by documeas.pl at Mon Dec 21 10:03:59 1998.

to be measured.

(mw_init_...) and routines containing the MPI-Functions to be measured.
{
b

3.2. THE CALL-BACK FUNCTIONS

mw_init_dummy

e Master receive ready routine: master receive ready_empty.

Master dispatch routine: master_dispatch dummy.

Routine to send stop signals: master worker _stop._recv.
o Worker receive routine: worker receive_test.

e Worker send routine: worker_send_test.

mw_init_Walitsome

e Master receive ready routine: master receive ready_test.

e Master dispatch routine: master_dispatch Waitsome.

Routine to send stop signals: master worker stop_wait.

Worker receive routine: worker _receive_test.

Worker send routine: worker_send_test.

mw_init_Waitany

e Master receive ready routine: master receive ready_test.

Master dispatch routine: master_dispatch Waitany.

Routine to send stop signals: master worker stop_test.
o Worker receive routine: worker receive_test.

e Worker send routine: worker_send_test.

mw_init_ Recv_AS

e Master receive ready routine: master receive ready_empty.

e Master dispatch routine: master_ dispatch Recv_AS.

Routine to send stop signals: master worker _stop._recv.

Worker receive routine: worker _receive_test.

Worker send routine: worker_send_test.

51

52 CHAPTER 3. MEASUREMENTS IN DETAIL

mw_init_Send

e Master receive ready routine: master receive ready_empty.

Master dispatch routine: master dispatch _Send.

Routine to send stop signals: master worker _stop._recv.
o Worker receive routine: worker receive test.

e Worker send routine: worker_send_test.

mw_init_Ssend

e Master receive ready routine: master receive ready_empty.

e Master dispatch routine: master dispatch _Ssend.

Routine to send stop signals: master worker _stop._recv.

Worker receive routine: worker_receive_test.

Worker send routine: worker_send_test.

mw_init_Isend

e Master receive ready routine: master receive ready_empty.

Master dispatch routine: master dispatch _Isend.

Routine to send stop signals: master worker _stop._recv.
o Worker receive routine: worker receive test.

e Worker send routine: worker_send_test.

mw_init_Bsend

e Master receive ready routine: master receive ready_empty.

e Master dispatch routine: master dispatch Bsend.

Routine to send stop signals: master worker _stop._recv.

Worker receive routine: worker_receive_test.

Worker send routine: worker_send_test.

3.2. THE CALL-BACK FUNCTIONS 53

master_receive_ready_test

void master_receive_ready_test (int worker, int len,
MPI_Comm communicator)
{
MPI_Irecv (_mw_buffer[worker - 1], 0, MPI_CHAR,
worker, MPI_ANY_TAG,
communicator, _mw_req + worker - 1);

master_worker_stop_walit

void master_worker_stop_wait (int worker, int len,
MPI_Comm communicator)
{
MPI_Wait (_mw_req + (worker - 1),
master_stati + (worker - 1));
MPI_Ssend (_skampi_buffer, O, MPI_CHAR,
worker, 0, communicator);

master_worker_stop_test

void master_worker_stop_test (int worker, int len, MPI_Comm communicator)

{
MPI_Ssend (_skampi_buffer, O, MPI_CHAR,
worker, 0, communicator);

master_worker_stop_recv

void master_worker_stop_recv (int worker, int len, MPI_Comm communicator)
{
MPI_Status
status;
MPI_Recv (_skampi_buffer, 0, MPI_CHAR,
worker, 1, communicator, &status);
MPI_Ssend (_skampi_buffer, O, MPI_CHAR,
worker, 0, communicator);

54 CHAPTER 3. MEASUREMENTS IN DETAIL

worker_receive_test

int worker_receive_test (int len, MPI_Comm communicator)

{
MPI_Status status;

MPI_Recv (_skampi_buffer, len, MPI_CHAR, O,
MPI_ANY_TAG, communicator, &status);

if (status.MPI_TAG == 0) /* STOP working */
return (FALSE);

return (TRUE);

worker_send_test

void worker_send_test (int len, MPI_Comm communicator)

{
MPI_Ssend (_skampi_buffer, O, MPI_CHAR,
0, 1, communicator);

master_init_empty

master_free_empty

void master_free_empty (int mw_numprocs)
{
return;

3

master _receive ready_empty

void master_receive_ready_empty (int worker, int len,
{
return;

3

master_worker _stop_empty

void master_worker_stop_empty (int worker, int len,
{
return;

3

3.2. THE CALL-BACK FUNCTIONS 55

worker_send_empty

void worker_send_empty (int len, MPI_Comm communicator)

{
return;

3

master_dispatch_dummy

int master_dispatch_dummy (int number_of_workers, int work,
int chunks, int len,
MPI_Comm communicator)
{
return (1);

3

master_dispatch_Waitsome

int master_dispatch_Waitsome (int number_of_workers, int work,
int chunks,
int len, MPI_Comm communicator)
{
int
i,
worker,
eingaenge;

MPI_Waitsome (number_of_workers, _mw_req, &eingaenge,
_mw_index, master_stati);

Di(fprintf (stderr, "master: eingaenge: %d at len %d\n",
eingaenge, lemn);)

for (i = 0; i < eingaenge; i++)
{

worker = _mw_index[i] + 1;

/* posting new recv for this worker, because the old one has been used */
MPI_Irecv (_mw_buffer[worker - 1], O, MPI_CHAR,

worker, MPI_ANY_TAG, communicator,

_mw_req + worker - 1);

/* sending next chunk of work to this worker */
MPI_Send (_skampi_buffer, len, MPI_CHAR,

56 CHAPTER 3. MEASUREMENTS IN DETAIL

worker, 1, communicator);

Di(fprintf (stderr, "master: sending job_no %d to worker %d\n",\
work ,worker) ;)

#if O
if (++work == chunks)
{
return (chunks);
}
#endif
}
return (eingaenge);
}

master_init_Waitsome

master_free_Waitsome

void master_free_Waitsome (int mw_numprocs)
{

int worker;

free (_mw_index);
free (_mw_req);
free (master_stati);

for (worker = 0; worker < mw_numprocs - 1; worker++)
free (_mw_buffer[workerl]);

free (_mw_buffer);

master_dispatch_Waitany

int master_dispatch_Waitany (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator)
{
int
worker;

MPI_Status
status;

MPI_Waitany (number_of_workers, _mw_req,
&worker, &status);

3.2. THE CALL-BACK FUNCTIONS

worker++;

/* posting new recv for this worker,
because the old one has been used */

MPI_Irecv (_mw_buffer[worker - 1], O, MPI_CHAR, worker,
MPI_ANY_TAG, communicator, _mw_req + worker - 1);

/* sending next chunk of work to this worker */
MPI_Send (_skampi_buffer, len, MPI_CHAR,
worker, 1, communicator);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work ,worker) ;)

return (1);

master_init_Waitany

master_free_Waitany

void master_free_Waitany (int mw_numprocs)
{

int worker;
free (_mw_req);

for (worker = 0; worker < mw_numprocs - 1; worker++)
free (_mw_buffer[worker]);

free (_mw_buffer);

master_dispatch_ Recv_AS

int master_dispatch_Recv_AS (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator)
{
int
worker;

MPI_Status
status;

MPI_Recv (_skampi_buffer, 0, MPI_CHAR, MPI_ANY_SOURCE,

57

58 CHAPTER 3. MEASUREMENTS IN DETAIL

MPI_ANY_TAG, communicator, &status);
worker = status.MPI_SOURCE;

/* sending next chunk of work to this worker */
MPI_Send (_skampi_buffer, len, MPI_CHAR,
worker, 1, communicator);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work ,worker) ;)

if (++work == chunks)
{
return (chunks);

3

return (1);

master_dispatch _Send

int master_dispatch_Send (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator)

MPI_Status
status;

MPI_Recv (_skampi_buffer, len, MPI_CHAR, (work % number_of_workers) + 1,
1, communicator, &status);

/* sending next chunk of work to this worker */

MPI_Send (_skampi_buffer, len, MPI_CHAR, (work % number_of_workers) + 1,
1, communicator);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work, (work % number_of_workers) + 1);)

return (1);

master_dispatch _Ssend

int master_dispatch_Ssend (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator)

3.2. THE CALL-BACK FUNCTIONS 59

MPI_Status
status;

MPI_Recv (_skampi_buffer, len, MPI_CHAR, (work % number_of_workers) + 1,
1, communicator, &status);
/* sending next chunk of work to this worker */
MPI_Ssend (_skampi_buffer, len, MPI_CHAR,
(work % number_of_workers) + 1,
1, communicator);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work, (work % number_of_workers) + 1);)

return (1);

master_dispatch _Isend

int master_dispatch_Isend (int number_of_workers,
int work, int chunks, int len,
MPI_Comm communicator)

MPI_Request
req;

MPI_Status
status;

MPI_Recv (_skampi_buffer, len, MPI_CHAR, (work % number_of_workers) + 1,
1, communicator, &status);
/* sending next chunk of work to this worker */
MPI_Isend (_skampi_buffer, len, MPI_CHAR,
(work % number_of_workers) + 1,
1, communicator, &req);

D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work, (work % number_of_workers) + 1);)

return (1);

master_dispatch_Bsend

int master_dispatch_Bsend (int number_of_workers,
int work, int chunks, int len,

60 CHAPTER 3. MEASUREMENTS IN DETAIL

MPI_Comm communicator)

{
MPI_Status
status;
MPI_Recv (_skampi_buffer, len, MPI_CHAR, (work % number_of_workers) + 1,
1, communicator, &status);
/* sending next chunk of work to this worker */
MPI_Bsend (_skampi_buffer, len, MPI_CHAR,
(work % number_of_workers) + 1,
1, communicator);
D(fprintf (stderr, "master: sending job_no %d to worker %d\n",
work, (work % number_of_workers) + 1);)
return (1);
}
master_init_attach

master_free_attach

void master_free_attach (int mw_numprocs)
{

int buflen = max_msg_len * sizeof(char)
+ MPI_BSEND_OVERHEAD + MY_OVERHEAD;
MPI_Buffer_detach (_skampi_buffer, &buflen);
}

3.2.3 Call-backs of the Collective pattern

Document created automatically by documeas.pl at Mon Dec 21 10:03:56 1998.

col_init_dummy

e measured routine: measure_col_dummy.

e client-routine: measure_col_dummy

col_init _Bcast

e measured routine: measure_broadcast.

e client-routine: measure_broadcast

3.2. THE CALL-BACK FUNCTIONS 61

col_init _Barrier

e measured routine: measure_barrier.

e client-routine: measure_barrier

col_init Reduce

e measured routine: measure Reduce.

e client-routine: measure Reduce

col_init_Allreduce

e measured routine: measure_Allreduce.

e client-routine: measure_Allreduce

col_init_ Reduce_Bcast

e measured routine: measure Reduce_Bcast.

e client-routine: measure Reduce Bcast

col_init Reduce_scatter

e measured routine: init_measure Reduce_scatter.

e client-routine: init_measure Reduce_scatter

e measured routine: measure Reduce_scatter.

e client-routine: measure Reduce_scatter

col_init Reduce_Scatterv

e measured routine: init_measure Reduce_Scatterv.

e client-routine: init_measure Reduce _Scatterv

e measured routine: measure Reduce_Scatterv.

e client-routine: measure Reduce _Scatterv

col_init_Scan

e measured routine: measure_Scan.

e client-routine: measure_Scan

62 CHAPTER 3. MEASUREMENTS IN DETAIL

col_init_Alltoall

e measured routine: measure_Alltoall.

e client-routine: measure_Alltoall

col_init_Alltoallv

e measured routine: init measure recvlens displs.
e client-routine: init measure recvlens displs
e measured routine: measure Alltoallv.

e client-routine: measure_Alltoallv

col_init_Gather

e measured routine: measure_Gather.

e client-routine: measure_Gather

col_init_Gather_Send Recv

e measured routine: measure_Gather Recv_server.

e client-routine: measure_Gather Send_client

col_init_Gather_Isend_Waitall

e measured routine: measure_Gather Waitall_server.

e client-routine: measure_Gather_Isend_client

col_init_Gatherv

e measured routine: init measure recvlens displs.
e client-routine: init measure recvlens displs
e measured routine: measure Gatherv.

e client-routine: measure_Gatherv

col_init_Allgather

e measured routine: measure Allgather.

e client-routine: measure Allgather

3.2. THE CALL-BACK FUNCTIONS 63

col_init_Allgatherv
e measured routine: init measure recvlens displs.
e client-routine: init measure recvlens displs
e measured routine: measure Allgatherv.

e client-routine: measure Allgatherv

col_init_Scatter
e measured routine: measure_Scatter.

e client-routine: measure_Scatter

col_init_Scatterv
e measured routine: init measure recvlens displs.
e client-routine: init measure recvlens displs
e measured routine: measure Scatterv.

e client-routine: measure_Scatterv

col_init_Comm _dup
e measured routine: measure _Comm_dup.

e client-routine: measure _Comm_dup

col_init_Comm _split
e measured routine: measure Comm_split.

e client-routine: measure Comm split

col_init_memcpy
e measured routine: measure memcpy.

e client-routine: measure_col_dummy

measure_col_dummy

void measure_col_dummy (int len, MPI_Comm communicator)
{

/* just for dummy measurement */

return;

3

64 CHAPTER 3. MEASUREMENTS IN DETAIL

measure_broadcast

void measure_broadcast (int len, MPI_Comm communicator)

{
MPI_Bcast(_skampi_buffer, len, MPI_CHAR, 0, communicator);

3

measure_barrier

void measure_barrier (int len, MPI_Comm communicator)

{
MPI_Barrier(communicator);

3

measure_Reduce

void measure_Reduce (int len, MPI_Comm communicator)

{
MPI_Reduce(_skampi_buffer, _skampi_buffer_2, len, MPI_BYTE,
MPI_BOR, 0, communicator);

measure_Allreduce

void measure_Allreduce (int len, MPI_Comm communicator)

{
MPI_Allreduce(_skampi_buffer, _skampi_buffer_2, len, MPI_BYTE,
MPI_BOR, communicator);

measure_Reduce_Bcast

void measure_Reduce_Bcast (int len, MPI_Comm communicator)
{
MPI_Reduce(_skampi_buffer, _skampi_buffer_2, len, MPI_BYTE,
MPI_BOR, 0, communicator);
MPI_Bcast(_skampi_buffer, len, MPI_CHAR, 0, communicator);
1

3.2. THE CALL-BACK FUNCTIONS 65

measure_Reduce_scatter

void measure_Reduce_scatter (int len, MPI_Comm communicator)
{
MPI_Reduce_scatter(_skampi_buffer, _skampi_buffer_2, recvlens, MPI_BYTE,
MPI_BOR, communicator);

measure_Reduce_Scatterv

void measure_Reduce_Scatterv (int len, MPI_Comm communicator)

{
MPI_Reduce(_skampi_buffer, _skampi_buffer_2, len, MPI_BYTE,
MPI_BOR, 0, communicator);

MPI_Scatterv (_skampi_buffer_2, recvlens, displs, MPI_CHAR,
_skampi_buffer, len, MPI_CHAR, O, communicator);

/* in the above call the "O" is featuring as root Note: the pointers
_skampi_buffer and _skampi_buffer_2 are interchanged in this

call. This is done, because so we can use the memory initializing
for MPI_Gather.

recvlens are used here as send lengths */

measure_Scan

void measure_Scan (int len, MPI_Comm communicator)

{
MPI_Scan (_skampi_buffer, _skampi_buffer_2, len, MPI_BYTE,
MPI_BOR, communicator);

measure_Alltoall

void measure_Alltoall (int len, MPI_Comm communicator)

{

MPI_Alltoall (_skampi_buffer, len, MPI_CHAR,
_skampi_buffer_2, len, MPI_CHAR, communicator);
1

66 CHAPTER 3. MEASUREMENTS IN DETAIL

measure_Alltoallv

void measure_Alltoallv (int len, MPI_Comm communicator)

{
MPI_Alltoallv (_skampi_buffer, recvlens, displs, MPI_CHAR,
_skampi_buffer_2, recvlens, displs, MPI_CHAR, communicator);
/* the first occurence of recvlens and displs should be read as
sendlens and send displacements */

measure_Gather

void measure_Gather (int len, MPI_Comm communicator)

{
MPI_Gather (_skampi_buffer, len, MPI_CHAR,
_skampi_buffer_2, len, MPI_CHAR, O, communicator);

/* in the above call the "0" is featuring as root */

3

measure_Gather_Recv_server

void measure_Gather_Recv_server (int len, MPI_Comm communicator)

int
i,
numprocs;

MPI_Status
status;

D7(int myrank;)
D7 (MPI_Comm_rank(communicator, &myrank) ;)
MPI_Comm_size(communicator,&numprocs);

for (i = 1; i < numprocs; i++)

{
D7(fprintf(stderr,"proc %d: receiving from %d\n", myrank, i);)
MPI_Recv (_skampi_buffer_2 + (i-1)*len, len, MPI_CHAR,
i, 0, communicator, &status);
D7(fprintf (stderr,"proc %d: received from %d\n", myrank, i);)
}

3.2. THE CALL-BACK FUNCTIONS 67

measure_Gather_Send_client

void measure_Gather_Send_client (int len, MPI_Comm communicator)
{
D7(int myrank;)
D7 (MPI_Comm_rank(communicator, &myrank) ;)
D7(fprintf(stderr,"proc %d: sending to root\n", myrank);)
MPI_Send (_skampi_buffer, len, MPI_CHAR,
0, 0, communicator);

measure_Gather_Waitall server

void measure_Gather_Waitall_server (int len, MPI_Comm communicator)
{
int
i,
numprocs;

D7(int myrank;)
D7 (MPI_Comm_rank(communicator, &myrank) ;)

MPI_Comm_size(communicator,&numprocs);

for (i = 1; i < numprocs; i++)
{

D7(fprintf(stderr,'proc %d: receiving from %d\n", myrank, i);)

MPI_Irecv (_skampi_buffer_2 + (i-1)*len, len, MPI_CHAR,

i, 0, communicator, _col_req + (i - 1));

D7 (fprintf (stderr,"proc %d: received from %d\n", myrank, i);)
}
D7 (fprintf (stderr,"proc %d: left loop, numprocs %d\n', myrank, numprocs);)
MPI_Waitall (numprocs - 1, _col_req, _col_stati);

measure_Gather_Isend_client

void measure_Gather_Isend_client (int len, MPI_Comm communicator)
{
MPI_Request
req;

D7(int myrank;)

D7 (MPI_Comm_rank(communicator, &myrank) ;)
D7(fprintf(stderr,"proc %d: sending to root\n", myrank);)
MPI_Isend (_skampi_buffer, len, MPI_CHAR,

68 CHAPTER 3. MEASUREMENTS IN DETAIL

0, 0, communicator, &req);

/* We do not use a completion operation here, since the barrier sync
after every col operation assures, that the wait all of the server
is finished, when proceeded. */

measure_Gatherv

void measure_Gatherv (int len, MPI_Comm communicator)

{
MPI_Gatherv (_skampi_buffer, len, MPI_CHAR,
_skampi_buffer_2, recvlens, displs, MPI_CHAR, O, communicator);

/* in the above call the "0" is featuring as root */

3

measure_Allgather

void measure_Allgather (int len, MPI_Comm communicator)

{
MPI_Allgather (_skampi_buffer, len, MPI_CHAR,
_skampi_buffer_2, len, MPI_CHAR, communicator);
1

measure_Allgatherv

void measure_Allgatherv (int len, MPI_Comm communicator)

{
MPI_Allgatherv (_skampi_buffer, len, MPI_CHAR,
_skampi_buffer_2, recvlens, displs, MPI_CHAR, communicator);

3

measure_Scatter

void measure_Scatter (int len, MPI_Comm communicator)
{
MPI_Scatter (_skampi_buffer_2, len, MPI_CHAR,
_skampi_buffer, len, MPI_CHAR, O, communicator);

/* in the above call the "0" is featuring as root Note: the pointers
_skampi_buffer and _skampi_buffer_2 are interchanged in this
call. This is done, because so we can use the memory initializing

3.2. THE CALL-BACK FUNCTIONS 69

for MPI_Gather. */

measure_Scatterv

void measure_Scatterv (int len, MPI_Comm communicator)

{
MPI_Scatterv (_skampi_buffer_2, recvlens, displs, MPI_CHAR,
_skampi_buffer, len, MPI_CHAR, O, communicator);

/* in the above call the "O" is featuring as root Note: the pointers
_skampi_buffer and _skampi_buffer_2 are interchanged in this

call. This is done, because so we can use the memory initializing
for MPI_Gather.

recvlens are used here as send lengths */

measure_Comm_dup

void measure_Comm_dup (int len, MPI_Comm communicator)
{

MPI_Comm new_comm;

MPI_Comm_dup (communicator, &new_comm) ;

3

measure_Comm _split

void measure_Comm_split (int len, MPI_Comm communicator)

{

MPI_Comm new_comm;

MPI_Comm_split (communicator, _skampi_myid % 2, 0, &new_comm);

3

measure_memecpy

void measure_memcpy (int len, MPI_Comm communicator)

{
memcpy (_skampi_buffer, _skampi_buffer_2, len);

3

70 CHAPTER 3. MEASUREMENTS IN DETAIL

init_measure_Reduce_scatter
init_measure _recvlens_displs

init_measure_Reduce_Scatterv

3.2.4 Call-backs of the Simple pattern

Document created automatically by documeas.pl at Mon Dec 21 10:04:02 1998.

to be measured.

(simple_init_...) and routines containing the MPI-Functions to be measured.
{
b

simple_init_ dummy

e measured routine: measure_dummy.

simple_init_Wtime

e measured routine: measure Wtime.

simple_init 2Wtime

e measured routine: measure 2Wtime.

simple_init_Comm _size

e measured routine: measure_Comm_size.

simple_init_Comm _rank

e measured routine: measure_Comm_rank.

simple_init Iprobe

e measured routine: measure Iprobe.

simple_init_attach

e measured routine: measure_attach.

3.2. THE CALL-BACK FUNCTIONS

measure_dummy

void measure_dummy ()
{
return;

3

measure_Wtime

void measure_Wtime ()
{
double _dummy;

_dummy = MPI_Wtime();
}

measure_ 2Wtime

void measure_2Wtime ()

{
double _dummy;
_dummy = MPI_Wtime();
_dummy = MPI_Wtime();
}

measure_Comm _size

void measure_Comm_size ()
{

int _dummy;

MPI_Comm_size (MPI_COMM_WORLD, &_dummy);
}

measure_Comm _rank

void measure_Comm_rank ()
{

int _dummy;

MPI_Comm_rank (MPI_COMM_WORLD, &_dummy);
}

72 CHAPTER 3. MEASUREMENTS IN DETAIL

measure_Iprobe

void measure_Iprobe ()

{
MPI_Status
status;
int
_dummy ;

MPI_Iprobe (1, 0, MPI_COMM_WORLD, &_dummy, &status);
}

measure_attach

void measure_attach ()

{
int buflen = MPI_BSEND_OVERHEAD + MY_OVERHEAD;

MPI_Buffer_attach (_skampi_buffer, buflen);
MPI_Buffer_detach (&_skampi_buffer, &buflen);
}

3.3 The output file

The output file is an pure ASCII-text file. Its name is usually skampi.out by
default. Its name can be changed of the @OUTFILE-section in the parameter
file (see section 2.1.1 for further information). Roughly speaking it has three

sections: the header, the data, and the trailer.

Header

The header stores all information characterizing the context of the measure-
ments stored in this file. These are the sections @MACHINE, @NODE, @NETWORK,
QUSER, and @ABSOLUTE which are filled with data from from the parameter file.
Additional sections are filled by the benchmark. A typical header can look like:

#OMACHINE IBM RS/6000 SP

#ONODE thin node P2SC 120 MHz
#ONETWORK High Performance Switch TB3
#QUSER Ralf Reussner

#OSKAMPIVERSION 1.20

#OOSNAME AIX

#OOSRELEASE 2

#OOSVERSION 4

#CHOSTNAME p071

3.3. THE OUTPUT FILE 73

#QARCHITECTURE 000089978100
#QABSOLUTE yes
#Q@DATE Thu Oct 29 11:25:34 1998

Data

This section is a list of suites of measurements. Each suite starts with a “small”
list-header, describing this suite, follewed by a result-list For all patterns except

the simple-pattern the header looks like:

#/*@incol _MPI_Bcast-nodes-short.ski*/

#Description of the MPI_Bcast-nodes-short measurement:

#Pattern: Collective varied over the number of nodes [number] (%%d).

#The x scale is linear, no automatic x wide adaption

#range: 2 - 64, stepwidth: 1.000000.

#default values: 64 nodes, message length 256 bytes, max. / act. time for suit
e disabled/0.31 min.

#max. allowed standard error is 3.00 %, cut quantile is 0.00 %

#Format: <args> number of nodes [number] (%%d) <results> time_cleaned [microse
c.] (%f) standard_error_cleaned [%] (%f) count_cleaned [number] (%d) time_all
[microsec.] (%f) standard_error_all [%] (%f) count_all [number] (%d)

A typical header of the simple-pattern looks like:

#/*0insimple_MPI_Wtime.skix*/

#Description of the MPI_Wtime measurement:

#Pattern: Simple.

#

#

#

#max. allowed standard error is 3.00 %

#Format: <args> <results> time_cleaned [microsec.] (%f) standard_error_cleane
d [%] (%f) count_cleaned [number] (%d) time_all [microsec.] (%f) standard_erro
r_all [%] (%f) count_all [number] (%d)

Note that the @in-command is used by the report generator, to identify the
measurements? All other lines start with a §, so that gnuplot treats these lines
as comments.

The small header for suites of the simple-pattern look different, because this
pattern does not has information on scale, range and default values. (But both

list-headers have the same length of eight lines.?)

2and to create temporary files.
3For implementors: This string is created in the function measurement data_to_string in
module skampi_tools.

Note the following line giving the typing information of the result list (the

result list is described in the next subsection).

#Format: <args> number_of_nodes [number] (%%d) <results> time_cleaned
[microsec.] (%f) standard_error_cleaned [%] (%f) count_cleaned
[number] (%d) time_all [microsec.] (%f)

standard_error_all [%] (%f) count_all [number] (%d)

These lines should be read as one continuous line. The basic idea is, that

the formats of the result-lists may differ. So it is important to describe each
list’s format.
The format-line starts with ”"#Format:”, followed by a tag (<args>), which
means, that a description of arguments follows. (In case of multi dimensional
measurements more than one argument belongs to one measurement.) Fach
argument is described with its name (in our example number of nodes) than
its unit ([number]) and its format in C-Syntax given in round brackets (e.g.,
(%4)). Each so described argument corresponds to one column of the result-list.
The arguments describing list is followed by another list, the results describing
list. Each entry describes a column of the result list. An entry is formed by
the following data (similar to an entry of the argument list): name, unit, and
format.

After each list-header follows a result-list of measurements for each suite.

(This list may contain only one element.)

176.059111 3.034745 8 176.059111 3.034745 8
386.971049 14.221803 8 386.971049 14.221803 8
370.513008 14.726381 8 370.513008 14.726381 8
573.763306 26.948681 11 573.763306 26.948681 11
521.403970 10.311949 8 521.403970 10.311949 8
577.031024 9.031125 8 577.031024 9.031125 8
484.304333 24.567614 11 484.304333 24.567614 11
706.000973 35.550781 68 706.000973 35.550781 68
701.232959 25.582020 8 701.232959 25.582020 8
802.918861 33.229652 8 802.918861 33.229652 8
806.794216 37.361757 11 806.794216 37.361757 11
766.557961 21.876852 8 766.557961 21.876852 8
818.220084 37.641216 9 818.220084 37.641216 9
827.972894 36.904118 9 827.972894 36.904118 9
16 758.197092 36.257975 14 758.197092 36.257975 14
#eol

© 0 N O O WwN

=
= O

el
g wN

To mark the end of this list, skampi prints an feol.

Trailer

The trailer is just the last line of the output file. If skampi finishes correctly, the

last line will contain the string “skampi finished.”. If this file was created by

74

post processing, there will be additionally the stamp: —-postprocessed.

75

Bibliography

[1] W. Gropp, E. Lusk. User’s Guide to mpich, a portable Implementation
of MPI, Technical Report ANL/MCS-TM-ANL-96/6, Argonne National

Laboratories, 1996

[2] R. Reussner. Portable Leistungsmessung des Message-Passing-Interfaces.

Diplomarbeit, Universitat Karlsruhe, Fakultat fur Informatik, 1997

[3] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and L. Dongarra. MPI —
The Complete Reference. 2nd. Ed., MIT Press, Cambridge, Massachusetts,

1998

76

Index

Parameter files
.dorep, 29

.skampi, 5, 19

C
compile portability, 3

contention, 25

D
default values, 21
dynamic linear, 23

dynamic log, 23

F
fixed linear, 23

fixed log, 23

H

hompage, 3

M
measurement, 18
scale of, 23

single, 18

77

suite of
example, 26
time limit of a, 24
type of, 23
measurements
performed by SKaMPI, 7
suite of, 18

memory alignment problems, 24

N

node times, 24

P
parameter file, 5, 19
pattern, 34
performance portability, 3

portability, 3

R
report generator, 6

run, 18

S

scale of measurement, 23
single measurement, 18
skampi, 1, 2

goal, 2

homepage, 3
skosfile, 4
standard error, 26

suite of measurements, 18

T
time limit
of a measurement, 24
of a suite, 24

type of measurement, 23

78

