
SKaMPI � The Special Karlsruher

MPI�Benchmark

User Manual �

R� H� Reussner

University of Karlsruhe

Department of Informatics

Germany

reussner�ira�uka�de

January ��� ����

�This document appeared as Interner Bericht �Technical Report� ����� at the De�
partment of Informatics	 University of Karlsruhe	 Germany

Abstract

SKaMPI is the Special Karlsruher MPI�Benchmark� SKaMPI measures the

performance of MPI ������ implementations� and of course of the underlying

hardware� It performs various measurements of several MPI functions� SKaMPI 	s

primary goal is giving support to software developers� The knowledge of MPI

function	s performance has several bene
ts� The software developer knows the

right way of implementing a program for a given machine� without �or with

shortening
 the tedious time costly tuning� which usually has to take place�

The developer has not to wait until the code is written� performance issues can

also be considered during the design stage� Developing for performance even

can take place� also if the considered target machine is not accessible�

MPI performance knowledge is especially important� when developing portable

parallel programs� So the code can be developed for all considered target plat�

forms in an optimal manner� So we achieve performance portability� which

means that code runs without time consuming tuning after recompilation on a

new platform�

Contents

� Running SKaMPI �

��� Introduction �

��� Installation �

����� Getting SKaMPI �

����� Compiling SKaMPI �

��� Running SKaMPI �

��� Post�processing �

��� Generating a report �

��� The measurements� A short overview � � � � � � � � � � � � � � � � �

����� Ping�pong tests �

����� Measurements with the master worker scheme � � � � � � � �

����� Collective Operations ��

����� Local Operations ��

� Customizing and trouble�shooting ��

��� Con
guring SKaMPI� The parameter
le � � � � � � � � � � � � � ��

����� The sections ��

����� Example and default values � � � � � � � � � � � � � � � � � ��

����� Grammar for sections ��

����� The MEASUREMENTS�section � � � � � � � � � � � � � � ��

����� Example of an entry ��

����� A Note to the preference of the parameters Max Steps�

Time Suite and Standard error� Time Measurement � � ��

����� Grammar of the MEASUREMENTS�Section � � � � � � � ��

��� Con
guring the report generator � � � � � � � � � � � � � � � � � � ��

����� Comparisons ��

����� Additional tex�modules ��

����� More detailed graphs ��

����� Given module
les ��

����� Extra text for suites ��

��� When SKaMPI crashes� ��

i

� Measurements in detail ��

��� But what is measured� ��

����� Example ��

����� Point�to�Point pattern ��

����� Master�Worker pattern ��

����� Collective pattern ��

����� Simple pattern ��

��� The call�back functions ��

����� Call�backs of the Point�to�Point pattern � � � � � � � � � � ��

����� Call�backs of the Master�Worker pattern � � � � � � � � � � ��

����� Call�backs of the Collective pattern � � � � � � � � � � � � � ��

����� Call�backs of the Simple pattern � � � � � � � � � � � � � � ��

��� The output
le ��

ii

�

Acknowledgements

This technical report mainly o�springs from my diploma thesis ���� I would

like to express my gratitude to my advisers P� Sanders and L� Prechelt� Espe�

cially the algorithm for automatic parameter re
nement is based on ideas of P�

Sanders� I would like to thank for many fruitful discussions�

Chapter �

Running SKaMPI

��� Introduction

SKaMPI is the Special Karlsruher MPI�Benchmark� SKaMPI measures the

performance of MPI implementations� and of course of the underlying hard�

ware� It performs various measurements of several MPI �Ver� ���
 functions�

The results are stored in a text
le� from which a report can be generated

automatically�

SKaMPI 	s primary goal is giving support to software developers� Software

developers are faced with severals problems when designing and implementing

code for parallel environments� First of all the code has to show the best per�

formance� This implies that a program	s performance has to be measured and

tuned during numerous sessions� Further on� cost intensive software develop�

ment is more pro
table� when the product can be used on several platforms�

i�e�� is portable without a new tuning for each machine� The message passing

interface �MPI
 ������ is a standard for a library to program message passing ma�

chines� MPI has been created by the MPI�forum� a group of researchers from

academia and industry� MPI is a big step forward towards portable software

for parallel platforms� since programmers no can rely on one interface standard�

instead of several vendor�dependent interfaces� Instead of principal excluding

e�cient ways of implementing the MPI standard on certain machines� the MPI

standard comprises several similar functions� So MPI o�ers many alternatives

when designing and implementing a parallel algorithm� These alternatives o�er

a great potential for optimization�

This potential is twofold� First� the knowledge of several MPI function	s

performance allows the software developer the right way of implementing a

program for a given machine� without �or with shortening
 the tedious tuning�

Even better� the developer has not to wait until the code is written� performance

issues can also be considered during the design stage� In fact� developing for

�

���� INSTALLATION �

performance even can take place� also if the considered target machine is not

accessible� or a workstation is used for development� which also can lower cost

of development�

Second� if the programmer knows the MPI function	s performance on sev�

eral machines� the programs can be developed for performance for all considered

target platforms� So we can speak of a performance portability� instead of com�

pile portability� Compile portability means that a parallel program� developed

and tuned on platform A� is recompiled on platform B� and has to be tuned for

platform B� So this in not what we really understand under portability� Unlike

compile portability� performance portability means that a program is developed

with MPI function	s performance on all targeted platforms in mind� so that you

really just have to recompile�

The SKaMPI project tries to support these goal of performance and perfor�

mance portability through two issues� First we o�er a user con
gurable bench�

mark suite and a report generator� down�loadable from the web� So each user

can measure the performance of accessible machines in terms of MPI� gener�

ate a report� and can draw its own conclusions from this� Second� we provide

a public result database� where we store SKaMPI 	s results from many ma�

chines� if permitted� So� please� email a copy of your result
le to us �that

is� reussner�ira�uka�de
� So you can support performance portability and

design for performance� because for these concepts we need the data of many

machines�

��� Installation

����� Getting SKaMPI

The easiest way to obtain the SKaMPI�Packet is to load it down from the

SKaMPI�homepage� http���wwwipd�ira�uka�de��skampi� The SKaMPI�
le you

nd there is a gnu�zipped tar�
le� Thus you can unpack it with tar �xvzf

skampi�tgz��

However� this will create the whole directory�tree of SKaMPI �

�skampi

�skampi�report�generator

In the SKaMPI directory are the source
les you need for compiling SKaMPI �

In the directory skampi�report generator you will
nd the report generator

and its driver
les�

�If your version of tar has no option z� you can call gnu�unzip �rst �gunzip skampi�tgz

and then tar �tar �xvf skampi�tar�

� CHAPTER �� RUNNING SKAMPI

����� Compiling SKaMPI

The benchmark program itself consists of one source�
le �skosfile�c�
� so that

you can compile it with just one compiler call�� This compiler call depends on

your machine� When using mpich� you usually have a make
le� so just call

make skosfile� Or on an IBM SP under AIX call mpcc �lm �o skosfile

skosfile� However� note that the math�library ��lm
 is necessary for linking�

You should not request any optimizations by the compiler� Some of SKaMPI 	s

function calls do not have many parameters� The compiler would load the

parameter into registers� This would give an unrealistic touch to our data� since

this would not happen in realistic �real� applications� Also SKaMPI contains

empty dummy functions� just created to measure the overhead on a function

call� These function should also no be optimized away�

Please compile the program pposf�c in the same manner� This program is

only used for post processing the results� This will be explained in Section ����

��� Running SKaMPI

Unfortunately starting an MPI program is as dependent on your system as

compiling� Usually you can start MPI programs with the mpirun�command� but

there is no standard for its parameters� Using mpich you start the benchmark

with mpirun �np �� skosfile with �� processors� Note� Some systems like

the IBM SP have a di�erent command for starting parallel programs �poe
 than

mpirun� In case of trouble� you may ask your local administrator�

SKaMPI wants to be started with two or more processors� How many you

use� depends on what you want to measure�� Some operating environments

request further information on the program to start� such as memory or time

requirements� The memory that SKaMPI needs depends on what is given in the

�MEMORY�section in the parameter
le ��skampi
� �Please see section ��� for

further information about the parameter
le�
 As rule of the thumb you should

give a megabyte extra� for internal bu�ers� etc� The time that SKaMPI needs to

measure depends on the accuracy you request� and the number of measurements

you asked SKaMPI to perform�� To say a typical value� SKaMPI runs with

�skampi�in�onesourcefile
�During development we use several modules� which are merged together to skosfile�c�

This eases distribution� versioning� and compiling and on the target platforms� If you are
interested in reusing the code� please send an email to obtain the modules� which probably
eases understanding of the code�

�Well� you may ask� what is measured� For a quick overview please have a look in the
example�reportskarep�example�psor in the Section ��	� A more detailed technical description
you will �nd in the Section
���

�You can change them in the �STANDARDERROR� and �MEASUREMENTS�section respectively�
You also can give a time limit for measurements through the sections �TIMESUITEDEFAULT and
�TIMEMEASDEFAULT� �For further information please see Section �������

���� POST�PROCESSING �

all measurements and an accuracy of � percent less than half an hour on an

IBM SP using �� nodes using an � MB message bu�er�

SKaMPI stores its results in a text
le� The name of this text
le is skampi�out

by default� To change that edit the �OUTFILE�section in the parameter
le �see

�����
� While other processes running during measuring� their load may disturb

SKaMPI � So you might
nd it useful running SKaMPI more than once� For

every run SKaMPI creates a new output
le skampi�out��� skampi�out�	 and

so on� Note that the results of the actual run are always stored in skampi�out�

The other
le SKaMPI creates is a log
le �skampi�log
� � It is used by the

recovery�mechanism� But you may also have a look into� Several warnings and

comments are stored in it�

Before starting the Benchmark we urgently recommend to
ll out

the �MACHINE� NODE and �NETWORK sections of the parameter
le

�skampi in a detailed manner�

�COMMENT Section for comments� You may enter any text you

want� �Well� text without other section names� of course�

�MACHINE The text in this section describes the machine� you

run SKaMPI on� You can add any other relevant details of a

measurement here� Note that there are also special sections for

the network ��NETWORK
 and the nodes ��NODE
� SKaMPI as�

sumes that the
rst line of the �MACHINE�section contains

just the name of the machine�

�NODE In this section you may describe the type of nodes you

use� If there are several types� please describe them all�

�NETWORK Here you may type in� which network you use� Of�

ten there are several versions of a communication network for

one machine �for example the IBM SP
�

�USER Here is your place� The
rst line of this section is used by

the report�generator �dorep�pl
 and should only contain your

name�

The report generator requires this data to create a report of the results�

��� Post�processing

Since we may have more than one output
le� we would like to merge all these

les together� so that all measurements performed are used� The post�processing

�Its name can be changed in the �LOGFILE section of the parameter �le�

� CHAPTER �� RUNNING SKAMPI

does exactly this� It reads all output
les and creates a new one �concrete� a

new skampi�out
� This new
le is used for storing the medians of all other

corresponding measurements�

If you do not want SKaMPI to perform the post�processing� you just have to

write �POSTPROCESSING no �instead of yes
 in the parameter
le� Then you

can call the post�processing manually� post�

��� Generating a report

Since we run SKaMPI � we would like to know its results� Lets assume that

the results are stored in skampi�out� which is the default�� Then we just call

dorep�pl to create a postscript report named skampi�out�ps�

Just call dorep�pl other name if your output
le is not named skampi�out

but �other name�� In this case� the result will be stored in other name�ps�

A note to dorep�pl� As you may have seen by the
le extension� the

report generator is a perl�script� More exactly� perl �� There are

several reasons for using perl� perhaps the most important is� that

we do not have to worry about compiling �since perl is interpreted
�

But there is still a little point to look at� dorep�pl has to
nd

the perl�binary� Therefore its
rst line contains my path to the

perl�interpreter ��
�usr�bin�perl �w
� At some systems this path

di�ers from this one�� So adaption may be required�

dorep�pl needs several programs to work�

Program my Version Purpose

perl version ����� interpreting and execution

gnuplot version ���� patchlevel ����������

�� Aug ��

Generating eps�graphics

latex Version ������� �C version ���
 Text formatting

dvips dvipsk ����f Converting �dvi�
les into

�ps�
les�

Information on con
guring the report generator is given in Section ���� Note�

The report generator relies on
lled entries �MACHINE and �USER as described

in section ����

�Further on lets say� that if we had several runs of SKaMPI� we would have called the
post�precessing�

�The real perl�freak knows
 the is a solution for this problem� a magic line� which forces
the shell to search for perl� But it does not works� when using the C�shell� �So we forget it��

���� THE MEASUREMENTS� A SHORT OVERVIEW �

��	 The measurements
 A short overview

This section is a short guide through all measurements� which are performed by

the standard�suite� This suite is given in the default SKaMPI parameter
le�

Changing the parameters is shown in Section ����

����� Ping�pong tests

In a ping�pong test one node sends a message to another� which replies it� We

can use for these point�to�point communication di�erent MPI operations�

All ping�pong measurements are varied over the message length�

MPI Send�MPI Recv

This is the �standard��ping�pong test� A message is send with MPI Send from

a node to another receiving with MPI Recv� The receiving nodes replies also

with MPI Send� As result the bandwidth of a node is given� That is incoming

bandwidth plus outgoing bandwidth�

This measurement serves as reference for all other ping�pong measurements�

MPI Send�MPI Iprobe Recv

This ping�pong test waits busily via calling MPI Iprobe before calling MPI Recv

at the sending and receiving node� It di�ers in no way else from the standard

ping�pong�

MPI Send�MPI Irecv

Here we replace the MPI Recvs of the standard ping�pong test with a combined

MPI Irecv and MPI Wait� The idea is to see possible advantages of the non�

blocking version�

MPI Send�MPI Recv with Any Tag

This measurement is just the standard ping�pong test� It only di�ers in receiving

without a speci
ed tag� Here we use the tag MPI ANY TAG to determine whether

this is more expensive or not�

MPI Ssend�MPI Recv

In this measurement we use MPI Ssend for sending and MPI Recv for receiving�

Here we can
x the overhead of synchronous sends�

� CHAPTER �� RUNNING SKAMPI

MPI Isend�MPI Recv

Now we use MPI Isend for sending and MPI Recv for receiving� After the non�

blocking send we use an MPI Wait� So we can determine the advantage of

non�blocking sends combined with Waits�

MPI Issend�MPI Recv

Now we use MPI Issend for sending and MPI Recv for receiving� After the non�

blocking send we use an MPI Wait� So we can determine the advantage or cost

of non�blocking synchronizing sends combined with Waits� Also comparisons to

MPI Isend are interesting�

MPI Bsend�MPI Recv

In this measurement we use MPI Bsend for sending and MPI Recv for receiving�

Here we can
x the overhead of managing user�de
ned bu�ers�

MPI Sendrecv

In this measurement we use MPI Sendrecv for sending and receiving at the

sender and the receiver� This can be compared with the standard�ping�pong

test and with the following test of MPI Sendrecv replace�

MPI Sendrecv replace

In this measurement we use MPI Sendrecv replace for sending and receiving at

the sender and the receiver� This can be compared with the standard �ping�pong

test and with the previous test of MPI Sendrecv�

����� Measurements with the master worker scheme

The following measurements correspond to the master worker scheme� The

master dispatches suborders to several workers� These workers send a reply for

every received order� With this way we try to measure the network throughput

and how it can handle simultaneous communication�

This kind of measurements can be varied over the number of suborders

�chunks
� the length of the messages sent or the number of workers�

We display the bandwidth reached at the master node�

MPI Waitsome�nodes

In this measurement we use the MPI Waitsome�routine to coordinate the in�

coming worker messages� This function guarantees a fair coordination of the

workers� because messages of every sending worker will be received� Here the

measurements are varied over the number of workers�

���� THE MEASUREMENTS� A SHORT OVERVIEW �

MPI Waitsome�chunks

This is the same measurement as above� but now we vary it over the number of

chunks�

MPI Waitsome�length

This is the same measurement as above� but now it is varied over the message

length�

MPI Waitany�length

In this measurement we use the MPI Waitany�routine to coordinate the incom�

ing worker messages� This function does not guarantee a fair coordination of

the workers� because possibly a worker	s messages are always overtaken by the

messages of its colleagues� But because of its simplicity it may be faster than

the MPI Waitsome�

We vary over the message length�

MPI Recv Any Source�length

In this measurement the master receives the messages of the workers via MPI Recv

using the MPI ANY SOURCE as source� Thus this is a master�worker scheme only

realized with point�to�point communication operations� For sending MPI Send

is used�

Here we vary over the message length�

MPI Send�length

Here the master uses MPI Send for sending and MPI Recv for receiving� But con�

trary to the measurement above� the source is speci
ed in the call of MPI Recv�

This measurement serves as reference for the following three measurements� But

you also can compare it with the measurement above�

It is varied over the message length�

MPI Ssend�length

This measurement only di�ers in using MPI Ssend instead of MPI Send� It shows

the extra costs of the synchronous sending�

MPI Isend�length

This measurement only di�ers in using MPI Isend instead of MPI Ssend� The

non�blocking sending will be faster than the blocking variants� if the network

allows�

�� CHAPTER �� RUNNING SKAMPI

MPI Bsend�length

This measurement only di�ers in using MPI Bsend instead of MPI Send� We can

see the costs of extra bu�er handling to MPI Send�

����� Collective Operations

The following measurements concern collective MPI operations� These opera�

tions synchronize processes MPI Barrier or transmit data between them� The

time until completion on all nodes is measured� In all cases the result is the

bandwidth at one node�

MPI Bcast�nodes�short

Here we test the MPI Bcast operation with short messages ���� Bytes
� We

vary over the number of processes� The results are compared with the results

of the following measurement�

MPI Bcast�nodes�long

Now we test the MPI Bcast operation with long messages ��� KBytes
� We vary

over the number of processes�

MPI Bcast�length

This measurement also tests the Broadcast operation� But here we vary over

the message length� The number of the participating nodes is
xed�

MPI Barrier�nodes

This test synchronizes several processes via MPI Barrier� This measurement

is interesting because this operation usually is called very often� We vary over

the number of nodes� �Since there are no messages sent� we cannot vary over

message length�

MPI Reduce�nodes

Here me measure the time MPI Reduce consumes� This operation performs

a tree�wise data reduction operation �here� bit�wise or
 on all participating

processes� The result is stored at a root node� We vary over the number of

nodes�

MPI Reduce�length

This measurement is the same like the one above� But now we vary over the

message length�

���� THE MEASUREMENTS� A SHORT OVERVIEW ��

MPI Scan�nodes

The MPI Scan operation performs a pre
x reduction on data distributed across

the participating processes� First we vary over the nodes� This measurement

can be compared with MPI Reduce�

MPI Scan�length

This is the measurement described above� Now it is varied over the message

length�

MPI Alltoall�nodes�short

The MPI Alltoall operation sends a message from every node to every node�

We vary over the number of nodes� The messages have the length of ��� Bytes

�for each node
�

MPI Alltoall�nodes�long

This measurement is similar to the above� But now the messages have the length

of �� KBytes �for each node
�

MPI Alltoall�length

This is the same measurement as above� only that we vary over the message

length�

MPI Gather�nodes�short

Using the MPI Gather operation a root process collects data distributed on

several nodes and writes the the received data in one contiguous bu�er� We

vary over the number of nodes bu�er� The messages have the length of ���

Bytes �for each node
�

MPI Gather�nodes�long

Here we also measure the MPI Gather operation varied over the number of nodes�

But in this case the messages have the length of �� KBytes �for each node
�

MPI Gather�length

Here we measure MPI Gather varied over the message length�

�� CHAPTER �� RUNNING SKAMPI

MPI Gather SR�nodes�short

Using a Gather operation a root process collects data distributed on several

nodes and writes the the received data in one contiguous bu�er� Here we imple�

mented this operation with MPI Send and MPI Recv� It is interesting to compare

this implementation with the MPI implemented MPI Gather or our other im�

plementation of gather �MPI Gather ISWA
� We vary over the number of nodes�

The messages have the length of ��� Bytes �for each node
�

MPI Gather SR�nodes�long

Here we also measure the Gather operation implemented with MPI Send and

MPI Recv varied over the number of nodes� But in this case the messages have

the length of �� KBytes �for each node
�

MPI Gather SR�length

Here we measure our MPI Send � MPI Recv implementation of Gather varied

over the message length�

MPI Gather ISWA�nodes�short

Using a Gather operation a root process collects data distributed on several

nodes and writes the the received data in one contiguous bu�er� Here we im�

plemented this operation with MPI Isend and MPI Waitall� It is interesting

to compare this implementation with the MPI implemented MPI Gather or our

other implementation of gather �Send�Receive
� We vary over the number of

nodes� The messages have the length of ��� Bytes �for each node
�

MPI Gather ISWA�nodes�long

Here we also measure the Gather operation implemented with MPI Isend and

MPI Waitall varied over the number of nodes� But in this case the messages

have the length of �� KBytes �for each node
�

MPI Gather ISWA�length

Here we measure our MPI Isend � MPI Waitall implementation of Gather varied

over the message length�

MPI Scatter�nodes�short

In the MPI Scatter operation a root process distributes data to every node�

The messages have the length of ��� Bytes �for each node
�

���� THE MEASUREMENTS� A SHORT OVERVIEW ��

MPI Scatter�nodes�long

Here we also measure MPI Scatter varied over the number of nodes� but the

messages have the length of �� KBytes �for each node
�

MPI Scatter�length

We measure MPI Scatter varied over the message length�

MPI Allreduce�nodes

This operation performs a tree�wise data reduction operation �here� bit�wise

or
 on all participating processes and distributes the result to all participating

nodes� This result distribution to all participating nodes is the di�erence to the

normal MPI Reduce operation� where the result is stored in a single root pro�

cessor� So it is interesting to compare this operation to the normal MPI Reduce

and to a MPI Reduce followed by an MPI Bcast operation �our measurement

MPI Reduce Bcast
� which also distributes the result to all nodes� We vary over

the number of nodes with a message length of ��� Bytes for each node�

MPI Allreduce�length

Here we also measure the performance of MPI Allreduce� This time we vary

over the message length�

MPI Reduce Bcast�nodes

This operation performs a tree�wise data reduction operation �here� bit�wise

or
 on all participating processes with MPI Reduce and then distributes the

result to all participating nodes with MPI Bcast� This result distribution to all

participating nodes is the di�erence to the normal MPI Reduce operation� where

the result is stored in a single root processor� So it is interesting to compare

this operation to MPI Allreduce� which also distributes the result to all nodes

in one call� We vary over the number of nodes with a message length of ���

Bytes for each node�

MPI Reduce Bcast�length

Here we also measure the performance of MPI Reduce followed by MPI Bcast�

This time we vary over the message length�

MPI Reduce scatter�nodes

This operation performs a tree�wise data reduction operation �here� bit�wise or

on all participating processes with MPI Reduce scatter and then distributes the

�� CHAPTER �� RUNNING SKAMPI

result partially to all participating nodes� Every node receives a di�erent part

of the result�array� This kind of result distribution to all participating nodes

is the di�erence to the normal MPI Reduce or MPI Allreduce operation� where

the result is stored in a single root processor or is transferred completely to all

nodes� So it is interesting to compare this operation to MPI Allreduce� which

distributes the result to all nodes in one call� MPI Reduce scatter can also

be compared with MPI Reduce followed by MPI Scatterv� which we measure

as MPI Reduce Scatterv� We vary over the number of nodes with a message

length of ��� Bytes for each node�

MPI Reduce scatter�length

Here we also measure the performance of MPI Reduce scatter� This time we

vary over the message length�

MPI Allgather�nodes�short

The MPI Allgather operation collects data from every node and concats the re�

ceived data in one contiguous bu�er� In di�erence to the MPI Gather operation�

all nodes collect the data� not only a root process� We vary over the number of

nodes� The messages have the length of ��� Bytes �for each node
�

MPI Allgather�nodes�long

Here we also measure the MPI Allgather operation varied over the number of

nodes� But in this case the messages have the length of �� KBytes �for each

node
�

MPI Allgather�length

Here we measure MPI Allgather varied over the message length�

MPI Scatterv�nodes�short

In the MPI Scatterv operation a root process distributes data to every node�

In addition to MPI Scatter a displacement and length can be given� which de�

termine which data from the root process	 bu�er is send to the other nodes� It

is interesting to see the extra costs compared to MPI Scatter� We vary over the

number of nodes� The messages have the length of ��� Bytes �for each node
�

MPI Scatterv�nodes�long

Here we also measure MPI Scatterv varied over the number of nodes� but the

messages have the length of �� KBytes �for each node
�

���� THE MEASUREMENTS� A SHORT OVERVIEW ��

MPI Scatterv�length

We measure MPI Scatterv varied over the message length�

MPI Gatherv�nodes�short

In the MPI Gatherv operation a root process collects data from every node and

concats the received data in one bu�er� In addition to the MPI Gather operation�

we can use per processor receiving from a speci
c displacement and length� which

determine where to write received data in the root	s bu�er and how man bytes

to receive from any processor� Of course� it is interesting to see� what are the

extra costs of this features� We vary over the number of nodes� The messages

have the length of ��� Bytes �for each node
�

MPI Gatherv�nodes�long

Here we also measure the MPI Gatherv operation varied over the number of

nodes� But in this case the messages have the length of �� KBytes �for each

node
�

MPI Gatherv�length

Here we measure MPI Gatherv varied over the message length�

MPI Allgatherv�nodes�short

The MPI Allgatherv operation each process collects data from any other process

and concats the received data in one bu�er� In addition to the MPI Allgather

operation� we can use per processor receiving from another processes a speci
c

displacement and length� which determine where to write received data in the

root	s bu�er and how man bytes to receive from any processor� Of course� it is

interesting to see� what are the extra costs of this features� We vary over the

number of nodes� The messages have the length of ��� Bytes �for each node
�

MPI Allgatherv�nodes�long

Here we also measure the MPI Allgatherv operation varied over the number of

nodes� But in this case the messages have the length of �� KBytes �for each

node
�

MPI Allgatherv�length

Here we measure MPI Allgatherv varied over the message length�

�� CHAPTER �� RUNNING SKAMPI

MPI Alltoallv�nodes�short

The MPI Alltoallv operation sends a message from every node to every node�

In addition to the �normal� MPI Alltoall operation here we able to specify

which data from a process	 sending bu�er should be send to any other process

�send displacement and send lengths
 and we can specify where a process	 data

received from any other process should be stored �receive displacement and

receives lengths
� We vary over the number of nodes� The messages have the

length of ��� Bytes �for each node
�

MPI Alltoallv�nodes�long

This measurement is similar to the above� But now the messages have the length

of �� KBytes �for each node
�

MPI Alltoallv�length

This is the same measurement as above� only that we vary over the message

length�

MPI Reduce Scatterv�nodes

This operation performs a tree�wise data reduction operation �here� bit�wise or

on all participating processes with MPI Reduce and then distributes the result

partially to all participating nodes with MPI Scatterv� Every node receives a

di�erent part of the result�array� This result kind of distribution to all partici�

pating nodes is similar to the one of MPI Reduce scatter� so it is interesting to

compare this operation to MPI Reduce scatter� which distributes the result to

all nodes in one call� We vary over the number of nodes with a message length

of ��� Bytes for each node�

MPI Reduce Scatterv�length

Here we also measure the performance of MPI Reduce Scatterv� This time we

vary over the message length�

MPI Commsplit�nodes

The MPI Commsplit operation splits a given communicator into several others�

In this measurement the communicator is divided it into two new ones� This

measurement can only be varied over the number of nodes�

����� Local Operations

The following measurements are local� This means that they are executed on

only one processor� Also they do not have any parameters�

���� THE MEASUREMENTS� A SHORT OVERVIEW ��

MPI Wtime

This measurement should
x the time used for one call of MPI Wtime� This MPI

routine is used in the whole benchmark for measuring� The result is a lower

bound of our accuracy�

MPI Commrank

This routine is used to get the process�id of the calling process� �This ID corre�

sponds to the used MPI communicator�
 The costs of this operation are relevant�

because many subroutines have to
nd out their process�id� Usually this infor�

mation is not given as a parameter to the subroutine� but the communicator

is�

MPI Commsize

This MPI operation gives the number of processes grouped in a communicator�

We are interested in its costs because of the same reasons for the operation

above�

MPI Iprobe

Many receiving routines test whether a message came in or not using MPI Iprobe�

Most calls are not successful in the mean that MPI Iprobe is called� when no

message arrived�

Here we
x the costs of an unsuccessful MPI Probe�

simple dummy

This measurement determines the overhead of measuring these local operations�

Chapter �

Customizing SKaMPI and

trouble�shooting

This is a more detailed chapter containing information about customizing the

measurements to your personal needs� Further on we introduce the recovery�

mechanism of SKaMPI � and what	s to do� when it fails�

But before that� lets clear some expressions�

Single measurement	 A single call of a �MPI
 routine to be measured in a

pattern �see section ��� for patterns
� �E�g�� MPI Send�MPI Recv at � MB

message length�

Measurement	 A measurement is the determination of a value at an exactly

de
ned �set of
 parameter�s
� The result of a measurement is built of sev�

eral single measurements� In this benchmark the number of single mea�

surements necessary for one measurement is determined by the accuracy

wanted �and an upper and lower bound
�

Suite of measurements	 Measurements varied over their common parameter�

In the report generated by the report generator every subsection repre�

sents a suite of measurements� �E�g�� MPI Send�MPI Recv from ����� MB

message length�

Run	 A run of the benchmark is the execution of all selected suites� �Selection

is done in the parameter
le�
 Usually for each run a report is generated�

��

���� CONFIGURING SKAMPI� THE PARAMETER FILE ��

��� Con�guring SKaMPI� The parameter �le

����� The sections

The parameter
le is a ASCII�text
le describing the settings to control SKaMPI �

The parameter
le should be accessible in the directory� where SKaMPI is

started� Its name is alway �skampi� Thus� do not rename it� Here you can see

how to adapt the parameter
le to your personal needs�

The parameter
le is divided into sections� Each section sets one parameter

�which may be a list
� If one section is omitted� the default value for this pa�

rameter will be assumed� A name of a section always starts with an ���� A

section reaches to the start of another section �or end of
le
� The order of the

sections is irrelevant� but it may be considered practical� to use the ��MEA�

SUREMENTS� �section as the last one� So you can see all the other �usually

shorter
 sections at the beginning of the parameter
le� In all sections ending

with ����DEFAULT� you can
ll in a default value for this parameter� e�g�� in

the value given STANDARDERRORDEFAULT is used for the standard error de
ned

in every suite� when the standard error of the suite is set do Default Value�

We urgently recommend to
ll out the �MACHINE� NODE and �NETWORK sec�

tions in a detailed manner�

�COMMENT Section for comments� You may enter any text you want�

�Well� text without other section names� of course�

�MACHINE The text in this section describes the machine� you run SKaMPI on�

You can add any other relevant details of a measurement here� Note that

there are also special sections for the network ��NETWORK
 and the nodes

��NODE
� SKaMPI assumes that the
rst line of the �MACHINE�section

contains just the name of the machine�

�NODE In this section you may describe the type of nodes you use� If there

are several types� please describe them all�

�NETWORK Here you may type in� which interconnection network you use�

Often there are several versions of a communication network for one ma�

chine �for example the IBM SP
�

�USER Here is your place� The
rst line of this section is used by the report�

generator �dorep�pl
 and should only contain your name�

�MEMORY This section is just an integer� It describes the amount of mem�

ory in KBytes� which should be reserved for message bu�ers on each node�

e�g� �MEMORY ���	 �� � Megabytes message bu�ers�

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

�OUTFILE The name of the output
le� This name should also be entered

in the
rst line �e�g� �OUTFILE skampi�out
� Note that there is a blank

between �OUTFILE and the
lename�

�LOGFILE The name of the log
le� This name should also be entered in

the
rst line �e�g� �LOGFILE skampi�log
� Note that there is a blank

between �LOGFILE and the
lename�

�MAXSTEPSDEFAULT This section is also just an integer� It describes

the number of measurements to be performed in the parameter�range�

This value is the default value for Max Steps�

�MAXREPDEFAULT This integer describes the maximal number of mea�

surements repetitions can be performed� This value is the default value

for Max Repetition�

�MINREPDEFAULT This integer describes the minimal number of repeti�

tions a measurement can be performed� This value is the default value for

Min Repetition�

�MULTIPLEOF Any argument a measurement is called with has to be a

multiple of this integer value� For example ��� might be quite useful to

avoid memory alignment e�ect on ���bit machines� This integer is the

default value for Multiple of�

�TIMESUITEDEFAULT This oat sets the default value of the parameter

Time Suite�

�TIMEMEASDEFAULT This oat sets the default value of the parameter

Time Measurement�

�CUTQUANTILEDEFAULT This oat sets the default value of the pa�

rameter Cut Quantile�

�STANDARDERRORDEFAULT Here you can enter a oat� noting the

max allowed standard�error for a measurement� The measurements are

repeated until this accuracy is reached �unless the max� number of repeti�

tions is reached�
 �STANDARDERRORDEFAULT
�
� means that a standard�

error of
ve percent is allowed�

�ABSOLUTE Please enter just a yes or a no in this section� If �yes��

SKaMPI will try to correct the measured data� that is subtracting the

overhead� This option should only be activated� if it is clear that there

is low �or better no
 other load on the machine� �Otherwise you can get

negative performing�times� because the measurement of the overhead can

be disturbed by the other load�
 E�g� �ABSOLUTE yes�

���� CONFIGURING SKAMPI� THE PARAMETER FILE ��

�POSTPROC Please enter just a yes or a no in this section� You can do sev�

eral runs of SKaMPI � Each successful run will build a new output
le �e�q�

skampi�out� skampi�out��� skampi�out�	� ���
 If �yes�� SKaMPI will

perform the post�processing� That is merging all output
les together�

Note if SKaMPI is restarted after an abort� no new output
le will be

created� In this case SKaMPI appends the results to the output
le

of the previous run� If you do not want SKaMPI to perform the post�

processing ��POSTPROC no
� because it is not a truly parallel application�

and you do not want to waste the time of your supercomputer doing text

le manipulations� then you may also call the post�processing separately

with post�

�MEASUREMENTS This section describes all measurements to be per�

formed by SKaMPI � Since it has its own grammar� there is an extra sec�

tion devoted for it ������
 in the documentation�

����� Example and default values

First we show the
lled text sections� Please use them to describe your machine

in detail� Note that the report generator needs this data� to correctly produce

a report�

�COMMENT My machines at home

�MACHINE Pentium � ��� Linux Power Workstation Cluster

�NODE Pentium S ��� Mhz� i������Mhz

�NETWORK �slow� Ethernet� Western Digital Network adapter

�USER Ralf Reussner

The following examples initializes all sections with their default values� So

here you can see� which values will be assumed by SKaMPI � if a section is

omitted�

�MEMORY �
��

�OUTFILE skampi�out

�LOGFILE skampi�log

�MAXSTEPSDEFAULT ��

�MAXREPDEFAULT 	

�MINREPDEFAULT �

�MULTIPLEOFDEFAULT �

�STANDARDERRORDEFAULT
�
�

�TIMEMEASDEFAULT
�

�TIMESUITEDEFAULT
�

�COMMENT

To use TIMEMEASDEFAULT and TIMESUITEDEFAULT please

replace the
�
 with your required values and change

the �Invalid�Value� in each measurement to �Default�Value��

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

�CUTQUANTILEDEFAULT
�	�

�ABSOLUTE no

�POSTPROC yes

�MEASUREMENTS

The empty sections �like �COMMENT� or �MACHINE� etc�
 are initialized

empty� You may enter free text in them �text without section names
� An

exception is the MEASUREMENTS�Section �see section �����
�

����� Grammar for sections

The grammar used for the above sections is shown below� Only nonterminals

appear�

SECTION ��� TEXT�SECTION SECTION

� INT�SECTION SECTION

� FLOAT�SECTION SECTION

� YESNO�SECTION SECTION

� MEASUREMENTS�SECTION SECTION

� �epsilon�

TEXT�SECTION ��� �COMMENT text

� �MACHINE text

� �NETWORK text

� �NODE text

� �USER text

� �OUTFILE text

� �LOGFILE text

INT�SECTION ��� �MEMORY int

� �MAXSTEPSDEFAULT int

� �MAXREPDEFAULT int

� �MINREPDEFAULT int

� �MULTIPLEOFDEFAULT int

FLOAT�SECTION ��� �STANDARDERRORDEFAULT float

� �TIMEMEASDEFAULT float

� �TIMESUITEDEFAULT float

� �CUTQUANTILE float

YESNO�SECTION ��� �ABSOLUTE

� �POSTPROC

Production rules for the nonterminal MEASUREMENTS SECTION are found in

section ������ The nonterminals int and float are that what you would expect

as C�Programmer�textmeans some� strings�

�some is here ����hex �� ���	� de�ned through the constant TEXT LINES in
skampi tools�h�

���� CONFIGURING SKAMPI� THE PARAMETER FILE ��

����� The MEASUREMENTS�section

The MEASUREMENTS�Section is a list in which every entry describes a suite

of measurements �i�e�� measurements varied over their parameter range
� An

entry starts with the name of the measurement� This name should be usable as

lename� It is followed by a
xed record� describing the qualities of this suite�

An example is given in section ������ This record is explained below�

Type Each measurement must have a type assigned� This type �an simple in�

teger
 describes the MPI�function and the pattern which should be mea�

sured� Tables ��� �page ��
 shows which number is assigned to which

MPI�function�

Variation Here you can enter the variable varied� The variables contained by

a pattern you can see in Table ����

Scale This parameter describes the scale of the x� and y�axis �linear or loga�

rithmic
 and it determines how to
nd the arguments for a this suite �
xed

or dynamic
� Possible values are�

Fixed linear The arguments begin at Start Argument and end at End Argument�

The distance is Stepwidth� Both scales are linear� The variables

Max Steps� Min Distance and Max Distance have no meaning�

Fixed log The arguments are powers of the parameter stepwidth� �stepwidth��

stepwidth�� stepwidth� ��� until End Argument has been reached�

Both axis are logarithmic� The variables Max Steps� Min Distance

and Max Distance have no meaning�

Dynamic linear The arguments begin at Start Argument and end at

End Argument� The distance is Stepwidth� After doing the mea�

surements this way� the number Max Steps of measurements is
lled

up with automatically placed measurements� These measurements

are never nearer than Min Distance�

Both axes are linear�

Dynamic log The arguments are powers of the parameter stepwidth�

�stepwidth�� stepwidth�� stepwidth� ��� until End Argument has been

reached�
 After having done measurements this way� the number

Max Steps of measurements is
lled up with automatically placed

measurements� These measurements are never nearer than Min Distance�

Both axis are logarithmic�

Max Repetition Here you can enter the maximal number of measurement

repetitions� If you do not want to change this value in every entry� you

just write Default Value instead the number� and the value given in the

�MAXREPDEFAULT�Section is used�

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

Min Repetition Here you can enter the minimal number of repetitions per�

formed for a measurement� If you do not want to change this value in

every entry� you just write Default Value instead the number� and the

value given in the �MINREPDEFAULT�section is used�

Multiple of Any argument a measurement is called with has to be a multiple

of this integer value� For example ��� might be quite useful to avoid

memory alignment e�ects on ���bit machines� or � for ���bit systems�

This integer	s default value is set in the section �MULTIPLEOF�

Time Suite The value given here sets the time limit for one suite of measure�

ments in minutes� A suite of measurements is a set of measurements� con�

taining measurements varied over some parameters �compare to de
nition

at the beginning of this chapter
� This means that no new measurements

are started� when the time consumed by the already executed measure�

ments of this suite exceeds this limit time�� This limit has no in uence

on other suites� So exceeding this limit time means that only this suite

stops measuring� It does not mean� that the whole benchmark is aborted�

Information regarding the preference of this parameter and Max Steps is

given in subsection ������ If you do not want to change this value in every

entry� you just write Default Value instead the number� and the value

given in the �TIMESUITEDEFAULT�section is used� If you do not want to

give any time limit at all� please enter Invalid Time instead of a value�

Time Measurement This value gives the time limit for one measurement in

minutes� �A measurement is the repetition of several single measurements�

Compare to de
nition at the beginning of this chapter
� This means that

no new single measurements is started� when the time consumed by the

already executed single measurements of this measurement exceeds this

limit time�� Information regarding the preference of this parameter and

Standard error is given in subsection ������ If you do not want to change

this value in every entry� you just write Default Value instead the num�

ber� and the value given in the �TIMESUITEDEFAULT�section is used� If

you do not want to give any time limit at all� please enter Invalid Time

instead of a value�

Node Times This boolean value can be set to yes or no� In case of yes

SKaMPI measures besides the result also the execution times of the mea�

�This means that the time of all measurements can be larger than the limit� because the
last measurement will not be aborted when exceeding the limit time�

�This means that the time of all single measurements can be larger than the limit� because
the last single measurement will not be aborted when exceeding the limit time�

���� CONFIGURING SKAMPI� THE PARAMETER FILE ��

sured routine on all nodes�� This may be useful to see� whether overlapping

communication and computation can take place� or to measure e�ects of

contention� In the patterns Simple and Master�Worker this feature will

be ignored� since in the simple pattern the to be measured routine runs

on exactly one processor� and in Master�Worker pattern the workers work

until they receive the stop signal� So it is not interesting to measure� when

the workers stop�

The times are given in microseconds in the output
le� Note that the node

times are only given for the last single measurement of a measurement�

This means that node times do not represent a mean value of the execution

times of several results as the measurement	s result does� So is is possible

that the result di�ers from the node time from processor ��

Cut Quantile This value de
nes the upper and lower quantile of single mea�

surements	 results� which are disregarded� when computing the result of a

measurement� If you do not want to throw any results away� use
�
� If

you assume that the upper an lower quartile of your results are outliers�

use
�	�� If you do not want to change this value in every entry� you

just write Default Value instead the number� and the value given in the

�CUTQUANTILEDEFAULT�section is used�

Start Argument If the Variation is linear� this number will be used as start�

ing argument� �In case of logarithmic scale it has no meaning� since mea�

surements always are started by ��

End Argument This is the maximal argument� which is never exceeded� If

you vary over the message length it will depend on the amount of memory

you entered in the �MEMORY�section� If you vary over the number of nodes�

it will depend on the number of nodes� SKaMPI started with� To make it

easier to determine these values� you can just enter Max Value here� and

SKaMPI computes the actual values during run�time�

Max Steps explained under Variation�

Min Distance explained under Variation�

Max Distance explained under Variation�

Standard error Measurements are repeated until its standard error has fallen

short of this value here� �But the number of repetitions is never less than

Min Repetition and never larger than Max Repetition� The standard

�The result is the time the routine to measure needs on the measuring root node� The
benchmark assures that the routine to measure has �nished on all other nodes� when �nished
on the root node� So the execution times on the single nodes is usually lower�

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

Pattern Variables to vary over
Point�to�Point Length� Nodes
Master�Worker Length� Nodes� Chunks
Collective Length� Nodes
Simple none

Table ���� Which pattern can varied with which variables�

error is a metric for the reliability of a the data� whereas the standard

deviation is a metric for dispersion�

����� Example of an entry

MPI�Send�MPI�Recv

�

Type � ��

Variation � Length�

Scale � Dynamic�log�

Max�Repetition � Default�Value�

Min�Repetition � Default�Value�

Multiple�of � Default�Value�

Time�Measurement � Invalid�Value�

Time�Suite � Invalid�Value�

Node�Times � No�

Cut�Quantile � Default�Value�

Default�Chunks �
�

Default�Message�length � 	���

Start�Argument � ��

End�Argument � Max�Value�

Stepwidth � �	��

Max�Steps � �
�

Min�Distance � �	��

Max�Distance � ��	�

Standard�error � Default�Value�

�

����� A Note to the preference of the parameters Max Steps	

Time Suite and Standard error	 Time Measurement

The termination of a measurement is controlled by four parameters� Standard error�

Max Repetition� Min Repetition� and Time Measurement� The termination

of a suite of measurements is controlled by the two parameters Max Steps and

Time Suite� Con icts between these parameters are resolved in the following

way�

���� CONFIGURING SKAMPI� THE PARAMETER FILE ��

Termination of a Measurement

If Time Measurement is set to Invalid Value than �a
 the number of sin�

gle measurements is always between Min Repetition and Max Repetition�

�b
 if the the standard error of the single measurement	s results fall below

Standard error the measurement is
nished� �If the single measurements are

repeated Max Repetition time� than the measurement is also
nished� indepen�

dent of the value of the standard error�

If Time Measurement is set to any other value as Invalid Value �that is a

 oat or Default Value
� than no further single measurement will be started�

when the sum of the execution times of the already executed single measure�

ments exceeds the value of Time Measurement� The values of Standard error�

and Min Repetition will not be regarded in this case� But in any case� there

will not be more measurements started than Max Repetitions�� If you want to

use only Time Measurement to control the termination� so choose a high value

for Max Steps�

Termination of a Suite of Measurements

If Time Suite is set to Invalid Value than the number of measurements in

this suite is equals always Max Steps�

If Time Suite is set to any other value as Invalid Value �that is a oat or

Default Value
� than no further measurement will be started� when the sum

of the execution times of the already executed measurements exceeds the value

of Time Suite�

����
 Grammar of the MEASUREMENTS�Section

The grammar used for the measurement�section is shown below� Terminals are

set in ��� nonterminals not�

MEASUREMENTS�SECTION ���file�name�str

�����

��Type ���TYPE�RANGE�����

��Variation ���VARIATION�STYLE�����

��Scale ���SCALE�STYLE�����

��Max�Repetition ���INT�OR�DEFAULT�����

��Min�Repetition ���INT�OR�DEFAULT�����

��Multiple�of ��� INT�OR�DEFAULT�����

��Time�Measurement ��� FLOAT�OR�DEFAULT�OR�INVALID�����

��Time�Suite ��� FLOAT�OR�DEFAULT�OR�INVALID�����

��Cut�Quantile ���FLOAT�OR�DEFAULT�����

��Default�Chunks ���INT�OR�FLOAT�����

��Default�Message�length ���INT�OR�FLOAT�����

�This is because SKaMPI uses this values for internal bu�er allocation�

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

��Start�Argument ���int�����

��End�Argument ���INT�OR�MAX�����

��Stepwidth ���int�����

��Max�Steps ���int�����

��Min�Distance ���int�����

��Max�Distance ���int�����

��Standard�error ���FLOAT�OR�DEFAULT�����

�����

VARIATION�STYLE ��� ��Length��

� ��Nodes��

� ��Chunks��

SCALE�STYLE ��� ��Fixed�linear��

� ��Fixed�log��

� ��Dynamic�linear��

� ��Dynamic�log��

INT�OR�DEFAULT ��� int

� ��Default�Value��

INT�OR�FLOAT ��� int

� float

MAX�OR�DEFAULT ��� int

� ��Max�Value��

FLOAT�OR�DEFAULT ��� float

� ��Default�Value��

FLOAT�OR�DEFAULT�OR�INVALID ��� float

� ��Default�Value��

� ��Invalid�Value��

file name str is what your operating system allows as a
le name� In the

grammar above file name str stands for the name of the measurement� In the

report generator dorep�pl there will be some
les created temporarily� which

contain this string in their names�

As above� the nonterminals int and float are what you would expect as C�

Programmer�

Tip for editing the �MEASUREMENTS�Section� if you want to skip some

measurements� just write �COMMENT before the measurements you intend to skip�

and �MEASUREMENTS behind them�

���� CONFIGURING THE REPORT GENERATOR ��

Type numbers Pattern Pre
x
� ! � Point�to�Point p�p

�� ! �� Master�Worker mw
�� ! �� Collective col
�� ! �� Simple simple
�� ! �� internal measurements �

�� Collective col
�� Point�to�Point p�p

�� ! �� Collective col

Table ���� The mapping of patterns to pre
xes

��� Con�guring the report generator

Usually you do not have to adjust dorep�pl� It inspects which measurements

are performed and processes them� So if you add or omit measurements� they

will appear in �respectively disappear from
 the report�

����� Comparisons

What the generator does not know is� which measurements you want to com�

pare� � To manipulate the �Comparisons��Section in skarep�ps you can edit

the �dorep
le� This
le has a simple structure� Every line describes one com�

parison� The
rst part of the line is the name of the comparison� This name

may be a normal string� but it must not contain any ���� because that is its

delimiter� After the ��� follows a list with names of suites of measurements�

Name of the comparison� suite�� suite	� suite�

Note that the lists are separated by ���� But where to get the names of the

suites from� For that you may have a look in the parameter
le �skampi�

As explained in the section ����� each suite of measurements has its own

name �usually the name of the MPI function measured
� It may happen� that

one MPI function is used in two �or more
 patterns� so you have to add a pre
x�

describing the pattern��

Table ��� shows the patterns pre
xes� For example you want to compare the

rst two suites in �skampi�

�Here a comparison is a plot of two or more function graphs� The report generator also
creates a table with some results to compare�

�The problem of identifying the suite with a name� which may occur twice� does not exist
in �skampi� Here the corresponding pattern is stored with the name� so that it is always clear�
what suite is called�

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

�� We want to name our comparison� Comp� MPI Send�MPI Recv and MPI Iprobe

�followed by MPI Recv��

�� In �skampi you
nd the name MPI Send�MPI Recv� This is the name of

one suite we want to see in our comparison�

The other suite is called MPI Send�MPI Iprobe Recv�

�� Since both suites belong to the point�to�point pattern� table ��� tells us

we have to add the pre
x p	p �

�� The resulting line in �dorep is�

Comp� MPI Send�MPI Recv and MPI Iprobe �followed by MPI Recv��

p	p MPI Send�MPI Recv� p	p MPI Send�MPI Iprobe Recv�

Note� this has to be written as one line�

For every comparison you have to ensure that the
rst suite	s parameter range

includes the parameter ranges of the other suites� dorep does not check the

meaning of a comparison�

����� Additional tex�modules

Besides the comparisons� there is another simple way to create more individ�

ual reports� If you create a tex�module with the extension �tma �tex module

additional
� this
le will be included automatically in front of the �Comparison��

section� Here a �tex�module� is a
le which contains tex�commands which can

occur between nbeginfdocumentg and nendfdocumentg�

Example

�section�Comments�

My opinion of SKaMPI� delete it

Oops

����� More detailed graphs

If you want a more detailed graph of a special parameter range� you may edit

the skampi�out in the following way�

���inp	p�MPI�Bsend�MPI�Recv�ski��

�Description of the MPI�Bsend�MPI�Recv measurement�

�Pattern� Point�to�Point varied over the message length�

�The x scale is linear� automatical x wide adaption�

�range�
 � 	��� stepwidth� ���

�

�default values� 	 nodes�

��	� WHEN SKAMPI CRASHES� ��

�max� allowed standard error is �
�

�Format� message length � d� !space" time �microsec��

� f� �standard error� � f� count � d�

�arg result standard�error count

 #

��

 ��

 	

�� #����

 ��

 	

�	 ������

 	#�������#� �

�
 #�����

 ���

 	

Edit the range line� For example you may write range� �� � �	� if you

are only interested in this part of the graph�

����� Given module �les

Another possibility manipulate the reports is to use your own module
les�

For every suite suite�name the report generator creates a gnuplot�command

le named suite�name�gpl and a tex module
le suite�name�tmd� If the

dorep�pl
nds such a
le� it uses the your given
le��

����� Extra text for suites

For every suite of the standard parameter
le an extra text is printed as header�

This text is stored in a an ASCII�text
le suite�name�dri�	

��� When SKaMPI crashes�

Since MPI�implementations are no trivial pieces of software�
� we have to as�

sume that SKaMPI may crash while measuring� In this case all measured suites

are stored� only the actual one is lost�

In this case you can use the automatic recovery mechanism� Simply start

SKaMPI again� Please do not change the output or log
le� SKaMPI tries

to
nd out which measurement caused the trouble� Then SKaMPI skips the

measurement and starts with the measurement behind� The erroneous mea�

surement will be called after all others� So if it crashes again� you will have

completed all other measurements� This mechanism will also work� if several

measurements crash�

If this does not work� you can recover manually�

�To see which �les are created temporarily by dorep�pl just comment out its line �unlink
�files to delete��� Then you may have a look into its �les� But be careful
 Before the
next run of the generator delete these �les manually� because the generator does not overwrite
them as explained above� �Delete the �les
��tmd ��gpl ��eps��

	dri means �dorep�information��
�
And �err� SKaMPI neither���

�� CHAPTER �� CUSTOMIZING AND TROUBLE�SHOOTING

�� Find out which measurement caused the crash� In order to do this� look

into skampi�out� go to the end of
le and backward�search the string

��"�in� You will
nd the name of the last completed measurement after

that string�

���

��������������������������������

����inp	p�MPI�Send�MPI�Irecv�ski��

�Description of the MPI�Send�MPI�Irecv measurement�

�Pattern� Point�to�Point varied over the message length�

���

So the name we look for is p	p MPI Send�MPI Irecv�

�� Edit �skampi� Here you replace ��MEASUREMENT� with ��COM�

MENT� �You switch of all measurements
�

�� Then
nd the entry of the crashed measurement� The crashed measure�

ment is the measurement behind the last completed measurement� you

know from above� Write ��MEASUREMENTS� after the crashed mea�

surement entry� In our case if MPI Send�MPI Irecv is the last completed

measurement� then MPI Send�MPI Recv with Any Tag failed� Therefore

we place ��MEASUREMENTS� before the next entry �i�e�� MPI Ssend�MPI Recv
�

���

MPI�Send�MPI�Recv�with�Any�Tag

�

Type � ��

Variation � Length�

Scale � Dynamic�log�

Max�Repetition � Default�Value�

Min�Repetition � Default�Value�

Multiple�of � Default�Value�

Time�Measurement � Invalid�Value�

Time�Suite � Default�Value�

Node�Times � Yes�

Cut�Quantile � Default�Value�

Default�Chunks �
�

Default�Message�length � 	���

Start�Argument �
�

End�Argument � Max�Value�

Stepwidth � �����	����	�

Max�Steps � Default�Value�

Min�Distance � 	�

Max�Distance � ��	�

Standard�error � Default�Value�

�

�MEASUREMENTS

��	� WHEN SKAMPI CRASHES� ��

MPI�Ssend�MPI�Recv

�

Type � ��

Variation � Length�

�

���

�� Delete the current log
le skampi�log�

�� Rename skampi�out to another
le�

�� Start SKaMPI again with the same command�

�� When SKaMPI
nished� you can append the new skampi�out
le to the

old renamed one�

Chapter �

Measurements in detail

In the last chapter of this manual the measurements are treated in detail� First

we explain how to get the measured code for each measurement� In the last

section we will see the format of the output
le�

��� But what is measured�

So far we know how to measure� but what is actually measured�

Since we investigate parallel operations� we have to coordinate several processes�

Measurements� which have a similar coordination of its processes� are grouped

to a so called pattern�

To know� which measurements are performed� when measuring with a certain

type� you
rst should know which pattern and initializer is used in this type�

To do so� have a look in tables ��� and ��� �page ��
�

In the following we will have a look to all four patterns skampi uses� Each

pattern calls one or more call�back functions� You can
nd these functions in

the next section� To know� which call�backs you are measuring with a type�

simply look at the initializer� They are listed with the call�backs� sorted by

patterns�

��

	��� BUT WHAT IS MEASURED
 ��

Number MPI�function�s
 Initializer
� MPI Send�MPI Recv p�p init Send Recv
� MPI Send�MPI Recv any tag p�p init Send Recv AT
� MPI Send�MPI IRecv p�p init Send Irecv
� MPI Send�

MPI Iprobe MPI Recv
p�p init Send Iprobe Recv

� MPI Ssend�MPI Recv p�p init Ssend Recv
� MPI Isend�MPI Recv p�p init Isend Recv
� MPI Bsend�MPI Recv p�p init Bsend Recv
� MPI Sendrecv p�p init Sendrecv
� MPI Sendrecv replace p�p init Sendrecv replace
�� MPI Waitsome mw init Waitsome
�� MPI Waitany mw init Waitany
�� MPI Recv Any Source mw init Recv AS
�� MPI Send mw init Send
�� MPI Ssend mw init Ssend
�� MPI Isend mw init Isend
�� MPI Bsend mw init Bsend
�� MPI Bcast col init Bcast
�� MPI Barrier col init Barrier
�� MPI Reduce col init Reduce
�� MPI Alltoall col init Alltoall
�� MPI Scan col init Scan
�� MPI Comm split col init Comm split
�� memcpy �ANSI�C
 col init memcpy
�� MPI Wtime simple init Wtime
�� MPI Comm rank simple init Comm rank
�� MPI Comm size simple init Comm size
�� MPI Iprobe �not successful
 simple init Iprobe
�� MPI Bu�er attach simple init attach
�� Dummy Point�to�point measure�

ment
p�p init dummy

�� Dummy Master�Worker mea�
surement

mw init dummy

�� Dummy collective measurement col init dummy
�� Dummy simple measurement simple init dummy

Table ���� The mapping of type�numbers to measured MPI�functions

����� Example

Lets ask� what is measured in type �� � First we have a look in table ���� on page

��� We see� The measurement type �� belongs to the master�worker�pattern�

Table ��� �page ��
 shows that it is initialized with function mw init Bsend�

The measured call�back of this pattern is the dispatch�call�back� �What we

know from the description of the pattern on page ���
 So we have to
nd

out which dispatch�call�back is used in type ��� We have a look into the ini�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

�� MPI Gather col init Gather
�� MPI Issend p�p init Issend
�� MPI Scatter col init Scatter
�� MPI Allreduce col init Allreduce
�� MPI Reduce follwed by

MPI Bcast
col init Reduce Bcast

�� MPI Reduce scatter col init Reduce scatter
�� MPI Allgather col init Allgather
�� MPI Scatterv col init Scatterv
�� MPI Gatherv col init Gatherv
�� MPI Allgatherv col init Allgatherv
�� MPI Alltoallv col init Alltoallv
�� MPI Reduce followed by

MPI Scatterv
col init Reduce Scatterv

�� Implementation of Gather with
MPI Send and MPI Recv

�� Implementation of Gather with
MPI Isend� Mpi Irecv� and
MPI Waitall

Table ���� The mapping of type�numbers to measured MPI�functions �contin�
ued

Range of type numbers Pattern
� ! � Point�to�point

�� ! �� Master�Worker
�� ! �� Collective
�� ! �� Simple
�� ! �� internal measurements

�� new Collective
�� new Point�to�Point

�� ! �� new Collective

Table ���� The mapping of type�numbers to patterns
The internal measurements are used to determine the overhead of measure�
ments� The order of new measurements is somehow grown historically� To
avoid incompatibilities I resigned from reordering the measurements�

tializer �page ��
� There we see that the name of our dispatch�call�back is

master dispatch Bsend� This call�back is described on page ���

	��� BUT WHAT IS MEASURED
 ��

����� Point�to�Point pattern

The ping�pong�pattern calls the routine to be measured to communicate with

the farest node or the nearest node�� These calls are varied over message length�

Every parameter set is called repetitions times and the average value is stored�

We have distinct code for the server �measurement
 and the client �just answer�

ing
�

�� Server�node ��

max�node �� node with maximum latency�

do

start�time �� MPI�Wtime�

routine�to�be�measured �max�node� message�length��

end�time ��MPI�Wtime�

while to�measure �end�time � start�time��

�� Client code ��

actions to answer the max�min�node determination�

if �I am the max�node�

do

client answer for the routine�to�be�measured �message�length��

while not stop

Measured routine	 This is the routine� which is used by the server to initiate

communication to the client� The time consumed by it will be measured�

Client routine	 This routine answers the communication initiated by the above

routine� If the measured routine depends on an answer of this routine� it

will be measured indirectly�

����� Master�Worker pattern

The Master�worker�pattern corresponds to the typical master�worker�scheme� a

master process divides a problem in several sub�problems �here called chunks

and dispatches them several worker processes� When
nished a worker sends

his result to the master and requests for a new piece of work �and so on
� When

all work is done� the master sends an stop�signal to the workers�

This scheme is important in practice� since it automatically balances load� In

pseudo�code the Master�worker�scheme looks like�

�This means node with the maximum or minimum latency� We use the node with the
maximum latency by default�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

�� master�code ��

for each worker

set ready to receive� �� e�g� MPI�Irecv ��

chunk ��
�

start�time �� MPI�Wtime�

while chunk ! all�chunks

dispatch �chunk� msglen��

chunks �� chunks $ ��

end�time �� MPI�Wtime�

for each worker

send stop signal�

�� worker�code ��

forever

send ready signal to master�

receive signal �msglen��

if signal �� stop signal

exit�

do work� �� corresponding to the received signal ��

send result�

endforever

Every abstract communication �code� in the scheme above can be
lled with

concrete MPI Code� We measure the time consumed by dispatch work� This

code sequence does for example this�

�� dispatch work� ��

wait for a worker�

receive work from worker�

send actual piece of work to worker�

set ready to receive next piece of work from worker�

actual piece of work �� next piece of work�

Here we have to de
ne the following call�back functions�

Master receive ready	 This function can be used for posting the a receive

for each worker�

Master dispatch	 This is the routine� which dispatches work �sending to work�

ers
 and collects the results �it receives from the workers
� Since it is

	��� BUT WHAT IS MEASURED
 ��

something like the �kernel� of this pattern� it is the routine measured�

Master send stop signal	 This routine sends the stop signal to a worker�

Worker receive	 This routine is used by a worker to receive its signals from

the master process�

Worker send	 The worker sends its result via this routine�

����� Collective pattern

We want to use the following pattern to measure collective operations�

�� server�code ��

MPI�Barrier�

do

start�time �� MPI�Wtime�

routine�to�be�measured�

MPI�Barrier�

end�time �� MPI�Wtime�

while to�measure

�� client code ��

MPI�Barrier�

do

client�routine� �� as answer for routine�to�be�measured ��

MPI�Barrier�

while not stop�

Usually all the collective operations use the same function whether you are

process zero �which measures and initiates communication
 or not� But for the

sake of exibility we can use di�erent routines� One for process zero �server

and one for the others �clients
�

����� Simple pattern

Some routines seem to be so simple� that they are measured in a very simple

�pattern�� In this pattern we measure all operations with local e�ects�

if I am node zero

do

start�time �� MPI�Wtime�

routine�to�be�measured�

end�time �� MPI�Wtime���

while to�measure�

The only call�back function is the routine to be measured�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

��� The call�back functions

This section serves as a reference� when you want to know exactly� what is

measured� All call�back functions are listed below� Their role in the di�erent

patterns is explained in the last section�

����� Call�backs of the Point�to�Point pattern

Document created automatically by documeas�pl at Mon Dec �� �������� �����

to be measured

�p	p�init����� and routines containing the MPI�Functions to be measured�

�

�

p�p init dummy

� Measured routine� p	p dummy�

� Client�routine� p	p dummy�

p�p init Send Recv

� Measured routine� server Send Recv�

� Client�routine� client Recv Send�

p�p init Send Iprobe Recv

� Measured routine� server Send Iprobe Recv�

� Client�routine� client Iprobe Recv Send�

p�p init Send Irecv

� Measured routine� server Send Irecv�

� Client�routine� client Irecv Send�

p�p init Send Recv AT

� Measured routine� server Send Recv AT�

� Client�routine� client Recv AT Send�

	��� THE CALL�BACK FUNCTIONS ��

p�p init Ssend Recv

� Measured routine� server Ssend Recv�

� Client�routine� client Recv Ssend�

p�p init Isend Recv

� Measured routine� server Isend Recv�

� Client�routine� client Recv Isend�

p�p init Issend Recv

� Measured routine� server Issend Recv�

� Client�routine� client Recv Issend�

p�p init Bsend Recv

� Measured routine� server Bsend Recv�

� Client�routine� client Recv Bsend�

p�p init Sendrecv

� Measured routine� server Sendrecv�

� Client�routine� client Sendrecv�

p�p init Sendrecv replace

� Measured routine� server Sendrecv replace�

� Client�routine� client Sendrecv replace�

init empty

init attach

free empty

void free�empty �int msglen�

�

return�

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

free attach

void free�attach �int msglen�

�

int buflen � msglen � sizeof�char� $

MPI�BSEND�OVERHEAD $ MY�OVERHEAD�

MPI�Buffer�detach ��skampi�buffer� %buflen��

return�

�

p�p dummy

MPI�Status p	p�dummy �int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

�� be dummy ��

return �status��

�

server Send Recv

MPI�Status server�Send�Recv�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator�

%status��

return �status��

�

server Send Iprobe Recv

MPI�Status server�Send�Iprobe�Recv�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

int flag�

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

	��� THE CALL�BACK FUNCTIONS ��

max�node�
� communicator��

do �

MPI�Iprobe �max�node� �� communicator�

%flag� %status��

�while �
flag��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator� %status��

return �status��

�

server Send Irecv

MPI�Status server�Send�Irecv�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

MPI�Irecv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator� %req��

MPI�Wait �%req� %status��

return �status��

�

server Send Recv AT

MPI�Status server�Send�Recv�AT�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� MPI�ANY�TAG�

communicator� %status��

return �status��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

server Bsend Recv

MPI�Status server�Bsend�Recv�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Bsend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator� %status��

return �status��

�

server Isend Recv

MPI�Status server�Isend�Recv �int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Isend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator� %req��

MPI�Wait �%req� %status��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator�%status��

return �status��

�

server Issend Recv

MPI�Status server�Issend�Recv �int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Issend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator� %req��

MPI�Wait �%req� %status��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator�%status��

	��� THE CALL�BACK FUNCTIONS ��

return �status��

�

client Recv Send

MPI�Status client�Recv�Send �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator��

return �status��

�

client Iprobe Recv Send

MPI�Status client�Iprobe�Recv�Send �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

int flag�

MPI�Iprobe �
�
� communicator� %flag� %status��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator��

return �status��

�

client Irecv Send

MPI�Status client�Irecv�Send �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Irecv ��skampi�buffer� msglen� MPI�CHAR�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

�
� communicator�

%req��

MPI�Wait �%req� %status��

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator��

return �status��

�

client Recv AT Send

MPI�Status client�Recv�AT�Send �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

� MPI�ANY�TAG� communicator� %status��

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator��

return �status��

�

client Recv Bsend

MPI�Status client�Recv�Bsend �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

MPI�Bsend ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator��

return �status��

�

client Recv Isend

MPI�Status client�Recv�Isend �int msglen� int node�

MPI�Comm communicator�

	��� THE CALL�BACK FUNCTIONS ��

�

MPI�Status status�

MPI�Request req�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

MPI�Isend ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator� %req��

MPI�Wait �%req� %status��

return �status��

�

client Recv Issend

MPI�Status client�Recv�Issend �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

MPI�Issend ��skampi�buffer� msglen� MPI�CHAR�

� �� communicator� %req��

MPI�Wait �%req� %status��

return �status��

�

server Ssend Recv

MPI�Status server�Ssend�Recv�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Ssend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

max�node� �� communicator�

%status��

return �status��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

client Recv Ssend

MPI�Status client�Recv�Ssend �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�
�
� communicator�

%status��

MPI�Ssend ��skampi�buffer� msglen� MPI�CHAR�
� �� communicator��

return �status��

�

server Send

MPI�Status server�Send�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Send ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

return �status��

�

server Isend

MPI�Status server�Isend�int msglen� int max�node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Request req�

MPI�Isend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator� %req��

MPI�Wait �%req� %status��

return �status��

�

server Ssend

MPI�Status server�Ssend �int msglen� int max�node�

	��� THE CALL�BACK FUNCTIONS ��

MPI�Comm communicator�

�

MPI�Status status�

MPI�Ssend ��skampi�buffer� msglen� MPI�CHAR�

max�node�
� communicator��

return �status��

�

client Recv

MPI�Status client�Recv �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� msglen� MPI�CHAR�

�
� communicator� %status��

return �status��

�

server Sendrecv replace

MPI�Status server�Sendrecv�replace �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Sendrecv�replace ��skampi�buffer� msglen� MPI�CHAR�

node�
� node� �� communicator� %status��

return �status��

�

client Sendrecv replace

MPI�Status client�Sendrecv�replace �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Sendrecv�replace ��skampi�buffer� msglen� MPI�CHAR�

� ��
�
� communicator� %status��

return �status��

�� CHAPTER 	� MEASUREMENTS IN DETAIL

�

server Sendrecv

MPI�Status server�Sendrecv �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Sendrecv ��skampi�buffer� msglen� MPI�CHAR� node�
�

�skampi�buffer�	� msglen� MPI�CHAR� node� ��

communicator� %status��

return �status��

�

client Sendrecv

MPI�Status client�Sendrecv �int msglen� int node�

MPI�Comm communicator�

�

MPI�Status status�

MPI�Sendrecv ��skampi�buffer� msglen� MPI�CHAR�
� ��

�skampi�buffer�	� msglen� MPI�CHAR�
�
�

communicator� %status��

return �status��

�

����� Call�backs of the Master�Worker pattern

Document created automatically by documeas�pl at Mon Dec �� �������� �����

to be measured

�mw�init����� and routines containing the MPI�Functions to be measured�

�

�

	��� THE CALL�BACK FUNCTIONS ��

mw init dummy

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch dummy�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Waitsome

� Master receive ready routine� master receive ready test�

� Master dispatch routine� master dispatch Waitsome�

� Routine to send stop signals� master worker stop wait�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Waitany

� Master receive ready routine� master receive ready test�

� Master dispatch routine� master dispatch Waitany�

� Routine to send stop signals� master worker stop test�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Recv AS

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch Recv AS�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

mw init Send

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch Send�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Ssend

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch Ssend�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Isend

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch Isend�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

mw init Bsend

� Master receive ready routine� master receive ready empty�

� Master dispatch routine� master dispatch Bsend�

� Routine to send stop signals� master worker stop recv�

� Worker receive routine� worker receive test�

� Worker send routine� worker send test�

	��� THE CALL�BACK FUNCTIONS ��

master receive ready test

void master�receive�ready�test �int worker� int len�

MPI�Comm communicator�

�

MPI�Irecv ��mw�buffer&worker � �'�
� MPI�CHAR�

worker� MPI�ANY�TAG�

communicator� �mw�req $ worker � ���

�

master worker stop wait

void master�worker�stop�wait �int worker� int len�

MPI�Comm communicator�

�

MPI�Wait ��mw�req $ �worker � ���

master�stati $ �worker � ����

MPI�Ssend ��skampi�buffer�
� MPI�CHAR�

worker�
� communicator��

�

master worker stop test

void master�worker�stop�test �int worker� int len� MPI�Comm communicator�

�

MPI�Ssend ��skampi�buffer�
� MPI�CHAR�

worker�
� communicator��

�

master worker stop recv

void master�worker�stop�recv �int worker� int len� MPI�Comm communicator�

�

MPI�Status

status�

MPI�Recv ��skampi�buffer�
� MPI�CHAR�

worker� �� communicator� %status��

MPI�Ssend ��skampi�buffer�
� MPI�CHAR�

worker�
� communicator��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

worker receive test

int worker�receive�test �int len� MPI�Comm communicator�

�

MPI�Status status�

MPI�Recv ��skampi�buffer� len� MPI�CHAR�
�

MPI�ANY�TAG� communicator� %status��

if �status�MPI�TAG ��
� �� STOP working ��

return �FALSE��

return �TRUE��

�

worker send test

void worker�send�test �int len� MPI�Comm communicator�

�

MPI�Ssend ��skampi�buffer�
� MPI�CHAR�

� �� communicator��

�

master init empty

master free empty

void master�free�empty �int mw�numprocs�

�

return�

�

master receive ready empty

void master�receive�ready�empty �int worker� int len�

�

return�

�

master worker stop empty

void master�worker�stop�empty �int worker� int len�

�

return�

�

	��� THE CALL�BACK FUNCTIONS ��

worker send empty

void worker�send�empty �int len� MPI�Comm communicator�

�

return�

�

master dispatch dummy

int master�dispatch�dummy �int number�of�workers� int work�

int chunks� int len�

MPI�Comm communicator�

�

return ����

�

master dispatch Waitsome

int master�dispatch�Waitsome �int number�of�workers� int work�

int chunks�

int len� MPI�Comm communicator�

�

int

i�

worker�

eingaenge�

MPI�Waitsome �number�of�workers� �mw�req� %eingaenge�

�mw�index� master�stati��

D��fprintf �stderr� �master� eingaenge� d at len d�n��

eingaenge� len���

for �i �
� i ! eingaenge� i$$�

�

worker � �mw�index&i' $ ��

�� posting new recv for this worker� because the old one has been used ��

MPI�Irecv ��mw�buffer&worker � �'�
� MPI�CHAR�

worker� MPI�ANY�TAG� communicator�

�mw�req $ worker � ���

�� sending next chunk of work to this worker ��

MPI�Send ��skampi�buffer� len� MPI�CHAR�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

worker� �� communicator��

D��fprintf �stderr� �master� sending job�no d to worker d�n���

work�worker���

�if

if �$$work �� chunks�

�

return �chunks��

�

�endif

�

return �eingaenge��

�

master init Waitsome

master free Waitsome

void master�free�Waitsome �int mw�numprocs�

�

int worker�

free ��mw�index��

free ��mw�req��

free �master�stati��

for �worker �
� worker ! mw�numprocs � �� worker$$�

free ��mw�buffer&worker'��

free ��mw�buffer��

�

master dispatch Waitany

int master�dispatch�Waitany �int number�of�workers�

int work� int chunks� int len�

MPI�Comm communicator�

�

int

worker�

MPI�Status

status�

MPI�Waitany �number�of�workers� �mw�req�

%worker� %status��

	��� THE CALL�BACK FUNCTIONS ��

worker$$�

�� posting new recv for this worker�

because the old one has been used ��

MPI�Irecv ��mw�buffer&worker � �'�
� MPI�CHAR� worker�

MPI�ANY�TAG� communicator� �mw�req $ worker � ���

�� sending next chunk of work to this worker ��

MPI�Send ��skampi�buffer� len� MPI�CHAR�

worker� �� communicator��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work�worker���

return ����

�

master init Waitany

master free Waitany

void master�free�Waitany �int mw�numprocs�

�

int worker�

free ��mw�req��

for �worker �
� worker ! mw�numprocs � �� worker$$�

free ��mw�buffer&worker'��

free ��mw�buffer��

�

master dispatch Recv AS

int master�dispatch�Recv�AS �int number�of�workers�

int work� int chunks� int len�

MPI�Comm communicator�

�

int

worker�

MPI�Status

status�

MPI�Recv ��skampi�buffer�
� MPI�CHAR� MPI�ANY�SOURCE�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

MPI�ANY�TAG� communicator� %status��

worker � status�MPI�SOURCE�

�� sending next chunk of work to this worker ��

MPI�Send ��skampi�buffer� len� MPI�CHAR�

worker� �� communicator��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work�worker���

if �$$work �� chunks�

�

return �chunks��

�

return ����

�

master dispatch Send

int master�dispatch�Send �int number�of�workers�

int work� int chunks� int len�

MPI�Comm communicator�

�

MPI�Status

status�

MPI�Recv ��skampi�buffer� len� MPI�CHAR� �work number�of�workers� $ ��

�� communicator� %status��

�� sending next chunk of work to this worker ��

MPI�Send ��skampi�buffer� len� MPI�CHAR� �work number�of�workers� $ ��

�� communicator��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work��work number�of�workers� $ ����

return ����

�

master dispatch Ssend

int master�dispatch�Ssend �int number�of�workers�

int work� int chunks� int len�

MPI�Comm communicator�

�

	��� THE CALL�BACK FUNCTIONS ��

MPI�Status

status�

MPI�Recv ��skampi�buffer� len� MPI�CHAR� �work number�of�workers� $ ��

�� communicator� %status��

�� sending next chunk of work to this worker ��

MPI�Ssend ��skampi�buffer� len� MPI�CHAR�

�work number�of�workers� $ ��

�� communicator��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work��work number�of�workers� $ ����

return ����

�

master dispatch Isend

int master�dispatch�Isend �int number�of�workers�

int work� int chunks� int len�

MPI�Comm communicator�

�

MPI�Request

req�

MPI�Status

status�

MPI�Recv ��skampi�buffer� len� MPI�CHAR� �work number�of�workers� $ ��

�� communicator� %status��

�� sending next chunk of work to this worker ��

MPI�Isend ��skampi�buffer� len� MPI�CHAR�

�work number�of�workers� $ ��

�� communicator� %req��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work��work number�of�workers� $ ����

return ����

�

master dispatch Bsend

int master�dispatch�Bsend �int number�of�workers�

int work� int chunks� int len�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

MPI�Comm communicator�

�

MPI�Status

status�

MPI�Recv ��skampi�buffer� len� MPI�CHAR� �work number�of�workers� $ ��

�� communicator� %status��

�� sending next chunk of work to this worker ��

MPI�Bsend ��skampi�buffer� len� MPI�CHAR�

�work number�of�workers� $ ��

�� communicator��

D�fprintf �stderr� �master� sending job�no d to worker d�n��

work��work number�of�workers� $ ����

return ����

�

master init attach

master free attach

void master�free�attach �int mw�numprocs�

�

int buflen � max�msg�len � sizeof�char�

$ MPI�BSEND�OVERHEAD $ MY�OVERHEAD�

MPI�Buffer�detach ��skampi�buffer� %buflen��

�

����� Call�backs of the Collective pattern

Document created automatically by documeas�pl at Mon Dec �� �������� �����

col init dummy

� measured routine� measure col dummy�

� client�routine� measure col dummy

col init Bcast

� measured routine� measure broadcast�

� client�routine� measure broadcast

	��� THE CALL�BACK FUNCTIONS ��

col init Barrier

� measured routine� measure barrier�

� client�routine� measure barrier

col init Reduce

� measured routine� measure Reduce�

� client�routine� measure Reduce

col init Allreduce

� measured routine� measure Allreduce�

� client�routine� measure Allreduce

col init Reduce Bcast

� measured routine� measure Reduce Bcast�

� client�routine� measure Reduce Bcast

col init Reduce scatter

� measured routine� init measure Reduce scatter�

� client�routine� init measure Reduce scatter

� measured routine� measure Reduce scatter�

� client�routine� measure Reduce scatter

col init Reduce Scatterv

� measured routine� init measure Reduce Scatterv�

� client�routine� init measure Reduce Scatterv

� measured routine� measure Reduce Scatterv�

� client�routine� measure Reduce Scatterv

col init Scan

� measured routine� measure Scan�

� client�routine� measure Scan

�� CHAPTER 	� MEASUREMENTS IN DETAIL

col init Alltoall

� measured routine� measure Alltoall�

� client�routine� measure Alltoall

col init Alltoallv

� measured routine� init measure recvlens displs�

� client�routine� init measure recvlens displs

� measured routine� measure Alltoallv�

� client�routine� measure Alltoallv

col init Gather

� measured routine� measure Gather�

� client�routine� measure Gather

col init Gather Send Recv

� measured routine� measure Gather Recv server�

� client�routine� measure Gather Send client

col init Gather Isend Waitall

� measured routine� measure Gather Waitall server�

� client�routine� measure Gather Isend client

col init Gatherv

� measured routine� init measure recvlens displs�

� client�routine� init measure recvlens displs

� measured routine� measure Gatherv�

� client�routine� measure Gatherv

col init Allgather

� measured routine� measure Allgather�

� client�routine� measure Allgather

	��� THE CALL�BACK FUNCTIONS ��

col init Allgatherv

� measured routine� init measure recvlens displs�

� client�routine� init measure recvlens displs

� measured routine� measure Allgatherv�

� client�routine� measure Allgatherv

col init Scatter

� measured routine� measure Scatter�

� client�routine� measure Scatter

col init Scatterv

� measured routine� init measure recvlens displs�

� client�routine� init measure recvlens displs

� measured routine� measure Scatterv�

� client�routine� measure Scatterv

col init Comm dup

� measured routine� measure Comm dup�

� client�routine� measure Comm dup

col init Comm split

� measured routine� measure Comm split�

� client�routine� measure Comm split

col init memcpy

� measured routine� measure memcpy�

� client�routine� measure col dummy

measure col dummy

void measure�col�dummy �int len� MPI�Comm communicator�

�

�� just for dummy measurement ��

return�

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

measure broadcast

void measure�broadcast �int len� MPI�Comm communicator�

�

MPI�Bcast��skampi�buffer� len� MPI�CHAR�
� communicator��

�

measure barrier

void measure�barrier �int len� MPI�Comm communicator�

�

MPI�Barrier�communicator��

�

measure Reduce

void measure�Reduce �int len� MPI�Comm communicator�

�

MPI�Reduce��skampi�buffer� �skampi�buffer�	� len� MPI�BYTE�

MPI�BOR�
� communicator��

�

measure Allreduce

void measure�Allreduce �int len� MPI�Comm communicator�

�

MPI�Allreduce��skampi�buffer� �skampi�buffer�	� len� MPI�BYTE�

MPI�BOR� communicator��

�

measure Reduce Bcast

void measure�Reduce�Bcast �int len� MPI�Comm communicator�

�

MPI�Reduce��skampi�buffer� �skampi�buffer�	� len� MPI�BYTE�

MPI�BOR�
� communicator��

MPI�Bcast��skampi�buffer� len� MPI�CHAR�
� communicator��

�

	��� THE CALL�BACK FUNCTIONS ��

measure Reduce scatter

void measure�Reduce�scatter �int len� MPI�Comm communicator�

�

MPI�Reduce�scatter��skampi�buffer� �skampi�buffer�	� recvlens� MPI�BYTE�

MPI�BOR� communicator��

�

measure Reduce Scatterv

void measure�Reduce�Scatterv �int len� MPI�Comm communicator�

�

MPI�Reduce��skampi�buffer� �skampi�buffer�	� len� MPI�BYTE�

MPI�BOR�
� communicator��

MPI�Scatterv ��skampi�buffer�	� recvlens� displs� MPI�CHAR�

�skampi�buffer� len� MPI�CHAR�
� communicator��

�� in the above call the �
� is featuring as root Note� the pointers

�skampi�buffer and �skampi�buffer�	 are interchanged in this

call� This is done� because so we can use the memory initializing

for MPI�Gather�

recvlens are used here as send lengths ��

�

measure Scan

void measure�Scan �int len� MPI�Comm communicator�

�

MPI�Scan ��skampi�buffer� �skampi�buffer�	� len� MPI�BYTE�

MPI�BOR� communicator��

�

measure Alltoall

void measure�Alltoall �int len� MPI�Comm communicator�

�

MPI�Alltoall ��skampi�buffer� len� MPI�CHAR�

�skampi�buffer�	� len� MPI�CHAR� communicator��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

measure Alltoallv

void measure�Alltoallv �int len� MPI�Comm communicator�

�

MPI�Alltoallv ��skampi�buffer� recvlens� displs� MPI�CHAR�

�skampi�buffer�	� recvlens� displs� MPI�CHAR� communicator��

�� the first occurence of recvlens and displs should be read as

sendlens and send displacements ��

�

measure Gather

void measure�Gather �int len� MPI�Comm communicator�

�

MPI�Gather ��skampi�buffer� len� MPI�CHAR�

�skampi�buffer�	� len� MPI�CHAR�
� communicator��

�� in the above call the �
� is featuring as root ��

�

measure Gather Recv server

void measure�Gather�Recv�server �int len� MPI�Comm communicator�

�

int

i�

numprocs�

MPI�Status

status�

D#�int myrank��

D#�MPI�Comm�rank�communicator� %myrank���

MPI�Comm�size�communicator�%numprocs��

for �i � �� i ! numprocs� i$$�

�

D#�fprintf�stderr��proc d� receiving from d�n�� myrank� i���

MPI�Recv ��skampi�buffer�	 $ �i����len� len� MPI�CHAR�

i�
� communicator� %status��

D#�fprintf�stderr��proc d� received from d�n�� myrank� i���

�

�

	��� THE CALL�BACK FUNCTIONS ��

measure Gather Send client

void measure�Gather�Send�client �int len� MPI�Comm communicator�

�

D#�int myrank��

D#�MPI�Comm�rank�communicator� %myrank���

D#�fprintf�stderr��proc d� sending to root�n�� myrank���

MPI�Send ��skampi�buffer� len� MPI�CHAR�

�
� communicator��

�

measure Gather Waitall server

void measure�Gather�Waitall�server �int len� MPI�Comm communicator�

�

int

i�

numprocs�

D#�int myrank��

D#�MPI�Comm�rank�communicator� %myrank���

MPI�Comm�size�communicator�%numprocs��

for �i � �� i ! numprocs� i$$�

�

D#�fprintf�stderr��proc d� receiving from d�n�� myrank� i���

MPI�Irecv ��skampi�buffer�	 $ �i����len� len� MPI�CHAR�

i�
� communicator� �col�req $ �i � ����

D#�fprintf�stderr��proc d� received from d�n�� myrank� i���

�

D#�fprintf�stderr��proc d� left loop� numprocs d�n�� myrank� numprocs���

MPI�Waitall �numprocs � �� �col�req� �col�stati��

�

measure Gather Isend client

void measure�Gather�Isend�client �int len� MPI�Comm communicator�

�

MPI�Request

req�

D#�int myrank��

D#�MPI�Comm�rank�communicator� %myrank���

D#�fprintf�stderr��proc d� sending to root�n�� myrank���

MPI�Isend ��skampi�buffer� len� MPI�CHAR�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

�
� communicator� %req��

�� We do not use a completion operation here� since the barrier sync

after every col operation assures� that the wait all of the server

is finished� when proceeded� ��

�

measure Gatherv

void measure�Gatherv �int len� MPI�Comm communicator�

�

MPI�Gatherv ��skampi�buffer� len� MPI�CHAR�

�skampi�buffer�	� recvlens� displs� MPI�CHAR�
� communicator��

�� in the above call the �
� is featuring as root ��

�

measure Allgather

void measure�Allgather �int len� MPI�Comm communicator�

�

MPI�Allgather ��skampi�buffer� len� MPI�CHAR�

�skampi�buffer�	� len� MPI�CHAR� communicator��

�

measure Allgatherv

void measure�Allgatherv �int len� MPI�Comm communicator�

�

MPI�Allgatherv ��skampi�buffer� len� MPI�CHAR�

�skampi�buffer�	� recvlens� displs� MPI�CHAR� communicator��

�

measure Scatter

void measure�Scatter �int len� MPI�Comm communicator�

�

MPI�Scatter ��skampi�buffer�	� len� MPI�CHAR�

�skampi�buffer� len� MPI�CHAR�
� communicator��

�� in the above call the �
� is featuring as root Note� the pointers

�skampi�buffer and �skampi�buffer�	 are interchanged in this

call� This is done� because so we can use the memory initializing

	��� THE CALL�BACK FUNCTIONS ��

for MPI�Gather� ��

�

measure Scatterv

void measure�Scatterv �int len� MPI�Comm communicator�

�

MPI�Scatterv ��skampi�buffer�	� recvlens� displs� MPI�CHAR�

�skampi�buffer� len� MPI�CHAR�
� communicator��

�� in the above call the �
� is featuring as root Note� the pointers

�skampi�buffer and �skampi�buffer�	 are interchanged in this

call� This is done� because so we can use the memory initializing

for MPI�Gather�

recvlens are used here as send lengths ��

�

measure Comm dup

void measure�Comm�dup �int len� MPI�Comm communicator�

�

MPI�Comm new�comm�

MPI�Comm�dup �communicator� %new�comm��

�

measure Comm split

void measure�Comm�split �int len� MPI�Comm communicator�

�

MPI�Comm new�comm�

MPI�Comm�split �communicator� �skampi�myid 	�
� %new�comm��

�

measure memcpy

void measure�memcpy �int len� MPI�Comm communicator�

�

memcpy ��skampi�buffer� �skampi�buffer�	� len��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

init measure Reduce scatter

init measure recvlens displs

init measure Reduce Scatterv

����� Call�backs of the Simple pattern

Document created automatically by documeas�pl at Mon Dec �� �������� �����

to be measured

�simple�init����� and routines containing the MPI�Functions to be measured�

�

�

simple init dummy

� measured routine� measure dummy�

simple init Wtime

� measured routine� measure Wtime�

simple init �Wtime

� measured routine� measure 	Wtime�

simple init Comm size

� measured routine� measure Comm size�

simple init Comm rank

� measured routine� measure Comm rank�

simple init Iprobe

� measured routine� measure Iprobe�

simple init attach

� measured routine� measure attach�

	��� THE CALL�BACK FUNCTIONS ��

measure dummy

void measure�dummy ��

�

return�

�

measure Wtime

void measure�Wtime ��

�

double �dummy�

�dummy � MPI�Wtime���

�

measure �Wtime

void measure�	Wtime ��

�

double �dummy�

�dummy � MPI�Wtime���

�dummy � MPI�Wtime���

�

measure Comm size

void measure�Comm�size ��

�

int �dummy�

MPI�Comm�size �MPI�COMM�WORLD� %�dummy��

�

measure Comm rank

void measure�Comm�rank ��

�

int �dummy�

MPI�Comm�rank �MPI�COMM�WORLD� %�dummy��

�

�� CHAPTER 	� MEASUREMENTS IN DETAIL

measure Iprobe

void measure�Iprobe ��

�

MPI�Status

status�

int

�dummy�

MPI�Iprobe ���
� MPI�COMM�WORLD� %�dummy� %status��

�

measure attach

void measure�attach ��

�

int buflen � MPI�BSEND�OVERHEAD $ MY�OVERHEAD�

MPI�Buffer�attach ��skampi�buffer� buflen��

MPI�Buffer�detach �%�skampi�buffer� %buflen��

�

��� The output �le

The output
le is an pure ASCII�text
le� Its name is usually skampi�out by

default� Its name can be changed of the �OUTFILE�section in the parameter

le �see section ����� for further information
� Roughly speaking it has three

sections� the header� the data� and the trailer�

Header

The header stores all information characterizing the context of the measure�

ments stored in this
le� These are the sections �MACHINE� �NODE� �NETWORK�

�USER� and �ABSOLUTE which are
lled with data from from the parameter
le�

Additional sections are
lled by the benchmark� A typical header can look like�

��MACHINE IBM RS��

 SP

��NODE thin node P	SC �	
 MHz

��NETWORK High Performance Switch TB�

��USER Ralf Reussner

��SKAMPIVERSION ��	

��OSNAME AIX

��OSRELEASE 	

��OSVERSION �

��HOSTNAME p
#�

	�	� THE OUTPUT FILE ��

��ARCHITECTURE

���#��

��ABSOLUTE yes

��DATE Thu Oct 	� ���	���� ����

Data

This section is a list of suites of measurements� Each suite starts with a �small�

list�header� describing this suite� follewed by a result�list For all patterns except

the simple�pattern the header looks like�

��������������������������������

����incol�MPI�Bcast�nodes�short�ski��

�Description of the MPI�Bcast�nodes�short measurement�

�Pattern� Collective varied over the number of nodes &number' � d��

�The x scale is linear� no automatic x wide adaption

�range� 	 � ��� stepwidth� ��

�

�default values� �� nodes� message length 	�� bytes� max� � act� time for suit

e disabled�
��� min�

�max� allowed standard error is ��

 � cut quantile is
�

�Format� !args" number of nodes &number' � d� !results" time�cleaned µse

c�' � f� standard�error�cleaned & ' � f� count�cleaned &number' � d� time�all

µsec�' � f� standard�error�all & ' � f� count�all &number' � d�

A typical header of the simple�pattern looks like�

����insimple�MPI�Wtime�ski��

�Description of the MPI�Wtime measurement�

�Pattern� Simple�

�

�

�

�max� allowed standard error is ��

�Format� !args" !results" time�cleaned µsec�' � f� standard�error�cleane

d & ' � f� count�cleaned &number' � d� time�all µsec�' � f� standard�erro

r�all & ' � f� count�all &number' � d�

Note that the �in�command is used by the report generator� to identify the

measurements� All other lines start with a �� so that gnuplot treats these lines

as comments�

The small header for suites of the simple�pattern look di�erent� because this

pattern does not has information on scale� range and default values� �But both

list�headers have the same length of eight lines��

�and to create temporary �les�
�For implementors
 This string is created in the function measurement data to string in

module skampi tools�

Note the following line giving the typing information of the result list �the

result list is described in the next subsection
�

�Format� !args" number�of�nodes &number' � d� !results" time�cleaned

µsec�' � f� standard�error�cleaned & ' � f� count�cleaned

&number' � d� time�all µsec�' � f�

standard�error�all & ' � f� count�all &number' � d�

These lines should be read as one continuous line� The basic idea is� that

the formats of the result�lists may di�er� So it is important to describe each

list	s format�

The format�line starts with ��Format��� followed by a tag �!args"
� which

means� that a description of arguments follows� �In case of multi dimensional

measurements more than one argument belongs to one measurement�
 Each

argument is described with its name �in our example number of nodes
 than

its unit ��number�
 and its format in C�Syntax given in round brackets �e�g��

� d�
� Each so described argument corresponds to one column of the result�list�

The arguments describing list is followed by another list� the results describing

list� Each entry describes a column of the result list� An entry is formed by

the following data �similar to an entry of the argument list
� name� unit� and

format�

After each list�header follows a result�list of measurements for each suite�

�This list may contain only one element�

	 �#��
����� ��
��#�� � �#��
����� ��
��#�� �

� �����#�
�� ���		��
� � �����#�
�� ���		��
� �

� �#
����

� ���#	���� � �#
����

� ���#	���� �

� �#��#���
� 	�������� �� �#��#���
� 	�������� ��

� �	���
��#
 �
������� � �	���
��#
 �
������� �

�##�
��
	� ��
���	� � �##�
��
	� ��
���	� �

� �����
���� 	����#��� �� �����
���� 	����#��� ��

� #
��

�#� �����
#�� �� #
��

�#� �����
#�� ��

�
 #
��	�	��� 	����	
	
 � #
��	�	��� 	����	
	
 �

�� �
	������� ���		���	 � �
	������� ���		���	 �

�	 �
��#��	�� �#����#�# �� �
��#��	�� �#����#�# ��

�� #�����#��� 	���#���	 � #�����#��� 	���#���	 �

�� ����		

�� �#����	�� � ����		

�� �#����	�� �

�� �	#��#	��� ����
���� � �	#��#	��� ����
���� �

�� #�����#
�	 ���	�#�#� �� #�����#
�	 ���	�#�#� ��

�eol

To mark the end of this list� skampi prints an �eol�

Trailer

The trailer is just the last line of the output
le� If skampi
nishes correctly� the

last line will contain the string �skampi finished��� If this
le was created by

��

post processing� there will be additionally the stamp� �postprocessed�

��

Bibliography

��� W� Gropp� E� Lusk� User�s Guide to mpich� a portable Implementation

of MPI� Technical Report ANL�MCS�TM�ANL������ Argonne National

Laboratories� ����

��� R� Reussner� Portable Leistungsmessung des Message�Passing�Interfaces�

Diplomarbeit� Universit#at Karlsruhe� Fakult#at f#ur Informatik� ����

��� M� Snir� S� Otto� S� Huss�Lederman� D� Walker� and L� Dongarra� MPI

The Complete Reference� �nd� Ed�� MIT Press� Cambridge� Massachusetts�

����

��

Index

Parameter �les

�dorep� ��

�skampi� �� ��

C

compile portability� �

contention� ��

D

default values� ��

dynamic linear� ��

dynamic log� ��

F

xed linear� ��

xed log� ��

H

hompage� �

M

measurement� ��

scale of� ��

single� ��

suite of

example� ��

time limit of a� ��

type of� ��

measurements

performed by SKaMPI � �

suite of� ��

memory alignment problems� ��

N

node times� ��

P

parameter
le� �� ��

pattern� ��

performance portability� �

portability� �

R

report generator� �

run� ��

��

S

scale of measurement� ��

single measurement� ��

skampi� �� �

goal� �

homepage� �

skos
le� �

standard error� ��

suite of measurements� ��

T

time limit

of a measurement� ��

of a suite� ��

type of measurement� ��

��

