
Parallel Turing Machines With One-Head Control Units

And Cellular Automata
�

Thomas Worschy

http://liinwww.ira.uka.de/~worsch/

Abstract

Parallel Turing machines (Ptm) can be viewed as a generalization of cellular au-
tomata (Ca) where an additional measure called processor complexity can be de�ned
which indicates the \amount of parallelism" used. In this paper Ptm are investigated
with respect to their power as recognizers of formal languages. A combinatorial ap-
proach as well as diagonalization are used to obtain hierarchies of complexity classes for
Ptm and Ca. In some cases it is possible to keep the space complexity of Ptm �xed.
Thus for the �rst time it is possible to �nd hierarchies of complexity classes (though
not Ca classes) which are completely contained in the class of languages recognizable
by Ca with space complexity n and in polynomial time. A possible collapse of the time
hierarchy for these Ca would therefore also imply some unexpected properties of Ptm.

Key words: cellular automata, parallel Turing machines, computational complex-

ity, theory of parallel computation

1 Introduction

Since their introduction by von Neumann cellular automata have become a well known

model of computation. In this paper we are interested in their power as recognizers of formal

languages. Some results from complexity theory will be presented which are related to earlier

work by Ibarra, Kim and Moran [8], but will be stated for the more general model of Ptm.

They can also be taken as an indication of what might be the solution for a still open problem

for cellular automata (see [7]):

Consider one-dimensional Ca working in linear space, i.e., for inputs of length n the Ca

use n cells. The largest time complexities of these automata are of the form cn. But until

now it is not known, whether there is a formal language which can be recognized by Ca

in linear space, and which requires an exponential or at least a non linear time complexity.

This is in contrast to Turing machines, where a dense hierarchy of time complexity classes

between n and n2 | even for a �xed space complexity of n | is known [6]. Hennie's proof

is a combinatorial one. It is usually di�cult to use diagonalization constructions if the space

complexity is �xed.

In order to �nd out more about Ca, the generalized model of parallel Turing machines is

investigated. Although the original problem cannot be solved, at least some partial answers

as well as related results for Ptm are obtained.

Throughout the paper we will consider one-dimensional Ca and Ptm. Such a Ptm

consists of one one-dimensional tape, on which a (possibly varying) number of Turing con-

trol units with one head each, i.e., �nite automata, is working cooperatively. Besides the

usual complexity measures space and time, one can consider the maximum number of �nite

automata which simultaneously exist during a computation. This \processor complexity"

allows one to distinguish in a formal way Ca, for which one has the intuitive impression that

�This is technical report 3/97 of the Department of Informatics, University of Karlsruhe
yLehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler, Universit�at Karlsruhe, Am Fasanengarten

5, D-76128 Karlsruhe, Germany.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197600668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

one of them \makes more use of parallelism" than the other, although their time and space

complexities are identical. For example all known fast algorithms for the recognition of palin-

dromes (and \similar" languages) require a lot of \activities" whereas f0n1n2n j n 2 N+g
only requires very few. Furthermore it seems that in the case of palindromes a lot of activi-

ties are necessary for fast recognition. Ptm allow a precise statement of such facts and their

proofs.

The version of Ptm we are interested in in this paper has �rst been introduced by

Hemmerling [3, 4] under the name of systems of Turing automata. He was interested in the

general d-dimensional case and shows the equivalence of the realizability of synchronization,

concentration and certain pattern transformations for classes of d-dimensional patterns.

Later Wiedermann generalized systems of Turing automata to so called parallel Turing

machines [17, 18] allowing several read-write heads per control unit and several tapes. In

this case care has to be taken in order to devise a sensible de�nition of space complexity

[20]. Wiedermann sketches a simulation of Ptm by Ca but does not further investigate the

relations between the two.

Another formalization of the concept of the di�erent amounts of \activities" in Ca is

the so called state change complexity, introduced by Vollmar [14] and further investigated by

Suel [13]. It is possible to prove the separation of speci�c complexity classes by combinatorial

arguments using state change complexity, but no large hierarchies are known.

The rest of this paper is organized as follows: In Section 2, we give the basic de�nitions,

mainly for Ptm and their complexity measures. In Section 3 basic tools for the construction

of Ptm are introduced, which also deserve some interest on their own. Section 4 is concerned

with tradeo�s between time and processor complexity in general and in particular for the

recognition of a certain language. These results are used in the following two sections. In

Section 5 connections between Ptm, Tm and Ca are investigated. In Section 6 the existence

of arbitrarily large �nite hierarchies of (time and processor) complexity classes is proved for

�xed space complexity. Sections 7 and 8 are devoted to two diagonalization constructions. In

the �rst case the processor complexity is �xed and as a special case very �ne time hierarchies

for Ca are obtained. In the second case we show how to keep the space complexity �xed at

the expense of an increasing processor complexity.

2 Basic Notions

2.1 Parallel Turing Machines

The following de�nition of Ptm is almost the same as the one given by Hemmerling [3], but

di�ers from Wiedermann's [17]. The basic concepts are the same in both cases, but it is our

impression that the de�nition given below is a little bit more convenient for the description

of concrete algorithms.

2.1 De�nition. A parallel Turing machine consists of a usual one-dimensional Turing tape,

on which a number of �nite automata are working. It is characterized by an 8-tuple P =

(Q; q0; F+; F�; B;A; 2; �). Q is the set of states and contains an initial state q0. The disjoint

subsets F+ and F� of Q contain the accepting resp. rejecting �nal states. It is required

that q0 =2 F+ [F�. B is the tape alphabet containing at least the blank symbol 2 and the

symbols of the input alphabet A.

A con�guration of a Ptm P = (Q; : : :) is a pair c = (p; b) of mappings1 p :Z! 2Q and

b : Z! B, where p(i) is the set of states of the �nite automata currently visiting square i

and b(i) is the symbol written on it. 2

Each step of a Ptm, i.e. the transition from a con�guration c to its successor con�guration

c0 = (p0; b0) is determined by the transition function � : 2Q � B ! 2Q�D � B where D is

the set f�1; 0; 1g of possible movements of a �nite automaton. In order to compute c0, � is

12Q denotes the power set of Q.
2This means that it is not possible to have two automata on the same square and in the same state

simultaneously.

2

simultaneously applied at all tape positions i 2Z. The arguments used are the set of states of

the �nite automata currently visiting square i and its tape symbol. Let (M 0
i ; b

0
i):=�(p(i); b(i)).

Then the new symbol on square i in con�guration c0 is b0(i) := b0i. The set of �nite automata

on square i is replaced by a new set of �nite automata (de�ned by M 0
i � Q � D) each of

which has to change the tape square according to the indicated direction of movement, i.e.,

p0(i) := fq j (q; 1) 2M 0
i�1 _ (q; 0) 2M 0

i _ (q;�1) 2M 0
i+1g.

Observe that the number of �nite automata on the tape may change during a compu-

tation. Automata may vanish (if for example3 �(fsg; b)[1] = ;) and new automata may be

generated (if for example �(fsg; b)[1] = f(q; 1); (q0; 0)g). But in order to make the model

useful (and to come up to some intuitive expectations) it is required, that automata cannot

arise from \nothing" and that the symbol on a tape square can only change, if it is visited

by at least one �nite automaton. In other words: 8 b 2 B : �(;; b) = (;; b).
A tape square i is called empty in a con�guration c = (p; b) if p(i) = ;, and it is called

blank if b(i) = 2. A tape square is used if it is neither empty nor blank.

Sometimes we will speak of a cell of a Ptm. By that we mean a pair (R; b) consisting of

the set of states R of the �nite automata currently visiting a tape square and the symbol b

written on it.

For the recognition of formal languages we de�ne the initial con�guration cw for an input

word w 2 A+ as the one in which w is written on the otherwise blank tape on squares

1; 2; : : : ; jwj, and in which there exists exactly one �nite automaton in state q0 on square 1.

A con�guration (p; b) of a Ptm is called accepting i� p(1) � F+, and it is called rejecting

i� p(1) � F�. Accepting and rejecting con�gurations are also referred to as �nal ones. As

usual the language recognized by a Ptm P is the set of input words, for which the �rst �nal

con�guration reached is an accepting one.

Several other possibilities for the de�nition of initial and �nal con�gurations also have

been investigated and can be shown to be essentially equivalent with respect to the complexity

measures de�ned below (see [19]).

In the rest of this paper we restrict ourselves to Ptm, which reach a �nal con�guration

for every input word. Hence the following three functions are all total ones.

2.2 De�nition. For a Ptm P and an input word w timeP (w) denotes the number of steps

P makes starting from cw before reaching a �nal con�guration for the �rst time. The time

complexity of P is TimeP : N+ ! N+ : n 7! maxftimeP (w) j w 2 Ang. Similarly let

spaceP (w) denote the number of squares used by P during the computation for w. The

space complexity of P is SpaceP : N+ ! N+ : n 7! maxfspaceP (w) j w 2 Ang. And we

write procP (w) for the maximum number of �nite automata which exist in a con�guration

occuring in the computation for input w and de�ne the processor complexity of P as ProcP :

N+ ! N+ : n 7! maxfprocP (w) j w 2 Ang.

Obviously, the relation 1 � ProcP (n) � jQj � SpaceP (n) holds for all n 2 N+. It follows

immediately from Theorem 5.2 below, that the processor complexity is not a Blum mea-

sure. Nevertheless it can be used for �nding additional structure within already restricted

complexity classes.

For total functions s, t and h fromN+ intoN+, we de�ne the complexity class Ptm{STP(s; t; h)

to be the family of all languages L for which there is a Ptm recognizing L and satisfying,

for all n 2 N+, SpaceP (n) � s(n), TimeP (n) � t(n), and ProcP (n) � h(n). We also use

Ptm{ST(s; t), and so on. Furthermore we write Ptm{T(O(t)) instead of
S
t02O(t)Ptm{T(t

0)

and so on.

2.2 Turing Machines and Cellular Automata

We assume that readers are familiarwith Turing machines. The version used in this paper has

one or several one-dimensional work tapes and a control unit with one or several read-write

heads on each of the tapes. When we speak of (1){Tm we think of the special case of one

3The i-th component of vector v is denoted by v[i], i.e. v = (v[1]; : : : ;v[jvj]).

3

tape and a control unit with only one head on this tape. At the beginning of a computation

the input word is always stored on the �rst of the tapes; all other tapes (if any) are initially

blank.

We will consider one-dimensional cellular automata using (w.l.o.g.) von Neumann neigh-

borhood N = f�1; 0; 1g. If Q denotes the set of states, the local rule is of the form

� : QN ! Q. For a global con�guration c :Z! Q and x 2Zlet cx : N ! Q : n 7! c(x+ n)

denote the local con�guration observed in c at cell x. A global transition step leads from

con�guration c to �(c) where � is de�ned by: 8x 2Z: �(c)(x) = �(cx). We assume that

the input alphabet A is a subset of Q and that in the initial con�guration cw for an input

w 2 A+ the cell i, 1 � i � jwj, stores the input symbols w[i] and all other cells are in a

quiescent state (which they may leave if at least one neighbor is non-quiescent). An input is

accepted (rejected) if at some time the cell 1 enters an accepting (rejecting) �nal state.

Complexity classes for cellular automata are denoted as Ca{ST(s; t). In the case of Tur-

ing machines with possibly several tapes and several heads on each tape we writeTm{ST(s; t).

If only Turing machines with one tape and one head are considered, we speak of (1)-Turing

machines and write e.g. (1){Tm{ST(s; t).

3 Basic Tools

3.1 Synchronization

It will turn out in Section 5 thatPtm are quite closely related toCa. It is therefore reasonable

to consider the following generalization of the Firing Squad Synchronization Problem (FSSP)

which is a famous problem for cellular automata (e.g. [9]):

3.1 Problem. (FSSP for Ptm) On some squares of a �nite segment of the tape of a Ptm

non-moving �nite automata are positioned. The leftmost and rightmost ones are in special

states designating them as borders. The task is to achieve that at some point of time all

�nite automata simultaneously for the �rst time enter a special (\�ring") state and that no

additional automata are present.

If one would be interested only in time optimal synchronization, one could of course �ll

the gaps between the �nite automata to be synchronized with additional ones and then use

the chain as a cellular automaton for an FSSP algorithm (see the special case of Theorem 5.1

for h = s). When the time point of �ring is reached, the additional automata are simply

deleted. But in that way the processor complexity may be increased by an arbitrarily large

amount (e.g. in the case of only two �nite automata to be synchronized, which are arbitrarily

far away). This would limit the range of applications where a solution to the FSSP can be

used (e.g. it would not be appropriate for the proof of Lemma 4.2 below). Fortunately it is

possible to solve the problem in such a way that the number of processors used during the

algorithm is only a constant times the number of �nite automata to be synchronized.

3.2 Lemma. There is a constant c such that the FSSP for Ptm can be solved in a time

2n � 2 using cm processors where n is the distance between left- and rightmost automaton

and m is the number of automata to be synchronized.

Proof. Balzer [1] has suggested a 3n time FSSP algorithm for cellular automata. It uses

two signals to divide the chain of cells to be synchronized into two halves. The signals meet

in the middle and trigger the recursive application of the algorithm to both parts.

In a Ptm the signals can be realized by two �nite automata; the middle is marked by an

additional automaton which is deleted at the �ring if necessary. In addition to the original

algorithm each of the signal automata checks, whether in \its half" there really is one of the

�nite automata to be synchronized. Only if this is the case, the synchronization is triggered

on the corresponding half.

There is an FSSP algorithm forCa by Gerken [2] working in optimal time, i.e. 2n�2 steps,
to which the same technique can be applied. This is possible because Gerken's algorithm

4

also works by dividing the \area of synchronization" into parts on which the algorithm is

applied recursively, but it uses much less \signals" than other time optimal FSSP algorithms.

3.2 Constructibility

In several of the following sections there will be theorems which can only be proved if some

complexity bounds involved \behave nicely" with respect to Ptm. We therefore introduce

some notion of Ptm constructibility for functions.

3.3 De�nition. Let s, t, h and f be functions from N+ into N+, where f(n) � 2. We call f

fully Ptm processor constructible in space s, time t and with h processors i� there is a Ptm

P = (Q; : : :) having the following properties:

� Q contains the 5 states sl; sM ; sg ; sm, and sr .

� For each w 2 A+ starting from cw P reaches a con�guration c0w with the same tape

inscription as cw and with exactly f(jwj) �nite automata distributed over s(jwj) squares
of the tape in such a way that for the f(jwj)�1 segments of empty tape squares between

them holds:

{ The lengths of any two segments di�er by at most one and all longer segments are

to the left of all shorter segments.

{ The leftmost automaton is on square 1 in state sl and the rightmost automaton

is on square s(jwj) in state sr .

{ If all segments are of the same length all automata between sl and sr are in state

sM .

{ If there are segments of two di�erent lengths, the only automaton positioned

between a longer and a shorter segment is in state sg . The automata (if any)

between sl and sg are in state sM and the automata (if any) between sg and sr
are in state sm.

� For all n 2 N+ for all w 2 An in order to compute c0w from cw P needs at most s(n)

tape squares, at most t(n) steps, and at most h(n) �nite automata.

A function s is called fully Ptm space constructible in time t and with h processors i�

the constant function 2 is fully Ptm processor constructible in space s, time t and with h

processors. In other words, the constructed space segment is marked by two automata at

the left and right end of it.

4 Tradeo�s between time and processor complexity

We start with results on possible slow-downs as consequences of a reduction of the number of

processors. In the second subsection, we prove for a speci�c language that there is a tradeo�

between the time needed and the number of processors used, which is close to the optimum.

This will be exploited in a later section.

4.1 General Tradeo�s

4.1 Lemma. Decreasing the processor complexity of a Ptm by 1 can force an increase of

the time complexity by a factor of logn.

Proof. The language L = f0n1n j n 2 N+g can be recognized by a Ptm with processor

complexity 2 in linear time by simulating the standard idea for a Ca recognizing L (e.g. [15]):

At the left end of the input two automataA1 and A2 are started moving to right with speeds

1=3 and 1. A2 reverses its direction when it reaches the �rst blank square to the right of the

5

input word w. The two automata meet in the middle of w. A1 checks whether the �rst half

of the input consists solely of 0's and A2 checks on its way back whether the second half of

the input consists solely of 1's.

On the other hand it is known, that each non-regular language needs a recognition time

of at least n logn for in�nitely many n on (1){Tm and therefore also on Ptm with processor

complexity 1 (see Theorem 5.2 below).

4.2 Lemma. Let s, t, h and h0 be functions such that h0 is fully Ptm processor constructible

in space s, time t, and with h0 processors. Then it holds:

Ptm{STP(s; t; h) � Ptm{STP(s;O

�
st

h0

�
; h0) :

Observe that h does not occur on the right hand side. In particular, this lemma says that,

for Ptm with \high" processor complexity, i.e. close to the space complexity, decreasing the

number of processors does not result in such a big increase of the time complexity as it was

the case in Lemma 4.1.

Proof. Let P be a Ptm with space, time, and processor complexities bounded by s, t

and h resp., which is to be simulated by a Ptm P 0. For a given P -con�guration (p; b) tape

square i of P 0 is used to hold the information (p(i); b(i)) of the corresponding P -cell i. In

a �rst phase P 0 positions h0(n) �nite automata on the tape (exploiting the fact that h0 is

processor constructible). Then those h0(n) � 1 at the left ends of the tape segments are

synchronized (using the algorithm from Lemma 3.2 above) and simultaneously all of them

start the sequential simulation of the behavior of the original Ptm on its section.

The simulation on a segment can be carried out sequentially in a straightforward way: in a

�rst sweep from left to right on each square (p(i); b(i)) is replaced by (M 0; b0) = �P (p(i); b(i))

(as described in De�nition 2.1). On the way back the inscriptions of states of moving au-

tomata are cleared and written on the corresponding neighboring square. Since automata

can move to the right as well as to the left, the sweep back has to be carried out in a zig-zag

manner.

Automata working on the smaller segments always do a constant number of idle steps so

that they spend exactly the same total amount of time for the simulation of one step of their

segment as those automata working on the longer segments.

The segments are of length O(s=(h0 � 1)) and therefore the simulation of one step of P

requires O(s=(h0 � 1)) steps.

4.2 A Tradeo� for a Speci�c Language

We shall now consider the language Lvv = fv2jvjv j v 2 f0; 1g+g � f0; 1; 2g+. First we

describe a class of Ptm recognizing Lvv .

4.3 Lemma. For every a 2 Q with 0 < a < 1 holds:

Lvv 2 Ptm{STP(n + 1;O
�
n2�a

�
;O(na)):

Proof. A suitable Ptm recognizing Lvv can work as follows: First it is checked that the

input is of the form f0; 1g�2�f0; 1g� and that the three blocks are of equal length; this can

be done using 3 �nite automata simulating the signals of a standard Ca technique [15]. Then

dnae �nite automata are generated which do sweeps over the complete input word w. These

automata mark the �rst unmarked symbol 0 or 1 (in the �rst third), save it in a register,

and then move to the right, mark the �rst unmarked symbol 2 (in the second third), and

�nally mark the �rst not marked symbol 0 or 1 (in the third part) comparing it to the symbol

stored in the register. If one of the comparisons fails, the word is rejected. If all comparisons

succeed the input is accepted.

The di�cult part is to show that for each a 2 Q it is possible to generate dnae �-

nite automata. This requires some knowledge about e�ciently Ptm-computable and Ptm-

constructible functions. It can be shown that a su�ciently large class of functions satisfying

6

the necessary conditions contains all polynomials nk and is closed under composition and

formation of inverse functions (e.g. dn1=ke). The detailed constructions can be found in [19].

Next we will give a proof for a lower bound for Lvv . It will use an idea similar to that

of crossing sequences for Turing machines [6]. As a consequence one can deduce that the

algorithm described in the previous proof is in fact quite good.

4.4 Lemma. If P is a Ptm recognizing Lvv, then Time2P �ProcP 2

�

n3

log2 n

�
.

(Here we write f 2
(g) i� lim supn!1
f(n)
g(n) > 0.)

Before we actually prove this lemma, observe that together with Lemma 4.3 as an im-

mediate consequence one gets the following corollary which will be exploited in the next

section.

4.5 Corollary. For rational numbers 0 < a < 1 and 0 < " < 3
2 � a

2 holds:

Ptm{STP(n+ 1;O
�
n3=2�a=2�"

�
;O(na)) $ Ptm{STP(n+ 1;O

�
n2�a

�
;O(na))

Proof of Lemma 4.4. Let P be aPtm recognizing Lvv with time complexity t and processor

complexity h. W.l.o.g. t(n) � n3=2 (otherwise the lower bound is trivially satis�ed). Let A

be the input alphabet of P and Q its set of states.

W.l.o.g. let n be a multiple of 3. Consider an input word w 2 Ln := Lvv \An of length

n. For 1 � i � n � 1 let c
(i)
w 2 (2Q � 2Q)t(n) be the sequence of pairs of sets of states of

the �nite automata visiting the neighboring squares i and i+ 1 during the computation for

input w. The c
(i)
w are called crossing sequences.

The number of crossing sequences with exactly i pairs (M1;M2) 6= (;; ;) is xi =
�
t(n)
i

�
zi

where z = j2Qj2 � 1. Such pairs will be called proper. A crossing sequence is proper i� it

contains at least one proper pair.

Similarly to [6] one can prove that there must not be two di�erent words w1; w2 2 Ln
having a proper crossing sequence in common and there must not occur a proper crossing

sequence at di�erent positions for the same input word, i.e. c
(i1)
w1

6= c
(i2)
w2

unless w1 = w2 and

i1 = i2. Otherwise one could split the space time diagrams between cells i1 and i1 + 1 and

i2 and i2 + 1 resp., and glue together the left part of one diagram with the right part of the

other diagram resulting in the space time diagram for an input w which is accepted (because

w1 is accepted) although it is not in Lvv because either the �rst part of w does not match the

last part (if w1 6= w2) or at least one part of w doesn't have the correct length (if i1 6= i2).

Since Ln contains 2n=3 words, there must be at least (n�1)2n=3 di�erent crossing sequences.

Hence the maximum number of proper pairs, occuring in at least one proper crossing

sequence, must be at least g(n), where g(n) is determined by

g(n)�1X
i=0

xi < (n� 1)2n=3 and

g(n)X
i=0

xi � (n� 1)2n=3: (1)

Consider the quantitiy

X
w2Ln

n�1X
j=1

S(c(j)w)

where S(c
(j)
w) is the total number of occurrences of states in the crossing sequence c

(j)
w .

On one hand

X
w2Ln

n�1X
j=1

S(c(j)w) � 2 � t(n) � h(n) � 2n=3 (2)

7

since in every con�guration occuring in any computation there are at most h(n) automata

and in the worst case each state in the time-space diagram is counted twice. On the other

hand

X
w2Ln

n�1X
j=1

S(c(j)w) �
g(n)�1X
i=0

xi � i (3)

where the factors i are due to the fact that there are i pairs with at least one state in each

of them for every crossing sequence with i pairs. Hence from (2) and (3) we get4:

2t(n)h(n)2n=3 �
g(n)�1X
i=0

xii �
�
g(n)

2

�
�

0
@g(n)�1X

i=0

xi

1
A : (4)

We now deduce lower bounds for both factors on the right using (1). First:

(n� 1)2n=3 �
g(n)X
i=0

xi =

g(n)X
i=0

�
t(n)

i

�
zi �

g(n)X
i=0

(n3=2)izi � (n3=2z)g(n)+1:

Hence there is a constant c0 such that for all su�ciently large n holds:

g(n) � c0
n

logn
: (5)

A lower bound for
Pg(n)�1

i=0 xi can be obtained as follows:

g(n)X
i=0

xi =
z(t(n) + 1� g(n))

g(n)
xg(n)�1 +

g(n)�1X
i=0

xi �
z(t(n) + 1)

g(n)

g(n)�1X
i=0

xi:

Using (5) for all su�ciently large n we get the following lower bound:

g(n)�1X
i=0

xi �
g(n)

z(t(n) + 1)

g(n)X
i=0

xi �
c0n(n� 1)2n=3

2zt(n) logn
:

Hence there is a constant c00 such that for all su�ciently large n holds:

g(n)�1X
i=0

xi � c00
n22n=3

t(n) logn
(6)

Using (5) and (6) we can therefore continue (4):

2t(n)h(n)2n=3 �
�
g(n)

2

�
�

0
@g(n)�1X

i=0

xi

1
A � c0

2

n

logn
c00

n22n=3

t(n) logn

�nally giving a constant c such that for in�nitely many su�ciently large n holds:

t2(n)h(n) � c
n3

(logn)2

4.6 Open problem A comparison of the lower bound of Lemma 4.4 with the upper bound

of Time2P � ProcP = n4�a from Lemma 4.3 reveals a gap (which is very small if a is close to

1). It is not known whether the upper or the lower bound or both for the recognition of Lvv

can be improved.

4using xii+ xjj �
i+j

2
(xi + xj) for any increasing sequence (xi)i2N ;

8

5 Comparison of Ptm with Ca and Tm

In this section, the language recognition power of parallel Turing machines will be compared

to that of one-dimensional cellular automata and to that of (sequential) one-head and multi-

head Turing machines.

5.1 Ptm versus Ca

It has already been mentioned, that there is a close relation between Ptm and Ca. This

becomes evident in the third part of the following theorem.

5.1 Theorem. For all functions s(n) � n, t(n) � n, and h(n) � 1, where h is fully Ptm

processor constructible in space s, time t, and with h processors, holds:

Ptm{STP(O(s) ;O(t) ;O(h)) � Ca{ST(O(s) ;O(t)) (7)

Ca{ST(O(s) ;O(t)) � Ptm{STP(O(s) ;O(st=h) ;O(h)) (8)

Ptm{STP(O(s) ;O(t) ;O(s)) = Ca{ST(O(s) ;O(t)) (9)

Proof.

Inclusion (7): A Ptm P = (QP ; : : : ; B; : : :) can be simulated by a Ca C with set of states

QC = 2QP � B. A P -con�guration (p; b) in represented as a C-con�guration in the

obvious way: In its state C-cell i stores the P -cell (p(i); b(i)). In its neighbors it

observes (p(i � 1); b(i� 1)) and (p(i + 1); b(i+ 1)). In a �rst step cell i can determine

(M 0
i ; b

0
i) (as described in De�nition 2.1) from this information. In a second step it can

use (M 0
i�1; b

0
i�1) and (M 0

i+1; b
0
i+1) to determine the new set of states it should store.

Obviously, this is a local rule.

Inclusion (8): Because of Lemma 4.2 it su�ces to prove that

Ca{ST(O(s) ;O(t)) � Ptm{STP(O(s) ;O(t) ;O(s)) :

Let C be a Ca with set of states QC recognizing some language L. The basic idea is to

simulate C by a Ptm P using a chain of �nite automata positioned on successive tape

squares. Since they cannot \see" the states of automata on neighboring tape squares,

the tape is used for the exchange of information.

Given some input word w on its tape, in a �rst phase preceding the proper simulation,

P �rst generates �nite automata on the tape squares 0; 1; : : : ; jwj; jwj+ 1 storing the

quiescent state, the symbols of w and the quiescent state, and synchronizes them.

Hence they start simultaneously to execute the following steps repeatedly:

� First each automaton moves one square to the left, writes its state on the tape,

moves back to the right, reads the state of its right neighbor written on its square,

stores it and deletes it from the tape by writing a special \erase symbol".

� Then each automaton does the same for the other direction.

� Now each �nite automaton knows the state of \its own" cell and also the states

of both neighboring cells and can simulate one state transition according to the

rule of C.

A little bit of extra care has to be taken for the automata at both ends of the chain.

W.l.o.g. consider the leftmost one. It can always �nd out that it is the leftmost one

because there is never a left neighboring automaton replacing the erase symbol by

a state of C (the missing state has to be interpreted as the quiescent state of C).

Whenever the leftmost automaton has to leave the quiescent state, it generates an

additional automaton to be positioned on the left neighboring square in the quiescent

state.

9

Equality (9): follows immediately from (7) and (8).

In other words, Ptm with an asymptoticallymaximal processor complexity are equivalent

to cellular automata.

In the construction above the space complexity of the simulating machines may be larger

by a constant of at most 2. Usually this can be compensated for by choosing a larger tape

alphabet and/or set of states with one exception: In Ca the cell holding the last input

symbol can identify itself as such because it observes a cell in the quiescent state in its right

neighbor. But in a Ptm a �nite automaton really has to visit the �rst blank tape square to

�nd out that it has passed the last input symbol. Hence Ptm with space complexity n+1 are

equivalent to Ca with space complexity n (and also to those with space complexity n+ 1).

5.2 Ptm versus (1){Tm

5.2 Theorem. For all functions s(n) � n and t(n) � n holds:

Ptm{STP(O(s) ;O(t) ; 1) = (1){Tm{ST(O(s) ;O(t))

Proof. The constructions are straightforward. If a Ptm has constant processor complexity

1, then in every con�guration occuring in any computation for an input word there is exactly

one �nite automaton. Hence the transition function essentially degenerates to a function

� : S � B ! S � D � B, i.e. a (1)-Turing machine. The opposite simulation is trivial.

5.3 Theorem. For all functions s(n) � n, t(n) � n, and h(n) holds:

Ptm{STP(O(s) ;O(t) ;O(h)) � (1){Tm{ST(O(s) ;O(st))

This follows from the fact that Ca working in space s and time t can be simulated by

(1){Tm in space O(s) and time O(st) (see [5]) and Theorem 5.1. For multi-head Turing

machines the result can be improved as will be seen in the next subsection.

5.3 Ptm versus Tm

A time e�cient simulation of Turing machines with several tapes and heads by Ptm requires

more processors than the simulation of (1){Tm. This is due to the fact that such Turing

machines can communicate small amounts of information over a long distance in one step.

This is impossible for Ptm. As a compensation, they can communicate large amounts of

information over a small distance in one step, if there is a large number of �nite automata

on the tape.

5.4 Theorem. For all functions s(n) � n and t(n) � n holds:

Tm{ST(O(s) ;O(t)) � Ptm{STP(O(s) ;O(t) ;O(s)) (10)

Ptm{STP(O(s) ;O(t) ;O(h)) � Tm{ST(O(s) ;O
�
t
p
sh
�
) (11)

Proof.

Inclusion (10): One can use the theorem of Sto� [12] for a linear time simulation of ar-

bitrary Tm by ones which have only one head per tape, and then simulate these by

Ptm as described by Wiedermann [16]. Independently the generalization of the latter

construction for the case of several heads per tape had also already been described in

[19].

Inclusion (11): Let P be a Ptm satisfying the resource bounds s, t and h. The main idea

for a Tm T simulating P is as follows: On its tape T maintains the description of a

con�guration of P as in the proof of Lemma 4.2. But instead of making full sweeps

over the whole tape segment simulating one step of P at a time, it makes q(n) sweeps

10

over relatively small \interesting" subsegments of the tape (simulating q(n) steps of P

on it) while moving over large gaps without any �nite automata to be simulated from

one subsegment to another one only once every q(n) simulation steps.

More precisely T alternates between partitioning phases and simulation phases.

Partitioning phase: Denote by S the smallest tape segment of T comprising all used

tape squares of P , let s0 = jSj denote the length of S and h0 the number of �nite

automata positioned somewhere on S. In a partitioning phase T �rst determines

the value q0 =
p
s0=h0 in unary as follows: First with one head T makes one full

sweep over S while using a second head to count h0 in unary. Then T makes a

second full sweep over S while simultaneously making sweeps over the h0. Each

time the second head reaches the end of h0 a third head is moved one square.

When �nishing the sweep over S the third head has moved bs0=h0c tape squares.
The square root of this number is determined by having two heads working on it,

simulating the movement of the two signals used in the standard Ca algorithm to

mark the
p
k-th cell of k cells.

Then S is partitioned using q0: T marks the left and right ends of all subsegments

having the properties that

� they contain at least one non-empty P -cell,

� between two non-empty P -cells there are no more than 2q0�1 empty P -cells,

and

� to the left of the leftmost non-empty P -cell and to the right of the rightmost

non-empty P -cells there are q0 empty P -cells.

Simulation phase: Note that because of the last condition T can simulate q0 steps of

P on a subsegment without referring to any information outside the subsegment.

In a simulation phase T makes one pass over S. Whenever it enters a marked

subsegment, it simulates q0 steps of P on it. (It is no problem for T to count to

q0 because it has stored that value in unary.) Then T leaves the subsegment and

passes all empty P -cells until it enters the next marked subsegment.

After doing one partitioning and one simulation phase, T has completely simulated

q0 steps of P . The total time needed is at most b1s
0 + b2h

0q0q0 for some constants

b1; b2, where h0q0 is an upper bound on the total length of all marked subsegments

which are passed q0 times. Therefore the average simulation time per step of P is

b1s
0=q0 + b2h

0q0 = b1
p
s0h0 + b2

p
s0h0 which can obviously be bounded by O

�p
sh
�
.

At least in the case t 2 �(n) (and hence s 2 �(n)) the simulation of multi-head Tm by

Ptm is already quite processor e�cient. Lvv can be recognized by a 3-head Tm in linear

time. According to Lemma 4.4 any Ptm recognizing this language in linear time has to use

�

n
(logn)2

�
processors.

Concerning the other inclusion it should be remembered that in the case h 2 �(s) a

(1){Tm was su�cient to achieve the same result (Theorem 5.3).

5.5 Open problem While multi-head Tm can be simulated by Ptm in linear time, no such

simulation is known for the reverse direction. In fact, one can suspect that there is none,

because of the following informal observation. The �rst part of the above theorem can also

be proved by giving a direct construction [19], in which almost all �nite automata are used

only for the \transport" of information, but not for the \processing" of information, i.e., it

seems that in some sense not all the capabilities of Ptm are needed in the construction.

6 Complexity hierarchies by combinatorial arguments

The padding technique [11] can be used to prove the existence of arbitrarily large �nite

hierarchies of complexity classes for Ptm.

11

6.1 De�nition. Let f(n) � n be an increasing function, and L � A+ a formal language

with 3 =2 A. We de�ne

Lf := fv3f(jvj)�jvj j v 2 Lg:

There is a rather close relation between the recognizability of a language L and a padded

version Lf , if the functions involved satisfy certain computability and/or constructibility

requirements.

In what follows let �f : N! N : m 7! minfn j f(n) � mg be the total function \similar"

to f�1 for any increasing f : N! N. The functions occuring in the lemma below must be

computable \su�ciently easy". For the sake of readability we'll write g � h for the function

(g � h)(n) = max(g(h(n)); n+ 1).

6.2 Lemma. If s, t, h and f are increasing functions satisfying the conditions, that f can

be computed by a Ptm within space s � �f , time t � �f and with h � �f processors and that

n logn 2 O
�
t � �f

�
or logn 2 O

�
h � �f

�
, then the following propositions holds:

L 2 Ptm{STP(s; t; h) =) Lf 2 Ptm{STP(s � �f ;O
�
t � �f

�
;O
�
h � �f

�
)

Lf 2 Ptm{STP(s; t; h) =) L 2 Ptm{STP(s � f;O(t � f) ;O(h � f))

We omit the technical but straightforward proof.

The upper and lower bounds on the product Time2PProcP for the recognition of Lvv are

rather close to each other if TimeP is su�ciently close to n. Because of the result above,

this fact is passed on to the languages Lfvv , if, for example, f = nc where c > 1 is a suitable

rational number.

6.3 Theorem. For all b; b2 2 Q with 0 < b < b2 < 1 and b2 <
2+b
3 there is a b1 2 Q with

b < b2 < b1 < 1 such that it holds:

Ptm{STP(n+ 1;O
�
n2�b1

�
;O
�
nb
�
) $ Ptm{STP(n+ 1;O

�
n2�b2

�
;O
�
nb
�
)

As can be seen from the following proof it is possible to make the di�erence b1 � b2
arbitrarily small by choosing a su�ciently large b.

Proof. For given b; b2 the condition b2 <
2+b
3

is equivalent to 1
2
+ b2

2
+ b2�b

4
< 1. Hence one

can choose a b1 where 1 > b1 >
1
2 +

b2
2 + b2�b

4 . Furthermore 0 < b < b2 < 1 implies that as a

consequence b2 < b1. Consider c =
2

2�b2+b
now. We claim that the language Ln

c

vv is a witness

for the properness of the inclusion: First it should be noted, that c > 1, f(n) = nc satis�es

the conditions of Lemma 6.2, and �f = n1=c.

Since c(2�b2)+cb = 2, it follows from Lemma4.3 that Lvv 2 Ptm{STP(n+1;O
�
nc(2�b2)

�
;O
�
ncb
�
).

Hence Ln
c

vv 2 Ptm{STP(n+ 1;O
�
n2�b2

�
;O
�
nb
�
) because of Lemma 6.2.

On the other hand a straightforward computation shows that 2c(2 � b1) + cb < 3,

i.e., (nc(2�b1))2ncb 2 O
�
n3�"

�
. Therefore Lemma 4.4 assures that Lvv =2 Ptm{STP(n +

1;O
�
nc(2�b1)

�
;O
�
ncb
�
) and an application of Lemma 6.2 shows Ln

c

vv =2 Ptm{STP(n +

1;O
�
n2�b1

�
;O
�
nb
�
).

This means that for �xed space complexity of n + 1 and for some �xed processor com-

plexities there are arbitrarily large �nite hierarchies of time complexity classes. Similarly one

can prove that for �xed space complexity of n+1 and for some �xed time complexities there

are arbitrarily large �nite hierarchies of processor complexity classes.

Note that these hierarchies all completely lie within e.g. Ptm{STP(n + 1; n2;O(n)) �
Ca{ST(n; n2). Hence we have found some structure in time complexity classes for cellular

automata with a linear space bound. Furthermore these hierarchies are due to a parallel

model, namely Ptm with processor complexity nb for any 0 < b < 1. Choosing b large

results in a model which is in some sense close to Ca, but not quite.

6.4 Open problem It is not known whether Theorem 6.3 also holds for Ptm with maxi-

mum processor complexity, i.e. cellular automata.

12

Analogously to Theorem 6.3 one can also derive a processor complexity hierarchy in the

case of �xed time complexity:

6.5 Theorem. For all b; b2 2 Q with 0 < b2 < b < 1 and b2 <
2�b
3

there is a b1 2 Q with

0 < b1 < b2 such that it holds:

Ptm{STP(n+ 1;O
�
n2�b

�
;O
�
nb1
�
) $ Ptm{STP(n+ 1;O

�
n2�b

�
;O
�
nb2
�
)

Proof. One has to choose a b1 <
b
2+

3b2
2 �1 and c = 2

2�b+b2
.

7 Diagonalization I: �xed processor complexity

For the rest of this paper let A be an arbitrary but �xed input alphabet with at least two

symbols.

In this section we will prove:

7.1 Theorem. Let s and t be two functions such that s is fully Ptm space constructible in

time t and t is Ptm computable in space s and time t and let h � log. Then:

[
 =2O(1)

Ptm{STP(�(s=);�(t=);O(h)) $ Ptm{STP(O(s) ;O(t) ;O(h)) :

First we will give the de�nition of Ptm computability. Then it will be shown how Ptm

con�gurations can be encoded in such a way that it is not too di�cult to describe a universal

Ptm U . Finally U is used in the diagonalization proof of Theorem 7.1.

Let bin(x) 2 f0; 1g+ denote the usual binary representation of a natural number xwithout

leading zeroes (except for x = 0) and for k � j bin(x)j let bink(x) := 0
k�jbin(x)j bin(x) be the

binary representation of x using k bits.

A function f is called Ptm computable in space s, time t, and with h processors i� there

is a Ptm P = (Q; : : :) with the following properties:

� Q contains the two states 0; 1.

� For x 2 N+ let cx denote a con�guration where for each i with 1 � i � j bin(x)j on
tape square i is a �nite automaton in state xi such that x1 � � �xk is bin(x). Then for

each x 2 N+ starting from cx P must reach con�guration cf(x).

� For all x 2 N+ in order to compute cf(x) from cx P needs at most s(x) tape squares,

at most t(x) steps, and at most h(x) �nite automata.

It should be noted, that the resource bounds are formulated in terms of x and not in terms

of j bin(x)j. This is in accordance with the fact, that the complexity measures are de�ned in

terms of input length of which an input word can be considered as a unary representation.

The above notion (as well as that of constructibility in Subsection 3.2) has been de�ned

in such a way that in all cases it is meaningful to require in addition that the tape is not

used during the computations. This will be used in Section 8.

The �rst step towards a proof of Theorem 7.1 is the description of a coding of Ptm. A

Ptm P = (Q; q0; F+; F�; B;A;2; �) will be described as a word cod(P) 2 C� over the coding

alphabet5 C = f[;]; 0; 1g. cod will be chosen such, that it can be easily checked whether a

word w 2 C� is a coding of a Ptm, and if it is that it can be used very easily for the e�cient

simulation of the encoded Ptm.

From now on we will always assume that the input alphabet is totally ordered and contains

all symbols of C as its �rst symbols in some �xed order. Furthermore we assume that the

set of states and the tape alphabet of each Ptm are totally ordered in such a way that

w.l.o.g. the initial state is the �rst in the enumeration of Q and in the enumeration of B

5C is chosen to be convenient; of course two symbols are su�cient.

13

the blank symbol is the �rst, followed by all input symbols. Such Ptm will be said to be in

normal form.

Let P be an arbitrary Ptm in normal form and k = maxfjQj; jBjg. Sets of states and
tape symbols are encoded as k-bit strings as follows: R � Q is encoded as codq(R) =

[x0x1 � � �xk�1] 2 [f0; 1gk] with xi = 1 i� i < jQj ^ qi 2 R, and analogously for tape

symbols. Let codb(bi) denote the coding of fbig.
For a set M 0 � Q �D let M 0[d] = fq j (q; d) 2M 0g. A single \entry" �(R; b) = (M 0; b0)

of the local transition function is encoded as the word codr(R; b;M
0; b0) =

[codq(R) codb(b) codq(M
0[�1]) codq(M 0[0]) codq(M

0[1]) codb(b
0)] :

The coding cod�(�) of a complete transition function � is the concatenation of all codings

codr(� � �) of entries in lexicographical order.

The coding of a Ptm P = (Q; q0; F+; F�; B;A;2; �) is the word cod(P) =

[codq(Q) codq(F+) codq(F�) codb(B) cod�(�)] :

Let z = jQj, y = jBj and hence k = maxfz; yg. Obviously j cod�(�)j is the dominating

summand for the length l = j cod(P)j. j cod�(�)j is proportional to (2zy)k and hence k �
d1
p
l for some constant d1 always holds.

Of course there is a Ptm which can check whether a word w 2 C� is the coding of a Ptm.

De�ne Lcod = fcod(P) j P is a Ptmg. Membership in Lcod can be checked rather e�ciently:

7.2 Lemma. There is a Ptm recognizing the language of Ptm codings Lcod in space n+1,

time O(n) and with O(logn) processors without ever writing something on the tape.

Proof. First an increasing chain of successive �nite automata is used as a binary counter to

determine the length of the input w. The resulting block of �(logn) automata can then be

used to check all the syntactic requirements given above by sweeping over w a �nite number

of times.

We are now ready to describe how an arbitrary con�guration c of an arbitrary Ptm P

can be encoded in such a way as a con�guration cod(c), that it will be possible to describe an

e�cient universal simulator U afterwards which simulates the step c 7! �P (c) (by computing

cod(�P (c))).

Let P be a Ptm in normal form and c a con�guration of P in which only a �nite number

of tape squares is used. c will be encoded as the inscription on a tape with seven tracks of

some Ptm U (see Figure 1). The inscription is divided into a �nite number of successive

�nite segments of equal length. All other squares contain the 2 symbol (of U). All segments

have the same length and structure, which will be described now.

track 1:] [] [

track 2: � � � [01100] [00000] � � � [11101] � � �
track 3: � � � [01000] [10000] � � � [00001] � � �
track 4:

track 5:

track 6: wsuf cod(P) wsuf cod(P)

track 7:

Figure 1: The coding of a Ptm on the tape of a universal simulator Ptm. The vertical lines

separate cell blocks and the vertical double lines segments.

� Each segment encodes the inscriptions of a successive number of tape squares l; : : : ; r

of c = (p; b) and the states of the �nite automata visiting them.

� On track 1 the leftmost and rightmost tape square of a segment are marked with a [

and a] respectively. The other squares are empty.

14

� Track 2 contains the concatenation codq(p(l)) � � � codq(p(r)) of the codings of the states.

� Track 3 contains the concatenation codb(b(l)) � � �codb(b(r)) of the codings of the square
symbols. (Remember that codings of state sets and symbols have the same length k+2.)

Let us call k+2 successive tape squares which contain the coding of a set of states and

of a tape symbol a cell block. Hence each segment consists of a number of cell blocks.

� The fourth and �fth track will be used by U only during the simulation.

� Track 6 contains a word of the form cod(P)wsuf with wsuf 2 f[]g�f�;]g. (� denotes

the empty word.) The length of a segment has to be an integral multiple of k+2. Since

this may not be the case for cod(P) we allow padding it with wsuf but require that the

length of the segment is such that the length of wsuf is less than k + 2.

� The seventh track will be used by U only during the simulation.

� On the leftmost tape square of the segment there is a �nite automaton S in some

distinguished state s.

We call a tape inscription a coding cod(c) of a con�guration if the non-blank part of the

tape consists of a �nite number of segments (as described above) where the leftmost and

the rightmost one on the second and third track only contain codq(;) and codb(2) and the

segments encompass all used squares of c. The length of the coding of a con�guration is the

number of tape squares used by all tape segments together.

7.3 Lemma. There is a universal simulator Ptm U with the following properties: For each

Ptm P with l = j cod(P)j and each con�guration c of P given a coding cod(c) U computes

a coding cod(�P (c)) in a time proportional to l2. The number of �nite automata needed is

at most proportional to the number of automata occuring in c or cod(c). If cod(c) is chosen

as short as possible6, then the space complexity of U is at most dl times bigger than that of

P (for some constant d).

Proof. Let P be an arbitrary Ptm with u = cod(P), l = juj and k as above.

The simulation of one step of P consists of 3 phases. First we describe a simpli�ed version

which does not satisfy the processor bound. Instead during all phases there will be exactly

one �nite automaton working on each segment.

For the following note that S can easily count to k, for example using a marker on track

1, since the length of cell blocks is k + 2.

1. To simplify the simulation in the �rst phase track 7 is used to generate a \compact-

ed" and easier to use description of the local transition function to be used. For the

compacted form imagine the track divided into 8 subtracks, which are used to hold

on top of each other the following informations in one cell block. For some entry

�(R; b) = (M 0; b0) these are codq(R), codb(b), codq(M
0[�1]), codq(M 0[0]), codq(M

0[1]),

and codb(b
0) and furthermore codq(F+) and codq(F�).

The inscription of track 7 can be generated by 8(k+2) sweeps over the whole segment.

2. Then each �nite automaton S simulates one step of P on its segment. In order to do

that, the codings on tracks 2; : : : ; 5 of a cell block are compared to all \entries" as they

can be found on track 7 of the cell blocks of the segment. For the matching entry the

transition is simulated.

This can be realized by shifting track 7 \cyclically" through all tape squares of the

segment. Additionally every k+2 steps the �nite automaton checks whether a matching

rule has reached a cell block. If it has, the coding codb(b
0) of the new tape symbol is

copied to track 3, codq(R[0]) is copied to track 2, and codq(R[�1]) and codq(R[1])

6Given a coding cod(c) one can construct longer ones by adding segments corresponding to empty 2

squares on either side.

15

to tracks 4 and 5. On track 1 a mark is written indicating that for the current cell

block one step has already been simulated in the current phase. Before simulating a

transition step in a cell block the �nite automaton �rst checks whether there is already

such a mark, in which case it does not change the tape contents.

3. If the rotation of track 7 is �nished, i.e. if each entry has been compared to each cell

block, corresponding to the movement of the �nite automata in the simulated Ptm the

contents of track 4 and 5 have to be shifted one cell block to the left and to the right

respectively, and the information about the states has to be added to track 2.

It should be noted that during the last two phases a �nite automaton has to leave its own

segment and move k + 2 squares into its neighboring segments.

The length of a segment is smaller than l + k < 2l. The space complexity of the above

algorithm is determined by the maximumnumber m of cells needed in c or �P (c). If a short

coding of c is used, 4 +m=l is an upper bound for the number of segments. Hence U needs

at most d1lm tape squares (for some constant d1).

Adding the time complexities for the 3 phases gives an upper bound of d2kl+d3l
2+d4kl �

d5l
2 for some constants di.

The description above assumed one �nite automaton on each segment. Hence the pro-

cessor complexity would be d6m=l which can be much larger than the number of automata

occuring in c or �P (c). But this only happens if the work of the Ptm is really simulated,

even in segments where \nothing happens" because there are currently no �nite automata

to be simulated. To avoid this overhead, the above procedure can be modi�ed. Assume that

when the simulation starts, there are only �nite automata on segments where there really

is something to be simulated. This condition can be made an invariant by adding a fourth

phase which ensures it also at the end of the simulation of one step:

4. Let each �nite automaton make a complete sweep over the two segments which are

adjacent to its own, checking whether something needs to be simulated in the next

step but currently there is no �nite automaton for this segment. If this is true, a

�nite automaton for the segment is generated. Of course one has to take care that the

newly generated automata afterwards start working synchronously with the already

existing ones. Note that although at �rst glance this looks like the problem mentioned

in the sketch of proof of Lemma 4.2 it is not. In fact an FSSP would need a time

proportional to the space complexity which would be much more for the simulation of

one step than we would like to spend. Instead one can use the fact that neighboring

(indeed all) segments have equal length r and use a simple three signal construction

as one often encounters in Ca algorithms. Assume that at the left end of a segment is

a �nite automaton S1 and that on the neighboring one to the right an automaton S2
has to be generated. To this end S1 moves to the right end of its segment and then

back to the left with an average speed of 2=3 (cells per step) returning after 3r steps.

When S1 begins to move to the right two other automataH1 and H2 are started at the

same square. H1 moves with speed 1 crosses two segments and then begins to return.

H2 moves with speed 1=3. Hence the two meet in the middle of 2r cells, i.e. at the

beginning of the neighboring segment, where they melt together to S2 after 3r steps,

too.

Also a �nite automaton which �nds during the sweep in the fourth phase, that it has

nothing to simulate on its segment in the next step, disappears. In this way the number

of �nite automata needed for the simulation can be reduced to at most a constant times

the number of �nite automata occuring in c or �P (c).

From Lemmata 7.3 and 7.2 immediately follows:

7.4 Corollary. There is aPtm U recognizing the language fuv j u 2 Lcod^v 2 L(cod�1(u))g
such that for all u 2 Lcod, P = cod�1(u), and all v holds:

� spaceU (uv) 2 O(juj � spaceP (v)),

16

� timeU(uv) 2 O
�
juj2 � timeP (v)

�
, and

� procU(uv) 2 O(maxflog juj; procP (v)g),

and for words w =2 Lcod �A� holds

� spaceU (w) 2 O(jwj),

� timeU(w) 2 O(jwj) and

� procU(w) 2 O(log jwj).

We can now prove the main theorem of this section.

Proof of Theorem 7.1. Let s and t be two functions such that s is fully Ptm space

constructible in time t and t is Ptm computable in space s and time t. We will describe a

Ptm D recognizing a language in space O(s) and in time O(t) and prove that it is not in

Ptm{ST(�(s=);�(t=)) for any =2 O(1).

An input word w 2 C� is processed in four phases:

1. D checks whether w = uv for a syntactically correct coding u of a Ptm P and an

arbitrary su�x v. Because of the way we have de�ned encodings, for each w there is

at most one pre�x from Lcod.

2. In the following let the tape be divided into 2 tracks. On track 1D computes t(jwj) and
stores the result in a chain of subsequent automata which will later act as a counter.

Furthermore D marks a section of s(jwj) tape squares by two automata at the ends.

In the sequel D always rejects w whenever it would have to use a square outside the

marked area.

3. Next, D tries to generate a shortest coding of cw, thought of as a con�guration of P (if

there is su�cient space), and initializes the second track, consisting of seven subtracks,

as it is needed for the universal simulator as described in the proof of Lemma 7.3.

4. Finally on the second track D works as the universal simulator. Simultaneously in each

step of D the counter built up from �nite automata in phase 2 is decremented by 1.

D stops the simulation if either the counter has reached 0 or P had reached a �nal

con�guration. If P would accept w then D rejects it. If P would reject w or if the

simulation had to be stopped prematurely then D accepts w.

Obviously D satis�es the space and time requirements s and t.

Now assume that there were a Ptm P recognizing L(D) and working in space �(s=)

and time �(t=) for some =2 O(1). To deduce a contradiction let u = cod(P) and observe

�rst that according to Lemma 7.3 there are constants such that for all v 2 A+ the space and

time needed by the universal simulator for the input uv can be bounded from above by

d1juj � spaceP (uv) which is � d1juj
s(juvj)
(juvj) and

d3juj2 � timeP (uv) which is � d4juj2 �
t(juvj)
(juvj)

Since goes to in�nity on a subset of N+ there is a v0 satisfying s(juv0j) � d1juj � spaceP (uv0)
and t(juv0j) � d3juj2 � timeP (uv

0). Hence for the input uv0 D can simulate all steps of P for

the same input until it reaches a �nal con�guration. Therefore it is not only the case that

if D rejects uv0 this is because P would accept it, but also if D accepts uv0 this is because

P would reject it. Hence L(D) and L(P) di�er by uv0 contrary to what we had assumed.

Using Theorem 5.1 as an easy corollary one obtains the following results for cellular

automata.

17

7.5 Corollary. Let s and t be two functions such that s is fully Ptm space constructible in

time t and t is Ptm computable in space s and time t. Then:

[
 =2O(1)

Ca{ST(�(s=);�(t=)) $ Ca{ST(O(s) ;O(t))

Ca{ST(o(s); o(t)) $ Ca{ST(O(s) ;O(t))

Ca{T(o(t)) $ Ca{T(O(t))

The second and third inequation are simply special cases of the �rst one. These results

provide smaller gaps than theorems 6 and 7 in the article by Ibarra, Kim and Moran [8].

(The proof of their �rst result is incomplete since it applies a theorem to Turing machines

with one tape and one head although it has been proved only for Turing machines with at

least two tapes by Paul [10].)

8 Diagonalization II: �xed space complexity

While the results in the previous section are interesting on their own, they do not solve

the open problem for cellular automata with space complexity s(n) = n mentioned in the

introduction. There are two reasons for the increase of the space complexity in the above

constructions. The universal simulator has to cope with all Ptm having arbitrarily large

state sets and tape alphabets which have to be encoded using one �xed state set and one

�xed tape alphabet. Hence the coding of a subset of states or of a tape symbol may become

arbitrarily long resulting in a space complexity for the universal simulator which cannot be

bounded by a constant times the space complexity of the simulated Ptm.

Two possibilities come to mind how this problem might be circumvented. The �rst is

bounding the size of sets to be encoded. Of course it is not possible to �x the sizes of both the

set of states and the tape alphabet, since this would mean to consider only a �nite number

of Ptm. But we will �x the size of the tape alphabet. At least this does not cut down the

number of languages recognizable within some space and time bounds s and t, because one

can always increase the set of states and/or the processor complexity in order to be able to

store enough information.

The other possibility, which will be used for the states, is using a more e�cient coding. If

for example during the computations of a Ptm most of the tape squares are empty, then it

would be preferable to encode the empty set (of states) by a much shorter word than other

subsets. In the construction below the following version of this idea will be employed: For

each tape square one bit is used to distinguish between empty and non-empty ones. And

only for non-empty ones the set of states will be stored similar to the form in the previous

section.

There all of the constructibility and computability notions have been de�ned in such a

way that the tape inscription at the end of a computation is the same as at the beginning.

One can therefore de�ne corresponding notions with the additional requirement that no tape

square is written during the computations. These are used in the main theorem of this

section:

8.1 Theorem. Let s, t and h be three functions such that s is fully Ptm space constructible

in time t and with h processors, and that t and h are Ptm computable in space s and time

t and with h processors such that in all cases the tape is not written. Then:

[
=2O(1)

Ptm{STPA(s;�(t=);�(h=); b) $ Ptm{STPA(s;�(st);O(h) ; b) :

Here we use the extended notation Ptm{STPA(s; t; h; b) to indicate the cardinality b of the

tape alphabet, too. I.e. in this theorem it is assumed that only tape alphabets of a �xed size

are used, whereas in the previous section arbitrary tape alphabets were allowed.

18

For the proof we proceed analogously to the previous section. First a new coding of

Ptm con�gurations is presented. Then a universal simulator working with these codings is

described, which is �nally used in the diagonalization proof of Theorem 8.1.

From now on without loss of generality let B be a �xed tape alphabet with C =

f0; 1; [;]g � B. (Again we only use 4 symbols because it is more convenient; 2 symbols

would be enough.)

A con�guration c0 of a Ptm U is called a coding of a con�guration c = (p; b) of a Ptm P

if the following holds:

� The tape inscriptions of c and c0 are identical.

� On each tape square which is non-empty in c there is an automaton in c0 in a designated

state �. Such automata are called proper marking automata. On tape squares which do

not have a proper marking automaton but which are immediately neighbored to such

a square there is an improper marking automaton in state �.
� A section of tape squares of maximal length with the property that on each of them

there is a (proper or improper) marking automaton but there are no two improper

marking automaton on neighboring squares is called a state section.

� On some square to the left of the leftmost improper marking automaton there is a

border automaton in state [and on some square to the right of the rightmost improper

marking automaton there is a border automaton in state].

� Starting at the left border automaton there is a chain of coding automata which ends

on some square to the left of the right border automaton. Each of the coding automata

consists of 7 registers. The resulting 7 chains of registers play similar roles as the tracks

on the tape in the coding used in the previous section, and are henceforth called tracks

again

{ On track 2 codings codq(R) of the sets of states are stored. If j is the number of

the tape square with the i-th (i � 1) proper marking automaton, then the coding

automata with numbers (i�1)(k+2)+1; : : : ; (i�1)(k+2)+k+2 store codq(p(j)).

A chain of k+2 coding automata storing a coding codq(R) are called a cell block

again.

{ On track 1 beginning and end of the codings of each state section are marked.

{ Track 3 is empty but it will be used during the simulation for storing the codings

of marked tape squares.

{ Tracks 4, 5, 6 and 7 are used for the same purposes as in Section 7: On them

are stored shifted codings of sets of states, cod(P) in standard form and in the

\compacted" form.

8.2 Lemma. There is a universal simulator Ptm U with the following properties: For each

Ptm P with l = j cod(P)j and each con�guration c of P given a coding cod(c) of length S(c)

U computes a coding cod(�P (c)) in a time at most d1S(c). If H(c) denotes the number of

processors occuring in c, the simulation needs a space of at most d2maxfS(c);
p
l H(c)g cells

and at most d3
p
l H(c) processors (for some constants d1; d2; d3).

Proof. Let P be an arbitrary Ptm with u = cod(P), l = juj and k = maxfjQj; jBjg. The
simulation of one step of P consists of 5 phases.

1. During the �rst phase in each cell block of coding automata the coding of the symbol on

the tape square of the corresponding marking automaton has to be generated. To this

end a signal automaton moves from the left to the right border automaton with speed

1=3. Whenever it arrives at a tape square with a marking automaton, it generates

yet another one carrying the read symbol to the left until it meets the �rst coding

automaton with an empty third register. In it and the neighboring third registers to

the left, the coding of the symbol is stored.

19

2. In the next phase analogously to the description in the proof of Lemma 7.3 the codings

of the new sets of state and the new tape symbol are generated in the coding automata.

3. Afterwards the real tape inscription has to be changed according to the just computed

codings. At the left border automaton two automata are started. One moves to the

�rst marking automaton. Its task is to indicate always the tape square which has to

be updated next. The other automaton moves to the right with speed 1=3. Whenever

it reaches the left end of the coding of symbol, it starts an automaton which reads the

coding, moves to the right (with speed 1) to the automaton indicating the square to

be updated, updates it and vanishes.

When the second automaton reaches the right border automaton, the new tape inscrip-

tion is correct and the next phase is started.

The remaining two phases are needed because during the simulation of one step it

may happen that two state sections are melting to one and/or that a state section

splits into two. Hence the number, types and positions of the marking automata have

to be changed (phase 4) and the states of the coding automata have to be changed

accordingly (phase 5).

4. In phase 4 each marking automaton receives together with the new tape symbol the

information, whether it will be a proper or an improper one, and it assumes the corre-

sponding state. After this has been done it may be necessary to delete and/or generate

improper marking automata such that again each proper marking automaton has two

neighboring marking automata and each improper marking automaton has at least one

proper neighboring marking automata. This can be done by an automaton G moving

from e.g. the right border automaton to the left one by doing three steps for each

square: looking ahead to the next square, coming back to the current one (updating

the marking automaton if necessary) and moving forth again to the next square.

5. Finally the states of the coding automata must be adapted to the new positions of the

marking automata. In fact, this \phase" is interleaved with the previous one. Whenever

the automaton G generates, meets, changes or deletes a marking automaton during

phase 4 it sends an automaton to the left with this information and (if appropriate)

with the information whether two state sections have become one or one has become

two. Since the marking automata are visited from right to left and the corresponding

coding automata are positioned in the same order, the cell block where the information

has to be processed can again be indicated by a �nite automaton.

The most di�cult case is the generation of an additional improper marking automaton

and the insertion of the corresponding additional cell block of coding automata between

already existing ones. Of course the latter cannot be shifted to the right immediately.

Instead initially the new cell block shares the squares with old one, but after k + 2

steps they have moved to the right, displacing their neighbors to the right, and so on.

Hence even in this case the time needed is at most proportional to the number of coding

automata.

It is a straightforward exercise to check that for each phase the time and the maximum

number of �nite automata existing simultaneously in a con�guration satisfy the bounds

given in the lemma.

Now we are ready to give the

Proof of Theorem 8.1. Since one can argue similar to the proof of Theorem 7.1 we con�ne

ourselves to the description of a Ptm D witnessing the properness of the inclusion.

For an input word w 2 A+ D works in 4 phases:

1. First D checks whether w has the form uv where u is the coding of an Ptm P with the

correct number of input symbols and v 2 f[]g�f�;]g. If this is not the case, D rejects

w.

20

2. Using the assumptions about s, t and h the values t(jwj) and h(jwj) are computed and

stored in chains of �nite automata. The ends of a tape segment of length s(jwj) are
marked and, starting at the same left end, a tape segment of h(jwj) squares. If it would
be necessary for a �nite automaton to leave the longer segment during the simulation,

w is rejected.

3. Then D tries to generate the shortest coding of the con�guration cw of P .

4. Finally D works like the universal simulator described in the proof of Lemma 8.2

above. In addition before phase 5 it is always checked, whether the number of marking

automata is at most 3h(jwj). If this is not the case, the simulation is stopped and w is

rejected. Parallel to the simulation in each step the counter which has been initialized

with t(jwj) is decremented by 1.

D stops the simulation whenever P reaches a �nal con�guration or the counter has

been decremented to 0. If P would accept w, then D rejects it. If P would reject w

or if the simulation was stopped without reaching a �nal con�guration of P , then D

accepts w.

The rest of the proof is analogous to that one in the previous section.

Finally let us have a look at an implication of a collapse of the time hierarchy of Ca with

space complexity n for Ptm. From Theorems 5.1 and 8.1 one can deduce:

8.3 Corollary. If Ca{ST(n; 2n) = Ca{ST(n; n) then for any b � 2 holds:

Ptm{STPA(n+ 1;
2n= logn

logn
;

n

logn
; b)

$ Ptm{STPA(n+ 1; n2n= logn; n; b)

= Ptm{STPA(n + 1; n; n; b)

If the polynomial time hierarchy for n-space bounded Ca collapses, then there are lan-

guages which cannot be recognized by Ptm in almost exponential time with n= logn pro-

cessors but which can be recognized by Ptm with n processors in linear time | if the tape

alphabet is �xed. And it is because of the last remark, that the statement does not contradict

Lemma 4.2. In fact in its proof we did increase the tape alphabet. Hence it has not been

proved that the polynomial time hierarchy for n-space bounded Ca does not collapse.

9 Summary and Outlook

The processor complexity of Ptm has been used to measure the amount of parallelism in Ca

algorithms. In the extreme cases Ptm degenerate to sequential Turing machines with one

head (no parallelism) or to cellular automata (full parallelism).

It can be proved that an increase of one of time or processor complexity by n" while

keeping the other complexity �xed leads to a strictly greater recognition power of Ptm.

This is so even for a �xed space complexity (of n+ 1).

For the �rst time, a hierarchy of complexity classes could be found within the family of

languages that can be recognized by cellular automata in polynomial time. Though it is a

hierarchy of complexity classes related to Ptm not having maximum processor complexity.

Hence the problem whether the time complexity hierarchy for cellular automata working

in real space collapses or not remains open. However, we take the results obtained as an

indication that this is unlikely.

Another open problem is the question, what it really means to �x the size of tape alphabets

as it has been done in Section 8. The implications of this measure, e.g. concerning the

processor complexity if the algorithm has to be kept within some space bound, are not

obvious.

21

Acknowledgment

The author gratefully acknowledges interesting and helpful discussions with Heinrich Rust

and Roland Vollmar.

References

[1] R. M. Balzer. An 8-state minimal time solution to the �ring squad synchronization

problem. Information and Control, 10:22{42, 1967.

[2] H.-D. Gerken. �Uber Synchronisationsprobleme bei Zellularautomaten. Diplomarbeit,

Technische Universit�at Braunschweig, 1987.

[3] A. Hemmerling. Concentration of multidimensional tape-bounded systems of Turing

automata and cellular spaces. In L. Budach, editor, International Conference on Fun-

damentals of Computation Theory (FCT '79), pages 167{174, Berlin, 1979. Akademie-

Verlag.

[4] A. Hemmerling. Systeme von Turing-Automaten und Zellularr�aume auf rahmbaren

Pseudomustermengen. Journal of Information Processing and Cybernetics EIK, 15:47{

72, 1979.

[5] A. Hemmerling. On the power of cellular parallelism. In Tam�as Legendi, Dennis Parkin-

son, Roland Vollmar, and Gottfried Wolf, editors, Parcella '86, Third International

Workshop on Parallel Processing by Cellular Automata and Arrays, Berlin, September

9-11, pages 210{217, Berlin, 1986. North-Holland/Akademie-Verlag.

[6] F. C. Hennie. One-tape, o�-line Turing machine computations. Information and Control,

8:553{578, 1965.

[7] O. H. Ibarra and T. Jiang. On some open problems concerning the complexity of cellular

arrays. In J. Karhum�aki, H. Maurer, and G. Rozenberg, editors, Results and Trends in

Theoretical Computer Science, number 812 in LNCS, pages 183{196. Springer, 1994.

[8] O. H. Ibarra, S. M. Kim, and S. Moran. Sequential machine characterizations of trellis

and cellular automata and applications. SIAM Journal on Computing, 14:426{447, 1985.

[9] J. Mazoyer. On optimal solutions to the �ring squad synchronization problem. Theo-

retical Computer Science, 168(2):367{404, 1996.

[10] W. J. Paul. On time hierarchies. In Proceedings of the 9th Annual ACM Symposium on

Theory of Computing, pages 218{222, 1977.

[11] S. Ruby and P. Fischer. Translational method and computational complexity. In Pro-

ceedings of the Sixth Annual IEEE Symposium on Swithing Circuit Theory and Logical

Design, pages 173{178, 1965.

[12] H. J. Sto�. k-Band-Simulation von k-Kopf-Turing-Maschinen. Computing, 6:309{317,

1970.

[13] T. Suel. Zur Zustands�anderungskomplexit�at von Zellularautomaten. Diplomarbeit, Tech-

nische Universit�at Braunschweig, 1990.

[14] R. Vollmar. On cellular automata with a �nite number of state changes. Computing,

3:181{191, 1981.

[15] R. Vollmar and Th. Worsch. Modelle der Parallelverarbeitung { eine Einf�uhrung. Teub-

ner, Stuttgart, 1995.

[16] J. Wiedermann. Five new simulation results on Turing machines. Technical report 631,

Academy of Sciences of the Czech Republic, Institute of Computer Science, 1995.

22

[17] J. Wiedermann. Parallel Turing machines. Technical Report RUU-CS-84-11, University

Utrecht, Utrecht, 1984.

[18] J. Wiedermann. Weak parallel machines: a new class of physically feasible parallel

machine models. In I. M. Havel and V. Koubek, editors, MFCS '92, 17th International

Symposium Mathematical Foundations of Computer Science, volume 629 of LNCS, pages

95{111. Springer, 1992.

[19] Th. Worsch. Komplexit�atstheoretische Untersuchungen an myopischen Polyautomaten.

Dissertation, Technische Universit�at Braunschweig, 1991.

[20] Th. Worsch. On parallel Turing machines with multi-head control units. Parallel Com-

puting, to appear, 1997.

23

