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Abstract

Applications like parallel search or discrete event simulation often

assign priority or importance to pieces of work. An e�ective way to ex-

ploit this for parallelization is to use a priority queue data structure for

scheduling the work; but a bottleneck free implementation of parallel

priority queue access by many processors is required to make this ap-

proach scalable. We present simple and portable randomized algorithms

for parallel priority queues on distributed memory machines with fully

distributed storage. Accessing O(n) out ofm elements on an n-processor

network with diameter d requires amortized time O
�
d+ log m

n

�
with

high probability for many network types. On logarithmic diameter net-

works, the algorithms are as fast as the best previously known EREW-

PRAM methods. Implementations demonstrate that the approach is

already useful for medium scale parallelism.

1 Introduction

Load balancing is a key issue for parallelizing irregular problems. The matter is

particularly complicated if the load units have di�erent importance or priority.

If this order is not closely adhered to, other load units may be more di�cult

to process or superuous work may be necessary. One example for priorities

are time-stamps in optimistic discrete event simulation [18, 8]. A sequential
simulator processing events in time stamp order never has to perform a roll

back. For parallel simulation this is not possible. But the closer the simulator
adheres to the time-stamp order, the less likely are rollbacks.

Another important application is parallel (best-�rst) branch-and-bound.
We will use it as an example throughout this paper because the e�ect of di�er-

ent variants of priority queues on the parallel performance is easy to analyze.

The load units are nodes of a combinatorial search tree. The evaluation of a
node N gives a lower bound on the cost of any solution obtainable from N . An

e�cient parallelization can (in general) only be guaranteed if the evaluation
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order of nodes closely adheres to a best �rst order (this will be made precise

in Section 2.3).

Even if the sequential algorithm does not explicitly use prioritization, it

often makes sense to use the sequential evaluation order itself as the priority

for parallel execution. In [12, 13] this turns out to reduce (adverse) speedup

anomalies in particular in presence of strong heuristics.

For all these applications, an attractive approach to parallelization is to

manage a global priority queue for all \open" load units (e.g. events or search

tree nodes). The processors access this data structure to remove one of the

globally best load units, evaluate it and reinsert newly generated load units. In

order to support this, fast parallel access by all processors should be possible.

For large queues it is additionally desirable, to uniformly distribute the queue

elements over the memory of all processors.

The remainder of this paper is structured as follows: Models for the par-

allel machine, the analysis of randomized algorithms, branch-and-bound and

parallel priority queues are introduced in Section 2. Section 3 surveys previous
results. The main body of this paper is Section 4; it describes and analyzes a

randomized synchronous parallel priority queue which can be described quite
concisely and which turns out to be asymptotically very e�cient. These for-
mal results are complemented by Section 5 where we present enhancements
which make the algorithmmore e�ective on contemporary machines with asyn-
chronous behavior, preference for coarse grained communication and a high

penalty for collective operations. Section 6 describes an implementation which
demonstrates the practicability of bottleneck-free priority queues { even on
coarse-grained moderately parallel machines like the IBM-SP. The conclusions
in Section 7 summarize and discuss the results.

2 The Model

We �rst describe our model of a parallel machine in Section 2.1, and then
de�ne measures for randomized algorithms and some tools for their analysis
in Section 2.2. Section 2.3 introduces the branch-and-bound application and
Section 2.4 the notion of parallel priority queue needed in this paper.

2.1 The Parallel Machine

We consider an MIMD computer with n processing elements (PEs) which asyn-

chronously interact by exchanging messages through a network. We start with

algorithms written in a synchronized data parallel style but synchronizations

will not be a bottleneck.
We do not assume a speci�c network topology. Instead, the algorithms are

based on the following set of building blocks (if not otherwise stated we assume
constant message lengths):

Routing Every PE either sends up to k messages to randomly determined

receivers, or receives up to k messages from randomly determined senders
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(k constant).

Broadcast One PE sends a message to all other PEs.

Reduction Given value vi on PE i determine v0 � v1 � � � � � vn�1 for an

associative commutative operator �.

Pre�x For vi and � as above determine v0 � v1 � � � � � vi on PE i.

Sort
1
2 Sort (or rank) a sample of n

1
2 values located on di�erent PEs. (This

can be implemented using a constant number of the above operations,

e.g. [17, Section 2.2.2].)

The analysis can focus on �nding the number of necessary basic opera-

tions. The execution time for a particular network is then easy to determine

by multiplying the counts with the execution times TRouting(n), TBroadcast(n),

TReduction(n), TPre�x(n) and TpSort(n). The results are also easy to translate
into abstract models like LogP [5] or BSP [19] although this may be less ac-

curate for some machines with tuned implementations for the above collective
operations.

In order to simplify the discussion, we de�ne a common upper bound
Tcoll such that

�
TRouting(n); TBroadcast(n); TReduction(n); TPre�x(n); TpSort(n)

	
[

O(log n) � O(Tcoll(n)) with high probability. Note that Tcoll(n) is propor-
tional to the network diameter d for many network types, e.g., r-dimensional

meshes, hypercubes and related constant degree networks (buttery, perfect
shu�e, : : : ) or a combination of a multistage network for routing and a tree
network. All the necessary results can be found in [17].

2.2 Analysis of Randomized Algorithms

The analysis of the randomized algorithms described here is based on the
notion of behavior with high probability. Among the various variants of this

notion we have adopted the one from [11].

De�nition 1. A positive real valued random variable X is in O(f(n)) with
high probability { or X 2 ~O (f(n)) for short { i�

8� > 0 : 9c > 0; n0 > 0 : 8n � n0 : P [X > cf(n)] � n�� ;

i.e., the probability that X exceeds the bound f by more than a constant

factor is polynomially small. In this paper, the variable used to express high

probability is always n { the number of PEs.

One advantage of the high probability approach is that there are quite sim-

ple rules combining results about simpler problems into more complex results.
In this paper we need the following rules which we present without proof be-

cause they are based on quite straightforward elementary probability theory.

(Proofs can be found in [27].)
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Lemma 1. Let X1 2 ~O (f1), : : : , Xk 2 ~O (fk) be random variables (k con-

stant).

kO
i=1

Xi 2 ~O

 
kO

i=1

fi

!
for

O
2
n
max;

X
;
Yo

(1)

Lemma 2. Let fX1; : : : ;Xmg � ~O (f) be a set of identically distributed ran-

dom variables (m at most polynomial in n).

m
max
i=1

Xi 2 ~O (f) (2)

mX
i=1

Xi 2 ~O (mf) (3)

A keystone of many probabilistic proofs are the following Cherno� bounds
which give quite tight bounds on the probability that the sum of 0=1-random

variables, i.e., a binomial distribution, deviates from the expected value by
some factor.

Lemma 3 (Cherno� bounds). Let the random variable X represent the num-
ber of heads after n independent ips of a loaded coin where the probability for
a head is p. Then [17]:

P [X � (1 � �)np] � e��
2np=3 for 0 < � < 1 (4)

P [X � (1 + �)np] � e��
2np=2 for 0 < � < 1 (5)

P [X � �np] � e(1�log�)�np for � > 1 (6)

(Throughout this paper log denotes the natural logarithm.)

2.3 Branch-and-Bound

We adopt the model of Karp and Zhang [14]. Let H denote the search tree
with a set of nodes V . Node degrees are bounded by a constant. All node

costs c(v) are assumed to be di�erent and c(v) is monotonously increasing
on any path from the root to a leaf. (When we compare nodes, we actually

compare their costs.) We are looking for the leaf v� with minimal cost. Let
~V = fv 2 V : v � v�g and let ~H be the subtree of H containing the nodes ~V .
Let m = j~V j and h the length of the longest root-leaf path in ~H. Clearly ~V is a

set of nodes which have to be expanded by any algorithm which wants to �nd
v� together with a proof that there cannot be better solutions. We do not want

to look at very small problems and therefore assume that m 2 
(n log n).
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var Q = froot nodeg : Heap (* frontier set *)

var c� =1 (* best solution so far *)

while Q 6= ; do
select some v 2 Q and remove it

if c(v) < c� then

if v is a leaf node then process new solution; c� := c(v)

else insert successors of v into Q

Figure 1: Sequential branch-and-bound.

Most branch-and-bound algorithms can be viewed as a variant of the ab-

stract sequential algorithm depicted in Figure 1. The processor cyclically se-

lects a node v from the frontier set Q and expands it. A node with a higher

value than the best one investigated so far cannot lead to a solution and is

pruned. The remaining inner nodes are expanded and their successors are
inserted into the frontier set. Leaf nodes are solution candidates. When Q

becomes empty, we know that the best leaf node found so far is the solu-
tion. Expanding a node (i.e. generating its successors) takes time Tx; all other
operations on nodes, node values and solutions take unit time.

If the best �rst selection strategy is used, i.e., Q is organized as a priority
queue, the algorithm expands the (optimal) number of m nodes. Selection and

insertion can be done in time O(logm), e.g., by using a D-heap1 implementa-
tion of Q. So, for sequential best �rst branch-and-bound we get the execution
time

Tseq 2 m(Tx +O(logm)) :

2.4 Parallel Priority Queues

The semantics of a sequential priority queue are quite simple: A set of ele-
ments with totally ordered keys is managed. The operation insert inserts an
element. The operation deleteMin deletes the element with the smallest key
and returns this element. For a parallel priority queue this is in general more

di�cult. Motivated by the application areas mentioned in the introduction,

we concentrate on applications where there may be up to n deleteMin request
and a possibly larger number of insert requests at once. We also exploit the

fact that it does not really matter which of the smallest elements is assigned
to which requestor. (For simplicity assume that all key values in the queue are

di�erent.2) We start with a simple data parallel variant and refer to Section 5.3

for a more exible asynchronous semantics:

insert*: Each PE inserts up to k elements (k constant).

1There more sophisticated data structures for priority queues which only require constant

time for some operations. However, for applications with about the same number of insert

and deleteMin operations, these variants imply no asymptotic improvement.
2If necessary, this can be enforced transparently by appending a unique element identi�er

to the least signi�cant bits of a key.
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deleteMin*: The n smallest elements are retrieved and each PE gets exactly

one of the elements. In order to avoid tedious discussions of special cases

we assume throughout this paper that deleting elements from empty

queues returns dummy elements with key1.

For example, using these operations we get the synchronous parallel global

best �rst branch-and-bound algorithm described in [14] if we replace Q in

Algorithm 1 by a parallel priority queue. The parallel algorithm expands

n nodes in each iteration and the number of iterations required lies between

max(m
n
; h) and m

n
+h, i.e., in �

�
m
n
+ h
�
: The lower bound is easy to understand

since every branch-and-bound algorithm must expand at least m nodes and

has a sequential component of h node expansions. For the upper bound, if

jQ \ ~V j � n, all PEs get nodes from ~H. In all other iterations, the maximum

path length to a leaf in ~H is reduced.

3 Approaches to Parallelization

Perhaps the simplest implementation of a parallel priority queue is to use
a centralized server PE which manages a sequential priority queue. In this

case the operations insert* and deleteMin* require time � (n logm) which
is quite slow for large n. Also the memory of the server PE limits the size of
the queue.

In principle this can be slightly improved using algorithms which are able
to pipeline up to logm requests in such a way that an individual access takes
constant time (e.g., [23]) but in practice this saving may be more than o�set
by a worsening of the communication bottleneck at the access point to the

queue [24].

More scalable algorithms exploit the fact that our de�nition of parallel
priority queue calls for a method to quickly remove a rather large number of
elements at once. One approach is to use a generalized \k-bandwidth heap"
which contains multiple elements in each heap node and to substitute the com-
pare and exchange operations of the usual heap algorithm by parallel sorting

and merging operations. n insertions and deletions can be performed in time
O(logm) on EREW PRAMs [7] and on pipelined hypercubes [6]. (This algo-

rithm requires newly inserted elements to be sorted, so we must add another

O(log n log log n) or ~O (log n) term for the sorting operation.) The parallel sort-
ing and merging routines required by these algorithms are slower on weaker
models of parallel computation. On single-ported hypercubes and meshes,

access times of O(logm log n) respectively O
�p

n logm
�
have been achieved

[10, 23].

A radical approach is to relax the priority queue semantics and to distribute

the elements over more or less independent local queues which exchange ele-
ments in order to approximate the behavior of a global priority queue. For

example, in the algorithm of Karp and Zhang [14, 22] newly inserted elements

are sent to randomly selected PEs while deleteMin requests simply access the
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locally present queue. For branch-and-bound this only increases the number

of expanded nodes by a constant factor (with high probability).

The starting point for this paper is to use Karp and Zhang's approach of

local queues with random placement of elements for the insert* operation

but to extract the globally best elements for a deleteMin* operation. It turns

out that instead of parallel sorting and merging we now only need random

routing and parallel selection. The basic approach has been independently

developed in [28] and [23]. These simple versions are already asymptotically

optimal on mesh connected machines. In [26] improvements for logarithmic

diameter networks like butteries are introduced by avoiding work imbalance

due to local queue access and by modifying an e�cient selection algorithm to

exploit that the elements are randomly distributed. The present paper further

re�nes this approach.

The same selection algorithm is also used in [9, 1] for accessing k � n

priority queue elements in parallel. These algorithms can be considered a

combination of k-bandwidth heaps and random placement.

4 An E�cient Algorithm and its Analysis

We now describe and analyze an algorithm for synchronous parallel access to
priority queues. The algorithm is designed to combine simplicity and analyz-
ability with asymptotic e�ciency. For a practical implementation some of the
modi�cations described in Section 5 should be used.

The description starts with an overview of the basic algorithm in Sec-
tion 4.1. We then elaborate probabilistic bounds on the sizes of some interme-
diate data structures in Section 4.2 which play a key role in the analysis of the
algorithm. After investigating a nontrivial subroutine in Section 4.3 we can
�nally integrate the pieces into an analysis of the full algorithm in Section 4.4.

4.1 The Basic Algorithm

Figure 2 outlines the algorithms for insert* and deleteMin*. Every PE holds

a local queue stored in two parts; a sorted array Q0 which acts as a bu�er for

fast access to the smallest elements, and a heap Q1 for the remaining elements.
Let the ��-accent denote the global union operation, e.g., �Q0 denotes the union

of all bu�ers. Every log n calls of insert* (we call this a cycle), the bu�er Q0

is emptied into Q1. In Section 4.2 we show that this measure is su�cient to

keep Q0 small (jQ0j 2 ~O (log n)) most of the time.

The extraction of the n smallest elements proceeds in two phases. First,

elements are moved from Q1 to Q0 until the smallest n elements must be in
the bu�ers. This can be checked by counting the bu�er elements smaller than
the minimum element in �Q1. Then, a distributed algorithm to be described in

Section 4.3 �nds the n smallest elements in �Q0. These can be enumerated using

a pre�x operation. Finally, element number j is returned on PE j. Figure 3

sketches an example for the ow of data during the execution of deleteMin*.



8

var i: Integer (* call counter *)

var Q0: Sorted Array (* bu�er *)

var Q1: Heap (* main queue *)

procedure insert*(e: Array of Element)

send each ei to a randomly selected PE

insert received elements into Q0

i := i+ 1; if i � 0 mod log n then Q1 := Q0 [Q1; Q0 := ; �

function deleteMin*() : Element

while jfe 2 �Q0 : e < min �Q1gj < n do Q0 := Q0 [ fdeleteMin(Q1)g
extract the n smallest elements in �Q0

enumerate the smallest elements e0, : : : , en�1
send ei to PE i and return it

Figure 2: Parallel priority queue access.

Q
0

Q1

PE: 1 2 3 4

Filter n best

Assign to PEs

Figure 3: Example for extracting the n = 4 best elements.

4.2 Queue Sizes

Lemma 4. The maximum number of new elements to be inserted into Q0 on

any PE after a call of insert* is in ~O
�

logn
log logn

�
.

Proof. Let Xi denote the number of new elements to be inserted on PE i.
Since the number of elements inserted by each PE is bounded by a constant,

there is a constant k such that kn is a bound for the overall number of new
elements. The placements of elements can be viewed as independent Bernoulli

experiments with success probability 1

n
. (We count the placement of an element

at PE i as a success). Therefore, we can apply the Cherno� bound (6): Let c
be some constant we are free to choose.

P

�
Xi �

c log n

log log n

�
� exp

��
1 � log

c log n

k log log n

�
c log n

log log n

�

= n
�c(1� log log log n+log(k=c)+1

log log n ) � n��
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for su�ciently large n and an appropriate choice of c. Using the maximum

rule (2) we conclude that maxn�1i=0 Xi is also in ~O
�

logn
log logn

�
.

Using similar techniques we can also derive the following bounds:

Lemma 5. The maximum number of new elements to be inserted into Q0 on

any PE during a cycle is in ~O (log n).

Lemma 6. The maximum number of elements moved from Q1 to Q0 on any

PE during log n calls to deleteMin* is in ~O (log n).

Lemma 7. At any moment, globalMaxjQ0j 2 ~O (log n).

While the above lemmata are important to bound the running time of

queue access, the following result establishes that the elements are very evenly

distributed over the local memories.

Lemma 8. At any moment, globalMaxjQ1j � m
n
+ ~O

�p
m
n
log n+ log n

�
.

Proofs of Lemmata 5{8. Similar to the proof of Lemma 4. For Lemma 5 we

change the number of Bernoulli trials to kn log n. For Lemma 6 observe that
during log n calls the n log n globally smallest elements are removed. In the
worst case they all have to be extracted from �Q1. But since they have been
placed randomly, no PE will have more than ~O (log n) of them. Lemma 7 is
a consequence of the Lemmata 5 and 6, and of the summation rule (1). For

m 2 O(n log n) Lemma 8 can also be proved in an analogous way. Otherwise,
let Xi denote the number of elements in Q1 at PE i. We can use the Cherno�
bound (5) to see that

P
h
Xi �

m

n
+
p
2�
p

m
n
log n

i
= P

h
Xi �

�
1 +

p
2� n

m
log n

� m
n

i
� e�

2�n log n

2m
�m
n

= n�� for su�ciently large n. The remainder of the argument is again analo-
gous to the proof of Lemma 4.

4.3 Extracting Elements

Assume we want to remove the n0 smallest elements from �Q0. (In our case
n0 = n.) Figure 4 lines out an e�cient probabilistic algorithm for doing this.
We maintain a candidate set Q0 (initiallyQ0) and a set of elementsQout known

to belong to the smallest ones. m0 is the size of �Q0. The algorithm is related

to the well known sequential quicksort-like median selection algorithm [4, Sec-

tion 10.2]. However, instead of choosing a single pivot for partitioning the
remaining candidates, we try to partition Q0 into three parts; elements which
are certain to belong to the smallest elements, those which are certainly not

among the smallest ones, and a (hopefully small) set of remaining candidates

for the next iteration. (Very similar algorithms are also described in [25, 21].)

First, a random sample of size n
1
2 is selected. (It simpli�es the analysis to

assume that this is done with replacement, i.e., elements may be selected for
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multiple samples). We then rank the sample elements and choose two pivots

u and l, spaced by n
1
4
+� from an estimate for an element with rank close to

n0. 0 < � < 1

4
is a small constant we are free to choose. We argue that with

high probability at least n0 elements will be smaller than u such that elements

larger than u can be excluded from consideration and that there are no more

than n0 elements smaller than l such that those that are smaller can savely be

selected. This randomized partitioning process is repeated until a trivial case

occurs.

Lemma 9. There is a choice of � > 0 such that the number of partitioning

iterations is in ~O (1).

We omit the proof which is again based on Cherno� bounds and on the

fact that for an appropriate choice of � the number of elements between l and

u is small with high probability. Very similar arguments can also be found in

[25, 21].

Lemma 10. Extracting the n smallest elements from Q0 takes time ~O (Tcoll).

Proof. An iteration involves the following communication operations:

� A pre�x sum for enumerating the elements in Q0.

� Routing randomly selected samples to di�erent PEs. Since the elements

have been placed randomly, the samples will be evenly distributed over
the PEs such that routing them is possible in time ~O (Tcoll).

forall PEs dopar synchronously
Q0 := Q0 (* solution candidates *)

m0 := j �Q0j (* number of remaining candidates *)
Qout := ; (* elements already found *)

while n0 > 0 ^m0 > n
1
2 ^m0 > n0 do

randomly choose n
1
2 samples from �Q0 with replacement

let si denote the the i-th smallest sample (* sort them *)

(si = �1 for i � 0, si =1 for i > n
1
2 )

u := s n0

m0
n
1
2+n

1
4
+� (* upper pivot *)

l := s n0

m0
n
1
2�n

1
4
+� (* lower pivot *)

if jfv 2 �Q0 : v < ugj � n0 then Q0 := Q0 n fv 2 Q0 : v � ug
if jfv 2 �Q0 : v � lgj � n0 then Q0 := Q0 n fv 2 Q0 : v � lg

Qout := Qout [ fv 2 Q0 : v � lg; n0 := n0 � jfv 2 �Q0 : v � lgj�
m0 := j �Q0j

if m0 � n0 then Qout := Qout [Q0

else if n0 > 0 then (* m0 � n
1
2 ; sorting is easy now *)

sort �Q0 and insert the n0 smallest elements into their local Qout

Figure 4: Finding the n smallest elements from �Q0.
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� Sorting the samples.

� A constant number of reductions and broadcasts for counting elements

and disseminating pivots.

All other operations are performed locally. By representing Q0 and Qout as

two indices into the sorted array Q0, the local operations can be performed in

time O(log globalMaxjQ0j) � O(logm0) � O(log n) using binary search. All

operations inside the loop can be performed in time ~O (Tcoll + log n) � ~O (Tcoll).

The same is true for the operations outside the loop. Since the number of

iterations is in ~O (1) we can conclude that the total time for selection is in
~O (Tcoll + log n) � ~O (Tcoll) (using the product rule (1)).

4.4 Putting the Pieces Together

We now have all the required results to come back to the analysis of Algo-

rithm 2.

Theorem 1. A call to insert* or deleteMin* requires amortized time in
~O
�
Tcoll + log m

n

�
(amortized over log n calls).

Proof. We look at the total execution time for log n calls of both functions.
Since globalMaxjQ0j 2 ~O (log n) (Lemma 5), emptying Q0 into Q1 takes time
~O
�
log m

n
log n

�
. Due to Lemma 6, there are only ~O (log n) iterations of the

while loop (summed over log n calls) for moving elements from Q1 to Q0

each of which involves two reductions and one priority queue access (time
O
�
Tcoll + log m

n

�
).

The remaining operations have to be counted for each call (i.e. log n times):
Extracting the n smallest elements takes time ~O (Tcoll) (Lemma 10), and as-
signing these elements to the PEs can be done using a pre�x sum and a routing

operation (time O(Tcoll)). ~O
�

logn
log logn

�
new elements (for each call of insert*)

(Lemma 4) can be inserted into Q0 in time ~O (log n) by �rst sorting them (e.g.
by heap-sort) and then merging them with Q0. Summing all this together
(Relations (1,3)) yields time ~O

��
Tcoll+ log m

n

�
log n

�
.

This result can for example be used to devise a parallel branch-and-bound

algorithm which is provably e�cient if Tx 2 

�
Tcoll+

m
n

�
:

Theorem 2. The parallel execution time of synchronous best �rst branch-and-

bound using algorithm 2 is

Tpar 2
�m
n
+ h
��

Tx + ~O
�
Tcoll + log

m

n

��
:

Proof. m
n
+h iterations are su�cient to complete the search. Form polynomial

in n the theorem is an immediate consequence of Theorem 1 and the summation

rule (3). Else, we must additionally exploit that the execution times of di�erent
cycles are independent of each other because a cycle deterministically removes

the n log n smallest elements without moving the other elements. Therefore,
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with high probability, only a polynomially small fraction of the cycles will

require a time exceeding the limit from Theorem 1. These \slow" cycles cannot

signi�cantly change the total execution time because the worst case time for a

cycle involves only a polynomial number of operations.

5 Re�nements

Algorithm 2 is mainly designed for simplicity and analyzability. We now de-

scribe improvements which might be useful for a real implementation. After

introducing some simple enhancements, in Section 5.1 we show how the number

of communication operations can be reduced at the cost of increasing message

sizes in Section 5.2, and we explain how an asynchronous machine can be used

more e�ciently in Section 5.3. In Section 5.4 we line out how the algorithm

can be implemented e�ciently on shared memory machines.

5.1 Simple Enhancements

As a �rst improvement note that the loop in Algorithm 2

while jfv 2 �Q0 : v < min �Q1gj < n do Q0 := Q0 [ fdeleteMin(Q1)g

yields two kinds of information that can be used to speed up the subsequent
extraction process. While the condition is true, all elements smaller than

min �Q1 can savely be selected. When it is false, elements larger than min �Q1

can be excluded from consideration for this iteration.

Queue maintenance costs can be reduced by using the leftist tree variant
for representing Q1 and Q0 [15]. Emptying Q0 into Q1 can then be performed
in time O(logm) by merging the two trees. In addition, those elements which

are immediately fetched back into Q1 when deleteMin is called after the end
of a cycle, can be retrieved in constant time using this representation.

Furthermore, if sending elements involves long messages we will only put
the key and a reference to the element in Q. This reduces the number of
times, an element is moved from two to one. In many branch-and-bound

applications, most inserted elements are never actually expanded and do not

need to be moved at all.

5.2 Using Coarser Grained Communication

Algorithm 2 employs a relatively large number of �ne-grained communication
operations. On many contemporary machines, it is better to use more coarse

grained but fewer operations. Starting with some simple measures to decrease
the number of collective operations we go on to a new very simple algorithms

for parallel selection and �nally look at the consequences of accessing much

more than n elements at once.
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Coalescing Loop Iterations

We can coalesce several iterations of the while loop for moving elements from

Q1 to Q0 into two vector operations for minimumdetermination and counting.

At the cost of increasing the candidate set for selection, we can even com-

pletely eliminate the above while loop: Since the n best elements are randomly

placed, we know that considering the �rst O
�

logn
log logn

�
elements of Q0 is suf-

�cient to catch all the n best elements with high probability. The rare cases

when this is insu�cient can be caught later on by checking on each PE wether

the result of the selection routine is smaller than the smallest remaining local

element. In this case an exception can be raised, triggering a fallback imple-

mentation which can be arbitrarily slow if it is needed su�ciently rarely. For

example, in our implementation we looked at the min(n; 2 logn
log logn

+ 10) locally

smallest elements and using the Cherno� bound (6) it is easy to show that the

probability of a bu�er overow on any PE is below 2 � 10�9 for all n.
Similarly, the number of iterations of the selection procedure 4 can be

reduced by sorting a larger sample or using more than two pivots at a time.
A particularly interesting scheme for choosing pivots is to use ui = s n0

m0
n
1
2+2i

,

li = s n0

m0
n
1
2�2i (i = 1; : : : ; log n=2). The number of pivots is quite moderate and

the pivots lie very dense around the estimate for the n0-th smallest element.
Also, there are no tuning parameters (like �) which we would have to adapt
for maximal performance.

Selection with a Single Reduction

For moderate n or machines with very coarse grained communication charac-
teristics we can use a very simple approach to perform the selection with a
single collective communication: Perform a reduction over Q0 using merge as
the associative commutative operator. The root PE will then receive �Q0 in

sorted order and simply needs to broadcast the n-th smallest element.

This rather crude approach can be improved by once again exploiting the

fact that the elements are allocated randomly. It is rather improbable that
the n-th smallest element is ever very far away from the n0-th position in
a subsequence based on the data from n0 PEs. Therefore, we can use the

function prunedMerge depicted in Figure 5. It is described for the general

case of selecting the k-th smallest out of m randomly allocated and locally
sorted elements based on sequences of size 2k0 + 1.

The function processes two 5-tuples (sj; xj;�j; yj; n
0
j) (j 2 f0; 1g) contain-

ing the sequences to be merged, the largest element omitted as too small, the

number of elements omitted as too small, the smallest element omitted as too

large and the number of processors from which the data has been collected.
The two sequences are merged and the position i of the k-th smallest element is

estimated based on the available information. If this information comprises all

n processors (at the root of the reduction tree) s[i] will be the correct answer

if x � s[i] � y.
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function select(k, m, k0, s)

(s; x;�; y; n0) := globalReduce(prunedMerge(k, m, k0, : : : ),

prune(k, m, k0, (s;�1; 0;1; 1)))

if 0 � k �� � 2k0 + 1 ^ x � s[i] � y then return s[k ��]

else return slowSelect(k, m, s)

function prunedMerge(k, m, k0, (s1; x1;�1; y1; n
0
1), (s2; x2;�2; y2; n

0
2))

return prune(k, m, k0,

(merge(s1, s2), max(x1; x2), �1 +�2, min(y1; y2), n
0
1 + n02))

function prune(k, m, k0, (s; x;�; y; n0))

i := round
�
k n0

n

�
��

: : : (* omitted cases where not both sides of the sequence need pruning *) : : :

return (s[i� k0; : : : ; i+ k0], max(x; s[i� k0 � 1]), � + i� k0,

min(y; s[i+ k0 + 1]), n0)

Figure 5: Selection using a merge operator which throws away the largest and
smallest elements.

The following lemma answers the question how large the sequence size k0

needs to be in order to make a successful selection highly probable. (We can

use a slow fallback implementation if the selection fails.)

Lemma 11. It su�ces to choose k0 2 O
�
max(

p
k log n; log n)

�
in order to

make selection with pruned merge succeed with high probability.

Proof. Let e1, : : : , em denote the considered element. Let X denote the num-
ber of elements ei � ek allocated to the n0 processors under consideration and
consider some � > 0. If the selection fails, there must be at least one call to

prune where s still contains ek but at a position where it is thrown away. We
now prove that the probability for this event is polynomially small for any of
the 2n � 1 calls to prune { regardless of the order in which the reduction is
performed. Hence, the total failure probability is also polynomially small.

Case 1: ek is thrown away as too small. This implies that X < k n0

n
� k0 =

(1 � nk0

n0k
)k n0

n
). The probability of this event can be bounded using Cherno�

bound (4):

P

�
X < k

n0

n
� k0

�
� e

�n2k02kn0

3n02k2n = n
� k02n

3kn0 log n � n��

if k02n
3kn0 logn

� �. This is equivalent to k0 �
q
3�k n0

n
log n � p

3�k log n.

Case 2: ek is thrown away as too large.

Case 2.1: If k0 < k n0

n
we can use Cherno� bound (5) in a way analogous to

Case 1.
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Case 2.2: If k0 � k n0

n
but n0 � 2�n logn

�2k
for some � < 1 we can also use

bound (5) by estimating P
�
X > k n0

n
+ k0

�
� P

�
X > (1 + �)k n0

n

�
.

Case 2.3: Otherwise, a rather crude estimation using bound (6) su�ces.

P

�
X > k

n0

n
+ k0

�
� P [X > k0] � e

�
1�log k0n

n0k

�
k0

� n��

for
�
1 � log k0n

n0k

�
k0 � � log n. For n0 < 2�n logn

�2k
it su�ces to have�

log k0�2

2� logn
� 1
�
k0 � � log n and this is true if k0 � 2e2�

�2
log n 2 O(log n).

Lemma 11 can be applied to the selection problem in deleteMin*by setting

k = n. Note that for the case that we apply selection to the O
�

logn
log logn

�
best

elements on each PE these are not placed independently. But the entire set of

m elements was placed independently and the n best elements are among the

considered elements with high probability, so we will get the same result.

Corollary 1. Selecting the best n elements in deleteMin* can be done using
a single reduction with input data of length O

�p
n log n

�
.

This is asymptotically not as e�cient as the more complicated algorithms
but for many practical machines it will be faster. It is also a considerable
improvement over the unpruned merge.

Batched Operation

The number of communications per element can be further decreased by in-

serting and deleting larger batches of elements at once. This is quite straight-
forward for deleteMin*. In [1] it is proved, that for inserting k = 
(n(log n)2)
elements it is not necessary to place them completely independently. Rather,
it su�ces to randomly put them into 
 (log n) \containers" and to place the
containers randomly. In addition, by using a generalized \ k

n
-bandwidth" heap

which stores k
n
elements in every node, the local queue access can be made

more e�cient [1, 9].

For the class of applications outlined in the introduction, using large batches
is equivalent to emulating k logical PEs on each physical PE. This only works
if there is su�cient parallelism in the problem instance. Furthermore, the re-

quired work can increase. For example, for branch-and-bound the number of

expanded nodes can grow from �
�
m
n
+ h
�
to �

�
m
n
+ kh

�
.

5.3 Asynchronous Operation

For many applications of the type mentioned in the introduction, synchronized

parallel calls of deleteMin* are not quite adequate. The time required to
process a load unit will vary. Therefore it would be wasteful to wait until all

n PEs have completed their work before a new queue access is started. One
way to solve this problem is to separate priority queue server threads from

client threads doing the real work. The server threads could start a collective
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queue access whenever �n client threads have sent a request. Depending on

the machine architecture, the server threads could run on the same PE as the

clients, on communication coprocessors or on a smaller set of dedicated server

PEs.

However, the above solution implies a delicate tradeo� between long waiting

times for large � and high communication overhead for small �. It is more

elegant to always have some of the smallest queue elements in reserve which can

be retrieved completely asynchronously using a distributed FIFO queue. Such

a data structure can be implemented in a bottleneck-free way using parallel

counting algorithms (e.g. [30]). When (or even before) this reserve is exhausted

a new batch of (say n) elements is retrieved.

A price we pay for this approach is that the elements in the reserve might

already be outdated when they are retrieved since smaller elements have been

inserted in the meantime. But a closer consideration shows that this is not

really a new problem. No priority queue which allows parallel insertion can

guarantee that every element passed to insert will instantaneously become
visible everywhere. Infact, if we use a centralized queue, it may take time in

 (n logm) before an element is inserted. This is much more than the delay
incurred by holding a reserve. The faster our routines, the better can we
approximate the behavior of a sequential algorithm.

The maximum time it takes until new elements become visible can be
bounded by periodically invalidating and recomputing the reserve. Invalidation
need not be triggered as long as no elements smaller than the largest reserve
element are inserted. Invalidation can be triggered ealier then prescribed by the
timeout when more than a certain number of elements smaller than reserve

elements have been inserted. Since such a trigger point need not be 100 %
accurate we can also use approximated triggers as described in [27] which
incur very low overhead.

Asynchronous access implies a number of additional bene�ts:

� The total work required for inserting or deleting O(n) elements is in
O
�
n log m

n

�
so form not too large, most server threads spend most of their

time waiting for the completion of collective communication primitives.
This time can be used by client threads.

� We do not need to determine exactly the n-th smallest element en during
selection since the size of the reserve is exible. So we could break the

loop in Algorithm 4 after a single iteration or invent a variant of Algo-
rithm 5 which does not keep track of all elements around the estimated

position of en but only of a sample which gets the sparser the farther

away it is from the estimated position.

5.4 Exploiting Shared Memory

In the architecture of parallel computers there is a trend to support shared

memory (with nonuniform memory access costs (NUMA)) even for quite large

n. Our algorithm does not require shared memory but it can pro�t from
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the fact that remote memory accesses are often much faster than sending

and receiving small messages.3 In particular, delivery of result elements in

the deleteMin* operation can be replaced by a single remote write. The

collective communications can also pro�t if there is an e�cient way to wait

for the arrival of a remote write. (Busy waiting is one possibility but this

is expensive for the asynchronous algorithms of Section 5.3.) The insert*

operation is more complicated because multiple elements can queue up at a

PE; but some machines support an e�cient fetch-and-increment operation

which can be used on the element counter of the target PE. Hardware support

for this operation is also very useful for maintaining the FIFO queue required

by the asynchronous algorithm.

6 Implementation

In order to get an idea how practical the bottleneck free priority queues are
on contemporary machines, we have implemented the algorithm in a portable
way using the library MPI (Message Passing Interface [31]). Since a quite
large message startup overhead is common, it was clear from the start that
the cost of local queue access was not so important. Also, the size of the

queue elementswas bound to have little inuence (besides limiting the maximal
size of the queue). So, we used integer keys and integer data �elds for the
measurements. On the other hand, the number of communication operations
had to be minimized. Therefore, a simpli�ed algorithm was implementedwhich
keeps the size of Q0 below min(n; 2 logn

log logn
+10) all the time. Furthermore, the

reduction based selection method from Section 5.2 was used. So a deleteMin-
operation boils down to one call of MPI Reduce and one call of MPI Bcast for

the selection, a call to MPI Scan for enumerating the best elements, ~O
�

logn
log logn

�
sends for delivering the results and a single MPI Recv. The complete source
code is available electronically at http://liinwww.ira.uka.de/~sanders/

ppq/.

Figure 6 shows the median4 execution times for one collective call to delete-
Min* plus one call to insert* inserting n elements into a queue of size 224

distributed over n processors of the IBM-SP at the University of Karlsruhe.5

A centralized implementation employing a dedicated server processor receiving

3Partly, because there are few commercial machines with su�cient hardware support for

message passing. (With the notable exception of the shared memory machine Cray T3E

[29].)
4Unfortunately we cannot give the average execution time since at the time of the mea-

surements the machine was operated in such a way that some huge delays due to external

reasons occured. But the results on the T3D show that the median is within one percent of

the average value under normal conditions.
5I would like to thank the computing centre and its sta� for making available 64 \Wide

Nodes" (with 77 MHz clock) connected by a \High Performance Switch 3". This required a

special setup wich could not be repeated for the measurements of the centralized algorithm.

But for n not too small, the measured data is modeled quite reliably by a linear function in

n.
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Figure 6: Median execution times for inserting plus extracting n elements on
an IBM-SP with n nodes (based on 1000 repetitions).

requests using MPI Waitsome needs about 93 �s per queue access for large n.
So, for more than about 40 PEs the new algorithm is faster. More than half of
the execution time is consumed by the reduction and scan operations. Most

of the rest is due to the other communication operations. A local queue access
takes about 7 �s for m = 224, so it does not inuence the execution time very
much.

Both MPI-programs were also executed on a Cray T3D. For n = 256 and
m = 224 the parallel priority queue needs an average of 3:73 ms for inserting
plus deleting n elements. This is about 7:5 times faster than the centralized
code (with m = 221) which needs about 110 �s for inserting plus deleting one
element, (i.e. 28.16 ms for 256 elements). We did not have the opportunity

to run a complete measurement series on the T3D but even if the parallel

program would not be faster for smaller n, the break-even point where the
parallel algorithm is faster than a centralized queue would lie below 34 on the
T3D. The histogram in Figure 7 for the run times of 1000 calls to insert*

plus deleteMin* demonstrates that substantial variations are very rare.

7 Conclusions

Parallel priority queues based on random placement of elements and parallel
selection are very e�cient for parallel access by all processors as it is needed for

load balancing applications. On powerful models of computation like EREW-

PRAMs the algorithm is as e�cient as previously known but more complex
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Figure 7: Execution time distribution for an insert*-deleteMin* call on a
Cray T3D with n = 256, m = 224.

algorithms. More importantly the algorithm also performs well on networks
of processors. Both insert* and deleteMin* of n out of m elements can
be performed in time ~O

�
d + log m

n

�
on most usual networks with n PEs and

diameter d. In particular, on (single ported) hypercubes; constant degree
hypercubic networks like butteries, CCC, perfect shu�e or DeBruijn; and
combinations of multistage networks with tree networks, the execution time is
in ~O

�
log n + log m

n

�
which improves all previously known algorithms.

The algorithm is also of practical interest since it outperforms the central-
ized approach for n > 40 on mainstream parallel computers. Previous imple-

mentations could only clearly demonstrate this for batched access to k � n

elements (using a similar approach). In part, this success is due to the new
selection algorithm based on a single reduction.

Nevertheless, the asymptotically more e�cient selection algorithm from

Section 4.3 is of independent interest since with its execution time in ~O (Tcoll)
for randomly placed data it beats the worst case lower bound for deterministic

algorithms given in [20].

Future Work

An e�cient and portable implementation of asynchronous parallel priority

queues raises some interesting questions. On the implementation side, there is
some hope that in the near future, e�cient implementations of MPI combined

with POSIX Threads will be available. This might be the right platform for
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developing algorithms along the lines of Section 5.3.

An interesting topic that was not relevant for the present implementation

is the question which sequential priority queues should be used as a basis

[16, 2]. The local queue implementation might become relevant if more e�-

cient communication interfaces are used (which are currently only available as

proprietary systems on a few machines.) This might in turn imply a larger

advantage of parallel priority queues over centralized ones.

The usage pattern and even the type of operations used for a parallel

priority data structure very much depends on the underlying application. For

example, branch-and-cut (e.g. [32]) can be considered a variant of branch-and-

bound where most nodes have degree one and it is more e�cient to perform

the expansion of a child node on the PE of the parent. In this context an

operation insertAndDeleteMinIfBetter would be useful that either returns

a node better than the child node and inserts the child node or returns the

child node without changing the queue. Other applications like discrete event

simulation could be investigated. Also, the question whether batched access
to many elements is useful can only be answered for a particular application.
In other cases, the combination of priority queues and a speci�c application

will only be a starting point for developing a new integrated algorithm (e.g.
[3]).
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