

1

An Architecture for Reusing
Problem-Solving Components

Dieter Fensel

1

 and V. Richard Benjamins

2

1

 University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany, dieter.fensel@aifb.uni-karlsruhe.de,
http://www.aifb.uni-karlsruhe.de/WBS/dfe

2

 Dept. of Social Science Informatics (SWI), University of Amsterdam, Roetersstraat 15, 1018 WB Amsterdam,
The Netherlands, richard@swi.psy.uva.nl, http://www.swi.psy.uva.nl/usr/richard/home.html

Abstract.

 Developing software by

selecting

,

adapting

,

combining

, and

integrating

 existing components instead of starting the system development
process from scratch has become a key factor in economic software development.
However, such a development process has to deal with four problems: First,
components must be selected. Second, components must be adapted because they
neither fit precisely the task that should be performed nor do they necessarily fit
well to other selected components. Third, components must be combined and
their interaction must be established. Fourth, it may be necessary to decompose
complex problems into smaller subtasks for which components can be found. In
this case, a general system frame must be established that enables to form an
integrated systems out of separate components. In this paper, we present our
means to deal with these problems:

broker

,

adapter

,

connectors

, and

task
structures

. Although we discuss our approach in the context of problem-solving
methods, some concepts are also applicable to software components in general.

1 INTRODUCTION

Knowledge-based systems

 are computer systems that deal with complex problems by making
use of knowledge. This knowledge is mainly represented declaratively rather than encoded
using complex algorithms. However, human experts can exploit knowledge about the
dynamics of the problem-solving

process

 and such knowledge is required to enable problem-
solving in practice and not only in principle. Making this knowledge explicit and regarding it
as an important part of the entire knowledge contained by a knowledge-based system is the
rationale that underlies

problem-solving methods

. Problem-solving methods describe this
control knowledge independently from the application domain thus enabling reuse of this
knowledge for different domains and applications. It describes which reasoning steps and
which types of knowledge are needed to perform a task. Problem-solving methods are used in
a number of ways (see e.g. [Chandrasekaran et al., 1992]): as a guideline for acquiring
problem-solving knowledge from an expert, as a guideline for decomposing complex tasks
into subtasks, as a description of the essence of the reasoning process of the expert and
knowledge-based system, as a skeletal description of the design model of the knowledge-
based system, and as a means to enable flexible reasoning by selecting methods during
problem solving. Meanwhile, problem-solving methods are used by nearly all frameworks for
knowledge engineering. Libraries of problem-solving methods are described in [Benjamins,

5800 words

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197600645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1995], [Breuker & Van de Velde, 1994], [Chandrasekaran et al., 1992], [Motta, 1997], and
[Puppe, 1993]. Some of these libraries provide textbook-style descriptions of reasoning
strategies and others provide implemented software components. The former support the
system development process during conceptual modeling and specification while the latter
also provide support during implementation.

However, serious bottlenecks exist that hamper the usefulness of most of these libraries
because they provide very limited support in

selecting

,

adapting

,

combining

 and

integrating

problem-solving methods. That is, they are collections of methods but not sophisticated
libraries. Therefore, trying to use these libraries produces a number of problems: the selection
of a method from a library is only weakly supported and remains a kind of “magic trick“.
Often, problem-solving methods fit only approximately to particular domain- and task-specific
circumstances. They fit in principle, however, significant adaptation would be necessary to
actually use them as an implemented component. Problem-solving methods hardwire
assumptions concerning the way in which they interact with their environment (their
communication style) and this way may not match the software or task environments they are
applied in (an interoperability problem). Complex problems may require the combination of
different methods, possibly from different libraries, e.g., if libraries are incomplete.

Our contribution deals with these problems. We provide a

general architecture of a library of
problem-solving methods

 that supports the reuse process by four different means. A

broker

 is
described that enables the selection of methods from different libraries assuming that (1) these
libraries are made available via wide-area networks like the WorldWideWeb and (2) are
annotated with ontological information that enables their informed retrieval.

Adapter

s are
presented as means to enable the adaptation process of methods to tasks and domains. They
are the key concept for keeping libraries manageable (i.e., limiting the number of elements)
and useful (i.e., providing elements that either fit perfectly to given domain- and task-specific
circumstances or provide significant support in their generalization or specialization).

Connectors

are —in software architectures— a means to implement the interaction of
components (i.e. their interoperability) and we propose their use for problem-solving methods.
They provide an abstraction mechanism in cases where assumptions on the communication
style may conflict. Finally, we show how

task structures

 serve a twofold purpose: they
decompose complex functionalities into functionalities that can be handled by components,
and they provide the integrated system frames for loosely coupled components.

This paper is organized as follows. A

broker

 that handles the selection process of components
is described in Section 2.

Adapters

 are discussed in Section 3 as means to enable simple and
reusable adaptations of components.

Connectors

 are briefly introduced in Section 4 to provide
the connections between components. Section 5 shows

task structures

 as means to decompose
problems and to provide integrated system frames. Finally, conclusions are provided in
Section 6.

2 BROKER: COMPONENT SELECTION

“You must find it before you can reuse it!” [Will Tracz]

Software and knowledge reuse via networks is becoming an increasingly popular topic.
Developing intelligent agents that provide reasoning services based on problem-solving
methods (cf. [Benjamins et al., 1998]) introduces an interesting application framework and
raises interesting research issues. In the following, we will sketch two key issues in designing
such reasoning services. First, we discuss the role of

ontologies

 and second we provide the
core of a

brokering

 service.

Ontologies

 have been proposed to enhance knowledge sharing and reuse (cf. [Fridman Noy &

3

Hafner, 1997]). An ontology provides a conceptualization, which can be shared by multiple
reasoning components communicating during a problem solving process. Using ontological
engineering for describing problem-solving methods provides two important benefits with
respect to reuse. The resulting method specification is grounded on a common, shared
terminology and its knowledge requirements are conceptualized as ontological commitments
[Gruber, 1995]. Currently, ontologies are mainly used to formalize domain or common sense
knowledge. However, there are recent proposals and initiatives ([Benjamins et al., 1998],
[Benjamins & Fensel, 1998], [Chandrasekaran & Josephson, 1998]) that employ ontologies
to formalize problem types and problem-solving knowledge (i.e., methods). For example, the

Knowledge Annotation Initiative of the Knowledge Acquisition Community (KA)

2

 [Benjamins
& Fensel, 1998] aims at building a consensual ontology which can be used to describe the
various research groups and their results in knowledge acquisition. Part of this ontology is
concerned with problem types (i.e., tasks) and problem-solving methods. In such initiatives,
where consensus is of major importance, choosing appropriate names is essential.

Another example is to provide axiomatic descriptions of problem-solving methods to support
(semi-) automatic classification and selection of methods. Examples of such efforts include
[Fensel et al., 1997] where ontologies are used to describe the task parametric design, the
problem-solving method propose & revise, and their mapping resulting in a task-specific
ontology for the method; and [ten Teije, 1997] who defines a task ontology for diagnostic
problems.

Providing different libraries of problem-solving methods via the net requires a

broker

that
mediates between customers and providers of problem-solving methods (cf. [Benjamins,
1997], [Fensel, 1997a]). The general layered architecture of such a broker is depicted in
Figure 1. The broker has to communicate with clients via

clients systems

. A client is someone
that has a complex problem but can provide domain knowledge that describes it and that
supports problem-solving. The providers are developer teams of problem-solving methods.
Their

provider systems

 are annotated libraries of problem-solving methods. The problem-
solving methods are implementations that solve complex tasks by using domain knowledge
for defining and solving the problem. Their annotations are necessary to support their
selection process and the communication process with the methods. The core of an intelligent
broker for problem-solving methods consists of an

ontologist

 that supports the selection
process of problem-solving methods for a given application. Basically it has to provide
support in building or reusing a domain ontology and in relating this ontology to an ontology
that describe generic classes of application problems. This problem-type ontology has to be
linked with problem-solving method-specific ontologies that allow the selection of a method.

The broker uses three different ontologies: domain ontologies (D

O

), problem type ontologies
(PT

O

), and problem-solving method ontologies (PSM

O

). These ontologies provide the
contents of the communication processes between the different elements of the broker (cf.
Figure 1). Because this communication includes the exchange of knowledge, KQML [Finin et
al., 1994] is suitable as communication protocol. The different information flows (see Figure
1) are concerned with the process of finding appropriate problem-solving methods, and can be
distinguished by the contributing agents and the direction of the communication. In total, four
different communication flows can be identified (see Figure 1):

•

Sending a

request

 from the client to the ontologist

. Terms of the domain and problem
ontologies are the content of the message. The client interface uses a

domain ontology

to
guide the interaction process with the client and it sends selected expressions to the
ontologist.

•

Sending a

negotiation

 from the ontologist to the client interface

. The ontologist might
need further clarification from the client before it can finish the selection process of

4

problem-solving methods. This clarification may ask for more precise definitions of terms
and their relationships necessary to derive an element of the problem ontology from an
element of the domain ontology.

•

Sending a

query

 from the ontologist to a provider interface

. After having translated the
domain-specific terminology into a problem-specific terminology the ontologist has to
derive an expression in a problem-solving method-specific ontology. Then, this
expression is passed as a query to the provider interface.

•

Sending a

response

 from a provider interface to the ontologist

. The response of a
provider interface may have two forms: providing a simple yes that the required service
can be provided or the wish to introduce further

assumptions

 on the problem that make it
tractable and/or the introduction of

requirements

 on domain knowledge that has to be
provided by the client.

Most of these information flows can be automated. However, the translation of a domain
ontology in an ontology describing problem types has to be done semi-automatically for each
new domain. The introduction of assumptions that introduce requirements on domain
knowledge or that weaken the task (cf. [Benjamins et al., 1996], [Zaremski & Wing, 1997])
cannot be done without user interaction. The mapping between problem type and problem-
solving methods has to be done by the providers of these method libraries. Therefore it is
already established before the broker uses these libraries. The mappings needed during runtime
of the method can be derived from the links between the different ontologies. These mappings
are implemented by adapters that will be discussed next.

3 ADAPTER: COMPONENT ADAPTATION

Adapters are used to mediate between problem definitions, domain knowledge, and problem-
solving methods. In the following, we will explain with an example why adapters are required
for this purpose and what their implications are.

Fig. 1. The layered architecture of the broker.

Client Systems (WWW-Clients)

Client Interface

Provider Interface

Ontologist

Provider Systems (Problem-solving methods Libraries)

Broker

negotiationrequest

responsequery

DO

PTO

PSMO

5

3.1 Adaptation for Reuse

Chronological backtracking

 defines a very generic problem-solving method (i.e., a search
strategy) that does not make any assumptions on the structure of nodes in the search space nor
on the elementary transitions between states. [Eriksson et al., 1995] describe several
adaptations of this generic search procedure for specific tasks. Chronological backtracking is
adapted to a method for one-player board games by adding code that refines state transitions
and data structures of the method. The resulting

boardgame method

 adds two refinements
which introduce commitments on the task and the required domain knowledge:

• the initial, intermediate and final states describe board positions, and

• the knowledge that is required to define state transitions is defined in terms of moves in
games.

However, this adaptation of chronological backtracking is not kept separate in [Eriksson et al.,
1995]. Therefore, the implementation of chronological backtracking is no longer available for
defining a problem solver for, e.g., planning problems. Moreover, the adaptation to the board-
game problem cannot be used to adapt, e.g., a local search procedure to board games.
Separating the descriptions of search procedures and their refinements provides reusability in
two dimensions:

• search procedures remain available for different tasks and domains, and

• task- and domain-adaptations remain applicable for different search strategies.

In general, different search methods can be applied to the same task, and [Beys et al., 1996]
conclude that problem-solving methods should be represented in a task-independent way.
However, their task-specific (i.e. adapted) versions (for domains and tasks) provide much
more support in developing systems and in acquiring the domain knowledge than the task-
neutral versions. An easy way to overcome this dilemma is to externalize their adaptations
through (external)

adapters

. Adapters were originally proposed in [Fensel & Groenboom,
1997] to link problem-solving methods and tasks. However, they can also be used to
externalize the specialization of problem-solving methods. The use of adapters in this way
provides three variants of reuse that overcome the shortcomings above mentioned:

• The search procedure can be reused for different problems because the adaptation is kept
separate.

1

• The adaptation can be reused for different search methods because it is kept separate.

• The combination of search procedure and adapter can be reused as a strong problem-
solving methods (i.e., as a method with many task- and domain-specific commitments) in
cases where its hardwired assumptions fit.

The adapter concept is therefore essential in preventing combinatorial explosion. Already a
textbook style description of problem-solving methods in [Breuker & Van de Velde, 1994]
provides hundreds of methods. Implementing these methods adds additional level of details
and therefore distinctions.

Externalizing

 adaptation is the key factor in component-based
development of problem-solving methods. A simple illustration should clarify the point.
Assuming

n

 search strategies and

m

 problem types. Without adapters

n

*

m

 components would
be necessary to cover all these combinations. By using adapters only

n

+

m

 components are
necessary. Without adapters one ends up either

• with too many different components (

n

*

m

) leading to too much implementation and
retrieval effort, or

1.

This implies more than just keeping a copy of the old implementation of the search procedure because during maintenance
only one search procedure need to modified and not each of its copies.

6

• with a small set of too generic components (

n

 generic search procedures), or

• with a small set of useful components which, however, are often too specific for given
problems (

x

 problem specific refinements with

m

<

x

<

n

*

m

).

The effect of adapters becomes even more obvious when taking a closer look at search
methods on the one hand, and task- and domain-refinements on the other hand.

• A local search algorithm has four main parameters that determine its search character
[Graham & Bailor, 1996]: the selection of start nodes, the generation of successors nodes,
the selection of better nodes, and the definition of the preference relation. Different values
for these parameters distinguish between, e.g., best-first search, hill-climbing and beam
search. Keeping the more precise definitions of these parameters externally of the core
definition of the method, enables to provide a large variety of search methods with a small
number of components.

• The definition of a task may be less or more specific. A parametric design task (cf.
[Schreiber & Birmingham, 1996]) can be defined by a design task that is refined to
configurational design (where the elements of the artifact are given) and further on to
parametric design (where in addition the structure of the artifact, i.e. the selection of the
components is given). [Fensel, 1997b], [Fensel & Motta, 1998] discuss the idea of adapter
piling to express this refinement process. A core definition of design problems (which is
already an adapter for global-optimum problems) is enriched with an adapter for
configurational design and another adapter adds commitments for parametric design.

Implementing a component for each variation of a search method or each task- and domain-
specific refinement is intractable. A tractable and structured approach for reusing (usable)
components can only be achieved by performing refinements via adapters and implementing
different aspects or degrees of refinement by different adapters. Thus, a refined method is
achieved by connecting to it a

pile

 of adapters.

3.2 Deriving adapters

The adapters that are necessary to connect a problem-solving component with a problem or
with other components, can be derived from the results of its selection process. During
selection of a component, the broker has to establish ontological links between the input and
output of a component and the problem definition. By saving this result, the adapter hardwires
the outcome of the ontological engineering that was necessary to establish the appropriate links
between the problem, the domain knowledge and the problem-solving method via a problem
ontology. The adapter can be automatically derived from these ontological links and it is used
to mediate between the domain knowledge and problem-solving method during runtime of the
problem-solving process. Again four types of information flows can be identified during
problem-solving (see Figure 2):

• Sending domain

knowledge

 and case

data

 from the client interface to the adapter.

• Sending a

solution

 from the adapter to the client interface.

• Sending an

input

 from the adapter to a provider interface.

• Sending an

output

 from a provider interface to the adapter.

One additional communication type is an internal communication between the ontologist and
the adapter. It transfers the ontological information derived by the ontologist to construct or
select an adapter that can provide the runtime mapping of terms as required by the clients and
the providers. The

ontology mapping information

 (cf. Figure 2) between the ontologist and the
adapter is exchanged for this purpose.

7

3.3 Related Approaches in Software Engineering

Adapters are of general importance for component-based software development. [Gamma et
al., 1995] introduces an adapter pattern in his textbook on design patterns for object-oriented
system development. An adapter enables reusable descriptions of objects and allows to
combine objects that differ in their syntactical input and output descriptions. Adapters for
problem-solving methods extend this approach in several aspects:

• Adapters introduce

assumptions

 necessary to close the gap between a problem definition
(task) and the competence of a problem-solving methods (cf. [Fensel & Benjamins, 1996],
[Fensel & Straatman, to appear]).

• Adapters express the

task-specific refinement

 s of a problem-solving method (cf. [Fensel
& Motta, 1998]). Therefore, an adapter also specifies reusable knowledge. It does not only
provide some application-specific glue, but specifies refinements relying on a problem
type.

• Adapters could get piled on top of each other to express

stepwise refinement

 of problem-
solving methods (cf. [Fensel, 1997b]). This refinement may reflect stepwise adaptation to
a problem or stepwise refinement of a generic search strategy according to refined
requirements on domain knowledge.

In software engineering, each adaptation is viewed as a (nonreusable) application-specific one.

Reusable

 adapters in knowledge engineering are possible because of the amount of work on
reusable task and problem descriptions (cf. [Chandrasekaran et al., 1992], [Breuker & Van de
Velde, 1994]). Refining a problem-solving method for a specific type of problems remains
reusable for applications that are instances of the same problem or task type.

3.4 Related Approaches on Intelligent Information Integration

Adapters manipulate the syntactical structure of the input and output of components. In that

Fig. 2. The layered architecture mediated by an adapter.

Client Systems (WWW-Clients)

Client Interface

Provider Interface

Adapter

Provider Systems (Problem-solving methods Libraries)

Ontologist

solutiondomain knowledge

outputinput

and case data
ontology
mapping
information

8

way, they enable the application of components to different tasks and the combination of
components that otherwise could not interact properly. Note, that input of a component may
be case data or more complex domain knowledge. In the latter case, adapters fulfill a similar
purpose as mediators for heterogeneous information and knowledge systems. Instead of
assuming a global data schema, heterogeneous information and knowledge systems have a
mediator [Wiederhold, 1992] that translates user queries into sub-queries on the different
information sources and integrates the sub-answers. E.g. in the projects Infomaster
[Genesereth et al., 1997], Information Manifold [Levy et al., 1996], SIMS [Arens et al., 1993],
and TSIMMIS [Papakonstantinou et al., 1995] mediators are provided to integrate
heterogeneous information sources. Therefore, adapters that modify components may be
combined with mediators to enable different components to access the same knowledge source
in different ways or to provide homogeneous access to distributed and heterogeneous
knowledge sources for a component. The former minimize the adaptation effort because the
same knowledge is presented in different styles. The latter minimize the adaptation effort
because heterogeneous knowledge sources are presented homogenous and uniform.

4 CONNECTOR: COMPONENT COMBINATION

Adapters are a mechanism for coupling components that helps to overcome syntactic and
semantic differences. However, further problems may arise from different communication
styles of the component. For example, a component C1 may continuously send data to another
component C2 and wrongly assume that C2 stores the received data during problem solving.
Therefore, data may get lost. Similar, C1 may assume that C2 process its input with the LIFO
principle (last in first out, i.e., its input store is a buffer), however, it may apply LILO (last in
last out, i.e., its input store is a queue). Such communication mismatches require additional
means that properly implement the communication between components. In software
architectures, connectors are introduced to fulfill this purpose (cf. [Garlan and D. Perry, 1995],
[Shaw & Garlan, 1996]). Connectors provide intermediate stores for data and organize these
data in a way that fulfills the assumptions of the sending and receiving components. A variety
of connectors and their according architectural styles is given in [Shaw & Garlan, 1996].
Because we have never encountered any difference in the communication styles of “ordinary”
software components and knowledge-based components—actually most times the latter
assume simple batch mode processing—these connectors of software architectures can
immediately be applied to connect knowledge-based components.

5 TASK STRUCTURES: PROBLEM DECOMPOSITION AND
SYSTEM INTEGRATION

Task structures [Chandrasekaran et al., 1992], Generalized Directive Models (GDM) [Terpstra
et al., 1993] and KADS inference structures [Schreiber et al., 1994] are different means to
decompose a complex task into more tractable subtasks. Such an approach is necessary when
the problem cannot be solved by directly available components. In this case the task of the
broker becomes more complex. It has to select an appropriate task structure that decomposes
the entire problem into smaller pieces for which either directly a component can be selected,
or for which recursively a new refinement must be selected.

Besides being a means for decomposing a problem, task structures also provide the definition
of an integrated system. They can be considered as a system frame for components by
associating to each of its subtasks either a component or, recursively, a more refined task
structure. A task structure defines an integrated system by defining the control flow2 and

9

dataflow between its subtasks. Therefore, such system frames are not only means to
decompose problems, but express vice versa how a complex system can be configured out of
its components. Such task structures or system frames corresponds to software architectures
mentioned above.

In a network of several provider of problem-solving components such an integrated system
frame may refer to components of different providers. The integrated system only exists
virtually in that case. Executing one of its subtasks may imply a call for reasoning service via
the network. [Gennari et al., 1996] describe the use of the CORBA protocol for this purpose.
It allows the distributed execution of reasoning tasks where the substeps may be performed at
different servers.

6 CONCLUSIONS

In this paper we presented a principled approach to reusing problem-solving components.
Components provide reasoning services for problems or fragments of problems. Adapters glue
components to other components and to domain- and problem-specific circumstances they are
otherwise not applicable. Connectors manage communication aspects. Task structures
decompose problems and integrate loosely coupled components into a system frame. Finally,
a broker provide support in selecting, adapting and combing components (and system
frames).We will briefly summarize these different aspects in component reuse.

At a technical or architectural level, implementing integrated reasoning systems —either
directly or virtually in distributed networks— does not differ from implementing arbitrary
software systems with connectors and software architectures suitable for such environments.
The main extension to existing work in software engineering stems from the fact that research
in knowledge engineering has accumulated a significant number of problem-specific task
structures that can be used as problem-specific architectures. These architectures are not
specific for a domain —like domain architectures in software engineering— but are specific
for a class of problems and a specific decomposition paradigm that assumes specific types of
knowledge for efficiently executing its substeps.

Adapters are also present in component-based software engineering (cf. [Gamma et al., 1995]).
However, the notion of reusable adapters and the use of several adapters to achieve stepwise
refinement of components is rather non-standard. In knowledge engineering, problem-solving
methods and problem types (i.e., tasks) are well-studied. This enables the reuse of adaptations
of reasoning components and of problem-specific refinements. In this paper, we argued that
this use of adapters is the key issue in tractable libraries (i.e., the effort in implementing the
required components and in searching for them is low) and in usable libraries(i.e., by
combining components and adapters one finds combined elements that fit to domain- and task-
specific circumstances).

The key-effort required for providing advanced brokering services for reusing problem-
solving methods is ontological engineering. A broker that enables problem-solving method
reuse requires that problem-solving methods are annotated by formal and comprehensive
descriptions of their assumptions and competence. Ontologies of problem types and tasks
could support the selection process of components and help to establish a link from the generic
vocabulary of problem-solving methods to the domain-specific terminologies of case data and
domain knowledge. Using ontologies to annotate problem-solving methods and problem types
is getting increasingly more attention ([Mizoguchi et al., 1995], [Fensel et al., 1997],
[Benjamins et al., 1998], [Chandrasekaran & Josephson, 1998]) and establishes reuse of

2. Not all approaches to task structures provide control. Therefore, such approaches miss an important aspect of our needs.

10

problem-solving methods as a special branch of knowledge reuse supported by ontologies (cf.
[Fridman Noy & Hafner, 1997]). The method specifications are grounded on a common,
shared terminology and their knowledge requirements are conceptualized as ontological
commitments. Therefore, efforts like the Knowledge Annotation Initiative (KA)2 [Benjamins
& Fensel, 1998] tackle a major bottleneck of knowledge and problem-solving components
reuse.

Defining such ontologies proper and consensual is essential for the success of component reuse
because component retrieval and adaptation cannot not be done fully automatically (cf.
[Schumann & Fischer, 1998] for the merits and limitations of theorem proving for component
retrieval). Therefore, the human has to be kept in the loop which introduces strong
requirements on understandability and user guidance through these ontologies.

Acknowledgement

Richard Benjamins was partially supported by the Netherlands Computer Science Research
Foundation with financial support from the Netherlands Organisation for Scientific Research
(NWO).

References

[Arens et al., 1993] Y. Arens, C. Y. Chee, C.-N. Hsu and C. Knoblock: Retrieving and Integrating
Data From Multiple Information Sources, International Journal of Intelligent Cooperative
Information Systems, 2(2):127 158, 1993.

[Benjamins, 1995] V. R. Benjamins: Problem Solving Methods for Diagnosis And Their Role in
Knowledge Acquisition, International Journal of Expert Systems: Research and Application,
8(2):93—120, 1995.

[Benjamins, 1997] R. Benjamins: Problem-Solving Methods in Cyberspace. In Proceedings of the
Workshop on Problem-Solving Methods for Knowledge-based Systems (W26) of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya, Japan, August
23-29, 1997.

[Benjamins et al., 1996] R. Benjamins, D. Fensel und R. Straatman: Assumptions of Problem-Solving
Methods and Their Role in Knowledge Engineering. In Proceedings of the 12th European
Conference on Artificial Intelligence (ECAI-96), Budapest, August 1996.

[Benjamins et al., 1998] V. R. Benjamins, Enric Plaza, E. Motta, D. Fensel, R. Studer, B. Wielinga, G.
Schreiber, Z. Zdrahal: An Intelligent Brokering Service for Knowledge-Component Reuse on
the WorldWideWeb. In Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-
Based System Workshop (KAW´98), Banff, Canada, April 18-23, 1998.

[Benjamins & Fensel, 1998] R. Benjamins and D. Fensel: Community is Knowledge! in (KA)2. In
Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´98), Banff, Canada, April 18-23, 1998.

[Beys et al., 1996] P. Beys, R. Benjamins, and G. van Heijst: Remedying the Reusability-Usability
Trade-off for Problem-solving Methods. In Proceedings of the 10th Banff Knowledge
Acquisition for Knowledge-Based System Workshop (KAW´96), Banff, Canada, November 9-
14, 1996.

[Breuker & Van de Velde, 1994] J. Breuker and W. Van de Velde (eds.): The CommonKADS Library
for Expertise Modeling, IOS Press, Amsterdam, The Netherlands, 1994.

[Chandrasekaran et al., 1992] B. Chandrasekaran, T.R. Johnson, and J. W. Smith: Task Structure
Analysis for Knowledge Modeling, Communications of the ACM, 35(9): 124—137, 1992.

[Chandrasekaran & Josephson, 1998] B. Chandrasekaran and J. R. Josephson: The Ontology of Tasks
and Methods, In Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based

11

System Workshop (KAW´98), Banff, Canada, April 18-23, 1998.
[Eriksson et al., 1995] H. Eriksson, Y. Shahar, S. W. Tu, A. R. Puerta, and M. A. Musen: Task

Modeling with Reusable Problem-Solving Methods, Artificial Intelligence, 79(2):293—326,
1995.

[Fensel, 1997a] D. Fensel: An Ontology-based Broker: Making Problem-Solving Method Reuse
Work. In Proceedings of the Workshop on Problem-Solving Methods for Knowledge-based
Systems (W26) of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-
97), Nagoya, Japan, August 23-29, 1997.

[Fensel, 1997b] D. Fensel: The Tower-of-Adapter Method for Developing and Reusing Problem-
Solving Methods. In E. Plaza et al. (eds.), Knowledge Acquisition, Modeling and Management,
Lecture Notes in Artificial Intelligence (LNAI), 1319, Springer-Verlag, 1997.

[Fensel & Benjamins, 1996] D. Fensel and R. Benjamins: Assumptions in Model-Based Diagnosis. In
Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based System Workshop
(KAW´95), Banff, Canada, November 9 - 14, 1996.

[Fensel et al., 1997] D. Fensel, E. Motta, S. Decker, and Z. Zdrahal: Using Ontologies For Defining
Tasks, Problem-Solving Methods and Their Mappings. In E. Plaza et al. (eds.), Knowledge
Acquisition, Modeling and Management, Lecture Notes in Artificial Intelligence (LNAI), 1319,
Springer-Verlag, 1997.

[Fensel & Groenboom, 1997] D. Fensel and R. Groenboom: Specifying Knowledge-Based Systems
with Reusable Components. In Proceedings of the 9th International Conference on Software
Engineering & Knowledge Engineering (SEKE-97), Madrid, Spain, June 18-20, 1997.

[Fensel & Motta, 1998] D. Fensel and E. Motta: Dimensions for Method Refinement. In Proceedings
of the 11th Banff Knowledge Acquisition for Knowledge-Based System Workshop (KAW´98),
Banff, Canada, April 1998.

[Fensel & Straatman, to appear] D. Fensel and R. Straatman: The Essence of Problem-Solving
Methods: Making Assumptions to Gain Efficiency, to appear in International Journal on
Human-Computer Studies (IJHCS).

[Finin et al., 1994] T. Finin, D. McKay, R. Fritzson, and R. McEntire: KQML: An Information and
Knowledge Exchange Protocol. In Kazuhiro Fuchi and Toshio Yokoi (eds.), Knowledge
Building and Knowledge Sharing, Ohmsha and IOS Press, 1994.

[Fridman Noy & Hafner, 1997] N. Fridman Noy and C.D. Hafner: The State of the Art in Ontology
Design, AI Magazine, 18(3):53—74, 1997.

[Gamma et al., 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns, Addison-
Wesley Pub., 1995.

[Garlan and D. Perry, 1995] D. Garlan and D. Perry (eds.), Special Issue on Software Architecture,
IEEE Transactions on Software Engineering, 21(4), 1995.

[Genesereth et al., 1997] M. R. Genesereth, A. M. Keller, and O. M. Duschka: Infomaster: An
Information Integration System. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Tucson, AZ, May 1997.

[Gennari et al., 1996] J. H. Gennari, A. R. Stein, and M. A. Musen: Reuse for Knowledge-Based
Systems and CORBA Components. In Proceedings of the 10th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW´96), Banff, Canada, November 9-14, 1996.

[Gennari et al., 1998]J. H. Gennari, W. Grosso, and M. Musen: A Method-Description Language: An
Initial Ontology with Examples. In Proceedings of the 11th Banff Knowledge Acquisition for
Knowledge-Based System Workshop (KAW´98), Banff, Canada, April 1998.

[Graham & Bailor, 1996] R. P. Graham, Jr. and P. D. Bailor: Synthesis of Local Search Algorithms by
Algebraic Means. In Proceedings of the 11th Knowledge-Based Software Engineering
Conference (KBSE-96), 1996.

[Gruber, 1995] T. R. Gruber: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing, International Journal of Human-Computer Studies (IJHCS), 43(5/6):907—928, 1995.

12

[Levy et al., 1996] A. Y. Levy, A. Rajaraman, and J. J. Ordille: Query-Answering Algorithms for
Information Agents. In Proceedings of the AAAI-96, Portland, Oregon, 1996.

[Mizoguchi et al., 1995] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda: Task Ontologies for reuse
of Problem Solving Knowledge. In N. J. I. Mars (ed.), Towards Very Large Knowledge Bases,
IOS Press, 1995.

[Motta, 1997] E. Motta: Reusable Components for Knowledge Modeling, Ph.D. Thesis, Knowledge
Media Institute, The Open University, UK, 1997.

[Papakonstantinou et al., 1995] Y. Papakonstantinou, H. Garcia Molina, and J. Widom: Object
Exchange Across Heterogeneous Information Sources. In Proceedings of the IEEE
International Conference on Data Engineering (ICDE), Taipei, Taiwan, March 1995.

[Puppe, 1993] F. Puppe: Systematic Introduction to Expert Systems: Knowledge Representation and
Problem-Solving Methods, Springer-Verlag, Berlin, 1993.

[Schreiber & Birmingham, 1996] A. Th. Schreiber and B. Birmingham (eds.): Special Issue on
Sisyphus, The International Journal of Human-Computer Studies (IJHCS), 44(3-4), 1996.

[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J. M. Akkermans, W. Van De Velde, and R. de
Hoog: CommonKADS. A Comprehensive Methodology for KBS Development, IEEE Expert,
9(6):28—37, 1994.

[Schumann & Fischer, 1998]J. Schumann and B. Fischer: NORA/HAMMER: Making Deduction-
Based Software Component Retrieval Practical. In Proceedings of the 12th IEEE International
Conference on Automated Software Engineering (ASEC-97), Incline Village, Nevada,
November 1997.

[Shaw & Garlan, 1996] M. Shaw and D. Garlan: Software Architectures. Perspectives on an
Emerging Discipline, Prentice-Hall, 1996.

[ten Teije, 1997] A. ten Teije: Automated Configuration of Problem Solving Methods in Diagnosis,
Ph.D. thesis, University of Amsterdam, the Netherlands, 1997.

[Terpstra et al., 1993] P. Terpstra, G. van Heijst, B. Wielinga, and N. Shadbolt: Knowledge
Acquisition Support Through Generalized Directive Models. In M. David et al. (eds.): Second
Generation Expert Systems, Springer-Verlag, 1993.

[Wiederhold, 1992] G Wiederhold: Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3):38 49, 1992.

[Zaremski & Wing, 1997]A. M. Zaremski and J. M. Wing: Specification Matching of Software
Components, ACM Transactions on Software Engineering and Methodology (TOSEM),
6(4):333 369, 1997.

