
Data Parallelism in Java

Michael Philippsen
Computer Science Dept., University of Karlsruhe, PO-Box 6980, 76128 Karlsruhe, Germany

Tel: +49/721/608-4067, Fax: +49/721/7343, eMail: phlipp@ira.uka.de

This paper has been submitted to HPCS'98, the 12th Annual Int. Symposium on High Perfor-

mance Computing Systems and Applications, May 1998, Edmonton, Alberta, Canada.

Abstract

Java supports threads and remote method invocation

but it does neither support data parallel nor distributed

programming. This paper discusses Java's shortcom-

ings with respect to data parallel programming. It then

presents countermeasures that allow for data parallel

programming in Java. The technical contributions of

this paper are twofold: a source-to-source transforma-

tion is presented that maps forall statements into e�-

cient multi-threaded Java code. In addition, an opti-

mization strategy is presented that achieves a minimal

number of synchronization barriers.

The transformation, the optimization, and a dis-

tributed runtime system have been implemented in the

JavaParty environment. In JavaParty, code compiled

with current just-in-time compilers runs merely a fac-

tor of two to three slower than Fortran, on both a

shared-memory parallel machine (IBM SP/2). Fur-

thermore, better compiler technology is on the horizon,

which will narrow the performance gap.

1 Introduction

Java is adopted by application programmers so quickly
because of, among other reasons, its portability. Sim-
ilarly, Java's portability is one of the key issues that
might make Java one of the main languages for sci-
enti�c programming as well. Unfortunately, Java has
neither been designed for parallel programming nor
for distributed programming. Hence, it does not o�er
adequate support for either of them, as we will show
below.1

HPF is a procedural language and still an descen-
dent of Fortran. From the software engineering point
of view, Java is preferable to HPF [10], since it allows
for clearly designed, re-usable, and maintainable code.
But since HPF combines the collective knowledge on
data parallel programming it must be considered when
thinking about data parallelism in Java.

1Java stands for Java as de�ned in the JDK 1.1.5. We do

not see any plans at Sun suggesting that future releases of the

JDK will contradict the basic assumptions used here.

HPF o�ers forall statements, directives to dis-
tribute array data in a distributed memory environ-
ment, and statements for collective communication.
Java does not o�er language support for any of these.
But there are at least three di�erent approaches to
add HPF expressiveness to Java.

A) Dual-Language Approach. To use both Java
and HPF at the same time, libraries and wrapper func-
tions are added to Java. The libraries communicate
array data between Java and HPF. The wrappers al-
low to invoke HPF subroutines.

This approach aims at a gradual move from HPF
programs to Java programs that use HPF function-
ality; it helps to guard investments made into HPF
programs but does not prevent well designed object-
oriented programs from taking over in future.

Mixing Java and HPF causes several problems.
Since di�erent HPF compilers behave di�erently, the
portability gained by using Java is lost in the HPF
subroutines. At the Java-to-HPF interface, problems
are caused by both the di�erent sets of primary types
in each language, in particular by Java's lack of com-
plex numbers, and by Java's inability to access array
substructures, like dimensions or their subsections, ef-
�ciently. Finally, since Java's 
oating point operations
do not necessarily adhere to IEEE 
oating point stan-
dards, di�erent sections of a dual-language program
will compute incompatible results.

B) Language and ByteCode extensions. The
syntactic elements of HPF are added to the Java lan-
guage; compilers that implement Java plus HPF se-
mantics are constructed.

All HPF features can be covered with this ap-
proach. In a compiler for the new language, costly
array bound checks can be avoided, the format used
for 
oating point I/O can be chosen in a way that
suits state-of-the-art parallel computers best, other
Java features can be omitted to avoid di�cult interac-
tions with HPF semantics, e.g., one could re-evaluate
Java's design decisions to use a ByteCode as an inter-
mediate representation, to implement arrays and their
sub-dimensions as objects, and to hide the memory

1



layout of array data from the user.
The disadvantage is that the special purpose com-

piler cannot be as portable as the JDK. For instance,
since array accesses are explicit in Java ByteCode, the
decision to avoid them requires a special form of Byte-
Code. If access to sub-sections of arrays shall be e�-
cient, the memory layout must be de�ned, the gargabe
collector must understand these sub-arrays, etc.

Therefore, one of the key advantages of Java,
namely portability, is lost in that approach.

C) Pre-Compiler and Library. A third ap-
proach is to extend the expressive power by means
of libraries for data distribution, collective commu-
nication, and forall statements. This approach has
been taken for various parallel extensions of C++, e.g.
[3, 6]. However, since Java does neither support tem-
plates nor macros, some restrictions apply.

Both data distribution and collective communica-
tion are best handled by libraries that handle and
partition arrays on a distributed parallel machine.
Since Java does not support parameterized classes,
i.e., replicated versions of these libraries must exist
for all primary types and for objects. For objects,
type casts must be used to down-cast elements to
the proper type by the programmer. One of Java's
strengths, the strong static type checking, is lost.

The forall statement is not a candidate for macro or
template processing (see section 2 for details). There-
fore, the forall semantics must either be o�ered by
means of another library or it can be implemented by
a pre-compiler's source-to-source transformation that
accepts forall statements in an extended Java and gen-
erates multi-threaded Java equivalents for them.

JavaParty, consisting of a pre-compiler and a dis-
tributed runtime system, o�ers data parallel program-
ming by taking the third approach.

In the remainder of this paper, we discuss the de-
sign ideas of JavaParty with respect to data parallel
programming. In section 2 it is argued that in gen-
eral forall statements cannot be handled by macros or
templates. Then the key issues of JavaParty's source-
to-source transformation are presented in sections 3
to 5. Section 6 presents the runtime system that al-
lows for transparent distribution of array components
and for execution of remote threads. Benchmark re-
sults are presented in section 7 and compared to HPF
and Fortran90 implementations.

2 Forall macros do not work

Java's threads express control parallelism. Threads
are objects inheriting from a standard Thread class.

This class o�ers a run method that returns immedi-
ately to the caller but is in fact executed concurrently.
There is no other concept of concurrency available
in Java, in particular, data parallelism cannot be ex-
pressed directly. Control parallelism is for concurrent
applications that have a small number of concurrent
activities, for example, graphical user interfaces and
applets, and that run on a machine with one or only
a few processors.

A too Simplistic Macro

The Java documentation supports the belief that
threads can easily be used for data parallelism as well.
Consider the following forall statement:

forall (int i = 0; i < 100; i++)
bar(i);

With inner classes,2 the JDK documentation suggests
a multi-threaded equivalent as follows [17]:

1 Thread[] worker = new Thread[100];
2 for (int i = 0; i < 100; i++) {
3 final int ii = i;
4 worker[i] = new Thread() {
5 public void run() {
6 bar(ii);
7 }
8 };
9 worker[i].start();
10 }
11 try {
12 for (int i = 0; i < 100; i++)
13 worker[i].join();
14 } catch (InterruptedException e) {
15 //some complicated cleanup code
16 }

Although the above code fragment is hard to read at
�rst, one can get used to that pattern. In the body
of the �rst for loop, an anonymous inner class is de-
clared that inherits from Thread (lines 4{8). The run
method of class Thread is overwritten by a speci�c
run method that calls bar(ii) (lines 5{7). Since Java
does not allow regular local variables to be used in in-
ner classes one has to declare, initialize, and use a �nal
helper variable instead (ii, lines 3 & 6). To execute
bar(ii) concurrently, an object of that anonymous
class is created and stored in an array of workers be-
fore its start method is called (lines 4 & 9). Start

calls run which concurrently executes bar(ii).
The main program can only continue after all con-

current invocations of bar(i) have been completed.
This is implemented in lines 11{16. For each worker
in the array, join is called (line 13). Since one of the
threads might have been interrupted, the whole syn-
chronization needs to be in a try{catch construct.

2Inner classes have been introduced into Java with version
1.1 of the JDK.

2



Although the above code appears to be a macro,
transforming foralls statements into mutli-threaded
Java, we discuss its incompleteness, super�ciality, and
ine�ciency with respect to the demands of data paral-
lel programs. Forall transformations require semantic
knowledge and are much more complex.

Lack of Semantic Knowledge

Independent of the approach {there are alternatives
to the inner class approach{ the body of the forall is
moved during the transformation and the surrounding
state as de�ned by the contents of local variables must
be captured at runtime and conveyed to the body's
new position. Since Java's semantics distinguish be-
tween primary and reference types and between local
and instance variables, capturing is type dependent.
Hence, forall transformation schemes depend on the
types of surrounding variables.

The above simplistic macro is incomplete if local
variables are involved. Di�erent transformations are
needed depending on whether local variables or in-
stance variables are used in the original forall. Assume
a forall statement that uses local variables for the \it-
erations" to store results.3 The transformation of such
a forall requires that additional helper instance vari-
ables need to be declared at class level and are used
instead of the local variables in the transformed body.
After the end of the forall, the contents of the helpers
must be assigned back to the local variables.

The transformation is thus non-local. It needs se-
mantic knowledge about the types of variables in-
volved. Since macros and templates operate locally
and without semantic knowledge, the transformation
cannot be achieved by them.

Although the macro approach cannot work, it is
useful for understanding the simplistic macros's other
disadvantages discussed below.

Lack of Generality

The simplistic macro su�ers from limited applicability
and generality.

Instead of a simple function call, there can be state-
ments that alter the 
ow of control: the enclosing
method can be left by a return statement, an ex-
ception can be thrown, a surrounding loop can be the
target of a break or continue statement, etc. The se-
mantics of these statements inside of a forall are simi-
lar to their semantic when used inside of a regular for
statement.

3For example, imagine a parallel search for a target value in
a two dimensional array. Each \iteration" of the forall searches
for a di�erent row of the array. If it is known that the target
value either appears once or not at all, it is su�cient if the �nder,
if any, write the target's coordinates into two index variables.
No additional synchronization is needed.

All these constructs cannot easily be used inside of
the inner class. A generally applicable transformation
scheme needs to be much more complicated.

Lack of E�ciency

� Object creation cost. Object creation in Java is
expensive since each object needs some memory that
must be initialized and registered for garbage collec-
tion, and an additional lock object must either be cre-
ated by the Java virtual machine or is provided by the
operating system by a costly kernel entry. Hence, for
performance reasons numerous or frequent creation of
thread objects must be avoided.

Unfortunately, the simplistic macro creates threads
numerously and frequently. A thread object is started
for every single \iteration" of the original forall. More-
over, for each forall, a new set of worker threads is cre-
ated, started, and joined. After joining, the threads
are useless and disposable by the garbage collector.
They are useless because subsequent foralls have dif-
ferent bodies and require di�erent run methods and
because Java threads cannot be restarted.

For recursion and nested parallelism the above
transformation scheme is not just costly but useless
for it easily results in a number of thread objects that
overwhelms the capabilities of either the Java virtual
machine or the virtual memory system.

To avoid that sort of ine�ciency and to make a
transformation work for nested parallelism as well,
threads must be re-used and standard virtualization
loop techniques [16] must used. Both will increase
the complexity of the transformation, since re-use of
threads is di�cult to achieve in Java, and since code
for index set splitting and additional boundary checks
for the �rst/last thread need to be added.
� Fan-out and fan-in restrictions. In general, data
parallel programs have too many and too small foralls
to accept the bottleneck caused by sequential start
and join of threads.

When threads are recycled instead of being created
over and over, start and join can no longer be used.
But without them, tree structured re-start and barri-
ers are even more di�cult to implement. The reason
is that Java's weak memory consistency model {there
is no sequential consistency [11]{ is coupled to unsuit-
able or too costly synchronization operations.4

Monitors and critical sections are too heavy weight
to implement re-starts and barriers since they often
cause slow kernel entries in current JVMs. Other
mechanisms are awkward to use: wait and notify

4Simpli�ed, is is not guaranteed that a thread sees the ef-
fects of write operations performed by di�erent threads, unless
synchronization operations have been executed before.

3



su�er from race conditions since notify operations
are not bu�ered but are lost if no thread is waiting
at an object; they are di�cult to use for (distributed)
load-balancing, since the JVM or the operating sys-
tem may decide at will which out of several waiting
threads is continued upon noti�cation.

An e�cient transformation template thus needs a
tree structure for start-up and barriers. It must be
capable of dealing with the speci�c characteristics of
Java's synchronization primitives. Both requirements
add further complexity.

Lack of Barrier Support

Pure SIMD semantics demand that all \iterations"
proceed in perfect unison, i.e., no \iteration" starts to
process an expression before the previous expression
is completed by all \iterations".

Because of polymorphism, dynamic dispatch, and
aliasing, there is no way a macro can transform all
methods that are called in the body of a forall into a
form that is amenable for completely synchronous exe-
cution. Moreover, it is not even promising to use com-
pile time data dependence analysis techniques, e.g.
[13, 18], for that task, since the same reasons render
those techniques either too costly or too weak.

The only way out is the programmer must detect
potential data dependencies and split the forall into
parts so that the sources and targets of all dependen-
cies are located in di�erent forall statements.

forall (int i = 0; i < 100; i++) {
bar(i);
sync;
gee(i);

}

Above, the necessity of a synchronization barrier is
indicated by sync. Below are the splitted foralls:

forall (int i = 0; i < 100; i++)
bar(i);

forall (int i = 0; i < 100; i++)
gee(i);

Since, in general, a macro cannot determine the proper
placements of barriers, and since a (pre-)compiler can
only determine them in very special cases, this task is
left to the programmer. However, macros and com-
pilers can o�er support in splitting foralls; compilers
can even apply optimization techniques to minimize
the number of barriers to improve performance.

3 Pre-compiling foralls does work

A pre-compiler can avoid the disadvantages of the
macro approach. It has the necessary semantic knowl-
edge and can modify given classes at a whole without

distorting the clearness of the original code. A pre-
compiler can use complex transformations, i.e., it can
do its job completely and still achieve e�ciency. In
addition, it can help in splitting foralls.

This is the design idea of the forall treatment im-
plemented in JavaParty: An additional data structure
is created that can hold a pool of threads. This pool
is �lled with new thread objects, but only once per
program. Instead of creating, starting, joining, and
discarding new threads for every single data parallel
section of the code, thread objects from that pool al-
ternate between being blocked and executing: they are
blocked and wait for work to arrive, execute the work,
and return to a blocked state again. To allow for non-
sequential start-up and join, the work packets are in a
form so that the worker can decide whether to execute
the packet (= virtualization loop) entirely or to split
it up and work only on a part. The worker's strat-
egy takes into account the current load, the number
of available threads, and the size of the packet.

Based on this design idea, section 4 presents the
details of JavaParty's source-to-source transformation
and of the required libraries.

4 Forall Implementation in JavaParty

The JavaParty pre-compiler accepts Java plus forall
statements and generates e�cient multi-threaded pure
Java code. Instead of a back-end that emits Java
source code, a regular ByteCode back-end can be used
to speed up compilation by avoiding additional �le I/O
and repeated semantic analysis.

For now, we deliberately restrict the presentation
to a shared memory architecture, i.e., the presenta-
tion is based on threads and a common address space
as provided by Java. Section 5 presents the optimized
implementation of synchronization barriers. Section 6
focuses on object and thread distribution in a dis-
tributed memory parallel computer.

ForallThread and WorkPile

A central component in JavaParty's forall library is
the ForallThread. Upon program start, a �xed num-
ber of these threads are started. Their run method
is an endless loop that gets work from a work pile,
executes that work, indicates completion and starts
over.

JavaParty uses Pizza's closures [15] to capture state
and to construct functions.5 In the code fragment be-
low, wp.getWork returns a function from the work pile

5Pizza uses a source-to-source transformation as well. Al-
though we could have used the �nal Java code (no closures), we
discuss the intermediate Pizza representation (with closures),
because it is easier to understand.

4



that neither takes arguments nor returns a result. In
Pizza terminology, this function is of type (->void).
More details on closure implementation and the clo-
sure type system of Pizza can be found in [12].

class ForallThread extends Thread {
private WorkPile wp;
...
public void run() {

while(true) {
(->void) fkt = wp.getWork();
fkt();
wp.doneWork();

}
}

}

The work pile is designed according to several de-
sign patterns [5]. There is only a single work pile
in the system (\Singleton"), initialized upon program
start. The design pattern \Strategy" is used for the
SplitStrategy that is explained later on.

The method doWork puts new work onto work pile.
If the pile is full and AddWork returns false the cur-
rent thread executes the work rather than postponing
it for another ForallThread to do the work. The
SplitStrategy implements the semantics of full.
For example, the work pile is considered to be full,
if all ForallThreads are busy and a certain number
of packets are on pile, etc.

public class WorkPile {
private static WorkPile wp = new WorkPile();
private static SplitStrategy splstrat =

new DefaultSplitStrategy();
...
public static void doWork(ForallController fac,

(->void) fkt) {
Thread.currentThread().yield();
if (!wp.AddWork(fac, fkt))

fkt();
}

In addition to doWork, there is the synchronized
method AddWork that either returns false if the
work pile is not full, or the work is added to the
pile. An arbitrary ForallThread that is blocked in
getWork is noti�ed and resumes. It is irrelevant which
ForallThread resumes, hence, Java's awkward noti�-
cation mechanisms does not interfere.

synchronized boolean AddWork(ForallController fac,
(->void) fkt) {

if (full()) return false;
else {

totalWorkInQ++;
fac.addWork();
enqueue(new Work(fkt));
notify();
return true;

}
}

A ForallThreadwaits inside of the getWorkmethod if
no work is on the pile. Otherwise the work is dequeued
and returned to the thread. Since a while loop is
used to implement the blocking a lost noti�cation does
not hurt. Since the method is synchronized, no other
ForallThreads can interfere.

synchronized (->void) getWork() {
while (isEmpty()) {

try {
wait();

} catch (Exception e) { /* ignore */ }
}
totalWorkInQ--;
totalBusyThreads++;
return dequeue().fkt;

}

Forall Transformation Pattern

We now describe the code that results from the simple
forall statement from section 2.

forall (int i = 0; i < 100; i++)
bar(i);

The part of the resulting code that textually replaces
the given forall is discussed �rst. The body of the orig-
inal forall is moved to a closure declaration (discussed
below) that preceeds the following code fragment.

try {
ForallController fac = new ForallController();
WorkPile.doWork(fac, makeCl(0, 100, 1, fac));
fac.finalBarrier();

} catch (RuntimeException _exc) {
throw _exc;

} catch (Error _exc) {
throw _exc;

}

A try-catch block replaces the original forall. In-
side the try block, a ForallController is created
that is unique to an execution of the whole forall.
The work pile is asked to doWork. It is handed the
ForallController and the result of makeCl. This
function returns a closure describing the forall range
and containing the original body. Before we discuss
the details of the closures, let us look into the rest of
the try. The finalBarrier makes sure that all work
packets that belong to the forall have been completed
before execution continues. Since an unknown num-
ber of ForallThreads will each work on an unknown
number of work packets, a sequential join phase no
longer works. Instead, the ForallController keeps
track of the number of packets to be completed. If
that number reaches zero, execution can continue past
the barrier. The catch clauses are necessary to pass
exception objects from the body of the forall to the
caller: If one of the \iterations" of the original forall

5



throws an exception, this exception is now thrown in-
side of a ForallThread, i.e., at a di�erent position in
the code. To simulate the intended behavior, the ex-
ception object is caught in the ForallThread, bu�ered
in the ForallController and then re-thrown inside
of finalBarrier The JavaParty compiler generates
catch clauses for RuntimeExceptions and Errors since
those need not be declared by the programmer. In
addition (not shown in the example) a catch clause
is generated for every named exception that can be
thrown in the original body.

The function makeCl is a closure that has four pa-
rameters and returns a void function without param-
eters. That function is called forallCl; it is de�ned
in lines 4{21 below. A ForallThread will later exe-
cute forallCl. The forall closure �rst checks that no
other thread has encountered a break (line 5). The
call of the split strategy that checks whether the work
packet must be split into parts before being executed
(lines 6{7) implements a high fan-out start. If no
split is necessary, the work is performed in the vir-
tualization loop (lines 8{17).6 In each iteration, the
loop checks the break 
ag again and executes bar(i).
Any potential exceptions is caught and registered with
the ForallController. To work on Java virtual ma-
chines without pre-emptive scheduling as well,7 the
current thread is asked to yield. The thread indi-
cates completion at the ForallController so that the
finalBarrier can work as expected.

1 void() (int, int, int, ForallController)
2 makeCl = fun(int lb, int ub, int step,
3 ForallController fac) {
4 void() forallCl = fun() {
5 if (! fac.breakFlag) {
6 if (! WorkPile.split(fac, makeCl,
7 lb, ub, step)){
8 for (int i = lb; i <= ub; i += step) {
9 if (fac.breakFlag) break;
10 try {
11 bar(i);
12 } catch (Throwable e) {
13 fac.caughtException = e;
14 fac.breakFlag = true;
15 };
16 Thread.currentThread().yield();
17 };
18 };
19 };
20 fac.workDone();
21 };
22 return forallCl;
23 };

When splitting work packets, forallCl calls makeCl.
This is why two nested closures are required.

6The upper bound check is simpli�ed for readability; the
correct test depends on the sign of step.

7Several releases of the JDK implemented so called green
threads without pre-emptive scheduling.

ForallController

The ForallControllernow works as expected. It has
a counter to keep track of the number of work packets
that are being processed or in the pile. If that counter
reaches zero, all waiting threads are noti�ed to con-
tinue. An exception that might have been registered
with the ForallController during the execution of
the body is thrown to the caller at the original position
in the code.

public class ForallController {
public boolean breakFlag;
public Throwable caughtException;
int counter;
...
public synchronized void workDone() {

if ((--counter)<=0)
notifyAll();

}
public synchronized void finalBarrier()
throws Throwable {

try {
while (counter > 0)

wait();
} catch (Exception e) { /* ignore */ }
if (caughtException != null)

throw caughtException;
}

}

Split Strategy

The strategy can access the ForallController, can call
the closure makeCl that makes a forall closure, and
knows the range of the virtualization loop in a given
work packet. Moreover the strategy knows about the
number of active and blocked threads and the number
of packets in the work pile.

public static boolean
split(ForallController fac,

(int, int, int,
ForallController -> (->void)) makeCl,

int lwb, int upb, int stp) {
...

}

Several strategies can be implemented and selected dy-
namically. The JavaParty environment provides some
default strategies that work well with nested forall
statements and do not cause any deadlocks. These
strategies can be re�ned by the user.

5 Optimal Barriers in JavaParty

In the implementation of foralls presented so far, the
programmer is in charge of splitting forall statements
if data dependencies demand synchronization. How-
ever, as has been mentioned above, the compiler can
assist the programmer with the splitting, especially if
control 
ow statements are to be split. This section

6



gives a motivating example �rst, before presenting the
central idea of the restructuring that results in a min-
imal number of barriers.

Example of Barrier Elimination

Consider the following situation; the two necessary
synchronizations are indicated by sync. The �rst sync
refers to those conceptual threads that entered the if
branch; it does not a�ect the other threads. (And vice
versa for the second sync.)

forall (int i = 1; i < 100; i++) {
if (cond(i)) {

bar(i);
sync;
gee(i);

} else {
bar(i/2);
sync;
gee(i/2);

}
}

One synchronization barrier is su�cient for both the
synchronization of the if branch and the synchro-
nization of the else branch. An indication of which
branch has been selected is stored temporarily in
helper arrays tmp if and tmp else of booleans.8

boolean tmp_if[] = new boolean[100]; //all false
boolean tmp_else[] = new boolean[100]; //all false
forall (int i = 1; i < 100; i++) {

if (cond(i)) {
bar(i);
tmp_if[i] = true;

} else {
bar(i/2)
tmp_else[i] = true;

}
}
forall (int i = 1; i < 100; i++) {

if (tmp_if[i]) gee(i)
if (tmp_else[i]) gee(i/2)

}

The straightforward approach is to use a single helper
array to store the evaluation of cond(i), and to use
that helper array in the second forall to decide for
every thread which branch to enter. But that does
not work in the general case of arbitraty control 
ow
statements, especially if for an individual thread k the

ow of control leaves early in the �rst forall, e.g., by
a break statement. In such cases, the use of a sin-
gle helper would result in a unintended execution of a
\iteration" k in the second forall. Thus, the general
solution is to use a branch speci�c helper variable to
register the fact that a thread k is supposed to con-
tinue in a later forall immediately before k leaves that
branch in the �rst forall.

8The actual implementation in JavaParty uses bit vectors for
performance reasons.

Forall Restructuring Pattern

JavaParty provides automatic and e�cient forall split-
ting and thus simpli�es the programmer's task.

The central idea of the restructuring algorithm is
to attribute individual statements in the body of a
forall with synchronization ranks and to use a topolog-
ical sort based on these ranks. Two statements in the
body of a forall that are separated by sync have syn-
chronization ranks that are at least one apart. In the
example, the condition and both occurrences of bar
have synchronization rank 1, the two occurrences of
gee must be separated from the preceding invocations
of bar by a barrier, hence they have synchronization
rank 2. Statements that alter the 
ow of control, like
the if statement, are attributed with an interval of
synchronization ranks de�ned by the smallest and the
largest synchronization rank of any statement in their
bodies. The if statement of the example has the syn-
chronization interval [1:2] since in both branches there
are statements with ranks 1 and 2.

The synchronization ranks de�ne an order that is
used during the restructuring: for each rank, a sep-
arate forall statement is constructed. In the body of
the forall of rank x, all those statements are placed
that either have synchronization rank x, or have an
interval of synchronization ranks including x. Control

ow statements can thus re-appear a few times, albeit
with changing conditions; in the example, there are if
statements in both foralls.

Before the �rst forall is generated that belongs to
the synchronization interval of a control 
ow state-
ment, as many helpers are created as there are
branches in the control 
ow statement. Since the if

of the example has two branches, two helpers are cre-
ated. For loops, a single helper array is su�cient. The
default initialization (false) is su�cient, except for
while loops, since they use an entry-condition. For
all loop constructs, there is the additional problem
that the transformation has to pull the loop out of
the forall statement.

forall (int i = 1; i < 100; i++) {
while (cond(i)) {

bar(i);
sync;
gee(i);

}
}

This forall loop runs until the while loop has been
terminated for each value of i. The transformation
result is shown below. In a �rst forall statement, the
helper array is initialized according to cond(i). The
while loop runs until no element of the helper array
is true. In the body of the while loop there are two

7



foralls, one for each synchronization rank. At the end
of the last forall, the helper variable might be set to
false if for a certain index the original while loop
would terminate.

forall (int i = 1; i < 100; i++)
tmp_while[i] = cond(i);

while (atLeastOneTrue(tmp_while)) {
forall (int i = 1; i < 100; i++) {

if (tmp_while[i])
bar(i);

}
forall (int i = 1; i < 100; i++) {

if (tmp_while[i]) {
gee(i);
if (!cond(i)) tmp_while[i] = false;

}
}

}

The JavaParty implementation includes transforma-
tion rules for all control 
ow constructs. In particular,
JavaParty can transform nested forall statements with
arbitrary many sync points into a sequence of nested
forall statements without any internal sync. The de-
tails of the other transformation rules are omitted here
for reasons of brevity.

6 Object Distribution in JavaParty

At this point it has been sketched how JavaParty re-
structures forall statements with sync into ones with-
out, and we know how JavaParty transforms the latter
into e�cient multi-threaded equivalents. The threads
still live in a single address space of a Java virtual
machine that is at best executed on a multi-processor
SMP. This section sketches ways to distribute objects
in a network, and since threads are objects, thread
distribution is covered as well.

Java provides socket communication and RMI, the
remote method invocation interface, for programming
of distributed memory environments. Unfortunately,
both are not appropriate. We have shown in [14]
that the number of lines that have to be added to or
changed in a given multi-threaded program to make
it work in a distributed environment is of the same
order of magnitude as the original program size. This
doubling of code size happens both for socket based
communication and for RMI based approaches. More-
over, Brose et al. argue in [1] that RMI's object model
that distinguishes between remote and local objects
causes severe misunderstandings and bugs when pro-
gramming with that model.

We therefore have designed an additional transfor-
mation phase, that turns Java objects into remote
Java objects that reside in a distributed setting. These

remote objects are much closer to Java's object seman-
tics than RMI objects. Remote objects can migrate
across the machine, especially, they can be made local
to speed up access. There is no semantic di�erence
between remote objects that are accessed from a re-
mote host and remote objects that are accessed locally.
Migration and object placement can be done by the
runtime system (runtime and compiler techniques to
enhance locality are available) or objects can be placed
manually.

We do not recapitulate the transformation tech-
niques here, since the details can be found in [14].

7 Results

We have studied large-scale geophysical algorithms,
called Veltran velocity analysis and Kirchho� migra-
tion to evaluate the e�ciency of JavaParty's forall.
These are basic algorithms used in geophysics for the
analysis of the earth's sublayers by means of sound
wave re
ection. Since it can take terra bytes of input
data to cover a reasonable area, the performance of
these algorithms is crucial. The geophysics and the
details of the benchmarks can be found in [9].

In cooperation with the Stanford Exploration
Project [4], we have implemented these algorithms in
JavaParty, in HPF, and in Fortran90. We then bench-
marked the programs on up to 16 nodes of an IBM
SP/2 distributed memory parallel computer as well as
on 16 nodes of an SGI PowerChallenge shared mem-
ory machine. The JavaParty implementation on both
machines is based on the JDK 1.1.2 with just-in-time
compilers. On each node, a separate Java virtual ma-
chine is started.9 On the SGI, we used SGI's standard
Fortran90 compiler; on the IBM SP/2, version 2.2 of
the Portland Group High Performance Fortran com-
piler is used.

The graph below shows the results for the SGI Pow-
erChallenge. The JavaParty implementation faces a
slowdown compared to the Fortran90 implementation
of 2.2 to 8.2. The upper factor is due to the fact that
the SGI currently does not support true parallelism of
Java threads. We had to start a separate Java virtual
machine per node which communicated through RMI
instead of using the common address space. We ex-
pect the factor 8.2 to shrink signi�cantly when truly
parallel Java threads become available with a future
release of SGI's Java virtual machine.

9Although the IBM SP/2 o�ers an alpha version of a High
Performance Java Compiler [8] compiling to native and stati-
cally linked code, it is too early to seriously use that compiler.
The HPJ compiler revealed a general speed up of 1.6 compared
to just-in-time Java performance, but unfortunately HPJ's com-
munication through RMI turned out to be slower by a factor of
between 20 and 35.

8



JavaParty

Fortran90

SGI runtime

sec

10
11 12

16 planes
16 nodes

4 planes
16 nodes

1 plane
4 nodes

22

32

98

On the IBM SP/2, the results are even better, as
shown in the graph below. The JavaParty version is
slower than the HPF version by a factor of between
1.1 and 2.7 depending on processor utilization.

JavaParty

sec

16 planes
16 nodes

4 planes
16 nodes

1 plane
4 nodes

12 11
6

29

HPF

IBM SP/2 runtime

16

48

On both platforms, Java's performance is not attained
by compiled and optimized native code but instead re-
lies on interpreters with just-in-time compilation fea-
tures. In addition to the expected availability of native
threads on the SGI, we expect signi�cant performance
increases on �ne-grained computations in the near fu-
ture because of two main reasons.

First, we had to use JDK 1.1.2, because later re-
leases are not yet available for our hardware platforms.
Later versions have increased performance, especially
RMI performance, on Solaris and Wintel platforms
and are likely to show the same e�ect in our environ-

ments. Future releases (JDK 1.2) are announced to
speed up the JVM even further.

Second, compilers producing optimized native code
like IBM's High Performance Java Compiler [8] are on
the horizon. These compilers will approach Fortran
performance because they can apply much more so-
phisticated optimization techniques than current just-
in-time compilers.

8 Related Work

An advantages of JavaParty in comparison to other
projects aimed at adding data parallelism to Java is
portability. JavaParty programs run on workstations,
on shared memory parallel computers and in truly dis-
tributed environments. Moreover, JavaParty's forall
statement allows for a single program approach that
is independent of the underlying topology. And �nally,
JavaParty programs come close the native HPF and
Fortran90 performance.
Hummel et al. [7] work on SPMD programming in
Java and faced some of the same problems we have dis-
cussed in section 2. The main contribution are classes
for e�cient synchronization and for regular and irregu-
lar collective communications. Such classes are useful
for JavaParty. The system runs on an IBM SP/2, but
in contrast to JavaParty's 100% pure Java approach,
it uses a runtime system written in C that interacts
with a native MPI communication library.

In the HPJava [2] project at Syracuse, Carpenter,
Fox et al. use wrappers to interface to native HPF
code and library-based extensions of Java. They of-
fer useful classes for distribution of array data and for
collective communication as well. Whereas JavaParty
has the capability of transforming a single program
with forall statements into distributed programs that
communicate by means of message passing, HPJava
requires the implementation and invocation of several
node programs. Such node programs know about the
processor topology, the arrays to be used and their
distribution across the machines. Virtualization loops
get their boundaries from library calls. Since the pro-
grammer is in charge of distributing the threads (one
per processor) several of the disadvantages of a macro
transformation are avoided. However, HPJava's ap-
proach cannot handle nested parallelism nor does it
o�er any support for the e�cient implementation of
barriers. HPJava as well uses native routines and MPI
calls to implement the communication.

9 Conclusion

This paper has discussed alternatives to add data

9



parallelism to Java, has reasoned that forall state-
ments in general cannot be implemented by means
of standard macro processing, has presented Java-
Party's source-to-source transformation that gener-
ates e�cient multi-threaded equivalents from forall
statements, has sketched an optimization technique to
avoid unnecessary synchronization barriers, and has
demonstrated that JavaParty's data parallelism can
achieve performance that comes close to HPF and For-
tran90 code and is expected to improve.

The JavaParty system is freely available for non-
commercial projects. For details and downloading see
http://wwwipd.ira.uka.de/JavaParty.

Acknowledgements

I would like to thank the JavaParty group, especially
Matthias Zenger, for their support of the JavaParty
environment. Matthias Jacob implemented the geo-
physical algorithms. Christian Nester pointed out sev-
eral synchronization bugs in the �rst version [19] of
the forall transformation. Furthermore, we want to
express gratitude to Maui High Performance Comput-
ing Center as well as Karlsruhe Computing Center for
the granting access on the IBM SP/2.

References

[1] Gerald Brose, Klaus-Peter L�ohr, and Andr�e
Spiegel. Java does not distribute. Technical Re-
port B 97-07, Freie Universit�at Berlin, 1997.

[2] Bryan Carpenter, Yuh-Jye Chang, Geo�rey Fox,
Donald Leskiw, and Xiaoming Li. Experiments
with \HPJava". Concurrency: Practice and Ex-
perience, June 1997.

[3] K. Mani Chandy and Carl Kesselman. CC++: A
declarative concurrent object-oriented program-
ming notation. In Gul Agha, Peter Wegner,
and Akinori Yonezawa, editors, Research Direc-
tions in Concurrent Object-Oriented Program-
ming, pages 281{313. MIT Press Cambridge,
Massachusetts, London, England, 1993.

[4] J. Clearbout and B. Biondi. Geophysics in object-
oriented numerics (GOON): Informal conference.
In Stanford Exploration Project Report No. 93.
October 1996. http://sepwww.stanford.edu/sep.

[5] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design Patterns { Elements
of Reusable Object-Oriented Software. Addison-
Wesley, Reading, Mass., 1994.

[6] Andrew S. Grimshaw. Easy to use object-
oriented parallel programming. IEEE Computer,
26(5):39{51, May 1993.

[7] Susan Flynn Hummel, Ton Ngo, and Harini Srini-
vasan. SPMD programming in Java. Concur-
rency: Practice and Experience, June 1997.

[8] IBM. High performance compiler for Java.
http://www.alphaWorks.ibm.com.

[9] Matthias Jacob. Implementing Large-Scale Geo-
physical Algorithms with Java: A Feasibility
Study. Master's thesis, Karlsruhe Univeristy,
November 1997.

[10] Charles H. Koelbel, David B. Loveman, Robert S.
Schreiber, Guy L. Steele Jr., and Mary E. Zosel.
The High Performance Fortran Handbook. MIT
Press Cambridge, Massachusetts, London, Eng-
land, 1994.

[11] Doug Lea. Concurrent Programming in Java {
Design Principles and Patterns. Addison-Wesley,
Reading, Mass., 1996.

[12] Martin Odersky and Philip Wadler. Pizza into
Java: Translating theory into practice. In Proc.
24th ACM Symposium on Principles of Program-
ming Languages, January 1997.

[13] Michael Philippsen and Ernst A. Heinz. Auto-
matic synchronization elimination in synchronous
foralls. In Frontiers '95:The 5th Symp. on
the Frontiers of Massively Parallel Computation,
pages 350{357, Mc Lean, VA, February 6{9, 1995.

[14] Michael Philippsen and Matthias Zenger. Java-
Party: Transparent remote objects in Java. Con-
currency: Practice and Experience, 9(11):1225{
1242, November 1997.

[15] Pizza. http://www.cis.unisa.edu.au/�pizza.

[16] Michael J. Quinn and Philip J. Hatcher. Data-
parallel programming on multicomputers. IEEE
Software, 7(5):69{76, September 1990.

[17] JavaSoft (John Rose). Inner class speci�cation:
Further example: Multi-threaded task partition-
ing. http://java.sun.com/products/jdk/1.1/docs
/guide/innerclasses/spec/innerclasses.doc13.html.

[18] Chau-Wen Tseng. Compiler optimizations for
eliminating barrier synchronization. In 5th ACM
SIGPLAN Symp. on Principles and Practice of
Parallel Programming, PPoPP, pages 144{155,
Santa Barbara, CA, July 19{21 1995.

[19] Matthias Winkel. Erweiterung von Java um ein
FORALL. Studienarbeit, University of Karls-
ruhe, Department of Informatics, May 1997.

10


