
Using BDD�based Decomposition for

Automatic Error Correction

of Combinatorial Circuits�

Dirk W� Ho�mann and Thomas Kropf

Institute for Computer Design and Fault Tolerance�
Prof� D� Schmid

University of Karlsruhe� D�����	 Karlsruhe� Germany
hoff�ira�uka�de kropf�ira�uka�de

http���goethe�ira�uka�de�hvg

Abstract� Boolean equivalence checking has turned out to be a powerful
method for verifying combinatorial circuits and has been widely accepted
both in academia and industry�
In this paper� we present a method for localizing and correcting errors in
combinatorial circuits for which equivalence checking has failed� Our ap�
proach is general and does not assume any error model� Working directly
on BDDs� the approach is well suited for integration into commonly used
equivalence checkers�
Since circuits can be corrected fully automatically� our approach can save
considerable debugging time and therefore will speed up the whole design
cycle�
We have implemented a prototype veri
cation tool and evaluated our
method with the Berkeley benchmark circuits ���� In addition� we have
applied it successfully to a real life example taken from �����
keywords� Automatic error correction� equivalence checking� BDDs�
fault diagnosis

� Introduction

In recent years� formal veri�cation techniques ���	 have become more and more
sophisticated and for several application domains they have already found
their way into industrial environments� Boolean equivalence checking ��
� �� ��	�
mostly based on BDDs �� �	� is unquestionably one of these techniques and is
usually applied during the optimization process to ensure that an optimized cir�
cuit still exhibits the same behavior as the original �golden� design� When using
BDDs for representing boolean functions� the veri�cation task mainly consists
of creating a BDD for the boolean function of each output signal� Then� due to
the normal form property of BDDs� both signals implement the same function
if and only if they have the same BDD representation� Hence� equivalence can
be decided by simply comparing both BDDs�

� This work is supported by the ESPRIT LTR Project ����



A major requirement for successful application of formal methods in indus�
trial environments is the ability of a veri�cation tool to provide useful infor�
mation even when the veri�cation attempt fails� Thus the application domain
of formal veri�cation is no longer restricted to proving correctness of a speci�c
design� but can also serve as a powerful debugging technique and therefore help
speeding up the whole design cycle�

If equivalence checking fails� most veri�cation tools only allow to compute
a counterexample in the form of a combination of input values for which the
output of the optimized circuit di�ers from its speci�cation� Therefore� in many
cases it remains extremely hard to detect the error causing components� Coun�
terexamples as produced by most equivalence checkers can only serve as hints for
debugging a circuit� while a deeper understanding of the design is still needed�

In recent years� several approaches have been presented for extending equiv�
alence checkers with capabilities not only to compute counterexamples� but to
locate and rectify errors in the provided designs� The applicability of such a
method is strongly in�uenced by the following aspects�

� Which types of errors can be found �
� Does the method scale to large circuits �
� How many modi�cations in the original circuit are required to achieve a
correct result �

� Does the method perform well if both circuits are structurally di�erent �

Earlier research in the area of automatic error correction mostly focused on
localizing single gate errors ��single error assumption��� Most of this work ����
��� �� ��� ��� ��	 assumes a concrete error model based on a classi�cation of
typical design errors �e�g� ��	�� Errors are divided into gate errors �missing gate�
extra gate� wrong logical connective� and line errors �missing line� extra line��
Each gate is basically checked against these error classes and only circuits with
a single gate or line error can be recti�ed�

In ���	 and ���	� no error model is assumed� The method presented in ���	
propagates meta�variables through the circuit� Erroneous single gates are deter�
mined by solving formulas in quanti�ed propositional logic� However� the method
is very time consuming and needs to invoke a propositional prover�

In ���	� the implementation circuit and the speci�cation circuit are searched
for equivalent signal pairs and a back�substitution algorithm is used for rectifying
the circuit� The success of this method highly depends on structural similarities
between the implementation and the speci�cation�

Incremental synthesis �
� �	 is a �eld closely related to automatic error cor�
rection� An old implementation� an old speci�cation� and a new speci�cation are
given� The goal is to create a new implementation ful�lling the new speci�cation
while reusing as much of the old implementation as possible� In ��	� structural
similarities between the new speci�cation and the old speci�cation are exploited
to �gure out subparts in the old implementation that can be reused� The method
is based on the structural analysis technique in ��	 and the method presented
in ��	 which uses a test generation strategy to determine equivalent parts in two
designs�



In this paper� we present a method for localizing and correcting errors in
combinatorial circuits based on boolean decomposition� Basically� we try to de�
termine the smallest component containing the erroneous parts in the optimized
circuit� Once such a component has been localized� a circuit correction is com�
puted and suggested to the designer� Circuit recti�cations are computed in form
of a BDD and then converted back to a net�list description� This is in contrast
to techniques such as ���� 
� �	 which basically modify a given design by putting
the implementation and speci�cation together and �rewiring� erroneous parts�

Unlike ���� ��� �� ��� ��� ��	� our approach does not assume any error model�
Thus� arbitrary design errors can be detected� Moreover� computed solutions are
weighted by a cost function in order to �nd a minimal solution � a solution that
requires minimal number of modi�cations in the implementation�

Our method directly works on BDDs which eases the integration into state�
of�the�art equivalence checkers� Since we only make use of the abstract BDD
representation of the speci�cation circuit� the success of our algorithm does not
depend on any structural similarity between the implementation and the spec�
i�cation� Therefore our technique can even be applied in scenarios where the
speci�cation is given as a boolean formula or directly in form of a BDD� This
is in contrast to ���� 
� �	 where the result is highly in�uenced by the layout�
structure of the speci�cation circuit�

Our approach is orthogonal to other veri�cation techniques such as structure
comparison� Combining these techniques� our method can be applied to large
designs�

This paper is organized as follows� In Section �� we give a brief introduction
to the theoretical background� Section 
 describes the boolean decomposition
algorithm and Section � shows how this algorithm is applied to locate and correct
erroneous parts of a circuit� Section � describes our prototype veri�cation tool
and discusses several benchmark examples� We close our paper in Section � with
a summary and some remarks about further research�

� Preliminaries

In the following� f� g� h� � � � denote propositional formulas and X�Y� Z� � � � repre�
sent propositional variables� We use the symbol � to denote logical equivalence
between propositional formulas while � is used for expressing syntactical simi�
larity�

A variable instantiation � maps every propositional variable to one of the
truth values � or �� �f is the formula obtained from f by replacing all variables
by the truth value assigned by �� Since �f does no longer contain any variable�
either �f � � or �f � � holds�

The positive and negative cofactor of f � written as f jX and f j�X � represent
the functions obtained from f where X is substituted by the truth values � and
�� respectively� A formula f is said to be independent of X � if f jX � f j�X �



f�g represents some boolean function that agrees with f for all valuations
which satisfy g� For all other valuations� f�g is not de�ned and can be chosen
freely�

Formulas can naturally be represented in form of syntax�trees or directed
acyclic graphs if we allow to share sub�terms� Inner nodes are labeled with logical
connectives while leafs are labeled with propositional variables� Let f and g be
two formulas and v be a node in the syntax�graph of f � f �v � g	 denotes the
formula created from the syntax�graph of f where node v has been replaced by
the syntax�graph of g� �v � g	 is called a term�substitution�

BDDs �� �	 are a canonical representation of boolean functions� Formally�
we de�ne a BDD as a triple �V�E� l� where �V�E� is a rooted� directed acyclic
graph with jV j � �� Every inner node has exactly two successor nodes called
then�v� and else�v�� The labeling function l labels every leaf node v � V with an
element l�v� � f�� �g and every inner node with a propositional variable� Every
BDD depends on an ordering on the propositional variables occurring in it and
must ful�ll the ordering condition l�v�� � l�v�� for every edge �v�� v�� � E�

Every node of a BDD B containing n propositional variables recursively de�
�nes a corresponding boolean function fBv � f�� �gn � f�� �g by

fBv �

�
l�v� if v is a leafh
l�v� � fBthen�v�

i
�
h
�l�v� � fBelse�v�

i
otherwise

We intuitively identify any BDD with the boolean function induced by its root
node�

If isomorphic sub�trees are merged and nodes v with then�v� � else�v� are
eliminated� it can be shown �	 that for each �xed variable ordering� the resulting
graph is a canonical representation for propositional formulas� In the rest of
this paper� we implicitly assume that all BDDs are given in their canonical
representations�

� A BDD�based Decomposition�Algorithm

Assume we are given three propositional formulas f �g� and h� The pair �g� h� is
called a decomposition of f � if there exists a variable X in g with

f � g�X � h	 ���

If formulas f � g� and variable X are given� the decomposition problem is to
compute a formula h satisfying ����

Example �� Consider f � �A � B� � A and g � A � X � �g�A � B� and �g�A�
are both decompositions of f since f � g�X � �A � B�	 and f � g�X � A	�
Assuming g � C �X � there exists no decomposition for f since there is no term
h such that f � g�X � h	�



Example � shows that if a decomposition exists� there are usually more than
one solution�

The question if there exists a decomposition can be decided according to the
following lemma�

Lemma �� Let f and g be two propositional formulas� X is a variable occurring

in g� Then� there exists a formula h with f � g�X � h	 if and only if

f � �gj�X 	 gjX� � g � �gj�X 	 gjX� ���

Proof� First� we proof the direction from left to right� We have to show that ���
holds for all variable instantiations �� We distinguish two cases� If ��gj�X � 
�
��gjX�� equation ��� is trivially true� If ��gj�X� � ��gjX�� the value of �g is
independent of X and therefore �g � ��gj�X� � ��gjX�� Knowing f � g�X �
h	� we can conclude �f � ��g�X � h	� � �g and therefore ��� holds as well�

For the direction from right to left� we partially de�ne h for all variable
instantiations � with ��gj�X� 
� ��gjX � as

�h �

�
� if ��gj�X� � �f

� if ��gjX� � �f
�
�

Again� we distinguish two cases� If ��gj�X � � ��gjX �� equation ��� reduces to
�f � �g and since �g is independent of X � we know �f � ��g�X � h	�� If
��gj�X� 
� ��gjX�� we get ��g�X � h	� � ��g�X � �h	� � �f by the de�nition
of h�

Lemma � re�ects the idea that we can �nd some h with f � g�X � h	
i� f and g agree on all valuations that are independent of X �expressed by
gj�X 	 gjX�� For all other valuations� we can construct h according to equation
�
��

Assuming that all propositional formulas are represented via BDDs� Lemma
� shows how decomposability can be decided by simply applying basic BDD
operations to f and g� Using BDDs� these operations have computation time
which is polynomial in the number of BDD�nodes�

Now� we provide a simple algorithm computing a term h with f � g�X � h	
if f and g are decomposable� The algorithm takes BDDs for f � g� and X and
returns a BDD for h� Variable X always has to be the last variable in the current
variable ordering� This assumption is crucial for the algorithm to compute correct
results� Figure � shows the algorithm in more detail�

The following lemma states the correctness of the decomposition�algorithm�

Lemma �� Assume f and g are decomposable in respect to variable X� Then�

decompose�f� g�X� computes a function h with g�X � h	 � f �

Proof� We proof the theorem by structural induction on the BDD of g� Base
cases� �� g is a leaf�node �either labeled with � or ��� Since f and g are decom�
posable� there exists some h� with f � g�X � h�	� Because g is a leaf node� its
truth�value does not depend onX � Hence� f � g�X � h�	 � g�X � h	� �� If g is a



function decompose �f � BDD� g � BDD� X � VAR� �� �h � BDD�
begin

if g � � return �
if g � � return �
if g � X return f

if g � �X return �f

v �� l�g� �� root�node�label of g
h� �� decompose�f jv � gjv�
h� �� decompose�f j�v � gj�v�
h �� �v � h�� � ��v � h��
return h

end

Fig� �� BDD�based decomposition�algorithm

node labeled with X � we know that g � X or g � �X since X is the last variable
in the variable ordering� Thus� if g � X � we get g�X � h	 � X �X � f 	 � f � On
the other hand� if g � �X � we get g�X � h	 � ��X��X � �f 	 � f �
Induction step� Assume f jv � gjv�X � h�	 and f j�v � gj�v�X � h�	� Then�

g�X � h	 � ��v � gjv� � ��v � gj�v���X � h	

� �v � gjv�X � �v � h�� � ��v � h��	� �

��v � gj�v�X � �v � h�� � ��v � h��	�

Now� we perform case split on v�
v � �� g�X � h	 � gj�v�X � h�	 � f j�v � �v � f jv� � ��v � f j�v� � f �
v � �� g�X � h	 � gjv�X � h�	 � f jv � �v � f jv� � ��v � f j�v� � f �

In both cases� we get g�X � h	 � f which had to be proved�

Using cofactor computation� conjunction� and disjunction� the function re�
turned by the decomposition�algorithm can be computed directly according to
the following lemma� Although less intuitive� this lemma allows to compute the
result much faster than algorithm �� especially when dealing with large BDDs�

Lemma �� Assume f and g are decomposable in respect to variable X� Then�

decompose�f� g�X� � �gjX � f � ��gj�X�� � ���gjX� � �f � gj�X� ���

Proof� Base case� If g � � or g � �� both sides of ��� are equivalent to ��
If g � X � we get X jXf��X j�X� � ��X jX ��fX j�X � f � �� � f� � f �
If g � �X � we get �X jXf���X j�X�����X jX ��f�X j�X � ��� f���f � �f �
Induction step�

decompose�f� g�X� � �v � decompose�f jv� gjv�� � ��v � decompose�f j�v � gj�v��

� v�gjvXf jv��gjv�X � � ��gjvX ��f jvgjv�X� �

�v�gj�vXf�v��gj�v�X� � ��gj�vX��f�vgj�v�X�



a

b
c

�

�

�

a b

Fig� �� The left picture shows some circuit�layout and the right picture shows the
corresponding syntax�graph� Using directed acyclic graphs leads to a one�to�one corre�
spondence between the circuit�layout and the formula�graph�

� v�gjXf��gj�X� � ��gjX ��fgj�X�jv �

�v�gjXf��gj�X� � ��gjX��fgj�X�j�v

� gjXf��gj�X� � ��gjX��fgj�X

� Using Boolean Decomposition for Circuit�Recti�cation

In the following� assume we are given two circuits spec and imp� Let the propo�
sitional formulas f and g represent some output�signal of spec and imp� respec�
tively� for which equivalence checking has failed �thus� f 
� g�� Further assume
that formula g is directly extracted from its corresponding circuit description and
represented in form of a directed acyclic graph� Using a syntax�graph instead
of a syntax�tree leads to a one�to�one correspondence between the circuit�layout
of imp and the syntactical representation of g �see Fig� ��� Whenever we talk
of a circuit or net�list in the rest of this paper� we implicitely assume that it is
represented in form of its corresponding syntax�graph�

Formula f is represented in form of a BDD only� since we exclusively make use
of the abstract BDD representation of the speci�cation circuit� Thus� computed
results are totally independent of the layout�structure of spec� Since we do not
consider the net�list of spec at all� our approach can even be applied in scenarios
where the speci�cation is given as a boolean formula or directly in form of a
BDD�

Our goal is to modify the syntax�graph of g with a minimal number of changes
such that f � g holds� Each such modi�cation is called a recti�cation of g�

De�nition �� Assume we are given two propositional formulas f and g with

f 
� g� � denotes some node in the syntax�graph of g� g is called recti�able at �

i� there exists a formula h with

f � g�� � h	 ���

The substitution of � by h is called a recti�cation of g�



The number of changes we have to apply to a given circuit is a crucial issue
when computing recti�cations since we want to preserve as much of the circuit
structure as possible� In principle� we can always correct a wrong implementation
by substituting the whole circuit by a DNF�representation of the speci�cation�
formula� Obviously� this is far away from what a designer would accept as circuit
correction�

In practice� however� it is often possible to localize a comparably small sub�
component containing all error�causing parts� This is obviously true� e�g�� for all
circuits ful�lling the single�error assumption� However� even if multiple errors
occur in a given design� they are often concentrated in a single sub�component�
Substituting this component can correct the circuit while preserving most of the
circuit structure�

��� The Recti�cation Method

Our recti�cation�procedure is based on the boolean decomposition algorithms
presented in Section 
 and mainly consists of two steps� the location of erroneous

sub�components and the computation of circuit corrections�
For locating erroneous sub�components� we �rst try to �gure out recti�able

sub�graphs in g� For doing this� we traverse the syntax�graph of g starting from
the root� This directly corresponds to a back traversal of the circuit net�list
starting from the corresponding output�signal�

For each node �� we determine if g can be recti�ed at �� According to Def�
inition �� we have to check if there is a formula h such that g�� � h	 is logical
equivalent to the speci�cation formula f �

Replacing the sub�graph at � by a newly introduced variableX � we can easily
perform this test by checking if there exists a term h such that �g�� � X 	� h� is
a decomposition of f � For doing this� we �rst create a BDD�representation for
f and g�� � X 	� Then� according to Lemma �� decomposability can be decided
easily by applying elementary BDD operations�

For computing circuit corrections� we �rst apply lemma 
 to compute a for�
mula h such that g�X � h	 � f � Since the algorithm only computes h in form of
a BDD� it has to be converted back into a syntax�graph before the recti�cation
can be applied to the circuit� This conversion� however� directly in�uences the
resulting circuit structure and in order to minimize the number of modi�cations
in g� we try to reuse as many sub�graphs of g as possible� Assume g�� � � � � gn are
the sub�graphs of g we want to reuse� Hence� our goal is to create a syntax�graph
for h containing g�� � � � � gn�

To achieve this� we construct a second BDD h� as shown in Fig� 
� G�� � � � � Gn

are newly introduced BDD variables�
Since for all m�

h�g�����gm�� � gmh�g�����gm���gm � �gmh�g�����gm����gm

� �Gmh�g�����gm���gm � �Gmh�g�����gm����gm��Gm � gm	

the newly constructed BDD h� in Fig� 
 is logical equivalent to h if we substitute
G�� � � � � Gn by g�� � � � � gn� respectively�



G�

G�

�

Gn

�

�

h�g��g������gn

�

h�g��g�������gn

� G�

�

�

Gn

�

�

h��g���g������gn

�

h��g���g�������gn

Fig� �� Reuse of sub�graphs� Variables G�� � � � � Gn denote newly introduced meta�
variables representing sub�graphs g�� � � � � gn� respectively�

A crucial issue in the construction process is to check the possibility if h
can be exclusively constructed out of g�� � � � � gn and the logical connectives �� ��
and �� If h has this property� the sub�BDDs h�f in Fig� 
 can always be simpli�ed
to � or �� Then� h� only contains the meta�variables G�� � � � � Gn� This property
becomes important when dealing with hierarchical circuit descriptions� If we
have located an erroneous sub�component in a circuit� we �rst try to replace it by
another component that does not require changes in the component�interfaces�
Thus� after computing a circuit correction h� we �rst try to convert h to a formula
only involving the current component inputs as sub�terms� Every solution that
keeps the component�interfaces unchanged is called structure preserving�

� A Prototype Veri�cation System

We have implemented a prototype equivalence checker integrating the meth�
ods and algorithms presented in this paper� Both the speci�cation�circuit and
the implementation�circuit have to be provided in an input language basically
re�ecting hierarchical net�list structures� A hierarchical description is achieved
by de�ning various components� Each component consists of an interface part

declaring input and output�variables as well as a module body� Besides addi�
tional component de�nitions for each sub�component� the module body contains
a boolean formula for each output�variable de�ning its behavior in terms of
input�variables and sub�component outputs�

As a toy�example� Fig� � shows the description of a two�bit carry�ripple adder�
The circuit has four global input�signals a�� a�� b�� b� and three output signals
c�� c�� c�� Using a half�adder �component H�ADDER� and a full�adder �component
FULL�ADDER�� the circuit computes the sum �c�c�c�� � �a�a�� � �b�b���

The speci�cation is shown in Fig� �� Unlike the implementation� the spec�
i�cation de�nes its output�signals by boolean functions being derived directly
from the truth�table of boolean addition�



COMPONENT CARRY�RIPPLE�ADDER �a�	a
	b�	b
� �� �c�	c
	c��

COMPONENT H�ADDER �a	b� �� �sum	carry�

sum �� �a �� b��

carry �� �a �� b��

END

COMPONENT FULL�ADDER �a	b	c� �� �sum	carry�

sum �� a XOR b XOR c�

carry �� �a �� b� �� �a �� c� �� �b �� c��

END

H�ADDER�a �� a��

H�ADDER�b �� b��

FULL�ADDER�a �� a
�

FULL�ADDER�b �� b
�

FULL�ADDER�c �� H�ADDER�carry�

c� �� H�ADDER�sum�

c
 �� FULL�ADDER�sum�

c� �� FULL�ADDER�carry�

END

Fig� �� Example� A two bit Carry�Ripple�Adder

COMPONENT CARRY�RIPPLE�ADDER �a�	a
	b�	b
� �� �c�	c
	c��

c� �� �a� XOR b���

c
 �� �a
 XOR b
� XOR �a� �� b���

c� �� �a
 �� b
� �� �a� �� b
 �� b�� �� �a� �� a
 �� b���

END

Fig� �� Speci
cation for the ��bit adder�circuit�

After starting the equivalence checker� circuit�descriptions are parsed and
converted into an internal representation� The user can then specify a pair of
output�signals that are going to be compared� After calling the veri�cation pro�
cedure� BDD representations for both output�signals are created� If the BDDs
are di�erent� the recti�cation algorithm as described in Section � is invoked and
circuit corrections are computed�

Referring to our example� signals c� and c� can be proven to be equivalent on
the �rst try� However� for signal c�� equivalence checking fails and the veri�cation
tool tries to rectify the circuit automatically� Restricting ourselves to structure�
preserving solutions� the veri�er computes � di�erent circuit corrections� For each
solution� name of the sub�component to be modi�ed and the number of required
changes are displayed� The solution are weighted by a cost�function counting the
number of modi�cations which have to be applied to the circuit� The solution
that requires the minimal number of changes is displayed �rst� After the circuit
has been recti�ed automatically� it can can be written back to a �le�

Table � gives a summary of the computed solutions for the carry�ripple adder
in Fig� �� The second and third column contain name of the sub�component and



name of the signal to be modi�ed� respectively� Column � reminds the old signal
de�nition while column � shows the suggested replacement�

Nr Component Signal old de
nition suggested replacement

� H�ADDER sum a� b a� �b
� H�ADDER sum a� b �a� b

� CARRY�RIPPLE�ADDER H�ADDER�b b� �b�
 CARRY�RIPPLE�ADDER H�ADDER�a a� �a�
� H�ADDER sum a� b �a � �b� � ��a � b�
� CARRY�RIPPLE�ADDER c� H�ADDER�sum �H�ADDER�sum
Table �� Suggested circuit corrections for the carry�ripple adder�

Comparing Table � with the circuit�description in Fig� �� it turns out that
the major design error has been made in component H�ADDER� Output�signal sum
computes a false value due to a wrong logical connective� Instead of perform�
ing an XOR�operation� the equivalence operator is applied� Solution � exactly
suggests to replace this logical connective� but all other solutions also correct
the circuit even if some of them actually do not re�ect the designer�s original
intention� Since the veri�cation tool does not have any semantical knowledge
about the half�adder� it cannot distinguish between these solutions� In general�
the solution that requires the minimal number of changes in the original circuit
is considered best� Solutions � to � show that the circuit can even be recti�ed
by inserting one additional NOT gate only�

A crucial aspect of the method is that only the abstract BDD of the speci��
cation is considered during the recti�cation�process� Therefore� the structure of
the speci�cation�circuit does not at all in�uence the computed solutions� Each
speci�cation�circuit � it�s correctness assumed � causes the veri�er to produce
exactly the same results�

Table � shows measured data for the Berkeley benchmark circuits ��	� Ar�
bitrary single gate errors have been introduced into the circuits and have been
checked against the original designs� Column recti�cation time shows the elapsed
time for analyzing and rectifying the circuit measured on a SUN Sparc Ultra ��
with 
�� MHz and �� MB main memory� Memory usage is shown in column
total BDD nodes�

We also applied our method to a Galois�Field multiplier presented in ���	
which we had to verify recently� When we �rst applied standard equivalence
checking� veri�cation failed and a deeper understanding of the multiplier had
become necessary for correcting the circuit� Using our recti�cation�procedure�
we have instantly been able to locate a missing NOT gate in the circuit layout
shown in Fig� 
 in ���	 whereas tedious manual search had been necessary before�
The circuit could be recti�ed immediately �example GFmult in Table �� and a
lot of debugging time had been saved�

In general� runtime and memory usage of our method are mainly in�uenced
by two factors� the number of input signals and the number of internal gates�



Since for some classes of formulas� BDDs grow exponentially in the number of
input�signals� this value is the most limiting factor both for memory usage and
runtime� The number of gates is also an important value since the recti�cation
approach traverses the netlist and computes a BDD for each node in the graph�
Thus� the number of gates considerably in�uences runtime of our approach es�
pecially when dealing with huge BDDs�

Our approach can be combined with other veri�cation�techniques like
structure�comparison and is therefore well suited for being integrated into state�
of�the�art veri�cation tools� A promising scenario is to eliminate similar parts of
a circuit via structure�analysis and then to apply the recti�cation algorithm� In
combination with these techniques� we believe that our method is applicable to
industry�size examples�

name inputs gates signal recti
cation time total BDD nodes

GFmult � 	 c out � ���� sec ���
misj �� �� �� out ���� sec ���
exep �� �	� �� out ���� sec 	�	
vg� �� 	 �	 out ��� sec ���

x�dn �� ��	 �� out ��� sec ����
x�dn �� 	� �� out ���� sec ����	
x�dn �	 �	� � out ��	� sec ����
jbp �� ��� 	� out ���	 sec ����

chkn �� ��� ��� out ��	� sec ����	
signet �� �� � out ���� sec �����

in� �� �		 � out ���� sec ���
in� �� �� �� out ���� sec �����
in� � ��� � out ��� sec �����
in� � ��� �� out ���� sec ����
in �� ��	 �� out ���� sec ������

cps � ��� �� out �	� sec ��	��
bc� �� ��� ��� out 	��� sec ���

Table �� Experimental results� GFmult is taken from ����� All other examples are
taken from ����

� Summary

We have presented a method for localizing and correcting errors in combinatorial
circuits for which equivalence checking has failed�

Unlike most other approaches� our method does not assume any error model�
Thus� arbitrary design errors can be found� Our method is split into two parts�
the location of erroneous subcomponents and the computation of circuit correc�

tions� For both tasks� we have presented e�cient solutions based on boolean
decomposition� Working directly on BDDs eases the integration into commonly
used equivalence checkers as a debugging back�end�



When computing circuit corrections� our approach tries to reuse as many
parts of the old circuit as possible in order to minimize the number of modi�ca�
tions and therefore to increase the quality of the computed solutions�

We have implemented the presented methods in a prototype veri�cation tool
and evaluated it with the Berkeley benchmark circuits ��	� In addition� we have
applied our method successfully to a real life example taken from ���	� Our
method is powerful if the error causing elements are concentrated in a compara�
bly small subpart of the circuit since our algorithm tries to locate the smallest
subcomponent containing the erroneous components� This is obviously true� e�g��
for all circuits ful�lling the single error assumption� Computed solutions are more
expensive if the errors are widespread all over the circuit�

Our approach is orthogonal to other veri�cation techniques such as structure
comparison� Thus� the approach is well suited for being integrated into state�
of�the�art veri�cation tools� Combining these techniques� our approach can be
applied to large designs�

In future� we plan to extend the veri�cation system with front�ends for other
input languages� such as BLIF ��	 or PURR ���	 to obtain access to a variety of
example circuits� We further plan to incorporate our method in the PROSPER�

project which aims at the integration of di�erent proof tools into a higher�order
logic environment� PROSPER tries to achieve a higher degree of automation and
explicitly focuses on reducing the gap between formal veri�cation and industrial
aims and needs�

References

�� M�S� Abadir� J� Ferguson� and T�E� Kirkland� Logic design veri
cation via test
generation� IEEE Transactions on CAD� �������	��	� January ��		�

�� D� Brand� The taming of synthesis� In International Workshop on Logic Synthesis�
RTP� May �����

�� D� Brand� Incremental synthesis� In Proceedings International Conference on
COmputer Aided Design� pages ��� � ���� �����

� D� Brand� Veri
cation of Large Synthesized Designs� In IEEE�ACM International
Conference on Computer Aided Design �ICCAD�� pages ������� Santa Clara�
California� November ����� ACM�IEEE� IEEE Computer Society Press�

�� D� Brand� A� Drumm� S� Kundu� and P� Narain� Incremental synthesis� In Pro�
ceedings Internation Conference on Computer Aided Design� pages ���	� ����

�� R� K� Brayton� A� L� Sangiovanni�Vincentelli� A� Aziz� S��T� Cheng� S� Edwards�
S� Khatri� Y� Kukimoto� S� Qadeer� R� K� Ranjan� T� R� Shiple� G� Swamy� T� Villa�
G� D� Hachtel� F� Somenzi� A� Pardo� and S� Sarwary� VIS� A system for veri
cation
synthesis� In Computer�Aided Veri�cation� New Brunswick� NJ� July�August �����

�� R�K� Brayton� G�D� Hachtel� C�T� McMullen� and A�L� Sangiovanni�Vincentelli�
Logic Minimization Algorithms for VLSI Synthesis� The Kluwer International Se�
ries in Engineering and Computer Science� Kluwer Academic Publishers� ��	��

	� R�E� Bryant� Graph�Based Algorithms for Boolean Function Manipulation� IEEE
Transactions on Computers� C����	���������� August ��	��

� http���www�dcs�gla�ac�uk�prosper�



�� R�E� Bryant� Symbolic boolean manipulation with ordered binary decision dia�
grams� ACM Computing Surveys� �����������	� September �����

��� P�Y� Chung� Y�M� Wang� and I�N� Hajj� Diagnosis and correction of logic design
errors in digital circuits� In Proceedings of the ��th Design Automation Conference
�DAC�� �����

��� W� Drescher and G� Fettweis� VLSI Architectures for Multiplication in GF ��m�
for Application Tailored Digital Signal Processors� In Workshop on VLSI Signal
Processing IX	 San Francisco � CA� �����

��� A� Gupta� Formal Hardware Veri
cation Methods� A Survey� Journal of Formal
Methods in System Design� ��������	� �����

��� Alan J� Hu� Formal hardware veri
cation with BDDs� An introduction� In IEEE
Paci�c Rim Conference on Communications	 Computers	 and Signal Processing
�PACRIM�� pages �����	�� October �����

�� S�Y� Huang� K�C� Chen� and K�T� Cheng� Error correction based on veri
cation
techniques� In Proceedings of the ��rd Design Automation Conference �DAC��
�����

��� J�C� Madre� O� Coudert� and J�P� Billon� Automating the diagnosis and the rec�
ti
cation of design errors with PRIAM� In Proceedings of ICCAD� pages ������
��	��

��� S�M� Reddy� W� Kunz� and D�K� Pradhan� Novel Veri
cation Framework Combin�
ing Structural and OBDD Methods in a Synthesis Environment� In ACM�IEEE
Design Automation Conference� pages ����� �����

��� K� Schneider and T� Kropf� The C�S system� Combining proof strategies for
system veri
cation� In T� Kropf� editor� Formal Hardware Veri�cation 
 Methods
and Systems in Comparison� volume ��	� of Lecture Notes in Computer Science�
pages �	����� Springer Verlag� state of the art report edition� August �����

�	� M� Tomita and H�H� Jiang� An algorithm for locating logic design errors� In IEEE
International Conference of Computer Aided Design �ICCAD�� �����

��� M� Tomita� T� Yamamoto� F� Sumikawa� and K� Hirano� Recti
cation of multiple
logic design errors in multiple output circuits� In Proceedings of the ��st Design
Automation Conference �DAC�� ����

��� A� Wahba and D� Borrione� Design error diagnosis in sequential circuits� In
Springer Verlag� editor� Correct Hardware Design and Veri�cation Methods	 IFIP
WG ��� Advanced Research Working Conference	 CHARME ��� volume �	� of
Lecture Notes in Computer Science� Frankfurt�M�� Germany� October �����

��� A� Wahba and D� Borrione� A method for automatic design error location and
correction in combinational logic circuits� Journal of Electronic Testing� Theory
and Applications� 	������������ April �����

��� A� Wahba and D� Borrione� Connection errors location and correction in com�
binational circuits� In European Design and Test Conference ED�TC���� Paris�
France� March �����


