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Abstract

Rthreads (Remote threads) is a software distributed
shared memory system that supports sharing of global vari-
ables on clusters of computers with physically distributed
memory. Rthreads uses explicit function calls for access of
distributed shared data. Unique aspects of Rthreads are:
Synchronization primitives are syntactically and semanti-
cally closely related to the POSIX thread model (Pthreads).
Distributed shared memory is built in a transparent way,
becauseall global variables of an Rthreads program are
shared among the participating nodes and are referenced
by their variable name. Moreover, Pthreads and Rthreads
can be mixed within a single program. We support hetero-
geneous workstation clusters by implementing the Rthreads
system on top of PVM, MPI and DCE. Our performance
results show that the Rthreads system introduces only few
overhead compared to equivalent programs in the baseline
system PVM. For the evaluated examples, superior perfor-
mance compared to the DSM system Adsmith and the page
based DSM system CVM is achieved.

1 Introduction

Message-passing models — in practice PVM and MPI
— are most commonly used for distributed computing on
clusters of workstations due to the physically distributed
memory of networked computers. In contrast, the operating
systems of single or multiprocessor standard workstations
support a shared-memory model based on threads. The
POSIX thread model (Pthreads), as established standard,
is adopted by most workstation operating systems like e.g.
Sun Solaris 2.5 and IBM AIX 4.1. However, POSIX threads
cannot be spread over a cluster of workstations due to the
mismatch of its underlying shared-memory model and the
physically distributed memory within a workstation cluster.

Software distributed shared memory systems (DSM)
provide the programmer with the illusion of shared mem-

ory on top of physically distributed memory. The first DSM
systems extended virtual memory management to main-
tain coherence on page-level and followed the sequential
consistency model [1]. However, applications running on
such software DSM systems suffer high communication and
coherence-induced overheads that limit performance. False
sharing of data can be avoided by an object-based approach
that shares data objects instead of memory pages.

The DSM system Rthreads is object-based; it uses prim-
itives to read and write remote data objects and to syn-
chronize remote accesses. The primitives are syntactically
and semantically closely related to the POSIX thread model
(Pthreads), enabling a precompiler to automatically trans-
form Pthreads (source) programs into Rthreads (source)
programs. The automatic generation of Rthreads programs
from Pthreads programs is advantageous to other software
DSM systems that solely define and implement a program-
ming interface the programmer has to use. Pthreads (POSIX
threads) and Rthreads can be mixed within a single applica-
tion using the Rthreads package. Rthreads may run on dif-
ferent (potentially heterogeneous) machines, while Pthreads
are used to exploit the parallelism among multiple proces-
sors of a single shared-memory machine.

The Rthreads system introduces a new view of the
distributed shared memory: the global variables of a
Pthreads program are transformed into shared variables in
the Rthreads program. Different schemes must be applied
for synchronizing and non synchronizing global data. The
DSM scheme and its consequences for the precompiler are
described in Section 2 and Section 3. The Rthreads system
and the associated precompiler are presented in Section 4,
related work is described in Section 5.

A further weakness of most existing DSM systems is the
lack of support of heterogeneous systems. Most DSM sys-
tems are only implemented for homogeneous environments
since their memory access mechanisms are based upon the
virtual memory management which is deeply embedded in
the operating system and processor hardware. In conse-
quence, even portability is often restricted. Function li-



brary implementations of the Rthreads package exist on top
of the message-passing systems PVM and MPI and on top
of the RPC-based client-server software DCE thereby pro-
viding portability and executability on heterogeneous ma-
chines. The top-level implementation introduces a slight
overhead that was measured and quanticised by running
Rthreads programs versus programs written to the underly-
ing communication system PVM. Performance results are
given in Section 6 together with performance comparisons
to the DSM systems Adsmith and CVM.

2 Building Distributed Shared Memory

In a traditional parallel program running on a multipro-
cessor with physically shared memory (e.g. a Pthreads pro-
gram) all global data of the program is shared between mul-
tiple threads of execution. Most existing DSM systems re-
quire to declare or allocate all shared data explicitly. After
that, shared data is placed in a buffer space that is allocated
dynamically or on memory pages in the case of page-based
systems. In consequence, a program running on these sys-
tems contains two types of global data: Global data shared
with other participating processors (the DSM) and global
data not visible to other processors.

Distributed shared memory of Rthreads is built without
this separation. There is no explicit declaration of shared
data and all global data is part of DSM automatically. Be-
yond that, Rthreads don’t use additional buffers for shared
data management. All operations on shared data are exe-
cuted at the locations of the global variables of each node.
The necessary information for data transfer and conversion
in heterogeneous environments is retrieved from the source
code by the Rthreads precompiler.

The resulting architecture is shown in Figure 1. The
distributed shared memory consists of the memory regions,
where the global variables of each node reside. The global
variables themselves can be considered as (processor-)local
copies of the shared data items. Hence, each node partici-
pating in an Rthreads program accesses global variables like
a traditional parallel Pthreads program. However, these ac-
cesses are local and don’t affect local copies of other nodes.
Consistency of multiple local copies has to be ensured by
explicit read/write operations in the program source code,
which can also be inserted by the precompiler. These ex-
plicit operations are initiated by the application program,
however, the call of the relevant procedures does not lead
to any exchange of shared data values between the appli-
cation program and the Rthreads software. The applica-
tion program only indicates that a specific local copy of a
shared variable has to be read or written. This situation is
illustrated in Figure 1 by the arrows between the different
nodes, which symbolize the data exchange between global
variables of different nodes initiated by the application pro-
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Figure 1. Distributed shared memory of
Rthreads

gram. The application program itself works on shared data
through the global variables as in a traditional shared mem-
ory program.

Rthreads is a multithreaded DSM system, every par-
ticipating Rthreads node program may consist of several
Pthreads itself. The Pthreads of a single node are synchro-
nized by the according primitives of Pthreads.

For the synchronization of multiple nodes of an Rthreads
program we provide an Rthreads pendant (rthread * ) to
each Pthreads synchronization function (pthread* ), the in-
terfaces of these functions are equivalent. However, the
Rthreads synchronization functions work on synchroniza-
tion variables, which are part of the distributed shared
memory. Because synchronization variables are accessed
through these synchronization functions only, synchroniz-
ing accesses to the distributed shared memory are distin-
guished from ordinary accesses.

Most consistency models recommend sequential consis-
tency [1] or processor consistency [2] for synchronizing ac-
cesses as basis for more relaxed consistency models (e.g.
[3], [2], [4]). Rthreads guarantees sequential consistency
for synchronization accesses. The consistency of ordinary
accesses is not fixed by Rthreads. The precompiler gener-
ates sequential consistent Rthreads programs. However, the
programmer may optimize the precompiler output due to
any other more relaxed consistency model for better perfor-
mance.

The new situation is shown in Figure 2: Every partic-
ipating process contains several threads of execution. In
contrast to the ordinary accesses, where the application pro-
gram only indicates a DSM access to the Rthreads software,
synchronizing accesses lead to immediate data exchange
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Figure 2. Multithreading and synchronization
with Rthreads

and local copies of synchronization variables are always
consistent during program execution. Therefore, all nodes
have a uniform consistent view of synchonization data sym-
bolized through dashed connecting line.

3 Identifying Data of the DSM

In an object-based DSM system, especially in heteroge-
nous environments, a memory address of data items on an-
other computer cannot be used to identify the address of
the corresponding data item on the local machine. Several
other object-based systems use numerical or textual iden-
tifiers, which are specified in the explicit declaration of a
shared data item. Internally, Rthreads also uses numerical
identifiers, which is the most efficient way for others than
page-based systems. However, these identifiers are not vis-
ible to the programmer. The programmer simply specifies
the same textual name as it is used in the definition of the
corresponding global variable.

table containing addresses and typeslabels used as indexes

output header file

  RTHREAD_string,
  RTHREAD_j,

enum variables {

  .
  .
  .
} }

  RTHREAD_value,   RTHREAD_double, &value,
  RTHREAD_char, &string[0],

  RTHREAD_i,
  RTHREAD_int, &j,
  RTHREAD_int, &i
rthread_variable_t vars[]={

  .
  .
  .

precompiler
int i, j;

char string[256];

double value;

.

.

.

source program

Figure 3. Identifiers generated by the precom-
piler

This identification of shared variables is made possible

by the Rthreads precompiler, that generates a label for ev-
ery defined global variable of the program and combines
these labels to an enumerated type. Second, it generates an
array with one entry for each global variable, the array is
sorted corresponding to the enumerated type. At this point
the most important information in each entry is the type and
the address of the global variable on the node the program
runs on. An explicit read/write function called with an iden-
tifying label as parameter is now able to use the label as an
index to the array.

In the case of a write call, a value of the type specified by
the array element is read from the address specified by the
element and is then transfered (after data conversion) over
the network to the home node of the data item together with
the identifying label. On the home node, the label transfered
with the incoming call can be used to retrieve the datatype
and the address of the variable on this node again by use of
the label as index in the precompiler generated array.

To avoid the use of the “RTHREAD*” labels in the
program source code, we provideC-preprocessor makros,
which prefix the parameters of explicit memory accesses
with “RTHREAD ”. Now, the programmer is allowed to
specify the variables by textual name as parameter for mem-
ory accesses.

4 The Rthreads System and its Precompiler

The software DSM system Rthreads (Remote threads)
provides primitives for control and synchronization of re-
motely executed threads and specific primitives for remote
access of scalar variables, distributed arrays and structures.

The Rthreads control and synchronization primitives
provide an Rthreads equivalent of each Pthreads function
and of each Pthreads type. The Rthreads synchronization
is implemented to work between Rthreads on different ma-
chines.

Explicit remote read or write operations are used to pre-
serve the consistency of shared data: Byrthread r(var) and
rthread w(var), the shared variablevar in the local buffer
is marked to be read or written from or to the shared data
space.

To access parts of an array, two further functions are
available:

rthread_ra(array, first, last, stride)
rthread_wa(array, first, last, stride)

For efficiency reason we decided thatrthread w()- and
rthread wa()-operations are collected by the Rthreads’ run-
time system until arthread wflush() is executed and the
aggregated data is sent in a single network transaction.
Accordingly, read operations are buffered until the next
rthread rflush()is executed.



The Rthreads package consists of a precompiler that
transforms Pthreads programs into Rthreads programs un-
der control of the programmer and by a supporting user-
level library that implements the Rthreads primitives.The
Rthreads precompiler is able to process ANSI C source
codes to provide the necessary information about the dis-
tributed shared memory data, including type information of
basic data types and arrays of basic data types.

The programmer creates a distributed program with
Rthreads by developing a local version using Pthreads first.
Although an explicit Pthreads version is not necessary, it
gives the opportunity to test and debug the newly created
code locally.

The precompiler starts from a correct parallel program,
compliant to a Pthreads model that satisfies the only restric-
tion: exclusion of pointers for data that will be distributed.
All precompiler actions take place within the source code.
The precompiler performs a type analysis of the global vari-
ables and places type and naming information in a header
file, as described in the previous section, and automatically
generates the shared data information.

Then, each Pthreads function is replaced by its equiv-
alent Rthreads function. Next, the already described re-
mote read-/write marking functions and flush-functions are
inserted to access the distributed shared memory. A read
marking function is inserted preceeding each occurrence of
a global variable asrvalue, and a write marking function
succeeds eachlvalueuse of a global variable in the Pthreads
program.

After the precompiler run, the programmer is able to op-
timize the automatically created Rthreads source code to
improve its performance. Precompiler steps and program-
mer optimizations are described in more detail in [5].

5 Related Work

The first software-based DSM system for workstation
clusters is Kai Li’s IVY system [6] that provides virtu-
ally distributed shared memory as extension of the virtual
memory management within a single machine implement-
ing sequential consistency. Further page-based DSM sys-
tems are Mermaid [7], Mirage [8], Munin [9], CVM [10],
SoftFLASH [11], and TreadMarks [12]. TreadMarks and
CVM employ the lazy release consistency model [4]. Due
to the architecture of page-based systems access to dis-
tributed memory is triggered by the virtual memory man-
agement.

Object-based DSM systems, like Midway [13],
Shasta [14], Adsmith [15], CRL, Phosphorus [16], and
Rhtreads, provide an administration of distributed data on
the basis of simple or combined data types. In object-
based systems remote accesses are either introduced by a
modified compiler or must be set explicitly in the program.

All DSM systems known to us require the programmer
to declare data of the DSM explicitly. Memory is allocated
at runtime. Consequently, a sometimes complex buffer han-
dling is introduced and the programmer has to access global
variables using pointers returned by the DSM system at dec-
laration. With Rthreads no additional declaration of global
variables is required. Global variables of the source pro-
gram are recognized by the precompiler, which retrieves all
information necessary for Rthreads. The memory region
of the global variables in each participating process is used
as buffer thereby rendering complex buffer handling super-
fluous. Furthermore, the programmer identifies data in the
DSM by the use of variable names like he is used to do.

Adsmith is similar to Rthreads regarding explicit mem-
ory accesses and the implementation on top of existing com-
munication systems (PVM, in the case of Adsmith). How-
ever, Rthreads is more flexible in data accesses. Several
concepts to vary the granularity of data sharing are devised.
An example was already given in section 4 by the group-
ing of array elements. Further concepts for data structures
and blockwise grouping of array elements are already im-
plemented with Rthreads, but not yet evaluated. Adsmith
only allows access to single data items or tocompletear-
rays.

Further characteristics that differentiate Rthreads from
other DSM systems are full support of heterogenous sys-
tems, multithreading by mixing Rthreads with Pthreads and
portability.

Granular. Acc. Consistency Het.

IVY P O SK �

Mermaid P O SK �

Mirage P O SK �

Munin P O SK, RK �

CVM P O RK �

SoftFLASH P O RK �

Treadmarks P O RK �

Midway O C EK, PK, RK �

Shasta O C RK �

Adsmith O T SK, RK �

CRL O T — �

Phosphorus O T SK, RK �

Rthreads O, chang. T — �

Figure 4. Classification of DSM Systems

Figure 4 gives an overview over several software DSM
systems with respect to the granularity (P for page-based,
O for object-based), the modes of access to shared data (O
for operating system-based, C for compiler-based, and T for



use of data access functions explicitly in program text), the
consistency model (SK for sequential consistency, PK for
processor consistency, EK for entry consistency, and RK
for release consistency), and the support for heterogeneous
workstations.

The “O, changing” entry with Rthreads means that data
granularity is determined by data objects, i.e. all global vari-
ables. The part of a data object (e.g. an array) and conse-
quently the size of affected data items can change from one
access to another. This aspect is unique among all other
systems and allows very flexible data handling during a pro-
gram run.

6 Performance Evaluation

Our experimental environment consists of 15
IBM RS/6000 (Model 220W, 32 MB main memory)
workstations running IBM AIX 4.1. The machines are
connected by a 10-Mb/s Ethernet.
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Figure 5. Performance evaluation of the dis-
tributed Mandelbrot calculation

In Figure 5, we present the performance results of a
Mandelbrot calculation. We compare three different im-
plementations of the same algorithm: One message pass-
ing version based on PVM, an Adsmith version and an
Rthreads version. The performance comparisons prove that
the Rthreads overhead measured versus an application pro-
grammed in the original underlying system is nearly not
measurable. This is not a matter of course as the perfor-
mance measurements for the related Adsmith DSM system
show. Adsmith uses the same underlying communication
system (PVM) and implements the shared memory also by
explicit remote reads and writes that have to be set by the
programmer. The Mandelbrot version based on Adsmith
already uses bulk transfer, i.e. the most efficient DSM op-
eration with Adsmith, to move newly calculated blocks to

the distributed memory. We assume that performance loss
of Adsmith is caused by the complex buffer handling. With
Adsmith being not multithreaded itself, buffer handling had
to be separated from the slave processes. There is a dæmon
on each machine, which coordinates sending and receiv-
ing messages from other nodes. Consequently, each mes-
sage has to be handled three times: From the slave to the
dæmon, from the local dæmon to another machine’s dæ-
mon and from that dæmon to the receiving slave. Rthreads
is multithreaded itself and can therefore handle incoming
and outgoing messages within the slave process. Moreover,
buffer handling is simple as we use the global variables as
buffer.

Adsmith CVM Rthreads
1st read access 1033.6 ms 140.6 ms 97.1 ms
1st write access 101.1 ms 289.7 ms 60.2 ms

Figure 6. Duration of local access to 100000
array elements of DSM data

Figure 6 shows the reasons for Adsmith’s inefficiency
stated above. The first read access is about ten times
slower compared to CVM or Rthreads. The use of the data
attributedAdsmDataCacheallows caching of DSM data
within the application process. Therefore, with no other
processors involved, the afterwards measured write access
is relatively cheap. The same holds for Rthreads accesses,
where the native caching mechanisms lead to a cheap sec-
ond (first write) access. The measurements of CVM show
the overhead for the consistency protocol: The first read ac-
cess is significantly slower in CVM than in Rthreads, but
stays within the same order of magnitude. The costs of a
first write operation are very high, which is caused by the
creation oftwinsor diffsnecessary for the lazy release con-
sistency protocol.

As a second example, we show the results of SOR (Suc-
cessive Over-Relaxation). To obtain another comparison to
an existing DSM-system, we ported an algorithm included
with the CVM package to Rthreads. During each iteration,
every element of a two-dimensional input grid is updated
by the average of four of its neighbours. For the measure-
ments shown in Figure 7 we used the native implementation
of CVM (i.e. not the MPI-based one). The figure shows
that the optimized Rthreads version is noticeable faster as
the CVM version for600� 400 matrices. Due to the hand
optimizations possible with Rthreads data exchange can be
reduced to the elements really accessed by neighbor nodes,
i.e. to the very minimum necessary.

However, both CVM and Rthreads don’t scale very well.
We identify two reasons: The used data sets are too small
and consequently communication dominates computation
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Figure 7. Performance evaluation of the dis-
tributed SOR algorithm for 600� 400 matrices

due to the simple averaging update function and the slow
underlying 10 Mb/s Ethernet connection of the test envi-
ronment. Unfortunately, memory consumption of CVM for
page management seems to be too aggressive for higher di-
mensional inputs. Therefore we show only the results of
Rthreads computation on2000� 500 matrices in Figure 8.
Scaling behavior is better than with the small data sets. We
assume that further scaling is prohibited by the use of a cen-
tralized memory manager scheme in the evaluated Rthreads
software. Use of global barriers in the evaluated program
increases this disadvantage by concentrating communica-
tion at synchronization points. The possibility of data dis-
tribution with Rthreads is already implemented, but not yet
evaluated.
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Figure 8. Performance evaluation of the dis-
tributed SOR algorithm for 2000�500matrices

The most important results of the shown performance ex-
periences are: Rthreads introduce only very little overhead

compared to programs written in the underlying commu-
nication system. Rthreads outperforms the closely related
DSM-system Adsmith. The possibility of hand optimiza-
tions with Rthreads programs even leads to superior perfor-
mance compared to the page based system CVM. Finally,
we expect that data distribution will further increase scal-
ability of Rthreads and applying a lazy release consistent
protocol will help to make the precompiler generated pro-
grams more efficient.

7 Conclusions

The software DSM system Rthreads implements an
object-based approach to distributed shared memory with
explicit accesses to shared data. Due to the close relation-
ship to Pthreads, porting of Pthreads programs is straight-
forward. Besides the precompiler the Rthreads system re-
lies upon already implemented function libraries based on
PVM, MPI or DCE. We also develop an Active Message
based implementation. The Rthreads system can be used on
all parallel computers and even on heterogeneous worksta-
tion clusters that support one of these underlying platforms.

Performance evaluations showed that the Rthreads pack-
age does generate only a slight overhead in communication
by the top-level implementation compared to a PVM sys-
tem. This is not a matter of course as the performance mea-
surements for the related Adsmith DSM systems showed.

We are working towards the implementation of an en-
hanced Rthreads package. The enhancements concern sup-
port for complex user-defined distributed data types and an
underlying lazy release consistent implementation.
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