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Abstract

Indexing schemes based on space �lling curves like the Hilbert curve are a powerful tool

for building e�cient parallel algorithms on mesh-connected computers. The main reason

is that they are locality-preserving, i.e., the Manhattan-distance between processors grows

only slowly with increasing index di�erences. We present a simple and easy-to-verify proof

that the Manhattan-distance of any indices i and j is bounded by 3
p
ji� jj � 2 for the

2D-Hilbert curve. The technique used for the proof is then generalized for a large class of

self-similar curves. We use this result to show a (quite tight) bound of 4:73458 3

p
ji� jj�3

for a 3D-Hilbert curve.

1 Introduction

It has become increasingly clear that mesh-connected processor arrays, grids for short, are

among the most realistic models of parallel computation [1, 4, 14, 18]. The indexing of the

processors is an important aspect in the design of mesh algorithms. Several indexing schemes

are well-known. Most of these have been developed for the two-dimensional case but they

usually have generalizations for multiple dimensions, for example, row-major or snakelike

row-major [15]. However, these kinds of indexings do not preserve locality of computation

and communication very well. So, e.g., for an r-dimensional grid with side length n and

row-major indexing, processors 1 and n are at distance n � 1 from each other. This is large

compared to the distance of � r r
p
n achievable if the �rst n processors could be arranged in

a cube. A locality-preserving indexing should yield a Manhattan-distance of O( r
p
n). This

should generalize to all pairs of processors within the grid, that is, processors indexed i and j

should be at distance O( r

p
ji� jj) from each other.

Stout [17] seems to be the �rst who used so-called proximity orderings in the context of

2D-grid algorithms. We subsequently call them Hilbert indexings due to the direct relation to

Hilbert's space-�lling curve [7, 13]. According to Stout \there is a constant c < 4 such that

processors numbered i and j are no more than c �
p
ji� jj communication links apart" [17,

page 27]. Later, Miller and Stout [10] made use of Hilbert processor indexings for mesh

computer algorithms in computational geometry. Recently, Kaklamanis and Persiano [9],

seemingly not knowing of Miller and Stout's work, made use of Hilbert indexings to devise

e�cient backtrack and branch-and-bound search algorithms for grids. They showed that two

arbitrary processors indexed with i and j have a distance of at most 4 �pji� jj from each

other. This is the upper bound already claimed by Stout [17]. Very recently, a bound of

3 �pji� jj has been proved by Chochia, Cole, and Heywood [2]. However, the proof is quite

complicated. Many cases of the proof are left to the reader and it is not even trivial to �gure
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Figure 1: Hilbert indexings for grids of size 4 and 16.

out which cases have to be considered in order to complete the proof. In parallel to [2] we

had developed a similar result which dissatis�ed us for the same reasons.

Here we start by introducing the 2D-Hilbert indexing in Section 2. In Section 2.1 we

identify segments (i.e., pairs of indices) which have a distance of 3
pji� jj�2. In Section 2.2

we give a simple, complete, and easy-to-verify proof that this is also an upper bound. The

methods used in this proof are generalized for higher dimensions and di�erent recursion

schemes in Section 3. In Section 4 the generalized method is applied to �nd bounds for a

3D-Hilbert indexing. Section 5 summarizes the results and points out some possible future

developments.

2 The 2D-Hilbert indexing

The Hilbert indexing is a processor indexing for two-dimensional grids that in a sense pre-

serves locality. Informally speaking, the optimization goal is, given two arbitrary processors

with numbers i and j from f 0; 1; : : :n2 � 1 g, �nd an indexing such that the smaller ji� jj,
the smaller the Manhattan-distance between i and j within the grid is.

The problem can be attacked by an inductive approach. We build indexings for larger and

larger grids, starting with indexings for 2�2-grids and always put together four smaller grids

to get the next larger one. Thus we obtain processor indexings for grids of size n = 4k for

arbitrary k � 1. Iterating this process �nitely often and considering the processor indexings

as curves through the grid, this leads to \�nite cases" of Hilbert's space-�lling curve, known

for slightly more than 100 years in mathematics [13].� In Figure 1 we present what we call

Hilbert processor indexing for grids of size 4 and 16. For simplicity, we use the terms Hilbert

curve and Hilbert indexing interchangeably when the meaning is clear from context. We get

the following inductive construction principle. To obtain an indexing for a grid of size 4k

from the indexing for grids of size 4k�1, proceed as follows. First observe that drawing the

curve that belongs to the 2 � 2-grid of Figure 1, one gets a horseshoe-shaped curve. In a

sense, this shape can also be discovered in the 4 � 4-grid of Figure 1 if one only considers

the four 2 � 2-subgrids that build the 4 � 4-grid. First, the curve goes through the lower

left, then through the upper left, then through the upper right, and �nally through the lower

right subgrid. In this way, larger and larger indexing curves can be constructed as shown in

Figure 2.

In a sense, the Hilbert curve yields the \simplest" self-similar, recursive, locality-preserving

�Note that in this case it is assumed that we perform this iterative construction e.g. within the unit square.
This justi�es the naming space-�lling curve, because in the limit the described curve \�lls" the unit square

(see [13] for details).
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Figure 2: Inductive construction principle of Hilbert curves.

numbering scheme for square grids of size 2k � 2k. Still simpler recursive schemes can be

de�ned which do not require rotation or re
ection of the building blocks; but these are not

locality-preserving. But if one insists on using identical (up to rotation and re
ection) build-

ing blocks which are assembled using a �xed rule, the Hilbert curve is unique. In other articles

the name Peano curve can be found which we consider less appropriate because this name is

usually used in related construction schemes based on 3k � 3k grids [13].

2.1 Lower bound

The following theorem provides a lower bound for the Manhattan-distance of two points on

the Hilbert curve by giving \worst case pairs." In the next section we will show that this

lower bound is tight by giving a matching upper bound.

Theorem 1. For all k � 1, there are points i and j on the Hilbert curve such that ji� jj =
4k�1 and the Manhattan-distance of i and j is exactly 3

pji� jj � 2 = 3 � 2k�1 � 2.

Proof. Consider Figure 3. It shows parts of the Hilbert curve (rotated right by 90 degrees

compared to Figures 1 and 2.)

In the following we argue that the points i and j in the lower left and upper right corner

of the shaded area of Figure 3 do have Manhattan-distance 3
pji� jj � 2 from each other,

proving our claim. Let us �rst explain a bit further the idea behind Figure 3. The shaded

area shall denote all points on the Hilbert curve lying between i and j. We always draw the

largest subgrids �lled by the Hilbert curve on the way from i to j. In this sense, the dotted

line represents the path of the Hilbert curve respecting the sizes of the largest subgrids it

passes through.

The central observation is that except for the lower left corner and upper right corner we

have exactly three subgrids of each possible size within the shaded area. Note that, due to

the inductive construction principle of Hilbert curves, this holds for 2k � 2k-subgrids for all

integers k � 0. So we can count the number of points on the Hilbert curve lying between i

and j. All in all, we get

3 �
k�2X

l=0

4l = 3 � 4
k�1 � 1

3
= 4k�1 � 1

points lying between i and j. This implies that ji� jj = 4k�1. Computing

3
p
ji� jj � 2 = 3 � 2k�1 � 2;

we exactly obtain the Manhattan-distance of i and j, where the latter can easily be read from

Figure 3.
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Figure 3: Worst-case for the Manhattan-distance between two points i and j.

Note that Theorem 1 in particular shows that there are worst case nodes for each \order

of magnitude" of Manhattan-distances, that is, distances of the form 3 � 2k�1 � 2 for all

positive integers k.

2.2 Upper bound

Theorem 2. For the Manhattan-distance d(i; j) of two arbitrary points i and j on the Hilbert

curve with i 6= j we have d(i; j)� 3
p
ji� jj � 2.

Proof. The basic idea is to exploit the self-similarity of the Hilbert curve for an inductive

proof over ji� jj. In principle, the proof is quite simple. However, it turns out that a special

treatment is necessary for \small" grids and for indices i and j which are close to the worst

case described in Theorem 1.

Case ji� jj < 16:

By inspection. All possible orientations of segments of length up to 16 can be found in an

8�8 mesh or in the upper left corner of Figure 4. (We have written a small computer program

which automatically makes the necessary checks.)

Case ji� jj � 16:

By induction over ji� jj we prove the following stronger statement: d(i; j)� 3
pji� jj� 2:5

or i and j are arranged as in Theorem 1 (Figure 3) and d(i; j) = 3
pji� jj � 2.

Basis of induction: 16 � ji� jj � 256

By inspection. All possible orientations of segments of length up to 256 can be found in the

32 � 32-grid numbered in Figure 4. This can be done with the simple program mentioned
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0 1 14 15 16 19 20 21 234 235 236 239 240 241 254 255 256 259 260 261 314 315 316 319 320 321 334 335 336 339 340 341

3 2 13 12 17 18 23 22 233 232 237 238 243 242 253 252 257 258 263 262 313 312 317 318 323 322 333 332 337 338 343 342

4 7 8 11 30 29 24 25 230 231 226 225 244 247 248 251 270 269 264 265 310 311 306 305 324 327 328 331 350 349 344 345

5 6 9 10 31 28 27 26 229 228 227 224 245 246 249 250 271 268 267 266 309 308 307 304 325 326 329 330 351 348 347 346

58 57 54 53 32 35 36 37 218 219 220 223 202 201 198 197 272 273 286 287 288 289 302 303 378 377 374 373 352 355 356 357

59 56 55 52 33 34 39 38 217 216 221 222 203 200 199 196 275 274 285 284 291 290 301 300 379 376 375 372 353 354 359 358

60 61 50 51 46 45 40 41 214 215 210 209 204 205 194 195 276 279 280 283 292 295 296 299 380 381 370 371 366 365 360 361

63 62 49 48 47 44 43 42 213 212 211 208 207 206 193 192 277 278 281 282 293 294 297 298 383 382 369 368 367 364 363 362

64 67 68 69 122 123 124 127 128 131 132 133 186 187 188 191 490 489 486 485 474 473 470 469 384 385 398 399 400 403 404 405

65 66 71 70 121 120 125 126 129 130 135 134 185 184 189 190 491 488 487 484 475 472 471 468 387 386 397 396 401 402 407 406

78 77 72 73 118 119 114 113 142 141 136 137 182 183 178 177 492 493 482 483 476 477 466 467 388 391 392 395 414 413 408 409

79 76 75 74 117 116 115 112 143 140 139 138 181 180 179 176 495 494 481 480 479 478 465 464 389 390 393 394 415 412 411 410

80 81 94 95 96 97 110 111 144 145 158 159 160 161 174 175 496 499 500 501 458 459 460 463 442 441 438 437 416 419 420 421

83 82 93 92 99 98 109 108 147 146 157 156 163 162 173 172 497 498 503 502 457 456 461 462 443 440 439 436 417 418 423 422

84 87 88 91 100 103 104 107 148 151 152 155 164 167 168 171 510 509 504 505 454 455 450 449 444 445 434 435 430 429 424 425

85 86 89 90 101 102 105 106 149 150 153 154 165 166 169 170 511 508 507 506 453 452 451 448 447 446 433 432 431 428 427 426

938 937 934 933 922 921 918 917 874 873 870 869 858 857 854 853 512 515 516 517 570 571 572 575 576 577 590 591 592 595 596 597

939 936 935 932 923 920 919 916 875 872 871 868 859 856 855 852 513 514 519 518 569 568 573 574 579 578 589 588 593 594 599 598

940 941 930 931 924 925 914 915 876 877 866 867 860 861 850 851 526 525 520 521 566 567 562 561 580 583 584 587 606 605 600 601

943 942 929 928 927 926 913 912 879 878 865 864 863 862 849 848 527 524 523 522 565 564 563 560 581 582 585 586 607 604 603 602

944 947 948 949 906 907 908 911 880 883 884 885 842 843 844 847 528 529 542 543 544 545 558 559 634 633 630 629 608 611 612 613

945 946 951 950 905 904 909 910 881 882 887 886 841 840 845 846 531 530 541 540 547 546 557 556 635 632 631 628 609 610 615 614

958 957 952 953 902 903 898 897 894 893 888 889 838 839 834 833 532 535 536 539 548 551 552 555 636 637 626 627 622 621 616 617

959 956 955 954 901 900 899 896 895 892 891 890 837 836 835 832 533 534 537 538 549 550 553 554 639 638 625 624 623 620 619 618

960 961 974 975 976 979 980 981 810 811 812 815 816 817 830 831 746 745 742 741 730 729 726 725 640 641 654 655 656 659 660 661

963 962 973 972 977 978 983 982 809 808 813 814 819 818 829 828 747 744 743 740 731 728 727 724 643 642 653 652 657 658 663 662

964 967 968 971 990 989 984 985 806 807 802 801 820 823 824 827 748 749 738 739 732 733 722 723 644 647 648 651 670 669 664 665

965 966 969 970 991 988 987 986 805 804 803 800 821 822 825 826 751 750 737 736 735 734 721 720 645 646 649 650 671 668 667 666

1018101710141013 992 995 996 997 794 795 796 799 778 777 774 773 752 755 756 757 714 715 716 719 698 697 694 693 672 675 676 677

1019101610151012 993 994 999 998 793 792 797 798 779 776 775 772 753 754 759 758 713 712 717 718 699 696 695 692 673 674 679 678

10201021101010111006100510001001 790 791 786 785 780 781 770 771 766 765 760 761 710 711 706 705 700 701 690 691 686 685 680 681

10231022100910081007100410031002 789 788 787 784 783 782 769 768 767 764 763 762 709 708 707 704 703 702 689 688 687 684 683 682

Figure 4: Hilbert indexing for a 32 � 32-grid. The largest worst-case segments are 85{341

and 682{938.

before.

Inductive step for ji� jj > 256:

We look at the \coarsened" indexing de�ned by considering each 2 � 2 subgrid starting at

even coordinates as a single grid node. Due to the self-similarity of the Hilbert indexing the

coarsened indexing is itself a Hilbert indexing.

De�ne a 2 N and b 2 f0; 1; 2; 3g such that i = 4a+ b, and c 2 N and d 2 f0; 1; 2; 3g such that

j = 4c+ d. a and c are the positions of i and j in the coarsened indexing. Since ja� cj � 16

we can apply the induction hypothesis. Furthermore, d(i; j) � 2d(a; c) + 2 because for each

of the four grid-positions in subgrid a there is a corresponding grid-position in subgrid c

which is 2d(a; c) steps away; at worst j can be another two steps away from the grid-position

corresponding to i. We now distinguish two cases regarding the relative positions of a and c.

a and c are not arranged as in Theorem 1:

By the induction hypothesis we have d(a; c) � 3
pja� cj � 2:5 and therefore

d(i; j)� 2(3
p
ja� cj � 2:5) + 2 = 6

p
ja� cj � 3 :

Substituting a = i�b
4

and c = j�d
4

we get

ja� cj = j(i� b)� (j � d)j
4

� ji� jj+ jd� bj
4

� ji� jj+ 3

4

and therefore

d(i; j)� 3
p
ji� jj+ 3� 3 :

A simple calculationy shows that 3
pji� jj+ 3 � 3

pji� jj+ 0:5 for ji � jj � 80 and

therefore

d(i; j)� 3
p
ji� jj � 2:5 :

yThis is the only part of the inductive step where we need to exclude all ji � jj < 256. It is probably

possible to modify the proof in such a way that the induction step works for ji� jj � 64. In the base case it

is then su�cient to check all segments with ji� jj � 64 in a 16 � 16 grid.
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a and c are arranged as in Theorem 1:

Up to symmetric cases the 2 � 2-subgrids for i and j are numbered
�
0 3
1 2

�
and

�
0 1
3 2

�

and the subgrid for j is above and to the right of the subgrid for i (refer to Figure 3).

There are two subcases:

b = d = 1: i and j are also arranged as in Theorem 1 and therefore

d(i; j) = 3
p
ji� jj � 2 :

Else: We can use the estimate d(i; j) � 2d(a; c) + 1 because the worst case in which

d(i; j) = 2d(a; c) + 2 has already been covered by the case b = d = 1. A similar

calculation as before now shows that

d(i; j)� 2(3
p
ja� cj � 2) + 1 = 6

p
ja� cj � 3 � 3

p
ji� jj � 2:5 :

3 Generalizing the results

There are few places in the proof of Theorem 2 where we make speci�c use of the properties

of the Hilbert curve. We now present a generalized technique which can be applied to a

wide spectrum of self-similar curves in r-dimensional grids with side-lengths qk1 , : : : , q
k
r . For

simplicity, however, we restrict the presentation to cubic grids with side-length qk and only

show how slightly looser upper bounds than that of Theorem 2 can be proved. The latter

constraint allows us to avoid the special treatment of the worst case segments as necessary

in the proof of Theorem 2.

Theorem 3. Given any indexing scheme of an r-dimensional grid with side-length qk with

the property that combining each qr-cube of grid points into a single meta-point yields the

numbering for side-length qk�1. If

8q(k�1)r � ji� jj � qkr : d(i; j)� �( r
p
ji� jj � �)� r

where

� �
r
p
qkr + qr � 1� qk

q � 1

then

8ji� jj � q(k�1)r : d(i; j)� �( r
p
ji� jj � �)� r :

Proof. By induction over ji� jj. Let a = bi=qrc, b = i mod qr, c = bj=qrc, and d = j mod qr.

Due to the self-similarity of the indexing scheme, we can apply the induction hypothesis

to a and c if ji � jj � qkr. We have d(i; j) � qd(a; c) + r(q � 1) because for each of the

qr grid-positions in subgrid a there is a corresponding grid-position in subgrid c which is

qd(a; c) steps away; at worst j can be another r(q � 1) steps away from the grid-position

corresponding to i. ((q � 1) along each dimension.) By the induction hypothesis we have

d(a; c) � �( r
pja� cj � �)� r and therefore

d(i; j)� q(�( r
p
ja� cj � �)� r) + r(q � 1) = q�( r

p
ja� cj � �)� r :

Substituting a = i�b
qr

and c = j�d
qr

we get

ja� cj = j(i� b)� (j � d)j
qr

� ji� jj+ jd� bj
qr

� ji� jj+ qr � 1

qr
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and therefore

d(i; j)� �( r
p
ji� jj+ qr � 1� q�)� r :

A simple calculation shows that

r
p
ji� jj+ qr � 1� q� � r

p
ji� jj � �

for ji� jj � qkr and � �
r
p

qkr+qr�1�qk

q�1
.

Theorem 3 can be applied as follows to yield upper bounds of the form d(i; j)� � r
pji� jj�

r for the Manhattan-distance of self-similar curves:

� Determine q and r from the de�nition of the curve.

� Fix a k.

� Try all i, j with ji� jj � qkr in a grid of side-length qk+1. Due to the self-similarity of

the indexing scheme we know that this su�ces to �nd all possible Manhattan-distances

for ji� jj � qk.

� Set � =
r
p

qkr+qr�1�qk

q�1 .

� Set

�1 = max
ji�jj�qkr

d(i; j)+ r
r

pji� jj :

This is su�cient to guarantee that d(i; j)� �1
r
pji� jj � r for ji� jj � qkr .

� Set

�2 = max
q(k�1)r�ji�jj�qkr

d(i; j)+ r
r

pji� jj � �
:

This is su�cient to guarantee that d(i; j)� �2(
r

pji� jj��)�r for q(k�1)r � ji�jj � qkr.

Applying Theorem 3 we can conclude that the same is true for ji� jj � qkr.

� Set � = max(�1; �2). This guarantees that for all i, j, d(i; j)� � r
p
ji� jj � r.

For example, Theorem 3 yields d(i; j)� 3:07
pji� jj�2 for the 2D-Hilbert curve (q = r = 2).

if we are willing to check all ji� jj � 256 (i.e., k = 8) in a 32� 32-grid. By checking larger

grids we can get closer to the tight bound from Theorem 2.

4 A 3-D Hilbert Indexing

We have applied the result of the preceding section to the 3D-Hilbert indexing described in

[12]. It is de�ned using the following L-System:

A -> B-F+CFC+F-D&F^D-F+&&CFC+F+B//

B -> A&F^CFB^F^D^^-F-D^|F^B|FC^F^A//

C -> |D^|F^B-F+C^F^A&&FA&F^C+F+B^F^D//

D -> |CFB-F+B|FA&F^A&&FB-F+B|FC//

A is the start-symbol, ABCD are nonterminals. The terminals F+-&^\/| are instructions for

3D-Turtlegraphics. They stand for \move one step," \turn left," \turn right," \pitch down,"

\pitch up," \roll left," \roll right," and \turn around," respectively. We applied the \recipe"

from Section 3 for all k from f 1; 2; 3; 4; 5 g and obtained the following values for �1 and �2:

7



k �1 �2
1 4.678428 6.432089

2 4.718078 4.922481

3 4.733298 4.758845

4 4.733936 4.737128

5 4.734176 4.734575

In particular, using the highest value of k tried we get:

Theorem 4. The Manhattan-distance between indices i and j for the 3D-Hilbert curve from

[12] is bounded by

d(i; j)� 4:73458 3
p
ji� jj � 3 :

We conjecture that d(i; j) � 4 3
p
63=38 3

pji� jj � 3 is a tight bound. (Note that 4 3
p
63=38 �

4:73419.) The worst case segments of the curve consist of a one large cube and two branches

which form a chain of cubes for each size (so far similar to the 2-D case). One branch consists

of two cubes of each size. The other branch consists of an alternating sequence of two and

four cubes of each size. Summing the sizes of the subcubes in a similar way as in the proof

of Theorem 1 yields the conjecture above.

5 Conclusions and Future Work

In the past, several people used indexing schemes like Hilbert curves independently and

sometimes reinvented it without initially knowing the existing work. We expect that this

will change. Locality-preserving indexing schemes will more and more become a standard

technique for devising simple and e�cient algorithms for mesh-connected computers. So far,

most applications look somewhat specialized [3, 8, 9, 10, 16, 17]. With an increasing interest

in irregular computations this may also change. For example, we have developed a variant

of parallel Quick-sort which is based on the Hilbert indexing. This has been implemented by

Thomas Hansch in [5, 6]. On large mesh-connected computers like the Parsytec GCel-3/1024

which is a 32 � 32 grid, the algorithms turns out to be one of the fastest available sorting

methods.

We hope that this paper helps to simplify the reasoning about theoretical properties of

recursive indexing schemes. The methods used here not only give a simple and easy-to-verify

proof for the 2D-Hilbert curve but also show how the result can be generalized. To our

best knowledge, it is the �rst to report an (almost) tight bound for a 3D-Hilbert curve. In

contrast to the 2D-case, there are several variants of the 3D-curve. It might be interesting to

investigate whether there are better variants. There are also well known other curves which

can be investigated using our techniques. For example, the Peano curve [11, 13] shown in

the upper part of Figure 5 and its relative shown in in the lower part, can be treated setting

r = 2 and q = 3.

When high-dimensional or otherwise complex curves are to be investigated, the simple

brute force inspection programs we have used above get quite slow. They check all pairs of

indices up to a certain distance. (More precisely, the computational expense is in �
�
q2kr

�
).

Checking the 3D-Hilbert indexing for k = 5 in Section 4 took several CPU hours on a 110 MHz

SPARC 4. By tolerating some more complex programming, this situation can be improved.

We can use a hierarchical approach in which conservative estimates for the distance of all

pairs of indices in two large cubes are computed. Only when these estimates suggest that

high diameter segments might be present, the cubes have to be subdivided further. Since

most index pairs are far from extreme, a dramatic speedup could be achieved.

Acknowledgment We are grateful to Henning Fernau for valuable pointers to the litera-

ture.
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Figure 5: Construction principle for space �lling curves with r = 2, q = 3.
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