
Teaching the Reduction Technique with
Interactive Visualizations: Report on a Simple

Automatic Tutor

Christian Pape
Universität Karlsruhe

Institut für Logik, Komplexität und Deduktionssysteme
76128 Karlsruhe

pape@ira.uka.de

Abstract

The reduction technique is an important problem solving method often
used in computer science and mathematics to solve a new problem by the
known solution of another problem. In this paper we investigate the poten-
tial of interactive visualization for teaching the reduction method and focus
on the following two questions: What part can visualizations play in the
presentation and understanding of the reduction technique? and: How can
we build systems for teaching the reduction technique that can be used by
students in a teleteaching environment? We try to answer the latter question
by reporting on a field test of an automatic tutor which we have build for our
students.

1 Introduction

Most branches of computer science deals with problem solving with the help of a
computer. For this purpose many methods have been developed over the years to
construct algorithms and solutions for new problems systematically. One of the
most important problem solving techniques in computer science is the reduction
method: the solution of a new problem is constructed with help of the known
solution of another problem. But even if no priority is given to the algorithmic so-
lution of a problem then the reduction method still can be used to investigate the
problems themselves: For instance, their complexity (like in complexity theory),



or whether a problem is solvable with a computer program at all (like in com-
putability theory). In particular, the reduction technique is an important method
used in theoretical computer science.

We will report in this paper on our ongoing activities to use visualizations in
teaching theoretical computer science at the undergraduate level. This, of course,
includes teaching the reduction technique. This area poses a challenge to the
multi-media approach. How can we visualize the abstract concepts that occur
in theoretical computer science? In our recent work we presented a framework
together with an example for enhancing the presentation of rigorous proofs with
interactive visualizations [4]. We also developed a special assistant with which
our students are able to solve (as an exercise during their homework) a certain NP-
complete problem much better than to try to solve it only by paper and hand [3].
All our visualizations are integrated into an HTML-based hyper text lecture notes1

which we developed for our introductional course in theoretical computer science.
The hyper text can be used by our students for further studies at home or at the
universities computer lab with every Java capable WWW-browser.

It is commonly agreed that an active training is essential for successful learn-
ing. Merely reading texts on the World-Wide-Web, looking at visualizations in
electronic textbook and watching videos or live transmissions of lectures is not
sufficient to learn and finally to apply analytic abilities like the reduction tech-
nique. Traditionally, exercises play an important role to acquire new techniques:
The student solves at home a given exercise and later on the solution is checked
by and discussed with the teacher or a human tutor. This approach can also be
integrated in a teleteaching environment by exchanging the formulation of the ex-
ercise, the students solution and its correction via letter post or e-mail. However,
even in the case of using e-mail a response usually is delayed for a significant pe-
riod of time because the human tutor can not devote himself to only one student.
Hence, in a teleteaching environment it is helpful to partially replace the human
tutor by an automatic tutor or an intelligent tutor system [5].

In this work we focus on teaching the reduction technique and address two
questions:

� What part can visualizations play in the presentation and understanding of
the reduction technique?

� Can we build systems for teaching the reduction technique that can be used
by students instead of human tutors to solve exercises in a teleteaching en-
vironment?

After an abstract description of the reduction technique given in section 2
we briefly describe our recent experiments of visualizing certain reductions (sec-

1http://i12www.ira.uka.de/˜info3/skript/companion/companion.html



tion 3). In particular, we point out how an automatic tutor for certain reductions
can be used by students to improve their solutions of reductions carried out as
an exercises during their normal homework. We hope that with our approach to
teach reductions in theoretical computer sciences the students are able to build
own mental models of the abstract objects and their relation much better. More-
over, we expect that the additional interaction facilities of an automatic tutor help
them to uncover misconceptions before their final solution is checked by human
tutors. In section 4 we report in detail on our implementation of such an assis-
tant. An evaluation of this automatic tutor among our students shows that such an
automatic tutor often helps the students to improve their solution of the exercise
before it is checked by human tutors.

2 The Reduction Technique

One of the most important problem solving methods in computer science and
mathematics is the reduction method: a the solution of a new problem is con-
structed with help of the known solution of another problem. This technique is
used in various domains of computer science like, for instance: in complexity
theory to find lower time bounds for problems or to prove the NP-completeness
of problems; in the theory of computability to prove the undecidability of deci-
sion problems; or in applied computer science like compiler construction where
a high level computer program is transformed (reduced) to a low level computer
program. The basic structure of such reductions is always the same: One problem
is mapped to another one such that certain domain dependent properties are pre-
served, e.g. the solubility of the decision problem or the semantic of the computer
program to be compiled. Because we are normally interested in solutions that can
be implemented on a computer one essential property of the transformation is its
computability.

The objects transformed by the mapping depend heavily on the application of
the reduction technique. As in the above example they can be as different as, for
instance, computer programs or decision problems. We can abstract of these spe-
cific objects by encoding them somehow into words over a finite alphabet, e.g. as
sequences of zeros and ones as it is done with every representation in a computer.
Therefore, we can use languages (sets of words) as an abstract description of the
objects. The reduction technique then can be described as follows:

Definition 1 (Reduction)
Given a finite alphabet � and two languages L�� L� � ��. A reduction of L�

on L� is a computable transformation � � �� � �� with w � L� iff � �w� �
L� for all w � �� �



In this definition L� is the collection of problems for which we know (or as-
sume to know) a solution and L� is a collection of problems for which we do not
know a solution. For example, ifL� is the set of all syntactical correct C-programs,
then � may be a compiler that transforms every C-programw to a lower level com-
puter program � �w� which can be executed directly on a computer. But even if we
only assume that all problems in L� can be solved, then we can use the reduction
technique to prove certain properties of L� by known properties of L�. This is
done, for example, in reduction proofs in the theory of NP-completeness. There-
fore, it is a good idea to distinguish between the problem for which an algorithmic
solution exists (or we assume one to exist) and the problem for which we know
some properties. Let us call the first one the solvable problem and the second one
the known problem. In a reduction, the solvable problem always is L� and the
known problem can either be L� (e.g. an NP-complete problem) or L� (e.g. the
target program language of a compiler).

3 Teaching the Reduction Technique with Visualiza-
tions

We teach the reduction technique at the University of Karlsruhe in our introduc-
tional course in theoretical computer sciences on the undergraduate level. In this
course we present many different reductions with the support of an additional
visualization of the relation between the known problem and the new one. Dur-
ing the lecture this is done in the traditional fashion by a pictorial description of
an instance w of one problem and a pictorial description of the corresponding
transformed problem � �w�. By nature of the presentation (slides and overhead
projector) these pictures are, of course, static and the examples are fixed.

In addition, our hyper text lecture notes contains some interactive visualiza-
tions — static and dynamic — of reductions. The instances of the problems are vi-
sualized by pictorial descriptions as well, but instead of choosing a fixed example
the student can type in arbitrary instances of the problem and the transformation
then is applied to this instance automatically. With such interactive visualizations
the students have the opportunity to investigate the reduction in detail for further
studies at their own pace — either at workstations in the universities computer lab
or at home via a modem and a personal computer. In [4] we report on an example
of such an interactive visualization which deals with a transformation � of Turing
machines with two-way infinite tape onto Turing machines with one-way infinite
tape. The students can type in an arbitrary instance T of a Turing machine with
two-way infinite tape. Then the relation between T and the transformed Turing
machine � �T � with one-way infinite tape is visualized by a simultaneous simu-



lation of T and � �T �. This is similar to compile (reduce) a computer program
(the Turing machine T ) to another one (the Turing machine � �T �) and visualize
in parallel the changes of internal states of both programs.

In all reductions presented during the lecture and in the above example the
transformation of the reduction is well known in advance: the students only have
to understand its usage in the reduction. But for learning the reduction technique
it is not sufficient to merely reproduce the presented examples. Therefore, our
students also have to develop own reductions as an exercise, especially to pre-
pare themselves for the final exam. The main difficulty in developing correct
reductions is to find a suitable transformation, i.e. that satisfies certain conditions
which depend on the specific domain. Visualizations play an important role for
the investigation of a candidate � for a valid transformation: � can be applied
to selected instances w of the problem and — like it is done in the lecture – the
relation between w and � �w� can be visualized by pictorial representations of w
and � �w�. However, this task can be tedious and often mistakes are made if the
transformation is applied to the instances by hand or if the instances become too
large. Therefore, it is a much better idea to apply the transformation to these in-
stances automatically. We implemented this approach for an exercise taken from
the theory of NP-completeness. The students task is to construct a mapping of
non-deterministic Turing machines to an NP-complete tiling problem. With our
software the student is able to type in the transformation and an instance of a
Turing machine which then is mapped automatically to an instance of the tiling
problem [3]. The students solution of this exercise is still checked by human tu-
tors.

An even better way to learn reductions is a software with the above facilities
and which, in addition, is able to verify the students transformation automatically
and give hints on errors at once. With help of the immediate respond of such an
automatic tutor the student is able to cover up misconceptions much earlier as it
is possible with a human tutor. Such a software has to check certain properties of
the transformation. Unfortunately this approach, in general, is impossible because
even checking simple properties of a given function is known to be undecidable.
This makes it very difficult (if not impossible) to build a general teaching sys-
tem like, for instance, an intelligent tutor system for checking transformations.
However, our example presented in the following section shows that for educa-
tional purposes we can restrict the amount of possible and valid transformations
for a specific reduction problem such that implementing an full automatic tutor
becomes feasible.



4 An Example taken from Complexity Theory

Computer scientist usually work on the development of algorithms to solve prob-
lems efficiently with the help of a computer. The efficiency (or complexity) of
an algorithm is measured in terms of its used time and space resources in depen-
dence of the given input. In complexity theory the problems themselves come to
the fore and it is investigated how efficient these problems can be solved by algo-
rithms. For this purpose all problems of the same complexity, i.e. problems that
can be solved with algorithms of the same complexity, are put together into sets,
so called complexity classes. Before we start with the description of our automatic
tutor (given in section 4.1) we briefly recall some necessary notions of elementary
complexity theory (we refer to [2] for a detailed description).

The problems are traditionally given as decision problems in a standard format
consisting of two parts: The first part specifies a generic instance of the problem
in terms of sets, functions, graphs, etc, and the second part is a yes/no question
asked in terms of the generic instance. The following definition gives an example
of one central problem in complexity theory: The problem is to decide whether a
set of propositional clauses of a specific form is satisfiable or not:

Definition 2 (3SAT)

� INSTANCE: A set S of clauses such that each clause in S consists of at
most three literals.

� QUESTION: Is S satisfiable?

As explained in section 2 we assume that instances of such problems are coded
somehow into a language L � ��. Furthermore, we identify the name, e.g. 3SAT,
of the problem with the set of all instances for which the question can be answered
with “yes”.

In our course we teach the basics of the theory of NP-completeness, in partic-
ular the relation between the classes P, i.e. the set of all problems which can be
solved in polynomial time on a deterministic Turing machine, and NP, i.e. the set
of all problems which can be solved in polynomial time on a non-deterministic
Turing machine. For the investigation of the relation between P and NP the notion
of NP-completeness is introduce:

Definition 3 (NP-completeness)
Given a finite alphabet �. Then a a problem L � �� is NP-complete iff L is in

NP and for every problem L� � NP there exists a transformation � computable in
polynomial time such that for every w � �� the following holds:

w � L� iff � �w� � L



In other words: a problem L � NP is NP-complete iff every problem
L� � NP is reducible to L in polynomial time such that an instance of L� has
a solution iff the transformed instance has a solution as well. Problems in P are
said to be feasible, because they can be solved in polynomial time on a computer,
whereas NP-complete problems are said to be unfeasible, because currently only
exponential time algorithms exists to solve these problems. Many real problems
are unfeasible in this sense and it is of practical interest to know whether a problem
is NP-complete or not. If we can solve an NP-complete problem L in polynomial
time on a deterministic Turing machine, i.e. L � P , then P � NP holds and, con-
sequently, by definition of NP-completeness all problems in NP can be solved in
polynomial time as well.

It is easy to see from the definition of NP-completeness that we can use the
reduction technique to prove the NP-completeness of a problemL� by (1) showing
L� � NP and (2) by reducing another problem L� — known to be NP-complete
— to L�. The condition w � L� iff � �w� � L provides that the solubility of the
problems is preserved by the transformation � , i.e. if the question of an instance
can be answered positively then the question for the transformed instance also
can be answered positively, and vice versa. If the new problem L� can be solved
in polynomial time on a deterministic Turing machine then L� can be solved in
polynomial time as well. Hence, in our terms L� is the known and L� is the
solvable problem.

However, to apply the reduction technique we first need a problem which we
know to be NP-complete. In our lecture we use SAT, i.e. the satisfiability of propo-
sitional formulas, as a starting point for further reductions The NP-completeness
proof of SAT is based on a mapping of non-deterministic Turing machines to in-
stances of SAT [1]. Afterwards, we present to our students a reduction of SAT on
3SAT in a proof for the NP-completeness of 3SAT. The central part of this proof is
a satisfiability preserving transformation � from instances of SAT to instances of
3SAT, i.e. an instance w of 3SAT is satisfiable SAT iff the instance � �w� of 3SAT
is satisfiable. To gain experience with such reduction proofs the students have to
prove the NP-completeness of the following variant of 3SAT as an exercise:

Definition 4 (MONOTONE 3SAT)

� INSTANCE: A set S of clauses such that each clause c � S consists of
at most three literals and c contains at least one positive and one negative
literal.

� QUESTION: Is S satisfiable?

The proof for the NP-completeness of MONOTONE 3SAT is based on a re-
duction from 3SAT to MONOTONE 3SAT such that every clause of an instance



of 3SAT that contains only positive or only negative literals is transformed into
clauses containing at least one positive and one negative literal. We have devel-
oped a computer program with which our students can check their solution. The
program automatically verifies the transformation and gives detailed hints in cases
of mistakes.

4.1 An Automatic Tutor for a Reduction of 3SAT on MONO-
TONE 3SAT

Figure 4.1 shows the input interface of our automatic tutor as the students can see
it in our hyper text lecture notes (except for colours). For reasons of authenticity
we will not translate the German text parts into English.

Figure 1: Input of a transformation

With this input interface a transformation � � MONOTONE 3SAT � 3SAT
can be defined by typing in the images of � on 12 different types of clauses. These



clauses are all relevant combinations of clauses with one to three positive or neg-
ative literals. For each such clause C (first column “Urbildbereich” of figure 4.1)
a set of clauses — the mappings image f�C� — can be typed in (second column
“Bildbereich”). Clauses are given as a sequence of literals separated by “j” (which
serves as the symbol for logical disjunction). Literals are either variables (given
as small letters) or variables with preceding negation sign “�”. A set of clauses
is given as a sequence of clauses each separated by a comma. The fourth row in
figure 4.1, for example, defines � �x � �y� � fx � u��u � �yg to be all non tau-
tological clauses with exactly one positive and one negative literal. u is a newly
introduced propositional variable.

Figure 2: Output of automatic tutor

If the transformation is typed in completely (or only partially) and after press-
ing the button “Abbildung überprüfen” (check transformation) it is checked auto-
matically whether the given transformation is suitable for a reduction to MONO-
TONE 3SAT, in particular if the transformation is satisfiability preserving, or not.



If, as in our example, this is not the case then the program returns detailed infor-
mation about the students mistake (Fig. 2). For instance, in the 7th row for the
clause �x � �y � �z (�x j �y j �z in first column “Urbildbereich”) no image
was typed in (second column “Bildbereich”). The information about this mistake
is given and made stand out by using red colour (darker shades) in the third col-
umn “Bemerkungen” (remarks). On account of a serious mistake the program
also returns a counterexample which describes why the corresponding part of the
transformation is incorrect: an interpretation is given for which the transformation
is not satisfiability preserving (e.g. in the first row of figure 2). By this assistance
the students can correct and improve their solution before it is finally checked by
senior students.

Because it is in general undecidable whether the function � is satisfiability pre-
serving or not, our program only checks a stronger condition which is decidable:

� Every model of an instance S of 3SAT can be extended to a model of the
transformed instance � �S� and

� Every model of an instance � �S� is a model of S.

As a result of this restriction not all satisfiability preserving transformation can
be checked automatically. If � , for instance, is a satisfiability preserving mapping
satisfying the above condition then we can construct another satisfiability pre-
serving mapping � � by negating every literal in � �S�. The resulting mapping does
not satisfy the above condition but it is a valid transformation for a reduction.
However, such transformations are somehow “unnatural”, in particular students
usually do not think about such complicated solutions. Therefore, in an educa-
tional context the above restriction is not obstructive, quite on the contrary, it is
helpful because it also allows us to provide a simple input mechanism of the trans-
formation. Moreover, it is only possible to type in total transformations that can
be computed in polynomial time. Note that this makes it not easier for the stu-
dent to explain in the literal proof why his or her transformation is computable in
polynomial time.

The automatic tutor is implemented in the script language perl and it is inte-
grated into our hyper text via the Common Gateway Interface. The program itself
is quite small: it contains less than 500 lines of code (without comments). The
main part is an implementation of an automatic theorem prover for propositional
logic which is used for two purposes: First, to check the restricted satisfiability
condition of the transformation and, second, to generate the counterexamples. The
source code is available upon request by the author.



5 Evaluation of the Automatic Tutor

To practise the reduction technique our students had to carry out a prove of the
NP-completeness of MONOTONE 3SAT as part of their usual homework. The
students had two weeks time to work on it and afterwards their written solutions
were checked by senior students. As an additional help they had the (optional)
opportunity to use our automatic tutor. A few days after the students received
their corrected solutions we handed them out a small questionnaire. We wanted to
find out about the students opinion about this exercise and, moreover, whether the
students had use our automatic tutor and whether the software had helped them to
solve the exercise.

58 students answered the questionnaire and 43 of them had worked 1.23h in
the average on this exercise which they felt about was a little bit difficult (3.42 on
a scale of 1–5 (far too easy — far too difficult)). From these 43 students 23 (53%)
found a correct transformation, 11 (26%) found a partially correct transformation
and 9 (21%) had written down a wrong transformation. Our automatic tutor was
used by 10 (26%) students and 7 (70% out of 10) of them detected mistakes in
their solution with help of the software.

This statistic shows that our automatic tutor in fact was of substantial help
for many of those students who used the software. But the acceptance of such
software among the students is yet quite low: 74% of the students did not use
the automatic tutor. There are probably three — mainly technical — reasons for
this: First, a lot of students reported that they did not use the automatic tutor
because the computer lab was too crowded. Second, many students were able to
solve the exercise without any additional help (only nine solutions were wrong).
Third, a similar evaluation of a comparable software [3], which also could be
used by our students for solving an exercise, shows that the acceptance increases
if the formulation of the exercise is only available electronically and contains the
software at appropriate points. Nevertheless, these results and also the additional
students remarks on the questionnaires confirmed us to be on the right track with
our approach to teach central topics of theoretical computer science.

References

[1] S. A. Cook. The complexity of theorem proving procedures. In Proc. Third
Annual ACM Symposium on the Theory of Computing, pages 151–158, 1971.

[2] Michael R. Garey and David S. Johnson. Computers and Intractibility: A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
New York, 1979.



[3] Christian Pape. Using Interactive Visualization for Teaching the Theory of
NP-completeness. In Proceedings of the World Conference on Educational
Multimedia and Hypermedia. Association for the Advancement of Computing
in Education, 1998. to appear.

[4] Christian Pape and Peter H. Schmitt. Visualizations for Proof Presentation
in Theoretical Computer Science Education. In Z. Halim, Th. Ottmann, and
Z. Razak, editors, Proceedings of International Conference on Computers in
Education, Kuching, Sarawak, Malaysia, December 2–6, pages 229–236. As-
sociation for the Advancement of Computing in Education, 1997.

[5] E. Wenger. Artificial Intelligence and Education. Morgan Kaufmann, Los
Altos, 1987.


