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Abstract

We are examining the power of d-dimensional arrays of process-

ing elements in view of a special kind of structural complexity. In

particular simulation techniques are shown, which allow to reduce the

dimension at an increased cost of time only. Conversely, it is not pos-

sible to regain the speed by increasing the dimension. Moreover, we

demonstrate that increasing the computation time (just by a constant

factor) can have a more favorable e�ect than increasing the dimension

(arbitrarily).

1 Introduction

We can regard d-dimensional arrays of processing elements as models for

massively parallel computers. A usual step towards a formal model is to

treat the single processing elements as �nite-state machines. Various types

of such devices have been studied under manifold aspects for a long time

(see e.g. [2, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19]).

Mainly, the types di�er in how the single machines are interconnected

and in how the input is supplied. Here we are investigating d-dimensional

arrays with a very simple interconnection pattern. Each node is connected

to its 2 � d immediate neighbors only. They are usually called cellular arrays

(or cellular automata) (CA) if the input is supplied in parallel and iterative

arrays (IA) in case of a sequential input manner to a designated cell.
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We also investigate a stack-augmented variant of IAs. Instead of �nite-

state machines deterministic pushdown state machines are used as process-

ing elements. The corresponding model is called iterative pushdown array

(IPDA).

Our special attention is focussed on structural complexity issues concern-

ing with the dimension of arrays. Prior work in this �eld dealt with reducing

the interconnection patterns or the state set cardinality and speeding-up the

computation (see e.g. [4] for IAs, [14] for CAs).

Investigating the relationships between arrays of di�erent dimension is

done by studying their power as language acceptors, since cellular program-

ming techniques for language recognition are similar to those used in nu-

merical algorithms.

The aim of the present paper is to establish a number of relationships be-

tween (d+1)- and d-dimensional arrays, including techniques for dimension

reduction. To this end we de�ne the complexity measures \time", \space",

\volume" and, if we require all edges of the volume to have identical lengths

\cube".

In the following section the de�nitions and basic notions are reviewed.

Results concerning the reduction of dimensions are obtained in section 3.

In section 4 we investigate in some sense the reverse problem, namely, the

increasing of dimensions.

2 Basic notions

A d-dimensional iterative array (IA) is a (in�nite) d-dimensional array of

identical �nite-state machines, sometimes called cells. We can identify each

machine by its coordinates in Zd. The input symbols are fed serially to

the �nite-state machines at the origin. Each cell is connected to its 2 � d
immediate neighbors. All cells work synchronously at discrete time steps.

With an eye towards language recognition more formally an iterative array

is a system (S;A; �; F; s0; a0), where S is the �nite nonempty set of states,

F � S is the set of accepting states, and A is the �nite nonempty set of

input symbols containing a0, the end-of-input symbol.

The local transition function � maps from S2d+1[(S2d+1�A) (depending
on whether the cell is the origin or not) to S. It satis�es �(s0; : : : ; s0) = s0.

Due to this property s0 is called the quiescent state. We assume that at the

end of the input the symbol a0 is not consumed.

In iterative arrays initially all cells are in the quiescent state. We call

the time a cell leaves the quiescent state for the �rst time its activation. If

for input w cell (0; : : : ; 0) eventually enters an accepting state, then w is

accepted. The accepted language is L = fw j w is acceptedg.
If we exchange the �nite-state machines by deterministic pushdown store

machines the resulting device is an iterative pushdown array. The de�nitions
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are straightforward and omitted here. The reader interested in details is

referred to [9].

For convenience each �nite-state machine of an array may be thought

of as a �nite sequence of �nite-state registers. Therefore, in presenting

algorithms we may restrict the CAs and IAs to Nd instead ofZd since we can

map each cell (i1; : : : ; id) to cell (ji1j; : : : ; jidj) which again has to consist of

2d internal registers. Obviously, the original computation can be simulated

without any slow-down.

The ith registers of all cells together are called ith track. Another well-

known presentation technique is the concept of propagating pulses or signals

[15].

De�nition 2.1 Let M be a d-dimensional CA, IA or IPDA accepting a

formal language L � A+. For all n 2 N:

a) the time complexity t(n) of M is the minimum number of time steps

needed to accept each input word from L \An,

b) the space complexity s(n) is the maximum number of cells which have

been activated, i.e. which have left the quiescent state, during the

computations for an input w 2 L \An

c) similarly, the volume complexity v(n) is the size of the smallest rec-

tangular array comprising all cells which have been activated,

d) and we say, that a d-dimensional system M has cube complexity c(n)

if and only if for each input of length n the smallest cube comprising

all cells which have been activated has volume c(n) (and hence side

length d
p
c).

For 1-dimensional systems space volume and cube complexity obviously

coincide. But for d-dimensional systems, d � 2, the latter may be much

larger. In general v 2 O(sd) and of course s 2 O(v).

For exampleL d
IA�TIME�SPACE(n

2; n) denotes the family of all formal lan-

guages which are acceptable by a d-dimensional IA having time resp. space

complexity of n2 resp. n.

3 Reducing the dimension in iterative arrays

If we are going to reduce the dimension of iterative arrays, one of the prob-

lems we are confronted with is the possibly unknown space complexity. Of

course, the space complexity can be bounded by the time complexity which

is known in most cases. But if we know something about the time complex-

ity, e.g. it is linear-time, then we might know too little, e.g. the linear-time

constant for two-dimensional arrays is not computable [1, 8].
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De�nition 3.1 A mapping t : N �! N is IA-time-constructible if there

exists an iterative array the origin cell of which enters for all n 2 N on all

inputs of length n a designated state exactly at time step t(n).

It should be mentioned here that the family of IA-time-constructible

functions is very rich, includes the \usual" time complexity functions and is

closed under various operations. For a detailed discussion of this topic refer

to e.g. [3, 15].

For d-dimensional IAs we can consider its expansion in dimensions which

depends on the length of the input as the space complexity does. We denote

the expansion in dimension i, 1 � i � d, by ki(n). Trivially, the space

complexity can be bounded by s(n) � v(n) = k1(n) � : : : � kd(n).
In the following we assume that at least one of the ki is known and that

it is IA-time-constructible. As stated above the second assumption is a weak

one. In order to prove our next result, we need a technical lemma. We need

to construct an (one-dimensional) iterative array which behaves as follows

(see �gure 1):

In a �rst phase it marks p(n) cells to the left and p(n) cells to the right

of the origin, where p : N �! N. In a second phase every p(n) cells are

synchronized in such a manner that they are able to recognize periods of

p(n)+1 time steps, continually. The third phase repeats the �rst one to the

left and right of the already marked areas and starts immediately after the

�rst one. Between each two marked areas there is a cell in the state @. The

fourth phase repeats the second one. Further phases are straightforward.

We call such iterative arrays p(n)-self-partitioning.

I/O
t = 0:

| {z }

p(n)

@

| {z }

p(n)

I/O
t = 2p(n):

t = 5p(n) + 3:

| {z }

p(n)

@

| {z }

p(n)

@

| {z }

p(n)

@

| {z }

p(n)

I/O

Figure 1: Excerpt of a computation of a self-partitioning IA.
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Lemma 3.1 Let p(n) be an IA-time-constructible mapping. Then there

exists a p(n)-self-partitioning iterative array.

Proof. We give a somewhat informal construction since details are tedious

and hard to read.

The �rst phase is realized by simulating a p(n) time constructing iterative

array in a separate register. During the simulation at each time step signals

are sent to the left and right which mark the �rst unmarked cells on both

sides. The last signal additionally initiates a (nearly) time optimal FSSP

[11, 17] algorithm to synchronize the chain of p(n) cells and causes the next

unmarked cell to enter state @. The consumed input is stored on a separate

track for reuse.

The FSSP needs 2 � p(n)+ 3 time steps to synchronize the chains for the

�rst time, which occurs, consequently, at time step 3 �p(n)+3. Subsequently

modi�ed FSSPs with generals at both borders [5] are continually performed

each of which take p(n) + 1 time steps only.

After the �rst synchronization all p(n) cells send signals simultaneously

which will mark another p(n) cells after crossing the @-cell. Again, the last

of them will initiate a FSSP. Altogether the second chains are synchronized

3 � p(n) + 3 time steps after the �rst ones for the �rst time. 2

Except for the �rst 3�p(n)+3 time steps we can speed up the partitioning

by the usual technique of grouping. Grouping three cells to one we achieve

a behavior which adds partitions at a rate of p(n) + 1 time steps.

For a moment we deal with the lucky case of knowing a little bit about

the space complexity.

Theorem 3.1 Let the expansion ki be an IA-time-constructible mapping

for an appropriated i. Then

L
d+1
IA�TIME�VOL(t; v) � L

d
IA�TIME�VOL(O(ki � t);O(v))

Proof. Let j 2 f1; : : : ; i � 1; i + 1; : : : ; d + 1g. Imagine, the (d + 1)-

dimensional rectangle k1 � k2 � : : :� kd+1 is divided into kj d-dimensional

rectangles the expansion in direction i of which has length ki. The idea is

to chain up the sub-rectangles along dimension i (see �gure 2, 3). Since in

the initial state all cells are quiescent this can initially be done by the IA

which is ki(n)-self-partitioning. Creating the �rst two partitions is the �rst

phase of the algorithm. From now on adding partitions and doing further

computations are performed in parallel. The further computation consists

of continually simulating state transitions of the (d+ 1)-dimensional IA.

In order to simulate one time step we have to supply to each cell the

state information of its original neighbors. Except for the neighboring cells

in neighboring sub-rectangles (i.e. the neighbors along direction j) this in-

formation is available immediately. The missing information is moved on
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Figure 2: A 3-dimensional IA con�guration at t = 3. sij;k;l denotes the ith

state of cell (j; k; l) after its activation.
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Figure 3: A 2-dimensional embedding of a 3-dimensional IA con�guration

for kj = k3 and known ki = k1 = 3 at t = 3. s0 denotes the quiescent state.

separate tracks in ki(n) time steps to the cells (see �gure 4). The movement

is controlled by the clock realized by the FSSPs. Subsequently the transition

is simulated and the whole cycle repeats.

The �rst phase of the algorithm takes 3 �ki(n)+3 time steps. Subsequent

simulation cycles need ki(n)+ 1 time steps respectively. Remember that we

have grouped the cells by 3. Therefore, the time complexity is 3 � ki(n) +

3 +
t(n)�(ki(n)+1)

3 , which is less than t(n) � ki(n) for ki > 1 and t > 9. Since

our grouping and because partitions are added with a rate of ki(n)+ 1 time

steps the volume complexity is less than v = k1 � : : : � kd+1. 2

Now we turn to the question what happens if almost nothing about

the time and space complexity is known. In this case we cannot use the

technique of pre-partitioning since we do not know anything about the size

of the partition. Instead, we can start with 2 partitions of size 1 and before
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Figure 4: Movement of a 2-dimensional embedding of a 3-dimensional IA

con�guration after 2 shifts.

the movement and simulation phase perform a phase of enlarging and adding

partitions.

Theorem 3.2

L
d+1
IA�TIME(t) � L

d
IA�TIME(t

2)

Proof. Since we have no further information about the space complexity

we can only use the fact ki � t, i 2 f1; : : : ; d+ 1g, which leads to the cube

complexity c = td+1. But unfortunately we do not know anything about t.

The main idea of the algorithm is based on the previous theorem. But

instead of static partitioning we have to partition dynamically. The division

into sub-rectangles of dimension d is done according to k1. Assume there is

initially 2 partitions of size 1. The computation is divided in 3 phases which

are continually performed. These are \enlarging the partitions", \adding

partitions" and \simulate 1 transition step".

For the �rst phase assume that there are p + 1 partitions of size p in

direction d + 1. Obviously there are neither more nonempty partitions nor

partitions of longer size after p simulated time steps. Before the next sim-

ulation we need p + 2 partitions of size p + 1. Observe that the partition

0 � q � p contains at least q cells in quiescent state (in each direction)

since up to now these cells cannot be activated in the original computa-

tion. Controlled by the clock realized by the FSSPs now the states of these

cells propagating towards the origin along direction 1 whereby the states of

crossed cells are \pushed" in the other direction. After pushing a state @ a

signal is cancelled (see �gure 5).

The result consists of p partitions of length p+1 and one empty partition.

Phase 1 takes p time steps.

During phase 2 the empty partition is enlarged to size p + 1 and an

additional one is generated. This can be done in less than 4(p+ 1) further
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Figure 5: Enlarging partitions. Excerpt of one line.

time steps.

The third phase is as the simulation phase of the previous theorem with

the exception that the controlling FSSPs are started at the end of phase 1

and synchronize after 4(p+1) time steps (due to the new partition) and after

5(p+1) time steps, respectively. Therefore phase 3 needs further (p+1)+1

time steps.

Altogether the simulation of one original transition takes p+ 4(p+ 1) +

(p + 1) + 1 = 6(p+ 1) time steps. If we use the technique of grouping we

can group 6 cells to 1 and achieve a solution in p + 1 time. Therefore, the

time complexity of the whole algorithm is
Pt

i=1 i+ 1 = t + t2+t
2 = 3

2 +
1
2t
2

which is less than t2 for t � 3. 2

The di�erence between the both previous theorems depends on the \qual-

ity" of the knowledge necessary for the �rst one. If the known ki is large

against the other kj its favorable e�ect is gone. On the other hand we can

safe a lot of time if it is small compared with t.

Now we focus our interest on iterative pushdown arrays. The main

problem arises from the fact that we cannot simulate two stacks by just one,

otherwise the context-free languages would be closed under e.g. intersection.

Therefore the technique of grouping is not applicable. Furthermore if a cell

should switch to the behavior of a neighboring one it has to fetch the whole

stack content, too. For that reason the technique of dynamic partitioning

seems to be fairly unrealistic. On the other hand in the order of magnitude

theorem 3.1 holds for IPDAs, too.

Theorem 3.3 Let for an appropriated i ki be an IA-time-constructible

mapping. Then

L
d+1
IPDA�TIME�VOL(t; v) � L

d
IPDA�TIME�VOL(O(ki � t);O(v))

Proof. The proof is only a slight modi�cation of the proof of theorem 3.1

and left to the reader. 2
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4 Increasing the dimension in iterative arrays

We now turn to questions concerned with the increasing of dimensions. Un-

fortunately the converse of the results in the previous section does not hold,

from which follows that we cannot regain the speed lost by reducing the

dimension.

Theorem 4.1 There is a language in L 1
IPDA�TIME(2 � id) which for any

d 2 N does not belong to L d
IPDA�TIME(id).

Proof. L = fvv0 j v; v0 2 f0; 1g� ^ v0 = v0R ^ jv0j � 3g was shown to be a

real-time one-way CA language [6]. Consequently it is a real-time CA and

a two times real-time IA language. For structural reasons then it belongs to

L
1
IPDA�TIME(2 � id).
On the other hand it has been shown that L cannot be accepted by any

d-dimensional IPDA in real-time [9]. 2

The following corollary has been shown in [4].

Corollary 4.1 There is a language in L 1
IA�TIME(2 � id) which for any d 2 N

does not belong to L d
IA�TIME(id).

From the previous we derive the fact that increasing the computation

time (just by a constant factor) can have more favorable e�ect than increas-

ing the dimension (arbitrarily). Now the question arises whether increasing

the dimension leads to di�erent complexity classes at all. Regarding real-

time language families the answer is yes.

The following theorem was shown in [4].

Theorem 4.2 For all d 2 N:

L
d+1
IA�TIME(id) % L

d
IA�TIME(id)

A similar result concerning nondeterministic iterative arrays and linear-

time was proved in [13].

Theorem 4.2 can easily be extended to IPDAs.

Theorem 4.3 For all d 2 N:

L
d+2
IPDA�TIME(id) % L

d
IPDA�TIME(id)

Proof. It is su�cient to show that the inclusion is a proper one. We

may regard a d-dimensional IPDA as a restricted (d+ 1)-dimensional IA as

follows. The �nite control of a cell (i1; : : : ; id) of the IPDA is simulated by

cell (i1; : : : ; id; 0) of the IA. For all i 2 N the IA cells (i1; : : : ; id; j), j < 0,
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are idle and the IA cells (i1; : : : ; id; j), j � 0, are simulating the stack of

IPDA cell (i1; : : : ; id).

From Cole's result and for structural reasons we obtain 8d 2 N :

L
d
IPDA�TIME(id) � L

d+1
IA�TIME(id) $ L

d+2
IA�TIME(id) � L

d+2
IPDA�TIME(id),

from which the assertion follows. 2

It should be mentioned that we can also prove a stronger version of the

previous theorem by adapting Cole's argumentation directly to IPDAs.

The previous theorems of this section were concerned with the special

case of real time. We now return to the case of an arbitrary time complexity

t. Contrasting theorem 3.2 it will be shown that, though none of the time

loss can be regained, at least the dimension can be increased without any

time loss, even if the cube complexity is �xed.

Theorem 4.4 Let t(n) be an arbitrary function and let c(n) be a function

which can be computed in time t(n) and within a 3-dimensional cube of

volume c(n). Then it holds:

L
2
IA�TIME�CUBE(t; c) � L

3
IA�TIME�CUBE(O(t); c)

Proof. Let n be an arbitrary input size and consider a square of area

c = c(n) and side length l =
p
c.

In part a) below we �rst describe how the cells of the square can be

rearranged into a cube of side length k = 3
p
c. Afterwards it is shown in

part b), that it is possible to simulate a 2-dimensional cellular automaton

working on the square by another one working on the cube without loss of

time.

a) First cover the square with stripes of length l and width k = 3
p
c as

depicted in �gure 6.

As can be seen, there are 2 l
k
� 1 stripes which overlap by k

2 . Let the

stripes be numbered as follows: The q := l
k
stripes drawn with dashed

lines in the �gure and partitioning the whole square are assigned the

even numbers 0; 2; : : : ; 2q � 2 from left to right. The other stripes are

assigned the odd numbers 1; 3; : : : ; 2q � 3 from left to right.

Each stripe is folded such that the parts folded on top of each other are

squares of side length k. This results in a 3-dimensional rectangular

array of size k�k�q. Now all 2q�1 of these rectangular arrays are put on
top of each other in the same order in which they are numbered. The

resulting rectangular array is of size k � k � (q(2q� 1)) 2 �(l2) = �(c).

By storing two simulated cells in one simulating cell, the whole can be

made to �t into a cube of side length k = 3
p
c.

b) Now call the cells in the middle part of width k
2 and height l of a stripe

its kernel (see the right part of �gure 6). Observe that the kernels of the
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Figure 6: Left: Covering of a square with 2q�1 stripes. Right: a stripe and

its kernel (gray).

stripes still (almost) cover the whole square1. The simulation is done

in alternating phases: �rst a number of steps of the original cellular

automaton is simulated (i), then the overlapping parts are updated

(ii).

(i) Because of its whole width, k
4 steps of the kernel of a stripe can be

simulated in real-time without the need to refer to cells of other

overlapping stripes.

(ii) Afterwards in each stripe the two non-kernel parts have to be

updated by transferring states from the kernels of neighboring

stripes. The time needed for this task is bounded by the height q

of the rectangular arrays into which the stripes have been folded.

Hence it is smaller than the simulation time.

Therefore the whole time needed on average for the simulation of k
4

steps is proportional to k.

2

1The left and right borders are special cases. Since their proper treatment is straight-

forward, we ignore it in the following.
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