
The ParaPC / ParaStation Project:

E�cient Parallel Computing by Clustering Workstations

Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy
University of Karlsruhe, Dept. of Informatics
Postfach 6980, D-76128 Karlsruhe, Germany
email: fwarschko,blum,tichyg@ira.uka.de

Technical Report 13/96

Abstract

ParaStation is a communications fabric for connecting o�-the-shelf workstations into a supercomputer. The
fabric employs technology used in massively parallel machines and scales up to 4096 nodes. The message passing
software preserves the low latency of the fabric by taking the operating system out of the communication path,
while still providing full protection.

The �rst implementation of ParaStation using Digital's AlphaGeneration workstations achieves end-to-end
(process-to-process) latencies as low as 2:5�s and a sustained bandwidth of more than 10 MByte/s per channel
with small packets. Benchmarks using PVM on ParaStation demonstrate real application performance of 1
GFLOP on an 8-node cluster.

1 Introduction

Networks of workstations and PCs o�er a cost-e�ective and scalable alternative to monolithic supercomputers.
Thus, bundling together a cluster of workstations { either single-processors or small multi-processors { into a
parallel system would seem to be a straightforward solution for computational tasks that are too large for a
single machine. However, conventional communicationmechanisms and protocols yield communication latencies
that make only very large grain parallelism e�cient. For example, typical parallel programming environments
like PVM[BDG+93], P4[BL92] and MPI[CGH94] have latencies of several milliseconds. As a consequence, the
parallel grain size necessary to achieve acceptable e�ciency has to be in the range of tens of thousands of
arithmetic operations.

In contrast, massively parallel systems (MPPs) o�er an excellent communication/computation ratio. But
engineering lag time causes a widening gap to the rapidly increasing performance of state-of-the-art micropro-
cessors and low-volume manufacturing results in a cost/performance disadvantage. This situation is not unique
to MPP systems; it applies to multiprocessor servers as well[ACP95].

ParaStation's approach is to combine the bene�ts of a high-speed MPP network with the excellent
price/performance ration and the standardized programming interfaces of conventional workstations. Well-
known programming interfaces ensure portability over a wide range of di�erent systems. The integration of a
high-speed MPP network opens up the opporunity to eliminate as much communication oberhead as possible.

The retargeted MPP-network of ParaStation was originally developed for the Triton/1 system[HWTP93]
and operates in a 256 node system. Key issues of the network design are based around autonomous distributed
switching, hardware ow-control at link-level, and optimized protocols for point-to-point message passing. In a
ParaStation system, this network is connected via PCI-bus interface boards to the host systems. The software
design focuses at standardized programming interfaces (UNIX-sockets), while preserving the low latency and
high throughput of the MPP-network. ParaStation implements operating system functionality in user-space to
minimize overhead, while providing the protection for a true multiuser/multiprogramming environment.

The current design is capable of performing basic communication operations with a total process-to-process
latency of just a few microseconds (i.e., 2:5�s for a 32bit packet). Compared to workstation clusters using
standard communication hardware (e.g., Message-passing software such as PVM using Ethernet/FDDI hard-
ware), our system shows performance improvements of more than two orders of magnitude on communication
benchmarks. As a result, application benchmarks (i.e., ScaLAPACK equation solver and others) execute with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197600018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

nearly linear speedup on a wide range of di�erent problem sizes.

2 Related Work

There are several projects targeting low-latency and high throughput parallel computing on workstation clusters.
MINI (Memory-Integrated Network Interface) [MBH95] targets a 1-Gbps bandwidth with 1.2 �s latency

interconnect using an ATM network. Communication in MINI is based on Channels between participating
processes using ATM's virtual channel concept. Performance �gures { ATM cell round-trip time of 3.9 �s at
10Mbytes/s { are based on VHDL simulations; hardware development is in progress.

SHRIMP (Scalable High-Performance Really Inexpensive Multiprocessor) [BDF+95] supports virtual-
memory-mapped communication, allowing user processes to communicate without expensive bu�er manage-
ment and without system calls across the protection boundary separating user processes from the operation
system kernel. Using Pentium PCs as platform, the network interface is connected to an EISA-Bus (SHRIMP-I)
and the Xpress memory bus (SHRIMP-II). A 16-node (SHRIMP-I) and a 2-node prototype (SHRIMP-II) was
expected to be operational in 2Q/95.

Myrinet [BCF+95] is a new type of local area network based on technology used for packet communication
and switching within massively parallel processors. Measured performance using Myrinet API functions achieve
one-way, end-to-end rates of 250 Mbps on 8-Kbyte packets.

Illinois Fast Messages [PLC95] is a high speed messaging layer that delivers low latency and high bandwidth
for short messages. On Myrinet-connected SPARCstations, one-way latencies of 25�s were meassured for small
packets and for large packets, bandwidth as large as 19.6 MByte/s was achieved.

Von Eicken et al. adapted Active Messages [vECGS92, vEBB95] to a Sun workstation cluster interconnected
by an ATM network. The prototype implementation shows a peak bandwidth of 7.5 MByte/s and a round-trip
latency of 52 �s.

The Berkeley NOW (Network of Workstations) project [ACP95] targets 100+ workstation clusters using
o�-the-shelf components. One initial prototype is a cluster of HP9000/735s using an experimental Medusa
FDDI interface. The �nal demonstration system will use either a second-generation ATM LAN or a retargeted
MPP network, such as Myrinet.

Digital's MemoryChannel [Ros95] is a low latency cluster interconnect and provides a shared memory space
among interconnected systems. It achieves a hardware latency of 5�s and an aggregate bandwidth of 100
MByte/s on an 8-port hub.

Sun's S-Connect [NBKP95] is a high speed, scalable interconnect system that has been developed to support
networks of workstations to share computing resources. In the S3.mp distributed, shared memorymultiprocessor
[NAB+94], S-Connect switching fabrics deliver more than 100 MByte/s user programm accessible bandwidth
at latencies of about 1�s.

ATM as fast workstation interconnect promised high bandwidth links as well as low network latency. With
vendor supplied device drivers, however, end-to-end latency for small packets is worse over ATM than over
Ethernet [KAP95, BBVvE95].

In contrast to most other approaches, we focus on a pure message passing environment rather than a virtual
shared memory. As von Eicken at al. pointed out [vEBB95], recent workstation operating systems do not support
a uniform address space, so virtual shared memory is di�cult to maintain. Common to Active Messages and
Fast Messages, performance improvement is based on user-level access to the network, but in contrast to them,
we provide multiuser/multiprogramming capabilities. Like Myrinet, S-Connect, our network was originally
designed for a MPP System (Triton/1) and is now retargeted to a workstation cluster environment. Myrinet,
IBM-SP2, and Digital's Memory Channel use central switching fabrics, while ParaStation provides distributed
switches on each interface board.

3 Performance Hurdles in Workstation Clusters

Using existing workstation clusters as a virtual supercomputer su�ers from several problems related to stan-
dard communication hardware, traditional approaches in the operating system, and the design of widely used
programming environments.

Standard communication hardware (i.e.: Ethernet, FDDI, ATM) was developed for a LAN/WAN environ-
ment rather than MPP-communication. Network links are considered unreliable, so higher protocol layers must
detect packet loss or corruption and provide retransmission. Common network topologies, such as a bus or
a ring, do not scale very well. Sharing one physical medium among the connected workstations results in se-

2

vere bandwidth limitations. A �xed or inappropriate packet size wastes bandwidth when transmitting small
messages.

Common operating systems de�ne two standardized interfaces: one to the hardware at device driver level
and the other to the user as system calls. System calls provide the necessary protection needed in a multiuser
environment. The device driver level provides a transparent interface for di�erent hardware. This structure
results in the inability to use specialized features of the communication hardware. As the communication
subsystem of the operation system has to deal with di�erent hardware abilities, the overall service is limited to
the least common denominator. Thus there is no advantage for specialized communication hardware. Since the
communication hardware is usually controlled by the operating system, sending or receiving a message implies
at least one system call and copying the message bu�er between user- and kernel-space. This takes more time
than transmitting the message, especially for small messages. It also leads to large latencies and low throughput.
Furthermore, built-in communication protocols (i.e. TCP/IP) are designed to support communication in local
and wide area networks and therefore they are not very well suited for the needs of parallel computing. Their
complex protocol stacks tend to limit the throughput of the whole communication subsystem.

Popular message-passing environments like MPI, PVM, P4 [CGH94, BDG+93, BL92] and others, are usually
build on top of the operating system interface. Many of them o�er several parallel applications per processor.
Running several parallel application on a workstation cluster results in scheduling and synchronization delays.
The operating system of each individual node is only able to use local information to schedule processes, where
global information would be appropriate. Thus, execution time of each application takes much longer than
running the applications one after another. Running multiple processes of one application on one processor
causes an additional process switching overhead, especially if these processes communicate with each other.
Allowing several threads per parallel process forces the message-passing library { in addition to the operating
system { to handle the relationship between incoming messages and associated threads. Furthermore, all of
these environments allow processes to consume messages in arbitrary order and at arbitrary times. This implies
message bu�ering at the destination node, unless the receiving process is setup for receipt.

4 The ParaStation Architecture

The ParaStation architecture is centered around the reengineered MPP-network of Triton/1 [PWTH93,
HWTP93]. The goal is to support a standard, but e�cient programming interface like UNIX-sockets. The
ParaStation network provides a high data rate, low latency, scalability, ow control at link-level, minimized
protocol, and reliable data transmission. Furthermore, the ParaStation network is dedicated to parallel applica-
tions and is not intended as a replacement for a common LAN and therefore eliminates the associated protocols.
These properties allow using specialized network features, optimized point-to-point protocols, and controlling
the network at user-level without operating system interaction. The ParaStation protocol implements multiple
logical communication channels on a physical link. This is essential to set up a multiuser/multiprogramming
environment. Protocol optimization is done by minimizing protocol headers and eliminating bu�ering whenever
possible. Sending a message is implemented as zero-copy protocol, which transfers the data directly from user-
space to the network interface. Zero-copy behaviour, during message reception, is achieved when the pending
message is addressed to the receiving process; otherwise the message is copied once into a bu�er in a common
accessible message area. Within the ParaStation network protocol, operating system interaction is completely
eliminated, removing it from the critical path of data transmission. The missing functionality to support a
multiuser environment is realized at user-level in the ParaStation system library. This approach trades speed
for inter-task protection.

4.1 Software Architecture

To avoid operating system overhead, all interfacing to the hardware is at user-level (see �gure 1). The device
driver is used at system-startup to con�gure the communication boards and within the startup-code of an
application program to get some information about the hardware. During normal operation (i.e. message
transfers) the ParaStation system library interfaces directly to the hardware without any use of the operating
system. The necessary protocols to handle packet transmissions through the ParaStation network are mainly
implemented in hardware. The gap between hardware capabilities and user requirements is bridged within the
ParaStation system library.

The ParaStation system library (see �gure 2) consists of three building blocks: the hardware interface layer,
the central system layer, and the standardized user-interface (sockets).

3

System

User

TCP/IP

Libc

Ethernet

Network

PVM PS-PVM

Libpsi

NetworkHardware

Application

User-Library

Systemlibrary

Devicedriver

Networkprotocols

Workstation ParaStation

Figure 1: Di�erence between traditional network interfacing and the ParaStation solution

Socket - Emulation

ParaStation-PVM

Rawdata-Port

1 User,
1 Application

ParaStation System Layer (Ports)

p Processes per Application

n Users,
m Applications,

Hardware Interface Layer

Figure 2: ParaStation system library

4.1.1 Hardware Interface Layer

The hardware layer provides an abstraction of the underlaying hardware. It is normally only used by the
ParaStation system layer. The implemented functionality of this layer consists of highly optimized send/receive
operations, status information calls, and an initialization call. Information calls look for pending messages and
check if the network is ready to accept new messages. The initialization call is used for mapping communication
bu�ers into user space.

Since messages at this level are addressed to nodes rather than individual communication channels, message
headers simply contain the address of the target node, the number of data words contained in the packet,
and the data itself. While sending a message, data is copied directly from user-space memory to the interface
board and the receiving function does the same thing vice versa, eliminating all intermediate bu�ering. As
a consequence, multiple applications using this layer are not supported. Nevertheless it is possible (but error
prone) to use this layer directly as application interface.

4.1.2 System Layer (Ports)

The system layer provides the necessary abstraction (multiple communication channels) between the basic
hardware capabilities (the hardware just handles packages) and a multi-user, multi-programming environment.
Therefore we had to reassemble operating system functionality at user level to meet our primary design goal of

4

e�ciency.
This approach has several problems: First, the relationship between node addresses and individual commu-

nication channels has to be maintained. Second, mechanisms for mutual exclusion of critical sections have to
be provided to ensure correct interaction between competiting processes. Third, fragmentation and reassembly
of arbitrary sized messages without causing deadlocks is necessary to provide a suitable programming interface.

To support individual communication channels (called ports in ParaStation), the system layer maintains a
minimal software-protocol, which adds information about the sending and receiving port in each packet. This
concept is su�cient to support multiple processes by using di�erent port-id's for di�erent processes. Since
message reception is done in user-space and at least the protocol information has to be received to get the
destination-port of this message, it is possible that process A receives a message addressed to a port, which
is owned by process B. To solve this problem, we use a common accessible message area to bu�er this kind
of messages. Maintaining a correct interaction between processes while sending or receiving messages, critical
sections in this protocol layer are locked by semaphores. For reasons of e�ciency, we also implemented these
semaphores at user-level, using processor supported atomic operations. Deadlock free communication while
sending large messages, which cannot be bu�ered by the hardware is ensured by a combination of sending and
receiving message fragments. Prerequisite for sending a message fragment is that the network will accept it.
Otherwise incoming messages are processed to prevent the network from blocking.

For performance reasons, a so called rawdata-port can be used to obtain as little overhead as possible. The
rawdata-port and upper layers can be used simultaneously, while rawdata applications are scheduled one after
another.

The resulting implementation of these concepts contain not a single system call. Furthermore, we provide a
zero-copy behavior (no bu�ering) whenever possible. To prevent deadlock situations, one bu�er operation of a
message to the message area is necessary. This leads to high bandwidth and low latencies.

4.1.3 Socket Layer

The socket layer provides an emulation of the standard UNIX-socket interface (TCP and UDP connections),
so applications using socket communication can be ported to the ParaStation system with little e�ort. For
connections outside a ParaStation-cluster, regular operating system calls are used. The interface can even
handle �le access when using read/write calls instead of send/recv. Send/recv calls, which can be satis�ed
within the ParaStation-cluster do not need any interaction with the operating system.

4.1.4 Application Layer

ParaStation implementations of standard programming environments like PVM [BDG+93], P4 [BL92],
TCGMSG [Har91], and others use ParaStation sockets for high-speed communication. This approach allows us,
to easily port, maintain, and update these packages. We use the standard workstation software.

The structure of the ParaStation system library provides well known interfaces (UNIX-sockets, PVM)
to guarantee as much portability between di�erent systems as possible, as well as low-latency, maximum-
throughput interfaces (raw-data port, hardware layer) to get maximum performance out of the hardware.

4.2 Hardware Architecture

As communication hardware, we use the reenginneered MPP-network of Triton/1.
The network topology is based on an two-dimensional toroidal mesh. For small systems a ring topology is

su�cient. Data transport is done via a table-based, self-routing packet switching method, which uses virtual
cut-through routing. Every node is equipped with its own routing table and with three input bu�ers: two for
intermediate storage of data packets coming from other nodes and one for receiving packets from its associated
processing element (workstation). An output bu�er delivers data packets to the associated workstation. The
bu�ering decouples network operation from local processing. Packets contain the address of the target node,
the number of data words contained in the packet, and the data itself. The size of the packet can vary in the
range of 4 to 508 bytes. Packets are delivered in order and no packets will be lost. Flow control is done at
link-level and the unit of ow control is one packet.

5

Channel 1

Channel 0

Channel 1

Channel 0
Switch

From Processor i To Processor i

For both topologies { ring and toroidal mesh { we provide a deadlock-free routing scheme. Deadlock-free
routing on a ring is simple, as long as the network is prevented from overloading. Inserting new packets into the
network only when both channel �fos are empty solves this problem. Deadlock-free routing on a toroidal mesh
is done by using X-Y dimension routing. First a packet is routed along the x-axis of the grid until it reaches it's
destination column. Then it is routed along the y-axis to it's �nal destination node. Providing similar insertion
rules as in the ring routing for both dimensions and giving the y-axis priority over the x-axis prevents deadlock.

The current implementation of our communications processor involves a routing delay of about 250ns per
node and o�ers a maximum throughput of 20 MByte/s per link. Additionally, the interface board provides a
hardware mechanism for fast barrier synchronization. To connect several systems, we use 60-pin at-cables, with
standardized RS-422 di�erential signals. Using this technology, the maximum distance between two systems is
10m (about 30 feet).

4.2.1 ParaPC Prototype

Prior to the ParaStation-System, we build an evaluation prototype called ParaPC. This testbed consists of two
EISA-Bus based Intel 486 PC's (33MHz and 50MHz) connected through two ParaPC interface boards. We use
BSD/OS V2.0 (BSD 4.4 from BSDI) as operation system. The ParaPC interface board is a slight modi�cation
of a board used in the Triton/1 project. Modi�cations were simple, but only one of the two possible network
links as shown above is available { although this is no limitation in a cluster with two workstations.

In a �rst step, we implemented the hardware interface layer as presented in section 4.1. Using carefully
designed assembler routines and some EISA-Bus speci�c features (automatic 32 to 16 bit translation), com-
munication latencies of 5 �s and transfer rates up to 4.8MByte/s could be achieved. Bypassing the operation
system in BSD/OS is very simple by using the ioport command to allow user-level access to all registers of the
interface board. Further results are presented in section 5.

4.2.2 ParaStation

The new ParaStation hardware extents the capabilities of the ParaPC hardware in several ways.
First, the ParaPC interface board was based on the EISA-bus. This bus is no longer state of the art, so

we redesigned the board for the PCI bus. PCI was chosen because it meets our throughput requirements and
it is available in several systems from di�erent vendors (Intel based systems, Digital's Alpha stations, IBM's
PowerPCs, and Sun's UltraSparcs). Thus, ParaStation is not limitated to machines supplied by one speci�c
vendor.

Second, the prototype board had only one of the two possible network links as shown above and therefore
the network topology was limited to an unidirectional ring. ParaStation supports both links and can choose
between a bidirectional ring and an unidirectional two-dimensional toroidal mesh as network topology.

Third, our experience with the ParaPC prototype showed, that parallel applications often uses barrier
synchronizations to keep conicting memory accesses in sequence. So we decided to add hardware support for
fast barrier synchronization.

The �rst realization of the ParaStation-System is based on AlphaGeneration workstations from Digital
Equipment running Digital UNIX (OSF/1) and ports to other platforms are on the way.

Our current testbed consists of two di�erent ParaStation-clusters. One cluster is based on 21064A Al-
pha workstations (275 MHz, 64 MB memory) with 8 nodes. The other cluster consists of four 21066 Alpha
workstations (233 MHz, 64 MB memory). All machines are running under Digital Unix 3.2c.

5 Benchmark Results

The benchmarks described in this section cover three di�erent scenarios. The communication and synchroniza-
tion benchmarks provide information about the raw performance of ParaPC and ParaStation. Although we

6

call this raw performance, these benchmarks reect application to application performance measured at the
hardware interface layer. Second, we present the level of performance that can be achieved at ParaStation's
di�erent software layers (see section 4.1). The third scenario deals with application performance, namely run
time e�ciency.

5.1 Communication Benchmark

To measure the end-to-end delay, we implemented a Pairwise Exchange benchmark, where two processes send a
message to each other simultaneously, and then receive simultaneously. Unlike a PingPong benchmark, process
two does not wait for receipt of a message before transmitting. This is a more practical scenario for two processes
exchanging messages.

Process1: Process2:

measure start-time; measure start-time;
DO i = 1,k DO i = 1,k

send(message) send(message)

receive(message) receive(message)
ENDDO ENDDO

measure stop-time; measure stop-time;

calculate latency and throughput; calculate latency and throughput;

The following table contains the results from the Pairwise Exchange benchmark, while varying message size
from 1 to 508 bytes1. Transmitting larger messages can be done by fragmentating them into several smaller
packets. To get accurate timing information, we measured runtime of one million iterations (k = 106 in the
above code fragment) for each packet size. For very short message sizes (word transfer), we use specialized
routines with less overhead than the general block transfer routine.

ParaStation Performance

Alpha 21064A, 275MHz Alpha 21066, 233MHz

Message size Runtime per Throughput Message size Runtime per Throughput
in bytes iteration in �s in MByte/s in bytes iteration in �s in MByte/s

Word transfer Word transfer

1 2.52 0.794 1 2.39 0.978

2 2.51 1.592 2 2.40 1.957
4 2.48 3.228 4 1.94 4.108

8 3.24 4.939 8 2.58 6.188

Block transfer Block transfer

4 3.54 2.260 4 3.62 2.205
8 4.27 3.739 8 4.13 3.860

16 5.71 5.596 16 5.39 5.921

32 8.69 7.358 32 8.25 7.956
64 14.56 8.772 64 12.90 9.894

128 26.40 9.693 128 22.74 11.238

256 50.31 10.227 256 42.45 12.019
508 95.90 10.506 508 81.43 12.450

For smallmessage sizes, ParaStation achieves transmission latencies (sending and receiving a message in user-
space) as low as 2:5�s on systems with the 21064A processor and 1:9�s on systems with the 21066 processor.
Thus, the latency for one communication operation { either a send or a receive { is just half of the presented
numbers: 1:24�s for the 21064A system and 0:97�s for the 21066 system. For larger message sizes, when
overhead per byte decreases, we get a total throughput of up to 10.5 MBytes/s (21064A) and 12.5 Mbytes/s
(21066) respectively. The performance di�erences are due to the internal architectures of the processors. The
Alpha 21066 has the PCI interface on chip, where as the Alpha 21064A is using a board-level chipset.

Even the EISA-bus-based ParaPC prototype achieved communication latencies as low as 5�s and a total
throughput of 4.8 MBytes/s.

5.2 Synchronization Benchmark

As mentioned above, SPMD-style parallel programs often need barrier synchronizations to keep their processes
in synchrony. The following code fragment was used to measure the performance of our hardware supported
synchronization mechanism on ParaStation.

1508 bytes user data is the maximum packet lenght of the ParaStation interface.

7

Process1: Process2:

measure start-time; measure start-time;

DO i = 1,k DO i = 1,k

sync() sync()
ENDDO ENDDO

measure stop-time; measure stop-time;

calculate latency and throughput; calculate latency and throughput;

To get accurate timing information, we measured runtime of one million iterations (k = 106) of the shown
code fragment. To compare our results to conventional methods, we also implemented a logarithmic barrier
synchronization using standard operating system calls.

ParaStation Ethernet

Number of Runtime per Synchronizations Runtime per Synchronizations

stations iteration in �s per second iteration in �s per second

2 1.6 625.000 576 1739

4 1.7 588.000 1223 818
8 2.3 435.000 1856 539

The performance improvement of our hardware mechanism shown in the table above is so overwhelming,
that no further explanation is needed. The shown results were measured on the 21064 cluster, the 21066 cluster
is about 17% faster.

5.3 Performance of the Protocol Hierarchy

Switching from single to multi programming environments often su�ers from a drastic performance decrease.
In the following table, performance �gures of all software layers in the ParaStation system are presented. The
benchmarks were executed on the 21064A (275 MHz) cluster.

ParaStation OS/Ethernet

Protocol-layer Latency [�s] Throughput [MByte/s] Latency [�s] Throughput [MByte/s]

Hardware interface 1.24 10.5

Rawdata 4.15 9.6

Port 8.85 8.9

Socket 11 8.8 283 0.99

P4 108 7.5 344 0.95

PVM 246 6.7 613 0.84

Socket (self) 6.4 85 195 22

Our system-layer (ports) only needs 7:6�s additional cost, to support a true multi programming environment
and the loss of throughput is within 15%. Furthermore, our decision to maintain the rawdata port is justi�ed
by the shown results. The rawdata port is twice as fast in latency than regular ports and loss of throughput is
about 8.5% compared to the performance of the hardware interface. 4:15�s latency is even less than the time
for a null system call (4:5�s) on this particular machine. Most of these 4:15�s is used to guarantee mutual
exclusion and correct interaction between competitive processes.

The real advantage of ParaStation becomes obvious when comparing the performance to regular operating
system calls. ParaStation socket calls are about 26 times faster in latency than the regular OS calls, while
o�ering the same services. Throughput however is not comparable, because the ParaStation network is much
faster than Ethernet. Even the relative loss in throughput is not comparable, because it is much harder to
interface to a fast network than to a slower one.

Another interesting result is additional overhead caused by the programming environments P4 and PVM.
Within ParaStation, these environments add an overhead of factor 9.8 (P4) and 22 (PVM) to the latency of
our system-layer. Even in the standard operating system environment, P4 adds about 21% and PVM 116%
overhead. This shows that both packages are not well designed for high speed networks.

Finally, we measured the performance of a socket to socket communication within a single process, where no
network hardware is needed at all. This test aims to meassure the protocol performance for local communication
in absence of process switching. Local communication on ParaStation is optimized and enqueues the send
message directly into the receive queue of the receiving socket. Thus, the presented 85 MByte/s reects mainly
the memcopy performance of the system.

8

5.4 Application Performance

Focusing only on latency and throughput is too narrow for a complete evaluation. It is necessary to show, that
a low latency, high throughput communication subsystem also achieves a reasonable application e�ciency. Our
approach is twofold. First, we took a heat di�usion benchmark to test application performance on our propri-
etary interface. Second, we installed the widely used and publicly available ScaLAPACK2 library [CDD+95],
which �rst uses BLACS3 [DW95] and then PVM as communication subsystem on ParaStation. On ParaPC, we
use a parallelized version of Linpack [Don95].

All ParaStation application benchmarks were executed on the Alpha 21064A (275 MHz) cluster.
The heat di�usion benchmark starts with an even temperature distributions on a metal plate. On all four

sides di�erent heat sources and heat sinks are asserted. The goal is to compute the �nal heat distribution
of the metal plate. This can easily be done with a Jacobi- or Gauss-Seidel iteration, by calculating the new
temperature of each gridpoint as average of its four neighbours.

Parallelizing this algorithm is simple: We use a block distribution of rows of the n � n matrix. So during
each iteration each process has to exchange two rows with its neighboring processes. To visualize the progress,
all data is periodically collected by one process. The following table shows the e�ective speedup for di�erent
problem sizes. Each experiment was measured with at least 1000 iterations, visualizing the result every 20
iterations.

Heat di�usion on ParaPC

size time for 1 workstation time for 2 workstations speedup

(n) [ms/iter] [ms/iter]

32 5.16 3.40 1.52

64 19.91 11.07 1.80

128 79.96 41.77 1.91
256 330.96 164.47 2.00

512 1371.30 699.15 1.96

1024 5526.37 2841.46 1.94

As expected, execution time on uniprocessor and multiprocessor con�guration quadruples as problem size is
doubled. This is obvious, because the asymptotic work of a Jacobi-iteration on a n� n matrix is O(n2). For a
wide range of problem sizes (starting with n=128 up to n=1024), an ideal speedup and therefore an e�ciency
of more than 95% is achieved. Only when benchmarking very small problem sizes, we see a decreasing speedup
because the overhead for collecting and visualizing the data is quite large compared to computational task
within the Jacobi-iteration.

The following table presents the results for ParaStation. Each experiment was measured with at least 5000
iterations, visualizing the progress every 20 iterations.

Heat di�usion on ParaStation

1 workstation 2 workstations 4 workstations 8 workstations

Problem Runtime Runtime Speedup Runtime Speedup Runtime Speedup

size (n) [ms/iter] [ms/iter] [ms/iter] [ms/iter]

64 1.5 0.99 1.51 0.9 1.66 2.0 0.75

128 6.0 3.5 1.71 2.3 2.61 3.4 1.77

256 22.3 12.0 1.86 7.5 2.97 7.0 3.19

512 89.2 46.7 1.91 26.4 3.38 17.2 5.19

1024 424 217 1.95 113 3.75 57.3 7.40

As shown, we archieve a reasonable speedup for relevant problem sizes on all con�gurations. Taking the
last line as an example, the e�ciency of two workstations is close to its maximum. In the four and eight
processor con�guration, we achieve an e�ciency of 93.75% and 92.5% respectively. In general, there are only
two points where performance decreases when switching to the next larger con�guration. But this only happens
for problem sizes where parallelizing is doubtful.

The Linpack benchmark is an equation solver using LU decomposition with partial pivoting and backsub-
stitution. We have parallelized the core routine (sgefa). We use a cyclic distribution of lines to achieve an
optimal load balance. Thus, pivot searching, scaling and row elimination can be done in parallel.

The following table shows runtime, achieved Mops and e�ective speedup for di�erent problem sizes.

2Scalable Linear Algebra Package.
3Basic Linear Algebra Communication Subroutines

9

LINPACK on ParaPC

size 1 workstation 2 workstations speedup

(n) time[s] Mop time[s] Mop

100 0.39 1.76 0.22 3.14 1.78

200 2.96 1.80 1.57 3.45 1.92

500 46.1 1.82 23.1 3.62 1.99
1000 368 1.82 183 3.64 2.00

1500 1255 1.80 627 3.60 2.00

The measured performance in Mops of the uniprocessor con�guration is quite stable over the whole range
of di�erent problem sizes and compares well to results presented by J. Dongarra [Don95] for a 33MHz 80486.
Using two workstations we obtain a perfect speedup (greater than 1.98) and therefore an e�ciency close to the
maximum for all relevant problem sizes.

The second application benchmark for ParaStation xslu taken from ScaLAPACK is an equation solver
for dense systems. Numerical applications are usually built on top of standardized libraries, so using this
library as benchmark is straight forward. Major goals within the development of ScaLAPACK [CDD+95] were
e�ciency (to run as fast as possible), scalability (as the problem size and number of processors grow), reliability
(including error bounds), portability (across all important parallel machines), exibility (so users can construct
new routines from well-designed parts), and ease of use. ScaLAPACK is available for several platforms, so
presented results are directly comparable to other systems.

ScaLAPACK on ParaStation

Problem 1 workstation 2 workstations 4 workstations 8 workstations

size (n) Runtime [s] MFlop Runtime [s] MFlop Runtime [s] MFlop Runtime [s] MFlop

1000 5.0 134 3.36 199 2.95 226 2.74 244

2000 34.4 155 20.8 257 13.6 394 9.80 545

3000 109 165 62.3 289 39.2 459 27.9 647
4000 138 309 84.0 508 54.6 782

5000 152 547 96.4 865

6000 251 573 157 920
7000 234 978

8000 334 1022

Ethernet n=3000 165 n=4000 232 n=6000 320 n=8000 261

The above table con�rms scalability of performance while problem size as well as number of processors
increases. The e�ciency of the two, four, and eight processor clusters are 94%, 87%, and 77% respectively.
Remarkable is that we get more than a Gigaop for the 8 processor cluster. These are real measured performance
�gures and not theoretically calculated numbers. The last line shows the performance one can get using
ScaLAPACK con�gured with standard PVM (Ethernet). The best performance in this scenario is reached at
problem size of n=6000 on a 4 processor cluster. Using more processors results in a drastic performance loss
due to bandwidth limitation on the Ethernet. For ParaStation, we see no limitation when scaling to larger
con�gurations. And it is even possible to improve the ParaStation performance by using a better interface than
PVM.

In general, using various application codes such as digital image processing and �nite element packages,
we achieved relative speedups of 3 to 5 on ParaStation over regular PVM or P4 on our 4-node and 8-node
ParaStation clusters. In all of these studies, we used the same object codes, just linking them with di�erent
libraries.

6 Conclusion and Future Work

The integrated and performance oriented approach of designing fast interconnection hardware and a system
library with a well-de�ned and well-known user interface has lead to a workstation cluster environment that
is well-suited for parallel processing. With low communication latencies, minimal protocol, and no operating
system overhead, it is possible to build e�ective parallel systems using o�-the-shelf workstations. While Para-
Station is still a workstation cluster rather than a parallel system, presented performance results compare well
to parallel systems. ParaStation's exibility, scalability (from 2 to 100+ nodes), portability of applications
(providing standard environments like PVM, P4 and Unix-sockets), and the achieved performance level have
led us to market ParaStation4.

4For further information, see http://wwwipd.ira.uka.de/parastation or http://www.hitex.com/parastation.

10

In future, we will work on next generation hardware, ports to other platforms and support for various
programming environments. Current issues for a new network design are �ber optic links and exible DMA
engines to reach an application-to-application bandwidth of about 100 MByte/s. Second, due to the PCI-bus
interface, the ParaStation system is not limited to Alpha platforms. Currently, we are working on a port to
Pentium PCs running Linux. PC's running Windows NT are scheduled and Alphas running either Linux or NT
will follow. Finally, we plan to support MPI as a future standard directly within the ParaStation system layer.
This will give MPI applications a performance boost over a socket-based MPI implementation. Besides MPI,
Active Messages and Fast Messages respectively are considered as additional interfaces to the system layer.

References

[ACP95] Thomas E. Anderson, David E. Culler, and David A. Patterson. A Case for NOW (Network of Workstations).
IEEE Micro, 15(1):54{64, February 1995.

[BBVvE95] Anindya Basu, Vineet Buch, Werner Vogels, and Thorsten von Eicken. U-net: A user-level network inter-

face for parallel and distributed computing. In Proc. of the 15th ACM Symposium on Operating Systems

Principles, Copper Mountain, Colorado, December 3-6 1995.

[BCF+95] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz, Jarov N. Seizovic,

and Wen-King Su. Myrinet: A Gigabit-per-Second Local Area Network. IEEE Micro, 15(1):29{36, February
1995.

[BDF+95] Matthias A. Blumrich, Cezary Dubnicki, Edward W. Felten, Kai Li, and Malena R. Mesarina. Virtual-
Memory-Mapped Network Interfaces. IEEE Micro, 15(1):21{28, February 1995.

[BDG+93] A. Beguelin, J. Dongarra, Al Geist, W. Jiang, R. Manchek, and V. Sunderam. PVM 3 User's Guide and
Reference Manual. ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[BL92] Ralph Buttler and Ewing Lusk. User's Guide to the p4 Parallel Programmimg System. ANL-92/17, Argonne
National Laboratory, October 1992.

[CDD+95] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and R. C.

Whaley. Scalapck: A portable linear algrbra library for distributed memory computers { design issues and

performance. Technical Report UT CS-95-283, LAPACK Working Note #95, University of Tennesee, 1995.

[CGH94] Lyndon Clarke, Ian Glendinning, and Rolf Hempel. The MPI Message Passing Interface Standard. Technical

report, March 94.

[Don95] Jack J. Dongarra. The Complete Linpack Report. Technical report, University of Tennesse, January 95.

[DW95] J. Dongarra and R. C. Whaley. A user's guide to the blacs v1.0. Technical Report UT CS-95-281, LAPACK

Working Note #94, University of Tennesee, 1995.

[Har91] R. J. Harrison. Portable tools and applications for parallel computers. International Journal on Quantum

Chem., 40:847{863, 1991.

[HWTP93] Christian G. Herter, Thomas M. Warschko, Walter F. Tichy, and Michael Philippsen. Triton/1: A massively-

parallel mixed-mode computer designed to support high level languages. In 7th International Parallel Pro-
cessing Symposium, Proc. of 2nd Workshop on Heterogeneous Processing, pages 65{70, Newport Beach, CA,

April 13{16, 1993.

[KAP95] Kimberly K. Keeton, Thomas E. Anderson, and David A. Patterson. LogP Quanti�ed: The Case for Low-

Overhead Local Area Networks. In Hot Interconnects III: A Symposium on High Performance Interconnects,

Stanford University, Stanford, CA, August 10-12 1995.

[MBH95] Ron Minnich, Dan Burns, and Frank Hady. The Memory-Integrated Network Interface. IEEE Micro,

15(1):11{20, February 1995.

[NAB+94] Andreas G. Nowatzyk, G. Aybay, Michael C. Browne, Edmund J. Kelly, Michael Parkin, W. Radke, and

S. Vishin. S3.mp: Current status and future directions. In Shared Memory Multiprocessor Workshop.

International Symposium on Computer Architecture, Chicago, IL, May 1994.

[NBKP95] Andreas G. Nowatzyk, Michael C. Browne, Edmund J. Kelly, and Michael Parkin. S-connect: from networks

of workstations to supercomputer performance. In Proceedings of the 22nd International Symposium on

Computer Architecture (ISCA), Santa Margherita Ligure, Italy, pages 71{82, June 22-24 1995.

[PLC95] Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on Workstations: Illinois Fast

Messages (FM) for Myrinet. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference, San Diego,
California, December 3-8 1995.

[PWTH93] Michael Philippsen, Thomas M. Warschko, Walter F. Tichy, and Christian G. Herter. Project Triton:
Towards improved programmability of parallel machines. In 26th Hawaii International Conference on System

Sciences, volume I, pages 192{201, Wailea, Maui, Hawaii, January 4{8, 1993.

11

[Ros95] Peter Ross. Unix TM clusters for technical computing. Technical report, Digital Equipment Coropration,

December 1995.

[vEBB95] Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Communication Over ATM Networks

Using Active Messages. IEEE Micro, 15(1):46{53, February 1995.

[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active messages: a

mechanism for integrated communication and computation. In Proceedings of the 19st Annual International
Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

12

