
Generating Semantic Analysis Using

Constraint Programming

Sabine Glesner, Andreas Heberle, and Welf L�owe

Institut f�ur Programmstrukturen und Datenorganisation, Universit�at Karlsruhe,

76128 Karlsruhe, Germany, E-mail:fglesnerjheberlejloeweg@ipd.info.uni-karlsruhe.de

Abstract. We describe a new approach for the speci�cation and gen-

eration of the semantic analysis for typed programming languages. We

specify context-sensitive syntactic properties of a language by a system of

semantic rules. For various imperative programming language concepts,

we discuss the required semantic rules and show how they can be solved

e�ciently, i.e., in time O(n) where n is the program size.

1 Introduction

Semantic analysis should check a program if it matches the conditions imposed

by the context-sensitive syntactical characteristics of a language. Additionally,

it computes the typing of the program which is required for further transforma-

tions, i.e., the static semantics. Writing a semantic analyzer from scratch is too

expensive and error prone.

Generators have been known for years but the required speci�cations depends

too much on the process of analysis. On one hand, the language speci�cation

should not depend on the analysis. But on the other hand such a speci�cation

cannot serve as a generator's input. This implies that, in addition to the language

speci�cation given by its designer, a second (formal) speci�cation of the same

context-sensitive syntax is needed as generator input, committing the compiler

constructor to do the speci�cation job again. Additionally, the correctness of the

generated analysis must be established which remains as a proof obligation for

the compiler constructor. We propose another approach that splits the speci�-

cation into two parts. Name and scope rules are de�ned operationally by a very

simple left-to-right depth-�rst traversal of the abstract syntax tree (AST). This

is the natural way as it is usually done in programming language speci�cations.

Furthermore, we specify semantic constraints on AST nodes in a descriptive

way. The language designer does not need to specify how these constraints are

solved. Especially, the computation of the solution is completely independent

from the AST traversal. Therefore, our speci�cation method does not depend

on the process of analysis.

For constructing semantic analyzers the following steps are performed:

(1) The language designer de�nes the context-sensitive syntax by the means

of semantic conditions on abstract syntax trees. Such a de�nition does not

contain any information on how to solve the speci�ed semantic conditions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197600008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(2) The designer's speci�cation serves as input for the generator of the semantic

analysis. The generated analyzer extracts a system of semantic constraints.

(3) An e�cient algorithm (linear in the program size) solves the extracted con-

straint system and computes the typing.

Since there is only one speci�cation involved, correctness would result automat-

ically if the generation technique and the implementation of the generator itself

were correct. The �rst requirement is guaranteed to be ful�lled due to this pa-

per. We consider imperative, typed programming languages with overloading

and coercions, and higher-order functions.

Research on the speci�cation of context-sensitive syntactical properties and

the generation of the associated semantical analysis was enforced with attribute

grammars. A good survey of the obtained results can be found in [13]. The

actual algorithms for the semantic analysis are simple but will fail on certain

input programs if the underlying attribute grammar is not well-de�ned. Testing

if a grammar is well-de�ned, however, requires exponential time [5]. A su�cient

condition for being well-de�ned can be checked in polynomial time. This test

de�nes the set of ordered attribute grammars as being a subset of the well-

de�ned grammars [6]. However, there is no constructive method to design such

grammars. Hence, designing an ordered attribute grammar remains a di�cult

problem. For another class of attribute grammars it is required that all attributes

can be evaluated during a single depth-�rst, left-to-right traversal of the abstract

syntax tree. These are the left-ordered attribute grammars, [7], [1]. Due to their

�xed traversal order, the speci�cation of context-sensitive syntax becomes very

operational, i.e., dependent on the analysis, and is not as easily possible as a

language designer might want it to be. However, because there are no alternative

speci�cation and generation methodologies, most practical tools are based on

attribute grammars.

In [12], a framework for the speci�cation of context-sensitive syntax is given

which is based on the predicate calculus and on the entity-relationship model

from database theory. The speci�cations in this model are very complex and are

not intuitive. Moreover, the generation of semantic analysis from such a speci�-

cation is not always possible, as stated by the author. Therefore this approach

is not widely used.

A language for the speci�cation of context-sensitive syntax which is based

solely on the predicate calculus is de�ned in [8]. Due to the complexity of �rst-

order formulas, the speci�cations in this model may not be easy. The semantic

analysis can be generated but is much too ine�cient for the use in practical

compilers. Another framework also based on the predicate calculus is given in

[10], incorporating basically the same disadvantages.

In [9], a speci�cation method for context-sensitive syntax in object-oriented

languages based on constraints is given. In this framework the speci�cation of

context-sensitive syntax is easy to express. The semantic analysis can be gener-

ated. Their emphasis lies on the treatment of programming languages that do

not require that variables are declared. So in general, type inference is performed,

using an algorithm of time complexity O(n3) where n is the program size.

2

In this paper, we restrict ourselves to type checking while allowing a richer

constraint language. This gives us the possibility to describe more realistic pro-

gramming languages while obtaining an O(n) algorithm solving the constraints

where n is the program size.

We proceed in the following way: section 2 sketches the speci�cation lan-

guage. Thereby, we show how our approach works for common concepts of ex-

isting programming languages. Section 3 describes the algorithm for solving the

speci�ed semantic conditions and demonstrates it on an example. Finally, sec-

tion 4 concludes the work and describes its general context.

2 The Speci�cation

We describe our principal approach in specifying context-sensitive syntax. Spec-

i�cations are given by constraints associated with each node of the abstract syn-

tax tree (AST). Furthermore, we discuss simple imperative features and proceed

by successively introducing more complex properties of the languages that we

consider. For each typical language construct we show how alternative semantics

can be speci�ed.

2.1 Principal Formalism

In general, the syntax of a programming language consists of context-free as well

as context-sensitive syntactic properties. Therefore, the syntax analysis of a com-

piler is divided into two parts. The �rst checks the context-independent syntac-

tical properties and is commonly called syntactical analysis. Its result is the ab-

stract syntax tree. The second part of the analysis checks the context-dependent

properties and is typically called semantic analysis. Here we assume that a pro-

gram is represented by the AST. This means that the analysis of context-free

properties has already been performed. We describe context-sensitive syntactic

properties inductively on the structure of programs. For each production of the

language's context-free grammar we de�ne semantic rules. These rules specify

syntactical correctness of programs w.r.t. the context-sensitive syntax of the

programming language.

When a program is checked, we look at it in left-to-right depth-�rst order.

Inductively on this traversal order, we de�ne what context-sensitive correctness

means. For each node in the AST, we de�ne a context. This context completely

summarizes the context-sensitive properties belonging to the program part be-

fore (w.r.t. the left-to-right depth-�rst order) the actual node.

Each inner node of the AST corresponds to the left-hand side of a rule of the

context-free grammar. The context-sensitive properties of such a node are de-

scribed via semantic rules associated with the context-free productions. Semantic

rules consist of conditions, actions, and constraints:

(1) The condition indicates if the particular semantic rule applies to the node in

a certain context.

3

(2) If the semantic rule applies, the action de�nes the new context.

(3) If the semantic rule applies, the constraints describe the context-sensitive

properties of the node.

Figure 1 shows the speci�cation scheme for a semantic rule which is used in this

paper. True-conditions and skip-actions are omitted.

Condition Actions Constraints

Predicate on the Modi�cation of the Selected

context context Constraints

Fig. 1. Speci�cation scheme: semantic rules.

In fact, the context is represented by a de�nition table, the method of choice

in compiler construction. The de�nition table de�nes a function typeof returning

the type of a given name. Initially, it gives ? for each name which indicates that

it has not been de�ned yet. To be able to collect all constraints arising from the

use and/or declaration of the same identi�er, we conceptually insert new nodes

into the AST. Whenever a name occurs for the �rst time, we create such a node

and insert it such that it is the successor of name, i.e., name.succ := node is

then a default action. Another function nodeof of the de�nition table indicates

this node of a name, depending on the context.

2.2 Types and Equivalence of Types

In principal, we can deal with all primitive types that are known from com-

mon programming languages as arithmetic, boolean, character, and string types.

In this paper, w.l.o.g., we consider the basic types int, real, and bool, see (1).

From these types we can construct complex types by applying type construc-

tors. type ! type de�nes function types, see (2). We consider only functions

with one argument. It is obvious that this does not pose any restriction on the

generality of the type system as argued by Sch�on�nkel [11] and later used by

Curry [2]. Records can be built by joining tuples of names and types, see (3)-(6).

type ::= INT j REAL j BOOL (1)

j type ! type (2)

j f components g (3)

components ::= ; (4)

j comp ; components (5)

comp ::= name : type (6)

For structured types, di�erent notions of type equivalence are common in pro-

gramming languages. The basic distinction is between declarational and struc-

tural equivalence. For the latter, each of the four combinations (order matters,

4

does not matter) and (names make a di�erence, make no di�erence) is possible.

Nevertheless, the combination (order does not matter, names make no di�erence)

does not seem to make sense and is therefore not considered in the following. In

No Condition Actions Constraints

(1) [[type]] = (int jreal jbool)

(2) [[type0]] = [[[[type1]]! [[type2]]]]

(3) [[type]] = [[components]]

(4) [[components]] = �

(4') [[components]] = []

(5) [[components0]] = [[comp]] [[[components1]]

(5') [[components0]] = [[[comp]]j[[components1]]]

(6) [[comp]] = (name; [[type]])

Fig. 2. Semantic rules for type de�nitions.

�gure 2, we show how these di�erent notions of type equivalence can be described

via semantic rules. For the syntactical rules (4) and (5), we give two alternative

semantic rules describing di�erent type equivalences. In the case that the order

on the record elements matters, we represent them by a list. If the order does not

matter, we choose a set description. This is described by (4), (5) and (4'), (5'),

resp.1 Furthermore, the names of the elements can make a di�erence between

record elements. But since we need to have access to the names of the record

elements whenever they are used in a program, we need to describe their names

in the constraints; no matter if they are used to distinguish between di�erent

record types or not.

2.3 Imperative Features

We consider declarations, assignment and loop statements, and simple expres-

sions. Our notation for these language constructs is assumed to be as follows:

decl ::= name : type (7)

assign ::= des := expr (8)

des ::= des : name (9)

j name (10)

loop ::= while expr do stats od (11)

expr ::= des (12)

j bool literal (13)

j int literal (14)

j real literal (15)

j expr + expr (16)

1 We assume [] to denote the empty list and [j] to denote concatenation of lists.

5

There are two di�erent principal ways for the use of objects in programming

languages. Either (i) it is required that an object is de�ned before it is used, or

(ii) use and declaration can occur in arbitrary order. However, this distinction

does not matter for the handling of declarations (7). In �gure 3, we state the

semantic rules for the declaration statement. We distinguish between the two

possibilities that the name has already been declared or not. Depending on them,

the corresponding actions and constraints di�er. In the �rst case, the name is still

unde�ned (typeof (name) = ?). If this condition happens to be true, the resulting
action de�nes the type entry typeof (name) := [[type]] for name. Furthermore, the

constraint [[name:succ]] = [[type]] describes that the type of name is constrained

to [[type]]. The node name:succ is used to collect all constraints on this particular

name. As described above, the node name:succ is inserted (as a default action

of the de�nition table) into the AST whenever name appears for the �rst time

in the program. All constraints on the type of name are collected at this node.

In the second case, name has already been declared before. Since we allow only

one declaration per name, this results into an error: The type of name in the

de�nition table is set to error. The corresponding constraint also restricts the

type of name to the error type error. In the assignment statement (8), we require

Condition Actions Constraints

typeof (name) = ? typeof (name) := [[type]] [[name:succ]] = [[type]]

typeof (name) 6= ? typeof (name) := error [[name:succ]] = error

Fig. 3. Conditions, actions, and constraints for declarations (7).

that the type of the expression expr on the right-hand side is coercible to the

type of the designator des on the left-hand side. No condition and no further

action are necessary. The constraint is [[expr]]; [[des]].

Coercibility relations, denoted by ;, are language dependent and can be

combined into a semi-lattice by introducing the error type error as top element.

There may be di�erent coercibility relations for di�erent language constructs in

a single programming language. They are de�ned by the language designer.2

The semantic rules for the designator are speci�ed in �gure 4. As already

mentioned we distinguish if a variable has to be declared before its use (i) or

not (ii). For example, in the semantic rule for no. (9), case (i), the condition

asks if the type of name has already been declared. The semantic rule applies if

this is the case. Then no action is performed which means that the state of the

de�nition table is not changed. The constraints specify that the type of des1 is

a record type which contains an element named name of the same type as des0.

The semantic rule for the loop statement (11) is simple. We only have to

require that the type of the conditioning expression is boolean, i.e. [[expr]] = bool .

In particular, there are no actions and conditions. For expressions (12){(15), the

2 For our example language, we assume int ; real .

6

No. Case Condition Actions Constraints

(9) (i) typeof (name) 6= ? ("name"; [[des0]]) 2 [[des1]]

(9) (i) typeof (name) = ? typeof (name) := error [[name:succ]] = error^

("name"; [[des0]]) 2 [[des1]]

(9) (ii) ("name"; [[des0]]) 2 [[des1]]

(10) (i) typeof (name) 6= ? [[des]] = [[name:succ]]

(10) (i) typeof (name) = ? typeof (name) := error [[name:succ]] = error^

[[des]] = [[name:succ]]

(10) (ii) [[des]] = [[name:succ]]

Fig. 4. Semantic rules for designators (8).

No. Condition Actions Constraints

(12) [[expr]] = [[des]]

(13) [[expr]] = bool

(14) [[expr]] = int

(15) [[expr]] = real

(16) [[expr0]] = max;([[expr1]]; [[expr2]])^

[[+]] = [[[[expr0]]! [[expr0]]! [[expr0]]]]^

[[expr1]]; [[expr0]] ^ [[expr2]]; [[expr0]]

Fig. 5. Conditions, actions, and constraints for expressions (12){(16).

constraints are obvious, cf. �gure 5. Expression (16) is interesting since it may

combine overloading with coercion. To demonstrate the power of our method,

we assume \+" to be de�ned either as the boolean or-operator or as the common

integer and real addition operator, resp. The operator is identi�ed according to

the types of its operands. The semantic rules are de�ned in �gure 5. The �rst

of the constraints' literals de�nes that the entire expr has as type the maximum

of the operands' types in the semi-lattice ;. Note that it is the error type if

the operands are not coercible, e.g., if they are bool and real in our language3.

The second constraint literal de�nes the function type for \+" dependent on the

type of the entire expression. The last two constraint literals �nally describe the

coercibility of the operands to the types required by the operation.

2.4 Names and Scopes

Up to now, we did not talk about programming languages incorporating name

spaces. In particular, when talking about name spaces as contexts we did not

change between di�erent name spaces. To be able to do so, we extend the lan-

guage constructs discussed so far and allow for the declaration of methods which

can be called by using their name. As a natural consequence, we get blocks de�n-

ing name spaces.

3 Here we assume that structured types are coercible only if they are equal.

7

decl ::= function name (name : type) : type ; block (17)

name ::= result (18)

expr ::= des (des) (19)

block ::= begin stats end (20)

stats ::= ; (21)

j (stat j decl) ; stats (22)

The introduction of blocks requires an extended functionality of the de�ni-

tion table. We need to be able to create new scopes as a new block is entered

and to discard them on the exit of the corresponding block. These actions are

assumed to be performed by the functions enter scope and leave scope. The func-

tion enter scope opens a new name space. In particular, this means that after

the execution the function typeof(name) yields unde�ned for every identi�er,

until the declaration in the current block is processed. The �rst occurrence of

an identi�er name initiates the creation of name.succ. The function leave scope

requires a more detailed discussion.

As already explained in subsection 2.3, there are two principal ways for the

use of objects in programming languages: (i) either they need to be declared be-

fore they are used, or (ii) their use and declaration can appear in arbitrary order.

This distinction requires in turn that the de�nition table behaves di�erently in

both cases. If we do not require that an object is declared before used (case (ii)),

we do not know until the block end is reached if the name denotes a local object

of the block or some other (global) object declared outside of the current block.

I.e., before reaching the end of the block, we do not know if we eventually �nd a

declaration for the object in the current block or if a global declaration belongs

to this object. Therefore we collect all constraints for a name in name.succ. If

we do not �nd a declaration for a name in the current block, we propagate the

constraints to the enclosing scope. This is performed by the function leave scope.

The mechanism is as follows:

{ If name.succ exists in the enclosing scope, we just add the local constraint

set to this node. The function typeof remains unchanged.

{ If name.succ does not already exist, the local identi�er name, together with

the corresponding constraints, becomes valid in the enclosing scope . In this

case, executing leave scope manifests name as an identi�er of the enclosing

scope.

Thereby the constraints for a yet undeclared identi�er name can be propagated

to enclosing scopes until the outermost scope is reached. In case (i), where we

require that an object is declared before used, such a complex distinction is not

necessary. As soon as a name occurs, its declaration is clear. If it does not exist,

an error occurs.

Figure 6 describes semantic rules for function declarations. For simplicity, we

specify only the semantic rule for case (i) with the condition that the function

8

Condition Actions Constraints

typeof (name1) = ? typeof (name1) := name1 6= name2^

[[[[type1]]! [[type2]]]] ; [[name1 :succ]] = [[[[type1]]! [[type2]]]]^

enter scope ; [[name2 :succ]] = [[type1]]^

typeof (name2) := [[type1]] ; [[result]] = [[type2]]

typeof (result) := [[type2]]

Fig. 6. Semantic rule for function declarations (17).

name has not been declared before. This is expressed in the condition predicate

typeof (name1) = ?. There is no entry for name1 in the de�nition table. If this

condition is true, name1 is inserted to the de�nition table as an object of function

type. After this, a new scope of the de�nition table is entered. In this new scope,

the de�nitions for the function parameter name2 and for result are inserted

into the de�nition table. We assume result being a prede�ned name denoting

the result of a function. The constraints of this rule state that the name of the

function and its parameter do not have to be the same. Furthermore, name1 is

speci�ed as a function mapping arguments of type1 to type2. Finally, name2 and

result are declared of type1 and type2, resp.

Figure 7 de�nes the semantic rules for function calls. We describe des1 as a

function mapping objects of the type of des2 to objects of the type of expr. Here,

no conditions and actions are de�ned since the AST nodes involved in this rule

do not have entries in the de�nition table. At the end of a block, we have to

Condition Actions Constraints

[[des1]] = [[[[des2]]! [[expr]]]]

Fig. 7. Constraints for function calls (19).

execute leave scope . Is is associated as an action with rule (21).

3 The Analysis

Semantic conditions are associated with nodes in the abstract syntax tree, cf.

section 2. It remains to show how the constraint set is organized, simpli�ed, and

checked for consistency in an e�cient way.

3.1 The Algorithm

Constraints are predicates on the types [[n]] of nodes n 2 VAST of the AST and

the types of the programming language. E.g., the predicate [[n]] = t denotes that

9

n is of type t. We consider the following constraints:

t1 = t2 (23)

t1 ; t2 (24)

where t1 and t2 are types and \=" is an equivalence and ; is a coercibility

relation. The language designer must de�ne both for all possible types of the

language. In addition to the discussed type constructors (2) and (3), we also

consider the following constructor:

max
;

(t1; � � � ; tk) (25)

which denotes the maximum of types t1; : : : ; tn in the coercibility-semi-lattice.

Hence max
;

is derived from ;. A predicate [[n]] = t is called de�ning i� t is a

language type.

Predicates are kept in a graph structure C = (V;E) which we call the con-

straint graph4. The vertices V in this graph are language types and types of

nodes. Edges E represent the constraints where \="-edges are undirected and

\;"-edges are directed. Initially C = (�;�). For each node n with a constraint,

a vertex [[n]] is added to V , edges to other vertices are inserted according to

the constraints. Figure 8 shows C for a de�ning predicate [[n]] = t. Whenever a

[n] t

Fig. 8. C for the de�ning predicate [[n]] = t.

de�ning predicate is inserted, C is simpli�ed as much as possible, i.e., vertices

and/or edges may be removed from C. This follows the four rewriting rules.

Rule (I) simply propagates de�nitions. Thereby, new nodes may get de�ning

predicates such that (I) is applicable again, cf. �gure 9. Equivalence of language

types may be checked. If C contains an \="-edge between vertices representing

language types, it may be removed. Rule (II) describes the rewriting. If both

types are equivalent (a), they are melted. If they are not (b), the subgraph is

replaced by a vertex which represents the error type, cf. �gure 10. Rule (III)

does the same for the ; constraints, cf. �gure 11. Rule (IV) replaces the max

type constructor by the result of the max -operator if all operands are language

types, cf. �gure 12.

The following theorem 1 assumes that the language speci�cation is correct

and consistent. The notion of \correctness of a program w.r.t. the speci�cation

of the context-sensitive syntax of a language" includes the following features.

{ All names are declared.

{ All operands are identi�ed.

4 Let AST= (VAST ; EAST); C = (V;E). To avoid confusion, we call the elements of

the VAST \nodes" and the elements of V \vertices".

10

t

any

any t

any

any t

any

any’

t

any

any t

any

any t

any

any’

Fig. 9. Rule (I): propagation of de�nitions.

a)

t.

.

.

.

.

.
t’ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
t = t’

b)

t.

.

.

.

.

.
t’ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
error

Fig. 10. Rule (II): solving equality constraints.

{ The declaration of names does not contradict its application.

{ All names of the same scope are unique (no overloading).

Depending on the language, it may additionally include some of the following.

{ All names are declared before use.

{ A name is not declared more than once in the same scope (no overwriting

of declarations).

a)

t t’

t t’

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

b)

t t’

.

.

.

.

.

.

.

.

.

.

.

.
error

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 11. Rule (III): solving coercibility constraints.

11

max

max
(t1,...,tn)

.

.

t1 t2 tn
. . .

t1 t2 tn
. . .

Fig. 12. Rule (IV): elimination of maximum nodes.

Theorem1. Correctness: A program is correct w.r.t. the speci�cation of context-

sensitive syntax of a language, i�
(i) all constraints, except for the de�ning predicates, are removed,

(ii) all nodes n have at most one de�ning predicate [[n]] = t; t 6= error, and

(iii) all successor nodes of names name.succ have exactly one

de�ning predicate [[name:succ]] = t ; t 6= error .

Proof. First, we prove that if a program is correct w.r.t. the context-sensitive

syntax then (i) { (iii) must hold. Obviously (iii) must hold for correct programs

since we considered typed languages. (i) and (ii) are shown by contradiction. If (i)

was false, there were constraints that cannot be resolved. This may either occur

if they still depend on the types of some nodes without de�ning predicate or if

they are equal to the error type. The former must not occur if (iii) holds because

then all nodes get de�ning predicates by applying Rule(I) successively. If the

latter occurred, the program would be obviously not correct. If (ii) did not hold,

some nodes of the AST would have distinct de�ning types which contradicts the

assumption that the program is correct.

Second, we prove that a program is correct w.r.t. the context-sensitive syntax

if (i) { (iii) hold. The organization of our de�nition table guarantees that a name

is de�ned and

{ is not multiply de�ned, or

{ is not multiply de�ned with the same type, or

{ used before its de�nition

if this is not allowed for the considered programming language. Additionally,

condition (i) guarantees that operands are identi�ed and (ii) guarantees that

they are unique. Condition (iii) guarantees that the uses of each name do not

contradict each other and are not in contradiction to the de�nition.

12

Theorem2. Complexity: Let AST = (VAST ;EAST) be the abstract syntax tree

of a program. The de�ned algorithm performs in time

O(jVAST j):

Proof. The maximum number of edges in the constraint graph is jVAST j � c � k
where c is the number of constraints per node and k is there arity. The algorithm

infers about constraints in the constraint graph by applying the reduction rules.

Rule (I)moves an edge to its �nal state. Rule Rule (II){((IV) removes edges.

Each rule application processes at least one edge. We can only de�ne a constant

number of constraints for each node which must have a constant arity, This gives

us the result stated in the above theorem.

3.2 An Example

We demonstrate the algorithm on a small example program which is assumed to

be correct. Thus, the programming language allows that use and declaration of

variables may occur in arbitrary order. Furthermore, the language requires that

the right-hand side of an assignment is coercible to the left-hand side. Integer

values are coercible to real values. Figure 14 shows several snapshots of the

a := a + 3 ;

a : REAL
a

:=

expr a REAL

3

:

a +

;

Fig. 13. An example program p and its AST representation.

constraint graph during the analysis of the program. To get a clear presentation,

the pictures contain several type nodes for the same basic types. In fact, we

have only one type node for each basic type. In the beginning (a), we insert

the constraints for the assignment to the empty graph. In the next step (b),

we process the declaration of a and propagate de�ning predicates . Now a has

a de�ning predicate which can be propagated to the max -vertex. Then all of

the arguments of the max -node are de�ned and we can apply Rule (IV) (c).

Finally, we eliminate the coercible constraint (Rule III)) and propagate the

de�nition of expr (Rule (I)). This leads to the consistent constraint graph for

the example program (d).

4 Conclusion

We have introduced a new approach for the speci�cation and generation of the

semantic analysis in typed imperative programming languages. Our speci�cation

13

expr a.succ

max

+

3 int

expr a.succ

max

real

+

3 int

(a) Processing the add expression (b) Processing the declaration and

simpli�cation: Rule (I)

expr a.succ

real

int

+

3

expr a.succ

real

int

+

3

(c) Simpli�cation: Rule (IV) (d) Simpli�cation: Rule (III) and (I)

Fig. 14. Snapshots of the constraint graph during the analysis of program p.

serves not only as a de�nition for the context-sensitive syntax of programming

languages but also as an input of a generator for the semantic analysis. This is

much simpler than existing techniques since we have only one speci�cation for

both the description of the language and the generator input. Double speci�-

cation e�orts and resulting proof obligations disappear. We demonstrated this

method by de�ning the context-sensitive syntax for typical imperative language

constructs. In particular, we showed how speci�cations for these constructs may

vary depending on the features of the speci�c language. If, for example, the lan-

guage allows the use of objects before their declaration is given, we can describe

this easily. We are also able to express overloading of operators. This demon-

strates the
exibility of our speci�cation method. Moreover, our speci�cations

are easy to formulate and understand, thereby appearing naturally. Our descrip-

tion and analysis of the context-sensitive syntax is based on abstract syntax

trees. During the analysis of a program, its abstract syntax tree is traversed.

We de�ne an abstract data type \de�nition table" containing the names and

de�nitions of the program objects. Speci�cations are given by constraints for-

mulated according to the syntax rules of the underlying context-free grammar.

The constraints collected during the traversal are managed in a data structure

called \constraint graph" which allows for solving them e�ciently, namely in

time O(n) where n is the size of the program.

Current work deals with extensions of our approach to languages that allow

for (1) overloading of user-de�ned functions, (2) subtyping and polymorphism

14

under closed-world assumption, and (3) genericity under the assumption of sepa-

rate compilation. Extension (1) requires another abstract data type \name table"

since the de�nition table may not be constructed online but derived from the

constraints. The additional constraints are handled by further rewriting rules

within the same setting. This leads to a di�erent strategy for the solution of

constraints, i.e., constraints can not be solved greedy anymore, cf. [3]. (2) and

(3) seem to be straight-foreward extensions of (1) since subtyping may be un-

derstood as dealing with yet another semi-lattice. Because we are already able

to handle several semi-lattices for coercion, this should be possible.

The traditional compiler construction process is divided into two parts: the

construction of a source language dependent frontend and the construction of

a target machine dependent backend. The interface is an intermediate program

representation. The work presented here is a milestone towards the more general

goal to provide a framework for the generation of compiler frontends based on

a formal speci�cation of source and intermediate language semantics. In this

paper we showed how the programming language speci�cation can be given such

that the corresponding analysis can be generated automatically and e�ciently.

A complete framework which deals with lexical, syntactic, and semantic analysis

and intermediate code generation is described in [4].

References

1. G. V. Bochmann. Semantic Evaluation from Left to Right. Communications of

the ACM, 19(2):55{62, 1976.

2. H.B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, 1958.

3. A. Heberle, S. Glesner, and W. L�owe. Typing, Overloading, and Constraint Pro-

gramming. In Static Analysis Symposium, SAS '97. Submitted, 1997.

4. A. Heberle and W. L�owe. Generierung von kompletten Compiler-Frontends. In

Arbeitstagung \Programmiersprachen", GI-Jahrestagung'97. Submitted, 1997.

5. M. Jazayeri. A Simpler Construction Showing the Intrinsically Exponential Com-

plexity of the Circularity Problem for Attribute Grammars. Journal of the ACM,

28(4):715{720, 1981.

6. U. Kastens. Ordered Attribute Grammars. Acta Informatica, 13(3):229{256, 1980.

7. P. M. Lewis, D. J. Rosenkrantz, and R. E. Stearns. Attributed Translations. Jour-

nal of Computer and System Sciences, 9(3):279{307, 1974.

8. Martin Odersky. De�ning context-dependent syntax without using contexts. ACM

Transactions on Programming Languages and Systems, 15(3):535{562, July 1993.

9. Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. Wiley

Professional Computing, 1994.

10. Arnd Poetzsch-He�ter. Formale Spezi�kation der kontextabh�angigen Syntax von

Programmiersprachen. PhD thesis, Technische Universit�at M�unchen, 1991.

11. M. Sch�on�nkel. �Uber die Bausteine der mathematischen Logik. Math. Ann.,

92:305{316, 1924.

12. J�urgen Uhl. Spezi�kation von Programmiersprachen und �Ubersetzern. PhD thesis,

Universit�at Karlsruhe, 1986.

13. William M. Waite and Gerhard Goos. Compiler Construction. Springer Verlag,

Berlin, New York Inc., 1984.

15

