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Abstract

The present work deals with the comparison of the optimal value

functions of (discrete time) Markov decision processes (MDPs), which

di�er only in their transition probabilities. We show that the solution of

an MDP is monotone with respect to appropriately de�ned stochastic

order relations. We also �nd conditions for continuity with respect to

suitable probability metrics. The results are applied to some well known

examples, including inventory control and optimal stopping.
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1 Introduction.

It is well known that only a few simple Markov Decision Processes (MDPs) ad-

mit an \explicit" solution. Realistic models, however, are mostly too complex

to be computationally feasible. Consequently, there is a continued interest

in �nding good approximations, even in times of rapidly growing computer

power. The problem is to �nd approximate models with solutions that di�er

only slightly from the solution of the original problem. To handle this problem

it is necessary to evaluate the di�erence of the solutions of two MDPs. In this

paper we investigate the impact of replacing the transition probability distri-

bution by another one. This is of special interest for several reasons. First of

all, the distribution is very often unknown and has to be estimated by statis-

tical methods. Furthermore, the distribution is sometimes taken from some
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parametric family, which exhibits an explicit solution. Last not least, the use

of computers for numerical calculations requires discretizations.

There is a vast literature on approximations by discretization of state and

action space. For a bibliography see Morin (1978). Most quantitative ap-

proaches involve the distance between the transition probabilities in total vari-

ation norm and require boundedness of the value functions, see e.g. Hinderer

(1979) and Whitt (1978,1979). Our approach is more general, but also quanti-

tative. We use the theory of so called integral probability metrics in combina-

tion with structural properties of the value functions. This includes the total

variation as a special case. But to our experience, there are muchmore suitable

metrics like the Kantorovich metric. An interesting qualitative investigation

is given in Langen (1981), who utilizes the notion of continuous convergence.

In addition, we use integral stochastic orderings to prove a general mono-

tonicity result. To our knowledge, this question has so far only been dealt

with in the special case of convex order, see Hernandez-Lerma and Runggaldier

(1993) and Rieder and Zagst (1994).

We restrict our attention to �nite horizon problems, but most of our results

can be extended to the case of in�nite horizon by using the results of Sch�al

(1975).

Our paper is organized as follows. In the next section we give a formal char-

acterization of the Markov Decision Process to be studied. We also introduce

the concept of bounding functions and state a well known structure theorem,

fundamental for the subsequent analysis. Section 3 is devoted to the theory

of integral stochastic orders and probability metrics. We collect the most im-

portant facts of these theories and give several examples, which are relevant

for our application. Section 4 contains the main results. We prove monotone

and continuous dependency of the value function on the transition probability

measures. In section 5 we apply these results to two classical models of MDPs.

First we show how the solution of a problem of inventory control with setup

costs depends on the demand distribution. The second example deals with the

well known problem of optimal stopping, also known as secretary problem or

job search problem. We will see that the solution of this problem is a monotone

and continuous function of the distribution of the o�ers, if we use appropriate

stochastic orders and probability metrics.
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2 The Markov Decision Model.

Now we give a formal de�nition of our model for a (�nite horizon, discrete time)

Markov decision process. Similar models can be found in Hinderer (1970),

Sch�al (1975), Bertsekas and Shreve (1977) or Puterman (1994).

De�nition 2.1 A Markov decision process MDP is given by a tupel

(S;A;D;P; ~r; V0; �) with the following meaning.

1. S and A are arbitrary nonempty sets, endowed with �-algebras S and A,

respectively. S is the state space and A the action space.

2. D 2 S
A is the restriction set. We assume that D contains the graph

of a measurable mapping f : S ! A. D(s) := fa 2 A : (s; a) 2 Dg is the

set of admissible actions if the system is in state s.

3. P is a transition probability measure from D into S. P (s; a; �) is the

distribution of the state visited next if the system is in state s and action

a is taken.

4. ~r is a measurable mapping from D � S to IR with the property that

P ~r(s; a) :=
Z
P (s; a; ds0) ~r(s; a; s0)

exists for all (s; a) 2 D. ~r is called reward function.

5. The terminal reward function V0 is a measurable mapping from S to

IR.

6. � 2 IR>0 is the discount factor.

Remark: Normally it is su�cient to consider the reduced reward function

r(s; a) :=
R
P (s; a; ds0)~r(s; a; s0), but we want to compare MDPs which di�er

in their transition probabilities, so we must take into account that di�erent

transition probabilities P and Q lead to di�erent reduced reward functions rP

and rQ respectively.

Now we de�ne the optimization problem.
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De�nition 2.2 a) A measurable mapping f : S ! A with graph f � D is

called decision rule. The set of all decision rules is denoted by F .

b) A sequence � := (��)
N�1
�=0 of N 2 IN decision rules is called N-stage policy.

To a given state s 2 S and a policy � = (��)
N�1
�=0 2 FN we de�ne on the

measure space (SN ;
N
1
S) the canonical probability measure PN�(s; �):

For C 2 
N
1
S let

PN�(s;C) :=
Z
P�0(s; ds1)

Z
P�1(s1; ds2):::

Z
P�N�1

(sN�1; dsN )1C(s1; :::; sN);

where Pf (s; �) := P (s; f(s); �) for f 2 F .

We de�ne the (projection) random variables �� on SN as

��(s1; :::; sN) := s�; � = 1; :::; N:

Then Y := (�1; :::; �N) is by construction of PN� a Markov chain. De�ning

�0 := s, the total reward RN�(s; Y ) is given as

RN�(s; Y ) :=
N�1X
�=0

�� � ~r(�� ; ��(��); ��+1) + �NV0(�N )

and, if the following integral exists, the expected total reward VN�(s) is

given as

VN�(s) :=
Z
PN�(s; dy)RN�(s; y); s 2 S:

If VN�(s) exists for all � 2 FN and s 2 S, then the mapping

s 7! VN (s) := sup
�2FN

VN�(s)

is called the value function (for horizon N). When we want to emphasize

the dependency on the transition probability distribution P we write V P
n ; V

P
n�,

etc.

A policy �� is "-optimal for " � 0 if VN��(s) � VN (s)� " for all s 2 S. A

0-optimal policy is simply called optimal.

Before we collect some important facts about MDP's, we de�ne some useful

abbreviations. Let V0 be the set of all functions v : S ! IR, which are

P (s; a; �)-integrable for all (s; a) 2 D. For v 2 V0 we introduce the Markov

operator

Pv(s; a) :=
Z
P (s; a; ds0) v(s0)
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and we use the same notation Pf(s; a) :=
R
P (s; a; ds0) f(s; a; s0) also for

functions f : D � S ! IR, if f(s; a; �) 2 V0 for all (s; a) 2 D.

Now we de�ne for an arbitrary MDP the operators L;Uf and U on V0:

Lv(s; a) := P ~r(s; a) + �Pv(s; a); (s; a) 2 D,

Ufv(s) := Lv(s; f(s)); s 2 S; f 2 F;

Uv(s) := supa2D(s)Lv(s; a) = supf2F Ufv(s); s 2 S:

Finally, a decision rule f 2 F is called "-maximizer of Lv, if Ufv(s) �

Uv(s)� " for all s 2 S. Using these notations we can de�ne the fundamental

recursive scheme of MDPs, the so called value iteration, in the following short

form.

De�nition 2.3 For a MDP the value iteration (VI) holds, if Vn exists for

all n 2 IN, belongs to V0 and ful�lls Vn = UVn�1.

The following conditions for the existence of VN� and VN are well known

and can be found e.g. in Wessels (1977) or Puterman (1994), p. 231�.

De�nition 2.4 A measurable function b : S ! [1;1) is a bounding func-

tion for a MDP, if there is a constant � > 0 such that the following holds:

(i)
R
P (s; a; ds0) j~r(s; a; s0)j � � � b(s) for all (s; a) 2 D:

(ii) jV0(s)j � � � b(s) for all s 2 S:

(iii)
R
P (s; a; ds0) b(s0) � � � b(s) for all (s; a) 2 D:

Remarks: 1. Mostly one only demands b � 0 for a bounding function, but

the requirement b � 1 is no real restriction. If b � 0 is a bounding function,

then b+ 1 is also one (with respect to the constant 1 + �).

2. We de�ne the weighted supremum norm

kfkb := sup
s2S

jf(s)j

b(s)
;

and we denote the set of all measurable functions with kfkb <1 byBb. Then

b is a bounding function, if P ~r(�; a); a 2 A and V0 are inBb and if the Markov

operator P maps Bb into Bb.

3. If ~r and V0 are bounded, then b � 1 is a bounding function.

If a MDP has a bounding function then it is easy to see that VN� and VN

exist. In fact, we have the following result.
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Theorem 2.5 If MDP has a bounding function b, then VN�(s) and VN (s) exist

for all N 2 IN; � 2 FN and s 2 S, and kVnkb <1 for all n 2 IN.

Now we are able to formulate an important tool for proving the validity of

the value iteration. It seems to be due to Porteus (1975). Similar results can

also be found in Dynkin/Yushkevich (1979), p. 57, and Puterman (1994), p.

225�. From now on we will refer to it as the structure theorem.

Theorem 2.6 Assume that MDP has a bounding function b and there is a set

of functions V � Bb with the following properties:

(S1) For all v 2 V and " > 0 there is an "-maximizer of Lv.

(S2) For all v 2 V we have Uv 2 V.

(S3) V0 2 V.

Then the following holds:

a) Vn 2 V for all n 2 IN.

b) The value iteration holds: Vn = UVn�1; n 2 IN.

c) For all N 2 IN and " > 0 there is an "-optimal policy for MDP.

d) If f(v) is an "-maximizer of Lv, v 2 V, then (f(Vn�1))
1

N is a �N-optimal

policy for MDP, where

�N := " �
N�1X
i=0

�i; N 2 IN:

3 Stochastic Orders and Probability Metrics.

The main objective of this paper is to show monotonicity and continuity re-

sults of the functions P ! V P
n . For this we need appropriate concepts of

stochastic order relations and probability metrics. It turns out that so called

integral stochastic orders and probability metrics are best suited for our pur-

pose. The basic idea is to use the bounding function and the function classes

V of Theorem 2.6 for the de�nition.

For a given bounding function b we denote by IPb the set of all probability

measures P with
R
b dP <1. It is easy to see that

R
f dP exists for all f 2 Bb

and P 2 IPb. Hence all integrals in the following de�nition exist.
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De�nition 3.1 Let b be a bounding function and V � Bb an arbitrary set of

b-bounded functions. Then we de�ne on IPb

a) the integral stochastic order �V by

P �V Q i�
Z
f dP �

Z
f dQ for all f 2 V:

b) the integral probability metric dV by

dV(P;Q) := sup
f2V

����
Z
f dP �

Z
f dQ

���� :
Remarks: 1. Obviously �V is re
exive and transitive. Hence it is a pre-

order. If V separates points in IPb, i.e. if
R
f dP =

R
f dQ 8f 2 V implies

P = Q, then �V is also antisymmetric, hence a (partial) order.

2. A general theory of integral stochastic orders can be found in Stoyan

(1983), Marshall (1991) or M�uller (1996a). Several examples are given below.

3. dV is non-negative, symmetric and ful�ls the triangle inequality. Hence

it is a semimetric. It is a metric, if V separates points in IPb. As usual in the

theory of probability metrics, we allow dV to assume in�nite values, see e.g.

Rachev (1991), p. 10�.

4. Integral probability metrics are sometimes called metrics with a �-

structure, see e.g. Zolotarev (1983). Many examples and properties of these

metrics are given there, in Rachev (1991) and in M�uller (1996b).

5. Sometimes it is more convenient to formulate properties of stochastic or-

ders and probability metrics in terms of random variables X;Y or distribution

functions F;G. The meaning of notations like F �V G or dV(X;Y ) should be

obvious.

There may be di�erent classes of functions, which generate the same order

(metric). For checking P �V Q and evaluating dV(P;Q) it is desirable to

have \small" generators. For our applications in the next section, however,

we are interested in \large" generators. The maximal generators have been

characterized in M�uller (1996a,b). We do not need these characterizations

here. For our applications it is su�cient to know the following facts. We omit

the easy proof.

Theorem 3.2 a) If V is an arbitrary generator of an integral stochastic order,

then the convex cone spanned by V generates the same stochastic order.
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b) If V is an arbitrary generator of an integral probability metric, then the

balanced convex hull spanned by V generates the same probability metric.

The structural properties of the value function that can be proven most

often are monotonicity, convexity and Lipschitz continuity. This is due to the

fact that these properties are preserved under the typical operations in the

value iteration, namely under mixture, addition and formation of suprema.

Some general results about these structures of the value functions are given in

Hinderer (1984).

Therefore we are especially interested in orders and metrics with generators

V consisting of functions with some of these properties.

Example 3.1. The most important integral stochastic orders for our purpose

are the following well known relations, see e.g. Stoyan (1983) or Shaked and

Shanthikumar (1994).

a) Let P and Q be probability measures on an arbitrary ordered space S.

Then P is said to be stochastically smaller then Q (written P �st Q), ifR
f dP �

R
f dQ for all measurable bounded increasing functions f : S ! IR.

b) Let P and Q be probability measures with �nite expectation on some eu-

clidian space S. Then P is said to be smaller than Q in increasing convex order

(written P �ic Q), if
R
f dP �

R
f dQ for all increasing convex functions

f : S ! IR, for which the integrals exist.

c) Let P and Q be probability measures with �nite expectation on some eu-

clidian space S. Then P is said to be smaller than Q in convex order (written

P �c Q), if
R
f dP �

R
f dQ for all convex functions f : S ! IR, for which

the integrals exist.

Example 3.2. The most interesting integral probability metrics with appli-

cations to our object are the following ones.

a) The presumably best known probability metric is the Kolmogorov distance

�(F;G) := supt2IR jF (t)� G(t)j. Since F (t) =
R
1(�1;t] dF , this metric is gen-

erated by the integrals of the set of functions V = f1(�1;t]; t 2 IRg.

b) The total variation metric �(P;Q) := supA2S jP (A) � Q(A)j is also an in-

tegral probability metric. One has to choose V as the set of all indicator

functions of measurable sets.

c) Let (S; d) be a metric space and let L1 be the set of all Lipschitz functions
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f : S ! IR with Lipschitz-constant 1, i.e. the set of all functions with

kfkL := sup
s6=t

jf(s) � f(t)j

d(s; t)
� 1:

The integral probability metric � generated by L1 is called Kantorovich metric.

In case S = IR the Kantorovich metric can easily be evaluated by the following

well known formula (see e.g. Dudley (1989), p. 333):

�(X;Y ) =
Z
jFX(t)� FY (t)j dt:

d) Another interesting probability metric has been de�ned by Rachev and

R�uschendorf (1990). They introduce the so called stop-loss metric dsl for real-

valued random variables with �nite expectation. It is given by

dsl(X;Y ) := sup
t2IR

jE(X � t)+ � E(Y � t)+j;

where x+ := maxfx; 0g. This is obviously an integral probability metric gen-

erated by the functions x 7! (x� t)+; t 2 IR. A larger generator of this metric

is given by the set of all increasing convex functions with kfkL � 1.

4 Main results.

The theory of integral stochastic orders can now be used to show that the value

function of a MDP depends in a monotonic way on the transition probabilities.

Theorem 4.1 Let MDP(P ) and MDP(Q) be two Markov Decision Processes,

which di�er only in their transition probabilities P and Q, respectively. Assume

that there is a bounding function b and a class V of functions, such that the

assumptions of Theorem 2.6 are ful�lled for both MDPs. Assume further, that

for all (s; a) 2 D we have

(i) P (s; a; �) �V Q(s; a; �),

(ii) ~r(s; a; �) 2 V.

Then V P
n (s) � V Q

n (s) for all n 2 IN and s 2 S.

Moreover, if fn is an "n-maximizer of LV P
n�1; n 2 IN, and � := (fn)

1

N , then

V
Q
N�(s) � V P

N (s)� �N ; n 2 IN; (4.1)

where for �n; n 2 IN, the following recursion holds:

�1 := "1; �n+1 := "n+1 + ��n.
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Proof. We proceed by induction on n 2 IN. For n = 0 there is nothing to

show, as V P
0

= V
Q
0 by assumption. Hence assume that V P

n (s) � V Q
n (s) holds

for all s 2 S. By Theorem 2.6 we have V P
n 2 V and thus (ii) implies that the

function

W P
n (s; a; �) := ~r(s; a; �) + �V P

n (�)

is in the convex cone spanned by V. Combining this with the induction hy-

pothesis and (i) we get

V P
n+1(s) = sup

a2D(s)

�Z
P (s; a; ds0) W P

n (s; a; s
0))

�

� sup
a2D(s)

�Z
Q(s; a; ds0) W P

n (s; a; s
0))

�

� sup
a2D(s)

�Z
Q(s; a; ds0) WQ

n (s; a; s
0))

�
= V

Q
n+1(s);

when taking into consideration that, by Theorem 3.2, the convex cone spanned

by V generates the same integral stochastic order as V.

To prove the second part of the theorem, let f1 be an "1-maximizer of LV0

in MDP(P ). Then (i) and (ii) imply

V Q
1f (s) =

Z
Qf(s; ds

0) [~r(s; f(s); s0) + �V0(s
0)]

�

Z
Pf (s; ds

0) [~r(s; f(s); s0) + �V0(s
0)]

= V P
1f (s) � V P

1
(s)� "1:

Hence the assertion holds for N = 1. Now assume the induction hypothesis

holds for � := (fn)
1

N 2 FN , i.e. V Q
N�(s) � V P

N (s)� �N , and let f := fN+1 be

an "N+1-maximizer of LV P
N . Then we get for � := (f; �)

V Q
N+1;�(s) =

Z
Qf (s; ds

0) [~r(s; f(s); s0) + �V Q
N�(s

0)]

�

Z
Qf (s; ds

0) [~r(s; f(s); s0) + � � (V P
N (s0)� �N )]

= ���N +
Z
Qf(s; ds

0) [~r(s; f(s); s0) + �V P
N (s0)]

� ���N +
Z
Pf (s; ds

0) [~r(s; f(s); s0) + �V P
N (s0)]

� ���N + V P
N+1

(s)� "N+1; (since f is an "N+1-maximizer)

= V P
N+1

(s)� ("N+1 + ��N):
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Remarks: 1. If in the second part of Theorem 4.1 "n = 0 for all n, then � is

an optimal policy for MDP(P ) and V
Q
N� � V P

N .

2. If ~r(s; a; s0) does not depend on s0, then we can dispense with assumption

(ii).

Very often it is di�cult to specify the transition probability measure P or

it is impossible to evaluate V P
n . Then the above theorem can be applied in the

following way:

Let Q1 and Q2 be \lower" and \upper" bounds for P , i.e.

Q1(s; a; �) �V P (s; a; �) �V Q2(s; a; �);

and assume that assumption (ii) of Theorem 4.1 is ful�lled. If we can evaluate

V Q1

n and V Q2

n explicitly, then we have lower and upper bounds for V P
n . More-

over, by the second statement of the theorem, a \good" policy for MDP(Q1)

or MDP(Q2) is also a \good" policy for MDP(P ).

Next we want to show how it is possible to use integral probability metrics

for sensitivity analysis of Markov Decision Processes. It can happen that the

value function Vn is not in a class V, which de�nes a useful probability metric.

But it may be that there is some constant c with Vn=c 2 V. Notice that here

we can not assume w.l.o.g. V to be a convex cone, we can only assume V to

be balanced and convex. We de�ne the Minkowski functional (see e.g. Rudin

(1973))

�V(f) := infft > 0 : t�1f 2 Vg;

and [V] shall be the vector space spanned by V. If V is balanced (which

is always the case if V is the maximal generator), then [V] is the set of all

functions with �V(f) <1. It is easy to see, that����
Z
f dP �

Z
f dQ

���� � �V(f) � dV(P;Q): (4.2)

For many familiar integral probability metrics this Minkowski functional leads

to well known expressions if we consider the maximal generators of the metrics.

From M�uller (1996b) the following examples can be deduced.

Examples: 1. For the Kolmogorov metric we get �V(f) = Var(f), where

Var(f) is the total variation of the function f .

2. For the total variation metric we have �V(f) = sup(f)� inf(f).

3. For the Kantorovich metric obviously �V(f) = kfkL.
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In the following result we give conditions for a Markov Decision Process to

imply that the value function depends continuously on the transition proba-

bilities.

Theorem 4.2 Let MDP(P ) and MDP(Q) be two Markov Decision Processes,

which di�er only in their transition probabilities P and Q, respectively. Assume

that for both of them the value iteration holds and that there is a class of

functions V with V P
n 2 [V]; n 2 IN0. We de�ne the functions

�(s) := sup
a2D(s)

jP ~r(s; a)�Q~r(s; a)j; s 2 S;

�(s) := sup
a2D(s)

�(s; a) := sup
a2D(s)

dV(P (s; a; �); Q(s; a; �)); s 2 S;

and for functions v : S ! IR the operator

HQv(s) := sup
a2D(s)

jQv(s; a)j; s 2 S:

Then we have for all n 2 IN0 and s 2 S:

jV P
n (s)� V Q

n (s)j � gn(s);

where gn satis�es the recursion

g0(s) := 0; gn+1(s) := �(s) + � � �V(V
P
n ) � �(s) + � �HQgn(s): (4.3)

Proof. We proceed by induction on n. For n = 0 the assertion is trivial.

Hence assume jV P
n (s) � V Q

n (s)j � gn(s). Since j sup f � sup gj � sup jf � gj,

we can deduce for all s 2 S:

jV P
n+1(s)� V Q

n+1(s)j

=
��� sup
a2D(s)

fP ~r(s; a) + �PV P
n (s; a)g � sup

a2D(s)

fQ~r(s; a) + �QV Q
n (s; a)g

���

� sup
a2D(s)

���P ~r(s; a) + �PV P
n (s; a)�Q~r(s; a)� �QV Q

n (s; a)
���

� sup
a2D(s)

jP ~r(s; a)�Q~r(s; a)j + � sup
a2D(s)

jPV P
n (s; a)�QV Q

n (s; a)j

� �(s) + � sup
a2D(s)

jPV P
n (s; a)�QV P

n (s; a)j| {z }
� �V(V

P
n )��(s;a)

+� sup
a2D(s)

jQV P
n (s; a)�QV Q

n (s; a)j| {z }
� Qgn(s;a)

� �(s) + ��V(V
P
n )�(s) + �HQgn(s) = gn+1(s):
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Remarks: 1. Very often the class V in Theorem 4.2 does not coincide with

the class of functions in Theorem 2.6. This is why we included here the value

iteration as an assumption and did not refer to Theorem 2.6.

2. If we have � 2 [V], � 2 [V] and HQ([V]) � [V], then gn is �nite and

gn 2 [V]. This follows easily from (4.3) and the sublinearity of the Minkowski

functional.

5 Applications.

A. Inventory Control with Setup Costs.

One of the best known applications of the theory of MDPs is inventory

control. Especially interesting is the optimization of models with setup costs.

In their seminal work, Scarf (1960), Veinott (1966) and Sch�al (1976) gave

conditions for the optimality of structured policies, so called (s; S)-policies.

In practice, deterministic models are often preferred since most practitioners

are uncertain how to determine the distribution of the (random) demand, and

how sensitive the solution of the problem is to errors in the elicitation of this

distribution.

It will now be shown that the value function of the corresponding MDP

depends continuously (with respect to the Kantorovich metric) on the distri-

bution of the demands. We will restrict our investigation to an easy model with

nonstationary data and proportional holding and back order costs. It should

be mentioned, however, that these assumptions are only made to keep the no-

tation simple. The results can easily be extended to more complicated models.

A detailed examination of our proof shows that the only crucial assumption

we need is Lipschitz continuity of the cost functions.

We consider the following model (cp. Heyman and Sobel (1984), p. 306�):

Let s� be the inventory level at the beginning of period � and let a� be the

inventory level after ordered goods (if any) are delivered. Therefore a� � s�

is the ordered quantity. Let D1; :::;DN be the i.i.d. demands with probability

distribution P . We assume that excess demand is backlogged, hence s�+1 =

a� �D� .

We assume setup costs K > 0, inventory costs c1 per unit and back order
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costs c2 per unit. Summing up, we get the one period cost function

~c(s; a; d) := K �H(a� s) + c1 � (a� d)+ + c2 � (d� a)+;

where H is the Heavyside function, i.e. H(u) = 1 if u > 0 and H(u) = 0

otherwise. The terminal reward shall be V0(s) � 0.

The solution of this problem is given by the value iteration

V P
n+1(s) = inf

a�s

�Z
P (dx) [~c(s; a; x) + � � V P

n (a� x)]

�
; n 2 IN0; (5.1)

and it is well known that in this case an optimal policy of (s; S)-type exists.

The proof uses a version of the structure theorem 2.6 with V the set of all K-

convex functions, see e.g. Scarf (1960). But this class of functions is not useful

for our purposes. If we de�ne a stochastic order relation �K generated by the

K-convex functions, then P �K Q implies P �ic Q as well as P �st Q. This

follows from the fact that all increasing convex functions are K-convex and

that all decreasing functions with range [0;K] are K-convex. Hence P �K Q

i� P = Q.

Therefore we have to look for another structural property of the value func-

tions Vn. It turns out that one can show that Vn is Lipschitz continuous and

hence we can apply Theorem 4.2 with V = L1. We need the following proper-

ties of the Lipschitz functional k�kL. The proof is straightforward and therefore

omitted.

Lemma 5.1 Let L be the set of all Lipschitz functions on the real line. Then

the following holds:

a) k � kL is a seminorm.

b) f; g 2 L ) f � g 2 L and kf � gkL � kfkL � kgkL.

c) If I is an arbitrary index set and fi 2 L for all i 2 I, then

k sup fikL � sup kfikL and k inf fikL � sup kfikL:

d) If f 2 L and g(x) := inft�x f(t) is �nite, then kgkL � kfkL.

e) Let (
;A; P ) be an arbitrary probability space and let f : 
� IR! IR be

such that kf(!; �)kL � � for all ! 2 
. Then g(s) :=
R
P (d!) f(!; s)

ful�ls kgkL � �.
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Using these properties of k�kL, the next Lemma follows easily by induction.

Lemma 5.2 The value function V P
n de�ned in equation (5.1) is Lipschitz con-

tinuous with kV P
n kL � 
 � �n(�), where 
 := maxfc1; c2g and

�n(�) :=
n�1X
i=0

�i:

Now we are ready to prove the main result. Though we deal with a cost

minimization problem here, we will apply Theorem 4.2, which is formulated for

maximization problems. This makes no di�culties since it is well known that

cost minimization problems can be transferred into maximization problems by

regarding costs as negative rewards.

Theorem 5.3 Let P and Q be two di�erent demand distributions with �nite

mean. Then

jV P
n (s)� V Q

n (s)j � �n � �(P;Q);

where �n satis�es the following recursion:

�0 := 0; �n+1 := ��n + 
 � �n+1(�).

Proof. We will apply Theorem 4.2 withV = L1. Then dV is the Kantorovich

metric � and for the Minkowski functional we get �V(f) = kfkL. We have to

de�ne P (s; a;B) := P (a � B); B 2 S and P ~r(s; a) := �
R
P (dx) ~c(s; a; x).

The corresponding quantities in MDP(Q) shall be de�ned analogously.

Next we want to give an upper bound for �(s). Applying (4.2) yields

�(s) := sup
a�s

����
Z
P (dx) ~c(s; a; x)�

Z
Q(dx) ~c(s; a; x)

����
� sup

a�s

���k~c(s; a; �)kL � �(P;Q)
��� � 
 � �(P;Q): (5.2)

As the Kantorovich metric is invariant under translations, we get

dV(P (s; a; �); Q(s; a; �)) = dV(P;Q) = �(P;Q)

for all (s; a) 2 D. Hence �(s) = �(P;Q) for all s 2 S.

Now we are ready to prove the assertion of the theorem by induction on

n. The case n = 0 is trivial. Hence assume jV P
n (s) � V Q

n (s)j � gn(s) �
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�n � �(P;Q): Inserting (5.2) and the result of Lemma 5.2 into (4.3) yields

gn+1(s) := �(s) + � � �V(V
P
n ) � �(s) + � �HQgn(s)

� 
 � �(P;Q) + � � kV P
n kL � �(P;Q) + � � �n � �(P;Q)

� �(P;Q) � (
 + �
�n(�) + ��n) = �(P;Q) � �n+1:

In the �rst inequality we made use of the monotonicity of the operator HQ.

B. Optimal Stopping.

Let X1; :::;XN be a sequence of i.i.d. random variables with distribution P ,

which can be observed sequentially at a cost c per observation. If the decision

maker stops after the kth observation, he receives an immediate reward of

maxfX1; :::;Xkg. We are looking for an optimal stopping rule. This is a

familiar problem of optimal stopping that can be solved by backward induction,

see e.g. Chow, Robbins and Siegmund (1971). It occurs in some classical search

problems such as the \secretary problem" or the \job search" problem (with

recall), see. e.g. Ferguson (1989) or Lippman and McCall (1976).

It is well known that the solution of this problem is given by the following

value iteration.

Vn+1(s) = max

�
s;�c+ �

Z
P (dx) Vn(maxfs; xg)

�
:

Here Vn(s) is the optimal expected reward, if there are still n possible obser-

vations and s is the best o�er so far. The data of the underlying MDP have

to be de�ned as follows: A := f0; 1g, where action 1 means \stop" and ac-

tion 0 means \continue". The reward function is given by ~r(s; 0; s0) = �c and

~r(s; 1; s0) = s. We have to de�ne the transition probabilities as P (s; 1; �) := "0

(with s = 0 as absorbing state) and

P (s; 0; �) :=
Z
P (dx) "maxfs;xg(�);

where "x denotes the one point measure in x.

It is easy to show that Vn is increasing, convex and Lipschitz continuous

with kVnkL � 1. Hence we get the following results, if we apply Theorem 4.1

and 4.2 with V the set of all increasing convex functions with kvkL � 1.
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Theorem 5.4 Let P and Q be probability measures with �nite mean, such

that P �ic Q. Then V P
n (s) � V Q

n (s) for all s 2 S and n 2 IN0.

Proof. This follows immediately from Theorem 4.1.

Theorem 5.5 Let P;Q be two probability measures with �nite mean. Then

jV P
n (s)� V Q

n (s)j � ��n(�) � dsl(P;Q)

for all s 2 S and n 2 IN0.

Proof. We will apply Theorem 4.2 with the set V as de�ned above. The

metric generated by V is the stop-loss metric dsl, see Example 3.2. For the

Minkowski functional we get �V(V
P
n ) � 1. The reward function ~r is inde-

pendent of s0. This yields �(s) � 0. From the de�nition of the transition

probabilities we obtain dV(P (s; 1; �); Q(s; 1; �)) = 0 and hence

�(s) = dV(P (s; 0; �); Q(s; 0; �))

= sup
f2V

����
Z
P (dx) f(maxfs; xg)�

Z
Q(dx) f(maxfs; xg)

����
= dV(P;Q) = dsl(P;Q):

The third equality holds, because f 2 V i� x 7! f(maxfs; xg) 2 V for all

s 2 IR.

Now we can prove the assertion by induction on n. The case n = 0 is trivial.

Hence assume gn(s) � ��n(�) � dsl(P;Q). Then (4.3) implies

gn+1(s) := �(s) + � � �V(V
P
n ) � �(s) + � �HQgn(s)

� � � [dsl(P;Q) + � � �n(�) � dsl(P;Q)]

= ��n+1(�) � dsl(P;Q):

Remark: Let us assume that the distribution of the observations involves a

parameter �, which is unknown to the decision maker, and the decision maker

follows a Bayesian approach. Then we get a generalization of the optimal

stopping problem, which can be solved by Bayesian Dynamic Programming.

This model has been considered in M�uller (1995). By using similar methods
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as here, the dependency of the solution on parameters of the prior distribution

has been investigated there.
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