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Abstract

In resolution proof procedures refinements based on A-orderings of literals have a long
tradition and are well investigated. In tableau proof proceduressuch refinements were only
recently introduced by the authors of the present paper. In this paper we prove the follow-
ing results: we give a completeness proof of A-ordered ground clause tableaux which is a
lot easier to follow than the previous one. The technique used in the proof is extended to
the non-clausal case as well as to the non-ground case and we introduce an ordered ver-
sion of Hintikka sets that shares the model existence property of standard Hintikks sets.
We show that A-ordered tableaux are a proof confluent refinement of tableaux and that A-
ordered tableaux together with the connection refinement yield an incomplete proof pro-
cedure. We introduce A-ordered first-order NNF tableaux, prove their completeness, and
we briefly discuss implementation issues.

1 Introduction

In resolution proof procedures refinements based on A-orderings1 of literals have a long tra-
dition and are well investigated. In tableau proof procedures such refinements were only re-
cently introduced by the authors of the present paper [7]. The motivation for considering
A-ordered tableaux is that in recent years tableau systems were increasingly used as proof
procedure for applications in program verification. The verification of programs frequently
requires proof plans or human interaction for difficult proof obligations and the analysis of
failed proof attempts. Tableaux procedures support these tasks, because they do not need to
transform proof obligations in clausal form and often distinguish cases in their branching be-
havior like human beings do. Special purpose provers for theories can be easily integrated in
the tree structure of tableaux. A-ordered tableaux represent a refinement that is compatible
with these goals. A-orderings restrict the search space and put one in a stronger position with
respect to termination of non-theorems.

In this paper we prove the following results: in Section 2 we give a completeness proof
of A-ordered ground clause tableaux which is a lot easier to follow than the one in [7]. The
technique used in the proof has several more advantages: first, it can be extended to the non-
clausal case as well as to the non-ground case—this is done in Section 3, where we intro-

1See Section 2 for a precise definition.
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2 Hähnle & Klingenbeck: A-Ordered Tableaux

duce ordered links in general NNF formulas and in Section 4, where we introduce an ordered
version of Hintikka sets that shares the model existence property of standard Hintikks sets.
Second, from the proof it is immediate that A-ordered tableaux are a proof confluent [8] re-
finement. This property is of great importance for finding counter examples to non-theorems.
In the light of this property it is not surprising that A-ordered tableaux together with the con-
nection refinement [9] yield an incomplete proof procedure. Thus there is no hope of using
A-orderings within such proof procedures as the connection method or model elimination all
of which employ the connection refinement. This is also proved in Section 2. In Section 5 we
define A-ordered first-order NNF tableaux, prove their completeness, and we briefly discuss
implementation issues.

This paper provides an answer to the basic theoretical questions that arise from order-
restricted tableaux. Implementation issues, computational results, and secondary theoretical
issues such as the extension to equality and decidability results will be the topic of future pa-
pers.

2 Ordered Ground Clause Tableaux

Tableaux are defined as possibly infinite trees labelled with formulas. We use the terms node,
root, leaf, and immediate successor without further explanation. A branch is either a finite
path from the root to a leaf or an infinite path starting at the root. We denote the set of nodes
on a path from the root to a node u by pred(u). These nodes are called predecessors of u. If
T is a tree whose nodes are labeled with literals and u is a node of T , we write clause(u) for
the set of literals labelling the immediate successors of u.

Definition 1 A ground clause tableau T for a set of ground clauses M is a tree for which
the following holds:

1. Each node of T is labelled with a literal.

2. The root of T is labelled with the atom true.

3. For each node u that is not a leaf clause(u) appears in M .

4. For any distinct nodes u 6= v on any branch clause(u) 6= clause(v).

LetB be a branch of a ground clause tableau. A literalL is onB, if one of its nodes is labelled
with L. A clause C is on B, if C = clause(u) for some node u 2 B.

Clause (4) in the previous definition is also known as regularity (cf. [9]) and it is a straight-
forward, but useful optimization which excludes unnecessarily long tableaux.

Definition 2 A tableau branch is closed if it contains a complementary pair of literals. A
tableau is closed if all of its branches are closed. The tableau is called open otherwise.

Definition 3 An A-ordering on a set of atoms B is a binary relation <A such that for all
a; b; c 2 B

Irreflexivity a 6<A a.

Transitivity a <A b and b <A c imply a <A c.
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Substitutivity a <A b implies a� <A b� for all substitutions�.

Thus in the ground case an A-ordering simply is an irreflexive, transitive ordering.
We assume in the following that < is an A-ordering on the atoms of an arbitrary, but fixed

signature.

Definition 4 We define an A-ordered ground clause tableau2 for a ground clause set M as
a ground clause tableau forM obeying the following extension rule restriction: for each node
u that is not a leaf clause(u) contains a <-maximal literal which is (i) either complementary
to a<-maximal literal occurring in another clause fromM or (ii) is complementary to a literal
in pred(u).

Example 1 Consider the A-orderingD < B < A < C and the ground clause set

S=f:B _ :C ; A _B _D;:A _ C ; :D g:

The maximal <-literal in each clause is highlighted. A partial ordered ground clause tab-
leau for S is as follows:

true

:B

:A

A

�

B

�

D

:D

�

C

f
A
;
:
B
;
C
;
:
D
g

:C

:A C

�

As the initial tableau is empty, only one of two clauses that contain complementary, max-
imal literals are allowed for the first step. In the present example, these are the first and third
clause containingC and :C, respectively. We choose to expand with f:B_:Cg first. AsB
does not occur maximally in any clause the left branch can only be expanded using f:A_Cg.
Similarly, the same clause must be used to extend the right branch. Hence, the tableau up to
this point is determined up to the order in which the first two clauses are being used.

Clauses one and three are already on the now leftmost branch which can only be extended
with the clause containing A and then with the unit clause. This yields the tableau shown
above. Note that it is not possible to extend the leftmost open branch even though there are
clauses being not on it. Neither of them, however, may be used, because their maximal literals
do not occur complemented on the branch. Indeed, it is possible to extend the literal set on
the leftmost open branch to a model of S as indicated.

2In [7] we used a slightly different definition which is, however, easily seen to be equivalent to the present one.
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Definition 5 Let M be a ground clause set and T an A-ordered ground clause tableau forM .
T is called saturated, if there is no A-ordered ground clause tableau T 0 forM such that T is
a proper subtree of T 0.

Theorem 1 Let M be a (not necessarily finite) set of ground clauses and B an open branch
of an A-ordered saturated ground clause tableau T for M . Then M has a model.

Proof In the following we identify as usual consistent sets of ground literals from M with
(partial) interpretations of M .

In particular, sinceB is open, the set I of literals onB is consistent and, therefore, consti-
tutes a partial interpretation ofM . Consider the set of clauses M 0 that are not made true by I,
that is, no literal of M 0 occurs in I. Let J be the set of literals occuring <-maximally in any
clause of M 0.

J gives rise to a well-defined partial interpretation, because no literal and its complement
can occur maximally in clauses of M 0; otherwise these clauses would be on B and not inM 0

by Definition 4, item (i) and Definition 5.
Finally, the interpretation I [ J is well-defined, for if L occurs maximally in a clause of

M 0 (and hence, in J), then L cannot be in I by Definition 4, item (ii) and Definition 5.
By construction, the interpretation I [ J satisfies at least one literal in each clause of M ,

therefore, it satisfies M .

The argument of Theorem 1 provides a simple, effective procedure to calculate a model
when M is finite. For instance, the model used in Example 1 was constructed this way.

Obviously, each A-ordered ground clause tableaux can be extended to a saturated A-order-
ed ground clause tableaux. Therefore, we can conclude that ordered ground clause tableaux
are proof confluent, that is, each ordered ground clause tableau for an unsatisfiable formula is a
subtree of a suitable closed ordered ground clause tableau. This observation has two important
implications:

1. It is not necessary to backtrack over alternative selections of clauses to be used for ex-
tension.

2. In the ground case counter examples (models) for satisfiable formulas can be extracted
directly from saturated branches via the construction given in the proof.

On the other hand, typical non-proof confluent tableau refinements are incompatible with
the ordering restriction.

Definition 6 A clause tableau is said to obey the connection condition if every non-leaf node
u but the root node must have a leaf node v as its direct successor such that the labels of u and
v are complementary literals.

Theorem 2 Ordered ground clause tableaux and ground clause tableaux obeying the connec-
tion condition are incompatible, in other words, there is an unsatisfiable ground clause set M
and an A-ordering< such that there exists no <-ordered ground clause tableau for M which
at the same time obeys the connection condition.

Proof Consider the ground clause set

M = fA_:B; A_B_:C; C_D; C_:D; :A_:C_E; :E_F; :Fg:
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Assume that A < B < C < D < E < F . If we start with either C_D or C_:D,
then, because of the connection condition, the left branch must be extended with A_B_:C
(:A_:C_E is not admissible, because in it :C is not maximal), but then it is impossible
to extend the branch containingA. If we start with :E_F or :F , then we arrive at an open
branch containing :E as a leaf. This can only be extended with :A_:C_E, because of the
connection condition and we are stuck in the branch that contains :A. It is easy to construct
a closed ordered tableau for M without the connection condition.

3 Ordered Links in NNF Formulas

When we extend A-ordered clause tableaux to arbitrary (ground) formulas in NNF the cru-
cial question is: which sets of literal occurrences are to be ordered? In a formula such as
A_(B^C), for instance, there are two implicit disjunctive clauses: fA;Bg and fA;Cg. Such
implicit clauses are usually called paths (more precisely: disjunctivepaths) through a formula.
In the case of a CNF formula the set of its clauses is identical to the set of its disjunctive paths.
Appropriate tools for a formal treatment of the notions required here were developed by An-
drews [1], Bibel [5] and Murray & Rosenthal [10]. Here we use a notation which is close
to that of the latter paper (but this can be mainly considered as a matter of taste—the other
formalisms could be used just as well).

Definition 7 An NNF formula is defined recursively as follows:

1. A (possibly non-ground) literal is an NNF formula.

2. If �1; : : : ; �n (n � 2) are NNF formulas, then �1^� � �^�n is an NNF formula as well.
Each pair �i, �j (i 6= j) is said to be conjoint and the formula is called conjunctive.

3. If �1; : : : ; �n (n � 2) are NNF formulas, then �1_� � �_�n is an NNF formula as well.
Each pair �i, �j (i 6= j) is said to be disjoint and the formula is called disjunctive.

4. If � is an NNF formula and x does not occur bound in �, then (8x)� is an NNF formula
as well.

Let � be a closed NNF formula where different quantifiers bind different variables. Then
we call the NNF formula that results when all quantifiers in � are deleted the matrix of �.

Let  be a closed NNF formula and � its matrix. A ground instance of  is a ground
NNF formula �� in which the substitution � replaces each variable of � by a ground term.

Two subformulasA, B in an NNF formula � are c-connected (d-connected) iff there are
subformulas F , G in � such that A is a subformula of F , B is a subformula of G, and F , G
are conjoint (disjoint) in �.

A c-path (d-path) through � is a maximal set of pairwise c-connected (d-connected) lit-
erals in �.

Sets of formulas are considered conjoint, which extends the definition of c-paths (d-paths)
to sets of NNF formulas.

The following lemma is an immediate consequence of the definition of A-orderings.

Lemma 1 Let C be a clause or a d-path, L a literal of C and � a substitution. If L� is <-
maximal in C�, then L is <-maximal in C.
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Note that the statement of the previous lemma does not hold in the other direction. Con-
sider, for example, the clause C = fp(x)_p(y)g. Since its literals are unifiable, they cannot
be ordered by any A-ordering, hence both literals are maximal in C. On the other hand using
the substitution � = fx  a; y  bg and an A-ordering which is a lexicographic ordering
on ground terms we see that p(x)� is not maximal in C�.

In the completeness proof for A-ordered ground clause tableau we used that a clause is
satisfied by an interpretation if one of the clause’s literals is satisfied by the interpretation.
This result can be generalized to NNF formulas.

Proposition 1 (see, e.g., [10]) A ground NNF formula � is satisfied by an interpretation I iff
at least one literal in every d-path of � is satisfied by I.

The basis of each refutation procedure is the detection of complementary pairs of literal
occurrences. A pair of literal occurrences that might become complementary after a suitable
instantiation is usually called a link. We employ this concept to adequately deal with NNF
formulas.

Definition 8 Let � be a set of formulas in NNF and let �; � 0 be substitutions renaming all
bound variables of � into new variables. A link in � is a pair (F;G) of c-connected literal
occurrences in � such that fF�;G� 0g is unifiable.

A unifier of fF�;G� 0g is called link-unifier of (F;G). Let � be a set of formulas and �
a formula. We say � contains a link into �, if there is a link (F;G) in � [ f�g such that F
occurs in � and G in a formula of �.

Definition 9 Let � be a formula or a set of formulas in NNF and let< be an A-ordering on the
atom set of �. We say that a literal F occurs <-maximally in � iff there is a d-path p through
� in which F occurs <-maximally. An <-ordered link in � is a link (F;G) in � such that
both F and G occur maximally in �.

Note that if � is of the form  ^L, where L is a literal, it is sufficient for the existence of
an ordered link in � that L occurs maximally in a d-path of  .

The basic idea of the ordered NNF tableau procedure will be to employ exactly the same
restriction on universal quantifier rules as on the other formula expansion rules:

Expand (8x)�(x) iff there is a formula � on the same branch such that (8x)�(x)^� con-
tains an ordered link, in other words, it contains a link into the current branch. Moreover,
any instance of (8x)�(x) used for an extension must contain an ordered link into the current
branch.

A subtle point which, however, occurs independently of using orderings or not is the case
� = (8x)�(x). Bound variables must be considered as pairwise different in the definition of
an (ordered) link. This is exemplified with the formula ((8x)p(x)_p(f(x)))^:p(x)). Given
the ordering p(x) < p(f(x)), there is exactly one ordered link (up to renaming) between this
formula and a copy of itself, namely (p(f(x));:p(x)). The atoms of the link are not unifiable,
but as x occurs free in :p(x) and it occurs bound in ((8x)p(x)_p(f(x))), the bound occur-
rence can be renamed appropriately, for instance, it can be renamed into (p(f(x1));:p(x)).
Note that in the case when only the formula (p(x)_p(f(x))) ^ :p(x) occurs on a tableau
branch, there is no ordered link to itself. These considerations are reflected in the previous
definition of an ordered link in NNF formulas.
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Example 2 Let < be the downward lexicographic ordering on ground atoms: B > C > D.
Consider the formula3

� =

:B _

D

^

:C

^

C _ :D

^

B

The d-paths of � are ff:B;Dg; f:B;:Cg; fC;:Dg;fBgg.
Some of the c-paths of � are ff:B;C;Bg; fD;:C;C;Bgg etc.
The following are the links of �: (:B;B), (:C;C), (D;:D). Only the first is an <-

ordered link; it is shown explicitly in the graphical formula representation above.

4 Ordered Hintikka Sets

If we were only interested in first-order tableaux for CNF formulas it would be sufficient to
lift ordered ground clause tableaux to first-order (which can be done straightforwardly) and
use Theorem 1. For the NNF case, just as in classical logic, a little more work is required,
because one needs to establish a non-clausal version of Herbrand’s Theorem which preserves
the structure of a tableau branch. In the present section we define the notion of an ordered
Hintikka set for which the usual model existence theorem can be established. Its proof is a
combination of the classical argument with the idea used in the proof of Theorem 1.

Definition 10 Let H;M be sets of closed NNF formulas. H is called ordered Hintikka set
for M , if the following conditions hold:

1. M � H.

2. If �1 ^ � � � ^ �n 2 H contains an ordered link intoH, then f�1; � � � ; �ng � H.

3. If �1 _ � � � _ �n 2 H contains an ordered link into H, then at least one of �1; � � � ; �n
is inH.

4. If for (8x)�(x) 2 H and a ground term t the formula�(t) contains an ordered link into
H, then �(t) 2 H.

5. No subset L � H that consists only of literals contains a link.

Note that all literals contained in a Hintikka set are ground literals.

Theorem 3 (Hintikka’s Lemma, ordered version) Every ordered Hintikkaset has a model.

3In order to ease readability as in [10] we use a two-dimensional notation for NNF formulas in which conjuncts
are drawn vertically and disjuncts are drawn horizontally.
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Proof We provide an interpretation and show by induction on the depth d of nesting of log-
ical operators that this interpretation satisfies all formulas ofH. Literals have a depth of 1 by
definition. First we define a suitable interpretation for them.

The literalsL ofH define a partial interpretation I via I = L. By clause (5) of the defini-
tion of an ordered Hintikka set, H does not contain complementary literals, hence I is well-
defined.

Consider the set of formulas

Unlinked = f 1_� � �_ n2Bj  i 62B; for all i = 1; : : : ; ng [

f 1^� � �^ n2Bj  i 62B; for some i = 1; : : : ; ng [

f�(t)j (8x)�(x)2H; �(t)62H; t groundg

and the set J of literals which occur maximally in the set of ground instances of Unlinked.
First we show that J is a well-defined partial interpretation of the formulas onH. Assume

that to some atom P different truth values were assigned in the definition of J . Then there
must be ground instances of formulas  ; � 2 Unlinked in which P and :P occur maximally
( and �may be identical). By Lemma 1, literals that occur maximally in ground instances of
a formula are ground instances of literals that occur maximally in the original formula. Hence,
 and � contain a pair of literals (F;G) which has (P;:P ) as an instance. Therefore, F and
G are unifiable modulo renaming of bound variables. Thus (and �) contains an ordered link
into H and, therefore, by one of clauses (2)–(4) of the definition of an ordered Hintikka set,
cannot be in “Unlinked” which is a contradiction.

It remains to show that I [ J is still a well-defined partial interpretation of the formulas
of H. Assume that to the same ground atom P were assigned different truth values in I and
J , w.l.o.g. let P2I and :P2J . Then, by definition of J , :P occurs maximally in a ground
instance of a formula  2 Unlinked. By definition of I, H contains the literal P . Trivially,
P occurs maximally in P . As before, we see that  contains an ordered link intoH (via P ),
which contradicts  2 Unlinked.

Thus I [ J is a well-defined partial interpretation of H. Moreover, it is a model of all
ground instances of “Unlinked” by definition of J and by Proposition 1. By Herbrand’s The-
orem I [ J is as well a model of “Unlinked”.

In the clausal case I [ J clearly constitutes already a model of H. In the NNF case we
show by induction on the depth d of a formula (that is, the number of recursion steps needed
in Definition 7 for its construction) in H that I [ J models H.

d = 1:

By definition, I satisfies the literals of H.

d > 1:

� If � =  1^ � � �^ n 2 Unlinked, then � is satisfied by J . If � 62 Unlinked, then
we apply the induction hypothesis to  1; : : : ;  n to see that all of them are satisfied by
I[J . Then, by the usual completeness lemma (see, for example, [6]) of the conjunction
connective, � is satisfied by I [ J .

� Disjunctive formulas are treated analogously.
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� All ground instances �(t) of (8x)�(x) 2 H are contained either inH or in “Unlinked”.
Therefore, all �(t) are satisfied by I [ J either by the induction hypothesis or by def-
inition of J . This guarantees that I [ J models (8x)�(x), this time by the usual com-
pleteness lemma for universally quantified formulas.

5 Ordered First-Order NNF Tableaux

5.1 Ordered first-order NNF tableau procedure

Now we are in a position to define an ordered first-order NNF tableau procedure. As usual we
have rules for conjunction, disjunction and universally quantified formulas (as the input is in
skolemized NNF we do not need rules for negated and existentially quantified formulas).

Definition 11 Let � be a closed NNF formula. An ordered NNF tableau for � is a finitary
labelled tree constructed as follows:

Init The tree with a single node labelled with � is an ordered NNF tableau for �.

Con Assume T is already an ordered NNF tableau for �,B is a branch of T ,  = 1^� � �^ n
is onB,  has an ordered link intoB and it had not yet a rule applied to it onB. ThenB
is extended by n new nodes each of which is labelled with one of the  i. The resulting
tableau again is an ordered NNF tableau.  is marked as having had a rule applied to it
on B.

Dis Assume T is already an ordered NNF tableau for �, B is a branch of T ,  = 1_� � �_ n
is on B,  has an ordered link intoB and it had not yet a rule applied to it on B. Then
create n new branches belowB each of which contains a single new node and is labelled
with one of the  i. The resulting tableau again is an ordered NNF tableau.  is marked
as having had a rule applied to it onB.

Univ Assume T is already an ordered NNF tableau for �,B is a branch of T , (8x)�(x) is on
B, t is a ground term, �(t) does not occur onB and it has an ordered link intoB. Then
B is extended by a new node which is labelled with �(t). The resulting tableau again
is an ordered NNF tableau.

Remark

1. Unlike in CNF tableaux, all formulas ever to be expanded are present on the initial
tableau as subformulas of the initial formula.

2. In general, ordered link information is needed for all subformulas of the initial formula
(as there are only linearly many subformulas in each formula this is not prohibitive).

3. A formula might have an ordered link to itself. For instance, the first rule application
in an ordered tableau with an unsatisfiable initial formula is triggered this way.

4. The generalization from skolemized NNF input to arbitrary skolemized formulas (with-
out$; 6$) is straightforward: it suffices to use uniform notation and to pay attention to
polarity of subformulas in the definitions of c-paths, d-paths, and links. We restricted
ourselves to the NNF case to avoid technicalities which only obscure the real problems
at issue. The details can safely be left to the reader.
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Example 3 We show an ordered NNF tableau for a set of first-order formulas in Figure 1.
Each formula (but the first five formulas, which constitute the initial tableau) begins with two
numbers i:j, where i is the number of its premise and j the number of the formula. To keep the
tableau representation small an application of a Univ rule followed by an application of a Dis
rule is denoted as a single step. We used the following A-ordering:

P (t1; : : : ; tn) <A P 0(t0
1
; : : : ; t0n) iff P < P 0 or P = P 0 and ti <A t0i for all 1 � i � n.

P; P 0 are arbitrary function or predicate symbols with s < r < q < p and function symbols
are ordered alphabetically. All other terms are incomparable.

Maximal literal occurrences in non-literals are framed.
There are two ordered links: (p(c);:p(x)) between the formulas 5 and 2, (p(c);:p(x))

between 5 and 3. Other formulas can only be expanded if the complement of their maximal
literals is on the branch.

This leaves only formulas number 2, 3, and 5 as candidates for the first step. It is a common
strategy to consider ground formulas first, thus we take number 5. On the left branch we are
left with formula 2 or 3 as a choice, because formulas number 6 does not produce any new
ordered links. If we expand formula 3, then the left of the new branches is closed and formula
9 which is new on the right branch again causes no new ordered links to appear, because r does
not occur maximally anywhere. If we employ a fair selection strategy for universal formulas
we are, therefore, left with formula 2 as the only possibility for expansion. From this point
onwards no restriction is achieved by orderings, because now q appears on both remaining
open branches which has ordered links to formulas 1 and 4, hence all formulas are eligible for
expansion.

Theorem 4 Let � be a closed NNF formula. If � is unsatisfiable, then there is a finite closed
ordered NNF tableau for �.

Proof Let T be the (usually infinite) tableau constructed by the following strategy: If the
rules Con or Dis are applicable, apply these first. There are only finitely many of them at each
time. If several Univ rules but no Con or Dis rules applicable, take the smallest instance with
respect to a given enumeration of ground formulas. Obviously, each open branch of T is an
ordered Hintikka set. Since ordered Hintikka sets are satisfiable and the root formula of T is
unsatisfiable, such a branch cannot exist, hence all branches of T are closed. König’s lemma
guarantees that there is a closed finite subtableau of T .

As in the ground clause case, proof confluence follows by the fact, that each ordered tab-
leau can be extended to a “saturated” ordered tableaux whose branches constitute ordered Hin-
tikka sets.

It is crucial for completeness that during the extension of a tableau literals in the newly
generated formulas can become maximal. The more restrictive version of the tableau exten-
sion rule where maximality of literals is evaluated relative to the initial formula is easily seen
to be incomplete as it can produce subformulas without maximal literals.

Consider the unsatisfiable formula (:A_:C)^((A^B)_C). If C is maximal, then the
subformulaA^B does not contain a maximal literal anymore and cannot be expanded, hence
there is no closed tableau.

The rôle and definition of ordered Hintikka sets (and the branches corresponding to them)
closely parallels that of clause sets saturated with respect to application of certain resolution
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1.8x(:s(x)_ :q(x) )

2.8x( :p(x) _q(x) _ r(x))

3.8x( :p(x) _:r(x))

4.8x(s(x) _ ( :q(x) ^ :r(x) ))

5. p(c) _q(d)

5:6.p(c)

3:8.:p(c) 3:9.:r(c)

2:10.:p(c) 2:11.q(c)

1:13.:s(c)

4:15. :q(c) ^:r(c)

14:17.:q(c)

14:18.:r(c)

4:16.s(c)

1:14:q(c)

2:12.r(c)

5:7.q(d)

1:19.:s(d)

4:21. :q(d) ^:r(d)

21:22.:q(d)

21:23.:r(d)

4:20.s(d)

1:20.:q(d)

Figure 1: A closed A-ordered tableau for the formulas numbered 1.–5. (Pelletier No. 24).

rules in the framework of Bachmair & Ganzinger [2]. Some differences arise, however, be-
cause A-orderings need not be total, whereas in [2] total and well-founded orderings are con-
sidered.

5.2 Ordered Free Variable Tableaux

So far we presented essentially Smullyan’s version of tableaux [11], where instantiations of
universal formulas are guessed. Tableaux implementations work either with an enumeration
of ground instances or with free variables and unification. In both cases, the ordering relations
among literals of the formula to refute have to be analyzed before starting the proof. A first
step determines the maximal literal occurrences in each subformula. Since the maximal literal
occurrences of a formula are also maximal literal occurrences of subformulas of the formula,
maximal occurrences can be detected recursively. In a second step the link table is computed.
All formulas occurring during a proof are instantiations of subformulas of the formula to re-
fute. According to lemma 1, the maximal literal occurrences of the instantiations correspond
to maximal literal occurrences of the original formula. Thus, no new links have to be gen-
erated during the proof. Some links might, however, become obsolete in the instantiations,
either because the linked literals cannot be unified any longer or one of these literal occur-
rences ceased to be maximal. In a ground instance enumeration procedure these two points
can easily be checked before each expansion step.

More interesting are, however, free variable first-order tableaux [6]. We discuss a ver-
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sion which uses fair formula selection and backtracking over applied substitutions (as imple-
mented, without A-orderings, for example, in [3, 4]), because it comprises fairness and back-
tracking aspects as well. Free variables constitute an implementational problem, because the
ordering restriction on a rule application can not be checked at the time the rule is used. Later
substitutions may affect the maximal occurrence or complementarity of the linked literal oc-
currences. As a first approach, one could check before each substitution, whether the tableau
is still ordered after the substitution. It is not quite clear yet how this can be implemented
efficiently. An approximation might be achieved by using syntactic term constraints like the
constraints used for efficient implementation of regularity [9].

A different approach focuses more on the links used to expand a formula. It is easier to en-
force the ordering restriction with respect to the used links than to check at each stage, whether
a tableau is still ordered or not. In other words, whenever a link is used, one has to guarantee
that future substitutions do not violate the ordering restrictions of the used link. This is easy
to do as far as complementarity is concerned. If one applies the link unifier to the tableau,
whenever a formula is expanded, complementarity cannot be destroyed later. This approach
has three immediate consequences:

� Instead of using new variables to instantiate universally quantified formulas, terms ob-
tained from the link unifier are used. They might contain new free variables obtained
from renamed bound variables.

� Instead of fair formula selection, links must be selected in a fair way.

� Backtracking occurs for all substitutions, in particular for those performed during ex-
pansion steps.

This still leaves open the problem that through certain substitutions literals may cease to
be maximal; the latter can be guaranteed only by constraints:

Consider the A-ordering used in Example 3. In this A-ordering the literals p(x; f(x)) and
p(a; y) are incomparable.

Assume p(x; f(x)) and p(a; y) occur on the same d-path and p(x; f(x)was used in a link.
Each following substitution must preserve the maximality of p(x; f(x). Therefore, one must
generate a constraint of the form (x� 6<A a or f(x�) 6<A y�) which has to be checked when-
ever a substituion � is applied to x or y.

Obviously, constraint generation depends on the A-ordering. Many problems do not re-
quire a lot of constraints. As long as with respect to the chosen A-ordering every d-path has
exactly one maximal literal, maximal literal occurrences stay maximal after arbitrary substi-
tutions. A suitable A-ordering can achieve this effect for many problems. This can actually
be used as a guideline for choosing A-orderings.

In the light of the previous discussion, it seems practicable to avoid constraints as far as
possible. It is easy to implement a procedure without constraints, which applies substitutions
only for branch closure and the Univ rule. Figure 1 shows, that even this weak version of or-
dered tableaux might be interesting: obviously, no free variables can be introduced, whenever
formula 5 is expanded first. For this particular example the proposed procedure neither has the
disadvantages of backtracking nor those of a ground instance enumeration tableaux.

The implementation and evaluation of various versions of free variable ordered tableaux
will be the topic of a forthcoming paper.
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