
Formula dependent model reduction through elimination

of invisible transitions for checking fragments of CTL

Alexander Kick�

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: kick@ira.uka.de

Abstract

We present a reduction algorithm which reduces Kripke structures by elim-

inating transitions from the model which do not a�ect the visible components

of the model. These are exactly the variables contained in the speci�cation for-

mula. The reduction algorithm preserves the truth of special CTL formulae. In

contrast to formula-dependent reduction algorithms presented so far, which are

mostly computationally expensive, our algorithm needs only one pass through

the reachable states of the model. Nevertheless, preliminary results show that

models are reduced considerably, which is plausible because, in general, the

number of visible components of a reactive system is small compared to the

number of internal components.

1 Introduction

Model checking [CGL93] has been successfully applied to the veri�cation of large
and complex systems. This has been made possible mainly by the introduction of
OBDD based techniques [Bry86]. Researchers have tried to make model checking
applicable to even larger systems by using abstraction and reduction algorithms.
Data abstraction [Lon93] is used to reduce the number of di�erent data values, thus
allowing to collapse several states into a class of states. Reduction algorithms, on
the other hand, try to cut down the length or number of execution sequences by
eliminating states and transitions or whole execution paths.

Several formula independent reduction algorithms have been proposed. Some of
them are based on collapsing states which are bisimulation equivalent [BFH+92],
[BdS92]. Other reduction methods are partial order approaches that allow parts of
the state graph caused by di�erent interleavings of independent, parallel actions to
be ignored [Val90], [GW91], [Pel93].

By considering the properties to be veri�ed, however, much better reductions
should be achievable. In [ASSSV94], a state equivalence is de�ned with respect to a
given CTL formula. According to this equivalence, the size of each component �nite

�Supported by DFG Vo 287/5-2

1

state machine is reduced in dependance on all other components. In [DGG93], the
reduction algorithm, which works for formulae in ACTL, is based on the successive
re�nement of a model by splitting states with respect to formulae. In contrast
to [ASSSV94] where only equivalent paths are combined, the model is maximally
reduced with respect to an (ACTL-) formula in [DGG93].

The algorithms in both of these papers are computationally expensive since states
and transitions of the model have to be inspected several times. In the case of
[DGG93], for instance, the splitting subprocedure, which inspects all states of the
model, is called several times, especially if there are subformulae of type AU . E�-
ciency of the reduction algorithm, however, is important to achieve a faster overall
performance of prior reduction and subsequent checking of the reduced model com-
pared to just model checking the original model.

In our paper, we present a reduction algorithm which is e�cient, since it needs
just one pass through the reachable states of the model. Preliminary results show
that our reduction algorithm will nevertheless cut down the size of the model consid-
erably. Thus, our reduction algorithm trades o� e�ciency of the reduction algorithm
with the size of the reduction to maximize the overall performance.

Our approach to reduction which is also formula-dependent is motivated by the
fact that the number of visible state components { one can look upon the variables
appearing in the speci�cation formula as being the `visible' components of the system
{ is in general small compared to the components involved in the internal working of
the system. Exploiting this fact one can cut long subpaths from the state-transition-
graph where the `visible' components do not change their state. This is in contrast
to most other reduction algorithms where only equivalences between paths are con-
sidered. Only in [DGG93] super
uous transitions { with respect to the formula {
within paths are also cut from the model.

The reduction algorithm proposed in this paper preserves the truth of fair CTL
formulae that ful�ll certain restrictions which are not important in practice.

The rest of the paper is structured as follows. In Section 2 we de�ne the subset
of CTL� for which our reduction algorithm preserves the truth of the speci�cation
formula. In Section 3 the reduction transformation is presented and an e�cient
algorithm is developed from it. In Section 4 we justify why model checking with
prior reduction by our reduction algorithm is in general faster than just model
checking the original model. In Section 5 we draw some conclusions and point out
further work.

2 Preliminaries { Computation tree logics

Most of this section (except the de�nition of RCTL and FRCTL) can be found in
more detail in [CGL93].

2.1 CTL�, CTL, fair CTL and ACTL

Let AP be the set of atomic proposition names. State and path formulae of the
temporal logic CTL� are constructed as follows.

� state formulae (SF)

{ p 2 AP) p 2 SF

2

{ f; g 2 SF) :f; f _ g 2 SF

{ f 2 PF) E(f) 2 SF

� path formulae (PF)

{ f 2 SF) f 2 PF

{ f; g 2 PF) :f; f _ g;Xf; fUg 2 PF

CTL� is the set of state formulae generated by the above rules.
In the rest of the paper we use the usual abbreviations, e.g. Ff = trueUf; Gf =

:F:f; A = :E:;
1

Ff = GFf .
CTL is a restricted subset of CTL� that is obtained if the following two rules are

used to specify the syntax of path formulae.

� f; g 2 SF) :Xf; fUg 2 PF

� f 2 PF) :f 2 PF

ACTL is a further restriction of CTL. A formula in CTL is also in ACTL if
driving the negations in to the literals results in a formula without the E path
quanti�er.

In fair CTL as it is de�ned in [CGL93] the path quanti�ers are restricted to fair
paths. A path is fair with respect to a set of fairness constraints which can be an
arbitrary set of states, usually described by a formula of the logic, if each constraint
holds in�nitely often along the path.

2.2 RCTL, FRCTL

Let AP be the set of atomic proposition names. Formulae of the temporal logic
RCTL are constructed as follows.

� Propositional formulae (PF)

{ p 2 AP) p 2 PF

{ f1; f2 2 PF) :f1; f1 _ f2 2 PF

� Formulae (F)

{ g1; g2 2 F) g1 _ g2; g1 ^ g2 2 F

{ f 2 PF; g 2 F) AgUf 2 F; AGg 2 F; AGEGg 2 F; AGE[gUf] 2 F

We de�ne RRCTL to be RCTL with the restriction that the boolean ^ is
only applied to either (several) propositional formulae or formulae of the form
AGg; AGEGg or AGE[gUf].

FRCTL is RCTL with fairness constraints de�ned similar to fair CTL. Fairness
constraints in FRCTL are allowed to be only formulae of RRCTL.

RCTL, which is a subset of CTL, contains most of the formulae needed in prac-
tice, such as AG p, AFp, AGAFp, AG(p1 ! AFp2), and AG(p1 ! A(p2Up3))
where p; p1; p2 are propositional formulae. RCTL also contains formulae of the type
AGEFp. RCTL thus comprises all formulae but one which were veri�ed for the

3

IEEE Futurebus+ cache coherence protocol in [Lon93] and the Ethernet protocol in
[NS94].

On the one hand, RCTL is less expressive than ACTL because we do not allow the
next operator X and allow AU formulae only of a special type. On the other hand,
RCTL is more expressive than ACTL since it allows existential path quanti�ers of
a certain type.

In general, the transformation presented in Section 3 preserves only formulae
which do not talk about a special subset of states in combination with existential
path quanti�cation. Consequently, formulae of the type AG(p ! EFb) are not
preserved by the transformation. This is the reason for the restricted de�nition of
RCTL above.

2.3 Semantics { Kripke structures

The semantics of the above logics is de�ned with respect to a Kripke structure.

� A Kripke structure is a 3-tuple M = (S;R; L) where

{ S is a set of states,

{ R � S � S is a total transition relation, and

{ L : S ! P(AP) labels each state with a set of atomic propositions true
in that state.

� A path in M is an in�nite sequence of states: � = s0s1 : : : such that 8i � 0 :
(si; si+1) 2 R. The set of paths is denoted by P .

� �i = sisi+1 : : :

We assume that the Kripke structures we deal with in the following are �nite.
SM ; RM ; LM denote the set of states, the transition relation and the labelling

function of the Kripke structure M, respectively.
If f is a state formula, s j=M f means that f holds at state s in the Kripke

structure M . If f is a path formula, � j=M f means that f holds along the path �

in the Kripke structure M .
j= is de�ned inductively as follows (assuming that p is an atomic proposition,

f1 and f2 are state formulae and g1 and g2 are path formulae), where we write j=
instead of j=M for simplicity:

� s j= p, p 2 L(s)

� s j= :f1 , s 6j= f1

� s j= f1 _ f2 , s j= f1 or s j= f2

� s j= E(g1), 9� = s : : : 2 P and � j= g1

� � j= f1 , if � = s : : : then s j= f1

� � j= :g1 , � 6j= g1

� � j= g1 _ g2 , � j= g1 or � j= g2

� � j= Xg1 , �1 j= g1

� � j= g1Ug2 , 9k � 0 : �k j= g2 ^ 80 � j < k : �j j= g1

4

L(s’) WΓ
L(s) W =Γ

reduced to

Figure 1: Super
uous subpaths

3 The Reduction

In this section we describe our reduction which transforms the original model into
a smaller one. We �rst explain the idea behind the transformation. Then, we
de�ne the transformation precisely, discuss the correctness of the transformation,
and �nally present the complete algorithm.

3.1 The Idea

A speci�cation formula usually depends only on some small subset of the variables
representing the states of the Kripke model. As a consequence, the checking al-
gorithm unnecessarily runs through states which do not a�ect the variables in the
formula at all. By combining such states the model can be reduced without a�ecting
the outcome of the model checking.

Figure 1 shows how our reduction algorithm cuts subsequences of the model
where variables (W) contained in the speci�cation formula are left unchanged. If
the number of variables in the speci�cation is small compared to the whole number of
variables in the model (V) it can be expected that the reduced model is signi�cantly
smaller.

Figure 2 shows an example for the full reduction of the original model. The
labels below each circle (= state) denote the variables which are true in that state.
If only variable p appears in the speci�cation (e.g. A[trueU:p] as speci�cation), the
two intermediate states can be cut from the original model since they do not change
p.

The transformation T described in detail below takes two states s1 and s2 which
have the same valuations for variables in W and performs the transformations as
depicted in Figure 3. To achieve much better reduced models this transformation
can be applied several times.

5

p p q p r s

W = {p} V \ W = {q,r,s}

p r

reduction

r

specification formula: AF not p [=A(true U not p)]

Figure 2: Example reduction

T

s1 s1

s2

s3 s4s3s4

Figure 3: Transformation for the case that L(s1) \W = L(s2) \W and that there
is no loop from s2 to s2

6

3.2 The transformation

Let M denote the set of Kripke models and M the original Kripke model (S;R; L).
Let V be the set of variables used to represent the transition relation R. W (� V)
denotes the set of variables contained in the formula and fairness constraints.

If a model (S;R; L) contains two states s1 and s2 which ful�ll the condition

s1Rs2 ^ :s2Rs2 ^ (L(s1)\W = L(s2) \W) (1)

its reduced model with respect to these two states is de�ned as follows:

T : S � S �M!M

T (s1; s2; (S;R; L)) = (S0; R0; L0)

where S0, R0 and L0 are de�ned below with respect to the two special states s1 and
s2

S0 =

(
S n fs2g if 8s : sRs2 ! s = s1

S otherwise

R0 =

8>><
>>:

(R n (f(s1; s2)g [f(s2; s)js2Rsg))
[f(s1; s)js2Rsg

if 8s : sRs2 ! s = s1

(R n f(s1; s2)g) [f(s1; s)js2Rsg otherwise

L0 = L � S0 (= L restricted to S0)

In the following, let s1 and s2 ful�ll condition (1).

3.3 Correspondence between paths

In this subsection we describe how the transformation T a�ects the paths of the
original model M .

Let PM denote all possible paths in the model M . For all start states s 2 SM
we then de�ne:

�s = f�j� = s : : : ^ � 2 PMg

�0s = f�0j�0 = s : : : ^ �0 2 PT (s1;s2;M)g

PMr =
[

s2ST (s1 ;s2;M)

�s

Note that PMr may not contain the paths in M starting with s2 whereas PM
contains all paths in M .

7

s1

s2

Figure 4: Interrelation between paths in the original and the transformed model

U succ
s1;s2

: PM ! PT (s1;s2;M)

U succ
s1;s2

(ss0x) =

(
sU succ

s1;s2
(x) if s = s1 ^ s

0 = s2;

sU succ
s1;s2

(s0x) otherwise:

Us1;s2 : PMr ! PT (s1;s2;M)

Us1;s2(ss
0x) =

(
sU succ

s1;s2
(x) if s = s1 ^ s

0 = s2;

sU succ
s1;s2

(s0x) otherwise:

Us1;s2 induces its inverse U
�1
s1;s2

which we describe below for ease of understanding.

U�1
s1;s2

: PT (s1;s2;M) ! P(PMr)

U�1
s1;s2

(srx) =

8>><
>>:
fs1U

�1
s1;s2

(rx)g [fs1s2U�1
s1;s2

(rx)g if s = s1 ^ s1RMr ^ s2RMr;

s1s2U
�1
s1;s2

(x) if s = s1 ^ :s1RMr;

sU�1
s1;s2

(rx) otherwise:

Us1;s2 and U
�1
s1;s2

describe how T transforms paths inM into paths in T (s1; s2;M)
and which paths in M correspond to paths in T (s1; s2;M), respectively. Their
de�nition should become clear from Figure 4.

Us1;s2(�) is the same as � but with some s2 lost. If s2 is cut from the model then
T also cuts the paths starting at s2. U

�1
s1;s2

(�0) is exactly the set of those paths in
M that are mapped by Us1;s2 to �

0 in T (s1; s2;M).
Note that T is surjective on the paths. The latter follows from the fact that only

the paths inM which go through s1 are modi�ed and paths starting at s2 can be lost
in the reduced model. I.e., if � is a path in the model M and � does not start with
s2 or s2 was not cut from the model then Us1;s2(�) is a path in T (s1; s2;M) and if
�0 is a path in T (s1; s2;M) then there exists a path � in M such that Us1;s2(�) = �0.
T is not injective on the paths, i.e., � 6= � 6) Us1;s2(�) 6= Us1;s2(�). This, however,
is the case only for paths : : : s1s2r : : : and : : : s1r : : : , i.e., if a successor of s2 was
reachable by a direct arc from s1 in the original model M .

8

Lemma 3.1 8s 2 ST (s1;s2;M) :

1. �0s = Us1;s2(�s)

2. �s = U�1
s1;s2

(�0s)

Proof:

1. \�"
We have to show: 8�0 2 �0s : 9� 2 �s : Us1;s2(�) = �0.

For a given �0 simply choose a � out of the nonempty set U�1
s1;s2

(�0).

\�"
We have to show: 8� 2 �s : Us1;s2(�) 2 �0s. This is trivially ful�lled by
de�nition of Us1;s2 since this is exaclty how the transformation a�ects the
paths of the original model.

2. \�"
For an arbitrary � 2 �s, clearly � 2 U�1

s1;s2
(Us1;s2(�)) by de�nition of U�1

s1;s2

and Us1;s2 . By part 1) we have Us1;s2(�) 2 �0s and thus � 2 U�1
s1;s2

(�0s).

\�"
For an arbitrary �0 2 �0s, U

�1
s1;s2

(�0) are paths also starting with s in M . Note
that the only change between RM and RT (s1;s2;M) are the arcs starting at s1
and possibly the arcs starting at s2. Exactly this change is taken into account
by U�1

s1;s2
.

This lemma allows us to write Us1;s2(�)(� 2 PM) when we want to prove some-
thing about paths �0 in T (s1; s2;M). Similarly, we can restrict our attention to
U�1
s1;s2

(�0)(�0 2 PT (s1;s2;M)) when we want to show properties about paths � in M .

3.4 Preservation of the truth of RCTL speci�cation formulae

In this subsection we prove that the transformation preserves the truth of RCTL
speci�cation formulae.

T does not preserve the truth for certain CTL� formulae. This is because s1 and
s2 can be distinguished by the type of paths starting at them. This is illustrated in
Figure 5. The formula p U (EF 1 ^ EF 2 ^:EF 0) is true at the path starting at
i on the left-hand side but wrong on the right-hand side if the proposition p is true
up to s1 and if there are no other states where 1 and 2 are true.

For this reason we de�ned RCTL in Section 2 as a subset of CTL which excludes
such types of formulae.

Lemma 3.2 If s1 and s2 ful�ll condition (1) then:

8 propositional formulae � 2 RCTL : s1 j=M �, s2 j=M �

Proof: The proof is by induction on the length of the propositional formula. Let
p 2 AP and W be the set of atomic propositions (AP) in the speci�cation formula
�.

9

s

0

1 2

s

0

1 2

s2

1 1

i i

Figure 5: The formula must not distinguish between s1 and s2

1. induction base

s1 j=M p, p 2 LM (s1), p 2 LM (s2), s2 j=M p

because p 2 W ^ LM(s1) � W = LM(s2) � W (condition (1))

2. The induction step for the boolean connectives : and _ is trivial.

Lemma 3.3 If s1 and s2 ful�ll condition (1) then:

8 propositional formulae � 2 RCTL : 8s 2 ST (s1;s2;M) :
s j=M �, s j=T (s1;s2;M) �

Proof: The proof is by induction on the structure of the propositional formula. Let
p 2 AP .

1. induction base

s j=M p, p 2 LM (s), p 2 LT (s1;s2;M)(s), s j=T (s1;s2;M) p

This is clear since T only restricts LM to the states in T (s1; s2;M).

2. The induction step for the boolean connectives : and _ is trivial.

Corollary 3.1 If s1 and s2 ful�ll condition (1) then:

8 propositional formulae � 2 RCTL : s2 j=M �, s1 j=T (s1;s2;M) �

Proof:

s1 j=T (s1;s2;M) �, s1 j=M �, s2 j=M �

by Lemmata 3.3 and 3.2

10

π

π i

Figure 6: Case AGg

Proposition 3.1 If s1 and s2 ful�ll condition (1) then:

8� 2 RCTL : 8s 2 ST (s1;s2;M) : s j=M �) s j=T (s1;s2;M) �

Proof:

The proof is by structural induction. Let f be a propositional formula and
g; g1; g2 be formulae.

1. induction base for propositional formulae by Lemma 3.3

2.

s j=M g1 _ g2 , s j=M g1 or s j=M g2)

s j=T (s1;s2;M) g1 or s j=T (s1;s2;M) g2 , s j=T (s1;s2;M) g1 _ g2

3.

s j=M g1 ^ g2 , s j=M g1 and s j=M g2)

s j=T (s1;s2;M) g1 and s j=T (s1;s2;M) g2 , s j=T (s1;s2;M) g1 ^ g2

4.

s j=M AGg ,

8� = s : : :8i � 0 : �i j=M g

Figure 6 illustrates this case. For an arbitrary chosen path � 2 PM (drawn bold
in the �gure) the corresponding path Us1;s2(�) in T (s1; s2;M) is obtained by
jumping some s2 (dotted arrows) { T only cuts some states. By the induction
hypothesis, all states in Us1;s2(�) ful�ll g. The last i� is true because by Lemma
3.1 the Us1;s2(�) are all paths in T (s1; s2;M) that start with s.

8Us1;s2(�)8i � 0 : Us1;s2(�)i j=T (s1;s2;M) g , s j=T (s1;s2;M) AGg

11

5.

s j=M A[gUf],

8� = s : : :9k � 0 : �k j=M f ^ 80 � j < k : �j j=M g

The proof for A[gUf] is similar to the proof for AGg, the only di�erence lying
in the fact that for a �xed path � in M , the state which ful�lls f is not cut by
T , as becomes clear from the following paragraph.

Let � 2 PM be chosen arbitrarily. We suppose that k is the smallest k such that
�k j=M f . In that case T may cut some �j 6= �k but not �k from �. Otherwise,
�k�1 = s1 which would mean that �k�1 j=M f since s2 j=M f , s1 j=M f

because of Lemma 3.2, in contradiction to the fact that k is the smallest.

By the induction hypothesis �k j=T (s1;s2;M) f . Since T just cuts some states
from a path � (s2 is jumped if it was preceded by s1), we can use the induction
hypothesis to conclude that all intermediate states up to this state �k on
Us1;s2(�) ful�ll g.

) 8Us1;s2(�)9l � k : Us1;s2(�)l = �k j=T (s1;s2;M) f ^

80 � i < l : Us1;s2(�)i = �q(i) j=T (s1;s2;M) g

where q(0) = 0; q(l) = k

and q(i+ 1) =

(
q(i) + 2 �q(i) = s1s2x

q(i) + 1 otherwise

The following i� is true because by Lemma 3.1.1 the Us1;s2(�) are all paths in
T (s1; s2;M) that start with s { T does not cut or add any paths starting at a
state s 2 ST (s1;s2;M).

, s j=T (s1;s2;M) A[gUf]

6.

s j=M AGEGg,

8� = s : : :8i � 0 : �i j=M EGg,

8� = s : : :8i � 0 : 9� = �i : : :8j � 0 : �j j=M g

Figure 7 illustrates this case. For an arbitrary chosen path � 2 PM the corre-
sponding path Us1;s2(�) in T (s1; s2;M) is obtained by only cutting some states
from �. Therefore, for any state s0 on the transformed path Us1;s2(�) there
also exists a path on which g is globally true in T (s1; s2;M), namely Us1;s2(�),
the path in T (s1; s2;M) corresponding to the path � in M starting at s0 on
which g is always true. The existence of Us1;s2(�) is guaranteed by Lemma
3.1, and that Us1;s2(�) ful�lls Gg by the induction hypothesis (note again that
only some states are cut from � to obtain Us1;s2(�)).

8Us1;s2(�) = s : : :8i � 0 : 9Us1;s2(�) = Us1;s2(�)i : : :

8j � 0 : Us1;s2(�)j j=T (s1;s2;M) g

12

σ

π

π i

s2

Figure 7: Case AGEGg

The last i� is true because by Lemma 3.1 the Us1;s2(�) are all paths in
T (s1; s2;M) that start with s.

, s j=T (s1;s2;M) AGEGg

7.

s j=M AGE[gUf],

8� = s : : :8i � 0 : �i j=M E[gUf],

8� = s : : :8i � 0 : 9� = �i : : :^ 9k � 0 : �k j=M f ^ 80 � j < k : �j j=M g)

For each state on the path Us1;s2(�), which in fact is one of the �i, since only
some states are cut by the transformation T , we can simply take the corre-
sponding Us1;s2(�) as the path which models gUf . Us1;s2(�) exists by Lemma
3.1. Indeed, reasoning similar to case 5) shows that 9l � k : Us1;s2(�)l j=T (s1;s2;M)

f^80 � j < l : Us1;s2(�)j j=T (s1;s2;M) g. Since the Us1;s2(�) are all paths start-
ing at s (Lemma 3.1) we have:

8Us1;s2(�) = s : : :8i � 0 : 9Us1;s2(�) = Us1;s2(�)i : : :^

90 � l � k : Us1;s2(�)l j=T (s1;s2;M) f ^ 80 � j < l : Us1;s2(�)j j=T (s1;s2;M) g ,

8Us1;s2(�) = s : : :8i � 0 : Us1;s2(�)i j=T (s1;s2;M) E[gUf],

s j=T (s1;s2;M) AGE[gUf]

Proposition 3.2 If s1 and s2 ful�ll condition (1) then:

8� 2 RCTL :
(a) 8s 2 ST (s1;s2;M) : s j=T (s1;s2;M) �) s j=M �^

(b) s1 j=T (s1;s2;M) �) s2 j=M �.

13

Proof:

The proof is by structural induction. Let f be a propositional formula and g be
a formula.

1. induction base for propositional formulae by Lemma 3.3 and Corollary 3.1.

2. In an easy way the induction hypothesis can be used to prove the induction
step for the boolean connectives ^;_.

3.

s j=T (s1;s2;M) AGg , 8�0 = s : : :8i � 0 : �0i j=T (s1;s2;M) g

We consider an arbitrary path � = s : : : 2 U�1
s1;s2

(�0s), with � 2 U�1
s1;s2

(�0),
�0 2 �0s.

(a) i. �i 6= s2 By induction hypothesis, �i j=M g.

ii. �i = s2
If s2 was already on �0, then we can reason as in the above case i).
Otherwise, s2 can only be added to �0 by U�1

s1;s2
to obtain � if s2

is preceded by s1 which already appeared in �0 2 PT (s1;s2;M), where
s1 j=T (s1;s2;M) g. By induction hypothesis, s2 j=M g. Therefore:

s j=M AGg

since the � 2 U�1
s1;s2

(�0s) are all paths starting at s in M by Lemma 3.1.

(b) s1 j=T (s1;s2;M) AGg) s1 j=M AGg by case a). This in turn implies that
all successors of s1 in M have to ful�ll AGg as well. Therefore:

s1 j=T (s1;s2;M) AGg) s2 j=M AGg

4.

s j=T (s1;s2;M) A[gUf],

8�0 = s : : :9l � 0 : �0l j=T (s1;s2;M) f ^ 80 � i < l : �0i j=T (s1;s2;M) g

We consider an arbitrary path � = s : : : 2 U�1
s1;s2

(�0s). Let � 2 U�1
s1;s2

(�0),
�0 2 �0s.

(a) Of course the �rst state q j=T (s1;s2;M) f in �0 is also in � and by induction
hypothesis q j=M f . The subpath in � up to q is the same as the one in
�0 but possibly with some s2 added. The latter can happen only if s2 was
preceded by s1.

By the induction hypothesis and Lemma 3.1 we conclude:

) 8� = s : : :9k � l : �k = �0l j=M f ^ 80 � i < k : �i j=M g ,

s j=M A[gUf]

where �i is either a �
0
j or s2.

14

s2
s2

σ

π

π i’

’

’

Figure 8: Case AGEGg

(b) s1 j=T (s1;s2;M) A[gUf]) s1 j=M A[gUf] by case a). If s1 j=M f , then
s2 j=M f by the induction hypothesis and thus trivially s2 j=M A[gUf].
If s1 6j=M f , then all successors of s1 have to ful�ll A[gUf] and thus
s2 j=M A[gUf].

5.

s j=T (s1;s2;M) AGEGg,

8�0 = s : : :8i � 0 : 9�0 = �0i : : :8j � 0 : �0j j=T (s1;s2;M) g

We consider an arbitrary path � = s : : : 2 U�1
s1;s2

(�0s). Let � 2 U�1
s1;s2

(�0),
�0 2 �0s (Figure 8).

(a) i. �i 6= s2
� = U�1

s1;s2
(�0) exists by Lemma 3.1 and can contain some additional

s2 (indicated by dotted triangles in Figure 8), but only if they are
preceded by s1. By induction hypothesis, 8j � 0 : �j j=M g and
therfore �i j=M EGg.

ii. �i = s2
If s2 was already on �0, then we can reason as in the above case
i). Otherwise, s2 can only be added if it is preceded by s1 which
already appeared in �0 2 PT (s1;s2;M), where s1 j=T (s1;s2;M) EGg)

s1 j=T (s1;s2;M) g. By the induction hypothesis, s2 j=M g. The state
following �i on �, which cannot be equal to s2 by condition (1),
models EGg by case i) above. Thus, s2 j=M EGg. Therefore:

s j=M AGEGg

since the � 2 U�1
s1;s2

(�0s) are all paths starting at s in M by Lemma 3.1.

(b) s1 j=T (s1;s2;M) AGEGg) s1 j=M AGEGg by case a). All states reach-
able from s1 in M ful�ll EGg. As a consequence, s2 j=M AGEGg.

15

6.

s j=T (s1;s2;M) AGE[gUf],

8�0 = s : : :8i � 0 : �0i j=T (s1;s2;M) E[gUf],

8�0 = s : : :8i � 0 : 9�0 = �0i : : :

^9l � 0 : �0l j=T (s1;s2;M) f ^ 80 � j < l : �0j j=T (s1;s2;M) g

We consider an arbitrary path � = s : : : 2 U�1
s1;s2

(�0s). Let � 2 U�1
s1;s2

(�0),
�0 2 �0s.

(a) i. �i 6= s2
Let � = U�1

s1;s2
(�0). � exists by Lemma 3.1 and can contain some

additional s2, but only if they are preceded by s1. Argumentation
similar to case 4.a) allows us to conclude that � j=M gUf and thus
�i j=M E[gUf].

ii. �i = s2
If s2 already was on �0, then we can reason as in the above case
i). Otherwise, s2 can only be added if it is preceded by s1 which
already appeared in �0 2 PT (s1;s2;M), where s1 j=T (s1;s2;M) E[gUf])
s1 j=T (s1;s2;M) g or s1 j=T (s1;s2;M) f . In the �rst case, by induction
hypothesis, s2 j=M g. The state following �i on � models E[gUf]
(case a.i) above). Thus, s2 j=M E[gUf]. The second case is clear.

s j=M AGE[gUf]

since the � 2 U�1
s1;s2

(�0s) are all paths starting at s in M by Lemma 3.1.

(b) s1 j=T (s1;s2;M) AGE[gUf]) s1 j=M AGE[gUf] by case a). This means
that all states reachable from s1 in M ful�ll E[gUf]. As a consequence,
s2 j=M AGE[gUf].

The following theorem follows immediately from the two propositions.

Theorem 3.1 If s1 and s2 ful�ll condition (1) then:

8� 2 RCTL : 8s 2 ST (s1;s2;M) : s j=M �, s j=T (s1;s2;M) �

A similar theorem can be proven for FRCTL. Let H = fh0; : : : ; hng be the set
of fairness constraints. We de�ne �s as the set of fair paths in M starting with s

and �0
s as the set of fair paths in T (s1; s2;M) starting with s.

�s = f� 2 �sj� j=M

^
i

1

Fhig

�0
s = f� 2 �0sj�

0 j=T (s1;s2;M)

^
i

1

Fhig

Lemma 3.4 If s1 and s2 ful�ll condition (1) then:

8� 2 RRCTL : s2 j=M �) (s1 j=M � _ 9r : s2Rr ^ r 6= s2 ^ r j=M �)

16

Proof: By induction.

1. induction base for propositional formulae by Lemma 3.2

2. Since for any state s: s j=M g1) s j=M g1 _ g2, we can conclude, using the
induction hypothesis:

s2 j=M g1 _ g2)

(s1 j=M g1 _ g2) _ (9r : s2Rr ^ r 6= s2 ^ r j=M g1 _ g2)

In the remaining cases the induction hypothesis is not needed.

3.

s2 j=M A[gUf]

If s2 j=M f then s1 j=M A[gUf] by Lemma 3.2. Otherwise, every successor of
s2 models A[gUf]. Therefore:

s2 j=M A[gUf]) s1 j=M A[gUf]_ 9r : s2Rr ^ r 6= s2 ^ r j=M A[gUf]

The existence of such an r is guaranteed by condition (1) and totality of RM .

4. For � = AGg or � = AGEGg or � = AGE[gUf] we can argue similarly. If
s2 j=M � then for every successor r of s2: r j=M �. A successor r 6= s2 exists
by condition (1) and totality of RM .

5. Let gi be one ofAGg;AGEGg orAGE[gUf]. If s2 j=M

V
i

gi then, 8i : s2 j=M gi,

and as in the previous case, for every successor r of s2: r j=M gi and conse-
quently, 9r : s2Rr ^ r 6= s2 ^ r j=M

V
i

gi.

Lemma 3.5 8s 2 ST (s1;s2;M) :

1. �0
s = Us1;s2(�s)

2. �s = U�1
s1;s2

(�0
s)

Proof: Since �0s = Us1;s2(�s) and �s = U�1
s1;s2

(�0s) by Lemma 3.1 it su�ces to show
that

� � 2 �s) Us1;s2(�) is fair

� �0 2 �0
s) U�1

s1;s2
(�0) are fair paths

Let hi 2 H (0 � i � n) be an arbitrary fairness constraint.

1. � 2 �s) Us1;s2(�) is fair
If � is fair then there is at least one state s j=M hi which appears in�nitely
often on � since M is �nite. If s 6= s2 then clearly Us1;s2(�) is also fair since
s j=T (s1;s2;M) hi by Theorem 3.1 and s also appears in�nitely often on Us1;s2(�).
The only case where fairness might be lost in Us1;s2(�) is when s = s2 and s2

17

is the only such state and s2 is cut so often from � that it appears just �nitely
many times in Us1;s2(�). We show, however, that this can never be the case.

Whenever s2 is cut from � its predecessor is s1 and it has a successor r 6= s2 on
that path �. Together with Lemma 3.4 we can conclude that if s2 can be cut
in�nitely often then hi is also ful�lled in�nitely often in M by a set of states
which does not contain these cuttable s2.

2. �0 2 �0
s) U�1

s1;s2
(�0) is fair

The only state added to �0 is s2 and s2 can only be added if it is preceded
by s1. Therefore, every state on �0 other than s2 appears equally often on
U�1
s1;s2

(�0). Let s with s j=T (s1;s2;M) hi and appear in�nitely often on �0, then
both s j=M hi by Theorem 3.1 and s appears in�nitely often on U�1

s1;s2
(�0).

Lemma 3.6 s1�s2 = �s1 \ s1s2S
!
M

Proof: If � = s1s2� is a fair path then clearly s2� is also a fair path. If s2� is a fair
path then clearly � = s1s2� is a fair path.

Theorem 3.2 If s1 and s2 ful�ll condition (1) then:

8� 2 FRCTL : 8s 2 ST (s1;s2;M) : s j=M �, s j=T (s1;s2;M) �

Proof: In the same way as the proof of Theorem 3.1, i.e., the proofs of Lemmata
3.2 and 3.3, Corollary 3.1 and Propositions 3.1 and 3.2, if we substitute � 2 RCTL

by � 2 FRCTL, PM by QM which shall denote the set of all fair paths in M , �s by
�s, �0s by �

0
s, always choose � 2 �s and �0 2 �0

s for some s and argue with Lemma
3.5 instead of Lemma 3.1.

In the b) parts of the proof of Proposition 3.2 we can argue with Lemma 3.6.
If for all fair paths � = s1r : : : starting at s1 follows that r 6= s2 then any formula
starting with the universal path quanti�er which talks about fair paths starting at
s2 is trivially true since there are no such paths.

Of course, the application of T can be iterated.

De�nition 3.1 A sequence of �nite models

(S0; R0; L0); (S1; R1; L1); : : :(Sn; Rn; Ln) where

80 � i < n :
(9s1; s2 2 Si : (s1Ris2 ^ :s2Ris2 ^ (Li(s1) \W = Li(s2)\W))

^(Si+1; Ri+1; Li+1) = T (s1; s2; (Si; Ri; Li)))

i.e. a subsequent model is obtained by an application of T at two states in the

predecessor model that ful�ll condition (1), is called a reduction sequence.

Clearly, the reduction sequence preserves the truth of FRCTL formulae.

Theorem 3.3 Let (S0; R0; L0) be the �rst, and (Sn; Rn; Ln) be the last model in a

reduction sequence. Then 8� 2 FRCTL : 8s 2 Sn : s j=(S0;R0;L0) �, s j=(Sn;Rn;Ln)

�.

18

Proof: Directly by subsequent application of Theorem 3.2.

Note that we can determine the truth of a speci�cation formula only for states
which are not cut from the original model. Therefore, if we want to determine the
truth of a formula with respect to a certain state we have to make sure that this
state does not serve as an s2 in an application of T .

3.5 The algorithm

In this subsection we present a reduction algorithm based on the transformation T .

3.5.1 Description of algorithm

The algorithm is based on one breadth-�rst search through the Kripke model. The
algorithm together with the meaning of the used identi�ers is shown in Figure 9. The
algorithm is described in the form of relations. This makes it easily implementable
by OBDDs, the data structure on which the fastest model checkers are built.

In the beginning, the set of reached states (G0) is the set of initial states (I), the
transition relation H i representing the reduced transition relation is empty, and P 0,
which contains the frontier transitions, contains transitions from I to their successor
states. In an incremental way, the reduced model (H i) is built, new states are
reached (Gi) and new frontier transitions (P i) are considered.

In each iteration, the frontier transitions are considered (P i). The algorithm
di�erentiates between three di�erent types of such frontier transitions P i: PAi, M i

and N i. Transitions to states (PAi) which have already been reached are simply
added to H i+1. This ensures that the algorithm does not consider already reached
states again. Transitions between states which ful�ll condition (1) and the next state
of which do not have any other ingoing arcs (M i) are modi�ed according to Figure 3.
The modi�ed transitions are added to the new frontier transitions P i+1. The reason
why we have to make sure that there are no other ingoing arcs is that loops in the
original model have to be maintained (to preserve the truth of the FRCTL formula).
The remaining frontier transitions N i are added to H i+1 and follow-up transitions
are added to P i+1. Thus, P i+1 contains the next slice of frontier transitions.

The algorithm stops when no new states are reached. In this case, H i will contain
the reduced model and Gi the reachable states of the original model. The reachable
states of the reduced model could also be calculated without special overhead at the
same time.

3.5.2 Correctness of the algorithm

In the following, non indexed names correspond to the names after the last iteration.

Theorem 3.4 The algorithm terminates and constructs a reduced model (SH ; H; LH)
from the original model (S;R; L) and preserves the truth of the speci�cation formulae

in FRCTL, i.e.

8� 2 FRCTL : 8s 2 SH : s j=(S;R;L) �, s j=(SH ;H;LH) �

where SH are the states reachable by transitions in H, which are a subset of the

states reachable by transitions in R, and LH is L restricted to these states.

19

i = 0
G0 = I

P 0 = f(s; s0)jsRs0 ^ s 2 Ig

H0 = ;

repeat
F i = fs0j9s : sP is0g

Bi = F i nGi

PBi = f(s; s0)jsP is0 ^ s0 2 Big

PAi = P i n PBi

M i = f(s; s0)jsPBis0 ^ :s0Rs0 ^ (L(s)\W = L(s0) \W)^

(:9s00 2 Gi : s00 6= s ^ s00Rs0)g
N i = PBi nM i

Gi+1 = Gi [Bi

H i+1 = H i [PAi [N i

P i+1 = f(s; s0)j9s00 : sM is00Rs0g [f(s; s0)j9s00 : s00N isRs0g

i = i+ 1
until Bi = ;

R transition relation of original model

I initial states

G states reached so far (in the original model)

F frontier states

B frontier states not in G (not yet reached)

H current transition relation of reduced model

P frontier transitions

PA frontier transitions which lead back to already reached states

PB frontier transitions to new states

M frontier transitions between two di�erent states which ful�ll
condition (1) and the next state of which
do not have other ingoing arcs

N transitions in PB but not in M

Figure 9: The reduction algorithm together with an explanation of the identi�ers

20

B i-1

B i

P i+1
1

P i+1
2Ni

M
i

PA
i

Gi

Gi

F
i

Z i+1

Ο

Ν

Figure 10: Successors (F i) of newly reached states (Bi�1) are considered in each
iteration of the algorithm

Proof:

Part I: termination
The number of reached states, i.e. the cardinality of G, strictly increases except

for the last iteration when B = ;. Since the number of states in the model is �nite G
is limited and B, the set of newly reached states will be empty after a �nite number
of iterations. As a consequence, the algorithm terminates.

Part II: truth preservation
For ease of notation, we write R j= � and mean s j=(S;R;L) � for any state s 2 SH

since S is understood from R and L is only restricted when R is modi�ed.
For the states s reachable in (S;R; L) all arcs leading to or starting from s are

considered and directly added to H or added after modi�cation according to the
transformation T .

Let P i
1 = f(s; s0)j9s00 : sM is00Rs0g and P i

2 = f(s; s0)j9s00 : s00N isRs0g.
We show that the following invariant holds after each iteration:

H i+1 [P i+1
1 [(R \ (S nGi � S)) j= �, H i [P i

1 [(R \ (S nGi�1 � S)) j= �.
Before the �rst iteration we have H0 [P 0

1 [R \ (S nG�1 � S) = R if we take
G�1 = ;, P 0

1 = ; and H0 = ;.
In each iteration, the successors (F i) of newly reached states (Bi�1) are consid-

ered (Figure 10). B�1 = I in the �rst iteration. All arcs to these successors from
states already reached are contained in P i. This is clear before the �rst iteration.
In each iteration P i+1 is correctly updated. Transitions from Bi are either added
directly via P i+1

2 or the transformation T is applied to them via P i+1
1 (states in Bi

serve as states s2). P i+1 therefore contains all arcs to successors of newly reached
states from states already reached.

We now describe what happens to the arcs (marked bold in Figure 10) to these
successors of newly reached states. These arcs were either contained in Zi =
f(s; s0)j9s00 : s00M isRs0g or P i

2 of the previous iteration. These arcs are cut from
R\ (S nGi�1 � S) because R\ (S nGi � S) = (R\ (S nGi�1 � S)) nBi�1 � S. At

21

the same time, the P i arcs, in which the P i
2 arcs are contained, are directly added

to H i via PAi or N i or modi�ed according to the transformation T in P i+1
1 (on the

left-hand side of the union of P i+1). In this calculation several arcs are modi�ed
simultaneously. The result of the simultaneous modi�cations is the same as when
these modi�cations are performed in sequence since any s1 does never serve as an
s2 since all s2 are newly reached states and all s1 are `old' states. The latter follows
from M i � PBi. In spite of this transformation in P i+1

1 the transitions in Zi+1 are
still in R. However, these transitions do not play any role since the starting points
of these arcs are not reachable any longer in R \ (S n Gi � S). This is the reason
why Zi did not need to be added to the new transition relation.

Using Theorem 3.3 we can therefore conclude thatH i+1[P i+1
1 [R\(SnGi�S) j=

�, H i [P i
1 [R \ (S nGi�1 � S) j= � after each iteration.

In the last iteration, Bi is empty, and thus also P i+1
1 , consequently H i+1[P i+1

1 =
H i+1. Since Gi contains all reachable states in (S;R; L) (the frontier states are added
to Gi in each iteration), R\(SnGi�S) contains only arcs from non-reachable states.
Since these non-reachable states do not have any e�ect on the truth of � for a given
s 2 SH we can conclude:

) 8s 2 SH : s j=(SH ;H;LH) �,

s j=(SH ;H[R\(SnG�S);LH)
�,

: : :,

s j=(S;R;L) �

3.5.3 Better reduction by special treating of fairness

An even better reduction can be obtained if the formula is out of FRCTL and the
fairness constraints consist only of propositional logic. In this case, the variables in
the fairness constraints are not added toW . Instead, we add the following constraint
to condition (1): if s2 ful�lls any of the fairness constraints then s1 ful�lls this fairness
constraint. In the algorithm we substitute M i = : : : by

M i = f(s; s0)jsPBs0 ^ :s0Rs0 ^ (L(s)\W = L(s0)\W)^

(:9s00 2 Gi : s00 6= s ^ s00Rs0) ^ (80 � i � n : s0 j= hi ! s j= hi)g

In this way, the transformation will leave fair paths fair. At the same time a
better reduction is possible since W is smaller.

4 Evaluation

It is di�cult to justify why the overall performance of our reduction algorithm with
subsequent model checking of the reduced model is better than just model checking
the original model if OBDDs are used to represent the transition relation of the
model. We therefore analyze the overall performance for the case that hash tables
are used to represent the transitions between states. Furthermore, we substantiate
our claim by a practical example.

22

4.1 Analysis of the overall performance

In the case of hash tables, CTL model checking has time complexity O(jf j�(jSj+jRj)
where jf j represents the length of the formula f [CES86]. Our reduction algorithm
has time complexity O(jSj+ jRj), i.e., it has linear time complexity in the number
of reachable states and transitions (due to just one breadth-�rst search through the
reachable states of the model). Thus, checking an RCTL formula on the reduced
model together with prior reduction has time complexity O(jSj+jRj+jf j�(jS0j+jR0j))
where (S;R; L) is the original Kripke model and (S0; R0; L0) the reduced model.

There are three reasons why model checking with prior reduction by our reduc-
tion algorithm will in general be faster:

� In general, jW j << jV j, i.e., there are only few (visible) components (compared
to the total number of components) about which the speci�cation talks, and as
a consequence the reduction will be considerable, i.e., S0; R0 are small compared
to S and R.

� It is often the case that jf j � 2 and thus the reachable states of the model
have to be inspected several times by the model checking algorithm.

� In most cases reachability analysis is advantageous. The time needed for the
reachability analysis would need to be added to the time complexity of the
model checking. Our reduction algorithm is combined with reachability anal-
ysis and thus eliminates the need for an extra reachability analysis and does
not contribute any additional cost to the time complexity above.

If a model is checked for an RCTL formula with fairness constraints, the gain will
be even bigger since checking CTL formulae with fairness constraints as in [CGL93]
has complexity O(jf j2 � (jSj+ jRj)).

4.2 Example: the alternating bit protocol

Based on David Long's OBDD package a �-calculus evaluator [Bie95] has been im-
plemented. Various input languages (e.g. state charts, process algebra) will later be
on top of this �-calculus evaluatory. This general approach allows easy extensions to
other speci�cation languages so that no special model checker has to be written for
every speci�cation language, optimizations on the �-calculus level and easy experi-
mentation to speed up model checking. Our system also allows the experimentation
with di�erent representations for transition relations, not just OBDDs.

Our reduction algorithm has been implemented on the level of the �-calculus
evaluator, also using Long's OBDD package. We applied our reduction algorithm
to an interleaving model of the alternating bit protocol as it is described in [BK95]
in Sections 4.1 and 4.2. The original model has 22 reachable states (out of 1728
possible states) and 26 transitions among them. The formula to be checked is an
RCTL formula (stating that all messages are received in the correct order) with
fairness constraints.

After reduction with our algorithm only 7 states and 10 transitions remained.
Although the model is extremely small our reduction algorithm with subsequent

yThis is done in cooperation with Forschungszentrum Informatik, Karlsruhe.

23

model checking needs almost only half of the time (53 %) compared to model check-
ing the original model. This result is very promising since we can expect much
better reductions on large models.

When the compilers from various description languages to our �-calculus evalu-
ator have been implemented larger test examples will be available. This will allow
us to draw conclusions about when our reduction algorithm should be applied and
to which extent the reduction speeds up model checking.

5 Conclusions and future work

Formula-dependent model reduction algorithms can achieve much better reductions
than reduction algorithms which do not consider the properties to be veri�ed. The
formula-dependent reduction algorithms presented so far [ASSSV94], [DGG93], how-
ever, are computationally expensive. In this paper we have presented a formula-
dependent reduction algorithm which is computationally e�cient because it needs
only one pass through the reachable states of the model but allows nevertheless
that long subpaths are cut from the original model if they do not a�ect the `visible'
variables. Although no complete reduction with respect to the equivalence relation
induced by the formula is guaranteed, it is reasonable to expect that the reduction
achieved by our algorithm will be close to it if the components work synchronously.
Thus our reduction algorithm will often reduce both space and time needed for
model checking real systems.

Our reduction algorithm requires the prior construction of the global transition
relation of the system to be model checked. This is not necessary if the parallel
components of a distributed system do not work synchronously. In this case, the
reduction algorithm can be modi�ed so that it reduces the components before the
global transition relation is constructed. We can already cut out transitions which
are neither visible actions nor actions participating in a communication in the au-
tomata to be composed. So we subsequently reduce and compose automata. In this
way, at least the space complexity due to the space needed by the global transition
relation of the original model can be reduced.

After application of our reduction algorithm the number of variables needed to
represent the reachable states might be much smaller than before. The reduced
transition relation could therefore be mapped onto a smaller representation with
fewer variables. That only the variables in W might not be su�cient to represent
the states of the fully reduced model becomes clear from Figure 11 where both s1 and
s2 are in the reduced model although they have the same valuations. The number
of variables needed can thus be determined from the number of states which can not
be distinguished by variables in W (s1 and s2 in Figure 11).

When checking a formula on the reduced model there might be errors in the
implementation. The counterexamples will contain only the variables in the reduced
model. This might have disadvantages when searching for errors in the original
implementation. On the other hand, however, counterexamples which contain only
important information (visible variables) might be easier to understand and thus help
to �nd errors in the original model. If the former is the case, one could add variables
considered important for error �nding to the variables in the speci�cation and doing
the reduction on these variables to produce more understandable counterexamples.

24

reduction

p q p r

p q rpa pb

W = {p,q,r} V \ W = {a,b}

s2s1

s1 s2

Figure 11: Variables needed to represent the reduced model.

Acknowledgements

We are grateful to A. Biere and A. Zundel for their careful reading and useful
comments on earlier drafts of this paper.

References

[ASSSV94] A. Aziz, T. R. Shiple, V. Singhal, and A. L. Sangiovanni-Vincentelli.
Formula-dependent equivalence for compositional CTL model checking.
In D. L. Dill, editor, Computer Aided Veri�cation, volume 818 of LNCS,
pages 324 { 337. Springer, 1994.

[BdS92] A. Bouali and R. de Simone. Symbolic bisimulation minimization. In
Computer Aided Veri�cation, volume 663 of LNCS, 1992.

[BFH+92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and C. Ra-
tel. Minimal state graph generation. Science of Computer Programming,
18(3):247 { 271, 1992.

[Bie95] A. Biere. �cke { an evaluator of �-calculus formulae. Technical report,
University of Karlsruhe, 1995.

[BK95] A. Biere and A. Kick. A case study on di�erent modelling approaches
based on model checking - verifying numerous versions of the alternating
bit protocol with SMV. Technical Report 5, University of Karlsruhe,
1995.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8), 1986.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of
�nite-state concurrent systems using temporal logic speci�cations. ACM

25

Transactions on Programming Languages and Systems, 8(2):244 { 263,
April 1986.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-
state concurrent systems. In de Bakker, editor, A Decade of Concur-

rency, REX School/Symposium, volume 803 of LNCS, pages 124 { 175.
Springer, 1993.

[DGG93] D. Dams, O. Grumberg, and R. Gerth. Generation of reduced models for
checking fragments of CTL. In C. Courcoubetis, editor, Computer Aided

Veri�cation, volume 697 of LNCS, pages 479 { 490. Springer, 1993.

[GW91] P. Godefroid and P. Wolper. A partial approach to model checking. In
Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer

Science (LICS), 1991.

[Lon93] D. E. Long. Model Checking, Abstraction, and Compositional Veri�ca-

tion. PhD thesis, Carnegie Mellon University, July 1993.

[NS94] V. G. Naik and A. P. Sistla. Modeling and veri�cation of a real life
protocol using symbolic model checking. In D. L. Dill, editor, Computer

Aided Veri�cation, volume 818 of LNCS, pages 194 { 206. Springer, 1994.

[Pel93] D. Peled. All from one, one for all: on model checking using representa-
tives. In C. Courcoubetis, editor, Computer Aided Veri�cation, volume
697 of LNCS, pages 409 { 423, 1993.

[Val90] A. Valmari. A stubborn attack on the state explosion. In Computer

Aided Veri�cation, LNCS, 1990.

26

