
Towards Better Algorithms for Parallel Backtracking
IB 6/95

Peter Sanders

Department of Computer Science

University of Karlsruhe, 76128 Karlsruhe, Germany

E-mail: sanders@ira.uka.de

January 14, 1995

Abstract

Many algorithms in operations research and arti�cial intelligence are based on

depth �rst search in implicitly de�ned trees. For parallelizing these algorithms,

a load balancing scheme is needed which is able to evenly distribute parts of

an irregularly shaped tree over the processors. It should work with minimal

interprocessor communication and without prior knowledge of the tree's shape.

Previously known load balancing algorithms either require sending a mes-

sage for each tree node or they only work e�ciently for large search trees. This

paper introduces new randomized dynamic load balancing algorithms for tree

structured computations, a generalization of backtrack search. These algorithms

only need to communicate when necessary and have an asymptotically optimal

scalability for many important cases. They work work on hypercubes, butter-

ies, meshes and many other architectures.

1 Introduction

Load balancing is one of the central issues in parallel computing. Since for many

applications it is almost impossible to predict how much computation a given sub-

problem involves, we need dynamic load balancing strategies which are able to keep

the processors (PEs) busy without incurring an undue overhead.

We discuss this in the following context (for a more detailed explication of our

model refer to Section 2.1): We consider n PEs which interact by exchanging mes-

sages through a network of diameter d. The problems to be load balanced are tree

shaped computations : Initially, there is only one large root problem. Subproblems

can be generated by splitting existing problems into two independent subproblems;

nothing is known about the relative size of the two parts. The only thing the load

balancer knows about a subproblem is whether it is exhausted or not. The perfor-

mance analysis is based on the total sequential execution time Tseq and the height

h of the binary tree de�ned by splitting the root problem into atomic pieces.

One application domain for which this model is useful is parallel depth �rst tree

search (Backtracking). Search trees are often very irregular and the size of a subtree

is hard to predict, but it is easy to split the search space into two parts1 Also,

interactions between the subtrees often follow the tree structure (e.g. reporting

results) or they are hard to exploit by a load balancer anyway (e.g. broadcasting of

the current best solution or accessing distributed hash tables). Note that depth �rst

tree traversal is a central aspect of many AI and OR applications and of parallel

functional and logical programming languages.

1Note that the underlying search tree need not be a binary tree. In [16], a variety of heuristics

for splitting the stacks representing a tree are presented. None of them is restricted to binary trees.

1

We now go on by introducing Receiver induced tree splitting , a simple and suc-

cessful scheme for parallelizing tree shaped computations in Section 1.1 which is

compared to other approaches found in the literature in Section 1.2. On overview

of the remainder of the paper concludes this introduction.

1.1 Receiver induced tree splitting

The basic principle is that a PE works only on a single subproblem at a time and only

activate the load balancer when this subproblem is exhausted. The load balancer

supplies new subproblems by requesting other PEs to split their subproblem. Idle

PEs receiving a request either reject the request or redirect it to another PE. Figure

1 shows pseudocode for such a generic tree splitting algorithm.

put the root problem on PE 0

DOPAR on all PEs

WHILE not �nished DO

IF subproblem is empty THEN

get new work from load balancer

WHILE subproblem is not empty DO

IF there is a load request THEN

split subproblem

send one part to the initiator of the request

do some work on subproblem

Figure 1: Receiver induced tree splitting.

This approach has proved useful under a variety of circumstances [3, 16, 17, 6, 2,

13, 7, 5, 20, 18, 19]. A major advantage of receiver induced tree splitting is that load

balancing only takes place when necessary. Also, in the beginning, the size (execution

time) of transmitted subproblem will be fairly large; subsequent productive work

done on the migrated subprolem will make up for the expense of communication.

For su�ciently large problem sizes, most receiver induced tree splitting schemes can

achieve e�ciencies arbitrarily close to 1, i.e., the parallel execution time Tpar can be

written as (1+�)
Tseq
n

+(lower order terms) for arbitrary � > 0. However, in practice

it is crucial how the problem size has to be scaled with the number of processors

in order to achieve a desired e�ciency. In this respect there are large di�erences

between di�erent load balancing strategies.

For example, in [17] it is shown that sending requests to neighboring processors

is quite ine�cient except for the combination of a low diameter interconnection net-

works (e.g. hypercubes) and a work splitting function which produces subproblems

of nearly equal size. The basic problem of these neighborhood polling schemes is

that highly loaded PEs will quickly be surrounded by a cluster of busy PEs and are

therefore unable to transmit work; subproblem transmissions at the border of these

clusters only involve small subproblems which are not worth the e�ort of communi-

cating them.

In [6, 7] a variety of other partner selection schemes is analyzed. There is a

tradeo� between schemes based on local information which may produce many vain

requests to idle processors, and global selection schemes which incur additional mes-

sage tra�c and often su�er from contention at centralized schedulers. Random

polling , i.e., selecting communication partners uniformly at random is identi�ed as

a promising scheme. Good speedups are reported for up to 1024 processors. In

2

[19] it is proved that random polling works in time (1 + �)
Tseq
n + O(dh) with high

probability for crossbars, butteries, meshes and many other architectures. This is

asymptotically optimal for networks with constant diameter because the sequential

component for following the maximum depth branch implies a lower bound of

Tpar 2

�
Tseq

n
+ h

�
; (1)

[19] also looks at the asymptotic inuence of message lengths and atomic grain sizes

of subproblems which we (like most other authors) assume to be constant throughout

this paper.

On SIMD computers load balancing is done in separate load balancing phases

initiated by some triggering condition [13, 5]. The best schemes use the ability of

many SIMD computers to quickly compute pre�x-sums: Communication partners

can be matched by enumerating the busy and idle PEs respectively. Good speedups

have been observed on up to 32K PEs. In [6], a similar idea is used to design a de-

terministic asynchronous load balancing scheme which is asymptotically as e�cient

as random polling. However, it does not perform as well in practice.

1.2 Other related work

Another important class of algorithms which are applicable to tree shaped compu-

tations are dynamic tree embedding algorithms [10, 15, 4]. Using our terminology,

these algorithms are based on splitting the tree into a maximum number of atom-

ic subproblems. The tree generated by this process is on-line embedded into the

interconnection network.

Building on results from [10], it is shown in [15] how randomized dynamic tree

embedding algorithms can be used to perform backtracking on butteries and hyper-

cubes in time O(
Tseq
n

+ h) with high probability. These algorithms achieve constant

e�ciency for problems of size
(nh) meeting the lower bound from Equation (1).

However, if communicating an atomic subproblem is expensive compared to solving

it, the e�ciency of tree embedding algorithms is limited by a quite small constant

factor and this �gure does not improve for larger subproblems where algorithms like

random polling can achieve very high e�ciencies.

The situation is even worse if tree embedding is to be used on meshes because

this is not possible with constant dilation. In [4], it is demonstrated how trees with

O(n) leaves can be deterministically embedded into an r-dimensional mesh in time

O
�

r
p
nh
�
. Also a lower bound of

�
r

q
nh
logn

�
is proven. It is not clear however, how

these results can be expanded for larger problem sizes.

On the other side of the spectrum, load balancing can be done with very little

communication by broadcasting the root problem to all PEs and locally splitting it

into individual pieces based on the PE number. Applied in a straightforward way,

this technique leads to poor load balancing [1], but using it as an initialization for

dynamic load balancers can yield a signi�cant improvement. In [21], it is shown

that for certain search trees with h 2 O(logTseq) the combination of a randomized

initialization scheme and a variant of random polling achieves execution times in

(1 + �)Tseq=n+O(n1=r) on the average. This is asymptotically optimal because the

diameter d of the network imposes a lower bound of

Tpar 2

�
Tseq

n
+ d

�
(2)

on the parallel execution time. (Some subproblem must be transmitted every PE.)

By randomly chopping the tree into much more pieces than PEs it is even possible to

3

devise an e�cient static load balancing scheme for tree shaped computations which

uses a single broadcast of the root problem as the only nonlocal operation. (Plus

collecting results.)

1.3 Overview

The goal of this paper is to present receiver induced tree splitting algorithms which

are as scalable as dynamic tree embedding schemes but retain the advantage of low

communication overhead. Section 2 introduces the notation used and presents some

basic lemmata.

Section 3 presents the main idea. The PEs perform receiver induced tree split-

ting; communication is done with neighbors in a hypercube. By synchronously

iterating through the dimensions of the hypercube, it can be guaranteed that the

load remains evenly distributed as long as \fresh" dimensions of the hypercube are

available. When all dimensions are exhausted, the subproblems are randomly per-

muted and the cycle can start again. Additional subsections explain how random

permutations can be determined e�ciently, how the necessary synchronizations can

be achieved using local interactions and how to port the algorithm to constant de-

gree networks like butteries. Execution times are in (1+ �)Tseq=n+O(h) with high

probability.

In Section 4, the algorithm is adapted to r-dimensional meshes and fat trees.

Execution times are in (1+�)Tseq=n+O(h)n
1=r= logn and (1+�)Tseq=n+O(h)

p
logn

respectively with high probability. For these networks it is also possible to replace

the synchronized phases by a simpler load balancing algorithm based on a local

variant of random polling.

Finally, Section 5 evaluates the results by comparing them to the known lower

bounds. A discussion of possible future work points out how the algorithms might

be further developed.

2 Notation and Basic Results

2.1 Machine and Application Model

Let the n PEs be numbered 0 through n � 1. A message packet can be commu-

nicated to a neighboring PE in unit time. We assume the packet switching model

of communication, i.e., sending a packet to a PE k hops away takes time k. The

network diameter is denoted by d.

Initially, a data structure describing the entire problem (the root problem) is

located on PE 0. Let Tseq denote the root problem's sequential execution time or

size. We do not want to look at very small problems; we assume that Tseq 2
(n).

The splitting function is able to split a subproblem of size T into two subproblems of

size T1 and T2 in unit time. An important assumption is that T1+T2 = T regardless

when and where the subproblems are processed2. A subproblem generated by h

subsequent splits of the root problem is guaranteed to be reduced to a constant

atomic size Tatomic or smaller. An immediate consequence of the above de�nitions

is that

h 2
(logn):

2This excludes many important aspects of parallel search, for example, the inuence of heuristics
like branch-and-bound or �� or the speedup anomalies observed when search is stopped as soon

as a solution is found. But the assumption is valid for many other applications and the algorithms

analyzed here do not explicitly use it. An algorithm which is able to e�ectively do load balancing
will often also work well if the problem has an additional speculative computation aspect.

4

Splitting an atomic subproblem yields the same subproblem plus an empty subprob-

lem. We do not discuss termination detection and reporting results because they

are not a bottleneck if implemented properly. Finally, we assume that a description

of a subproblem �ts into a single network packet.

2.2 Randomized Algorithms

The analysis of the randomized algorithms described here is based on the notion of

behavior with high probability. Among the various variants of this notions we have

adopted the one from [14].

De�nition 1 A random variable X is in O(f(n)) with high probability

| or X 2 ~O (f(n)) for short | i�

9c > 0; n0 > 0 : 8� � 1; n � n0 : P [X > c�f(n)] � n�� ;

i.e., the probability that X exceeds the bound f by more than a constant factor a

is polynomially small and a grows only linearly with the desired exponent. In this

paper, the variable used to express high probability is always n | the number of

PEs.

It is quite easy to derive high probability bounds for the maximum of random

variables from known bounds for the individual variables:

Lemma 1 Let X1 2 ~O (f1(n)),: : : , Xm 2 ~O (fm(n)) be random variables where m

is at most polynomial in n. Then [18]

m
max
i=1

Xi 2 ~O

�
m

max
i=1

fi(n)

�

This lemma is particularly important for parallel computing because it allows us

to conclude from the behavior of an algorithm on one PE to the behavior on the

\worst" of n PEs.

Finally, we need the following Cherno� bounds which are a keystone of many

probabilistic proofs.

Lemma 2 (Cherno� bounds) Let the random variable X represent the number

of heads after n independent ips of a loaded coin where the probability for a head

is p. Then [14, 9]:

P [X � (1� �)np] � e��
2np=3 for 0 < � < 1 (3)

P [X � �np] � e(1�
1
�
�ln�)�np for � > 1 (4)

3 Hypercube poll-and-shu�e

3.1 The basic algorithm

We are now looking at a log n dimensional hypercube network.3

In order to understand the algorithm, it is also useful to assume the existence

of a globally synchronized clock for a moment. We now partition time into phases

of constant length Tphase. Idle processors are only allowed to send requests after a

phase. After phase number i, requests go to the neighbor along dimension i. When

we have reached phase log n, we are out of fresh dimensions for communication.

Therefore, we randomly permute the subproblems and start a new cycle by resetting

the phase counter to 0. Figure 2 shows this partitioning of the time line for n = 24

5

i local computation phase neighborhood polling random permutation

time
0 1 2 3 1 2 30

Figure 2: Two cycles of hypercube poll-and-shu�e for n = 24.

and 2 cycles. Using this schedule we can guarantee that after most phases with low

PE utilization subproblems have a certain likelihood of receiving a request.

Lemma 3 For any 2 (0; 1), for any subproblem S, and for any phase with a

number less than logn� log 2
 , if at any point during this phase at least n PEs are

idle, then after this phase S receives a request with a probability of at least =2.

Proof: Since the number of busy PEs can only decrease during a phase, at least n

PEs will issue a request after the phase under consideration. Let i < logn � log 2

denote the number of the phase under consideration. During the current cycle, S

can only have interacted with the 2i <
2
n PEs reachable over links f0; : : : ; i� 1g.

Therefore, there are at least
2
n idle PEs with which S did not interact in the

current cycle. Due to the random permutation applied at the before a cycle4, each

of the subproblems which S did not interact with is equally likely to be S's neighbor

along dimension i. Therefore, S will receive a request with probability5 at least
2
.

So, at the end of each cycle there is a constant number of phases about which we

cannot say very much. The other phases either do productive work or they reduce the

size of the remaining subproblems. Furthermore, if we make the phases su�ciently

long, the time for doing productive work and issuing requests will dominate the time

for routing the random permutations.

Lemma 4 For any constant > 0, ~O (h) phases with at least n idle PEs are

su�cient such that every subproblem receives at least h requests.6

Proof: We �rst show that ~O (h) phases are su�cient such that a particular sub-

problem S receives at least h requests. Let the random variable KS denote the

number of phases necessary such that S receives at least h requests. We need to

�nd a c such that for all � � 1 and su�ciently large n

P := P

�
KS >

c�h

�
� n��

or

P
h
after c�h

phases: (# of requests for S) < h

i
� n��

3In this paper, log always means the base 2 logarithm.
4The initial cycle is a special case. Either we have the root problem at PE 0. In this case,

moving it anywhere else would make no sense. Or we use a specialized initialization scheme along

the lines of [21] which takes care of randomization.
5The probability space under consideration are sequences of permutations over PE numbers.

Permutations are chosen uniformly at random and independently of the earlier permutations.
6We use the term \a subproblem receives a request" as a shorthand for \The PE where a

subproblem is located receives a request." The proposition \A subproblem S receives k requests"

means that S was generated by splitting (and possibly transmitting) a subproblem which received

k � 1 requests.

6

Since the phases are independent and subproblem S receives a request with proba-

bility at least , Lemma 2 is applicable. By writing h as
�
1�

�
1� 1

c�

��
(c� h

) we

get

P � exp�
"�

1� 1

c�

�2 c�h

3

#

Since h 2
(logn), there is a constant k > 0 such that h � k ln n for su�ciently

large n. Using � � 1 we can further estimate:

P � exp�
"�

1� 1

c

�2 c�k ln n

3

#

= n��(1�
1
c)

2 ck
3

� n�� if c � 1 +
3 +

p
12k + 9

2k

Now, using Lemma 1, we can conclude that all PEs obey this bound.

Theorem 1 Let Tpar denote the execution time of the hypercube poll-and-shu�e

algorithm. For every � > 0 there is a choice of the phase length Tphase such that

Tpar 2 (1 + �)
Tseq

n
+ ~O (h) :

Proof: Let 2 (0; 1) be a constant we are free to choose. In order to determine an

appropriate value for Tphase, we consider it an additional variable. We �rst bound

the number of phases with at most n and with more than n idle PEs respectively.

There can be at most
Tseq

Tphasen(1�)

phases with high PE utilization since in this number of phases n(1�) active PEs

are able process the entire problem. Using the results of Lemma 4 we see that
~O (h) phases with number < log n � log 2

are su�cient to reduce all subproblems

to atomic size. If we choose Tphase > Tatomic all work will be completed in the next

phase. Putting this together we see that

Tseq
Tphasen(1�)

+ ~O (h)

logn � log 2

cycles7 are su�cient to process the entire problem. A complete cycle takes time

(Tphase+O(1)) logn+ logn+ o(logn) 2 (Tphase+O(1)) logn: There are log n phas-

es, after every phase we need time for a request a split and a reply; a random

permutation can be completed in time logn + o(logn) with high probability using

an appropriate routing algorithm [9, Theorem 3.27]. A bound for the execution time

is:

Tpar 2
Tseq

Tphasen(1�)
+ ~O (h)

logn � log 2

(Tphase+O(1)) logn

This can be rewritten as

logn

logn� log 2

Tphase+ O(1)

Tphase(1�)

�
Tseq

n
+ ~O (h)

�

7In order to make the proof more concise, we use the ~O notation quite freely, hoping that a
suspicious reader is willing to take the e�ort to mentally �ll in the details of \for su�ciently large

n", \for some constant c", \with high probability", : : :

7

We choose = �
2
. The factor logn

logn�log 2

gets arbitrarily close to 1 for su�ciently

large n. For su�ciently large Tphase the factor
Tphase+O(1)

Tphase(1�)
is smaller than (1 + �).

Therefore,

Tpar 2 (1 + �)
Tseq

n
+ ~O (h) :

So, hypercube poll-and-shu�e is asymptotically optimal | it meets the lower bound

of Equation (1).

3.2 Random permutations

Choosing a permutation uniformly at random is not as easy as it sounds.
(n logn)

random bits are necessary to de�ne a random permutation. Although this can be

done in time O(logn) if we assume an independent source of random bits in every

PE, we still need to coordinate the information in such a way that every PE knows

where to send its information.

One possibility works as follows: First, every PE chooses a PE number uniformly

at random and sends its subproblem to this PE (idle PEs send empty subproblems).

From the analysis of randomized routing algorithms (e.g. [9]) we know that the

maximum number of subproblems destined for the same PE is in ~O (log n). Now,

every PE sequentially permutes the locally present subproblems in time ~O (logn).

We then enumerate the subproblems using a parallel pre�x sum of the number of

subproblems in each PE (time O(logn)). Finally, every subproblem is sent to the

PE de�ned by its number (time ~O (logn)).

In practice, it might be better to replace this quite expensive procedure by

some kind of pseudorandom permutations. For example, it is common practice in

computational group theory [12] to precompute a small set of random permutations

which have the property of generating the entire group (in this case the symmetric

group Sn of all permutations over PE numbers). Then, a pseudorandom permutation

is constructed by combining a small randomly selected sample of these precomputed

permutations.

3.3 Synchronization of phases

The assumption of a global clock for de�ning phases is convenient for the analysis but

not really necessary. We only need to make sure that requests are always exchanged

between PEs in the same phase. This can be achieved by local synchronization.

Figure 3 shows pseudocode for a simple poll-and-shu�e algorithm with explicit local

synchronization. In practice, one would additionally make sure that PEs waiting for

synchronization can work on their local subproblem (e.g. using multithreading).

3.4 Constant degree networks

The next key observation is that the hypercube dimensions are used one after the

other. Using the quite general results from [8] on routing and [9, Section 3.3.3] on

emulating normal hypercube algorithms we can conclude:

Corollary 1 (Asynchronous) hypercube poll-and-shu�e can be adapted to butter-

ies, perfect-shu�e, and all networks which can e�ciently emulate normal hypercube

algorithms.

8

WHILE not �nished DO

FOR i:=0 TO logn � 1 DO

IF subproblem is not empty THEN

work on subproblem for time Tphase or until exhausted

send message \phase i finished" along dimension i

wait for message \phase i finished" along dimension i

IF subproblem is empty THEN

send a request along dimension i

reject incoming requests

receive new subproblem or a reject message

ELSE

IF a request arrives THEN

split subproblem

send one part to the initiator of the request

participate in randomly permuting the subproblems

Figure 3: Asynchronous hypercube poll-and-shu�e.

4 Meshes and fat trees

Our starting point is the idea to adapt the hypercube poll-and-shu�e algorithm to

other networks by embedding subhypercubes. Section 4.1 explains this for meshes

and Section 4.2 for fat trees. Finally, Section 4.3 lines out how simpler algorithms

which do not need synchronizations between phases can also be used on these net-

works.

4.1 Meshes

Consider an r-dimensional mesh (n a power of 2, d = 2dn=re). A hypercube can

be embedded in such a way that every j-dimensional subcube8 is embedded into a

submesh of diameter9 2j=r (e.g. [7, Figure 6.11]). Using this embedding, a simple

calculation shows that the communication necessary for logn phases of poll-and-

shu�e can be performed in time O(n1=r). Routing can also be performed in time

O(n1=r) [9].

The only complication we have to deal with is that the proof of Theorem 1 only

works for phases of equal length. In fact, if we used a phase length proportional to

the communication expense it would be conceivable that the short phases have good

PE utilization and the long phases have low PE utilization, resulting in a poor overall

e�ciency. The solution is quite simple: We omit the last r log log n phases of each

cycle and set Tphase := cn
1=r

logn
, that is, a constant times the communication expense

of the most expensive remaining phase. (The embedding of a log n � r log logn-

dimensional subcube has diameter
�
2logn�r log logn

�1=r
= n1=r

logn :):

Theorem 2 Let Tpar denote the execution time of the hypercube poll-and-shu�e

algorithm simulated on an r-dimensional mesh with the last r log logn phases of

8Given a PE, let the i-dimensional subcube it belongs to be de�ned as the 2i PEs reachable over

the i lowest numbered links.
9Strictly speaking, the �gure is 2dj=re , but for clearness we omit roundings which do not have

an asymptotic e�ect.

9

each cycle omitted. For every � > 0 there is a choice of the constant c such that

Tpar 2 (1 + �)
Tseq

n
+ ~O

h
n1=r

log n

!
:

Proof: Analogous to the proof of Theorem 1. r log logn takes the role of log 2

and we have to substitute the appropriate execution times for polling and random

permutations.

4.2 Fat trees

We can use a similar approach as for meshes in order to derive a fairly good load

balancing algorithm for fat trees [11]. We partition the network into sub fat trees

of height
p
logn (with 2

p
logn PEs each). Setting Tphase to c

p
logn, we can performp

logn poll-phases in time O(logn). Since routing is also possible in logarithmic

time, we get:

Theorem 3 Let Tpar denote the execution time of the hypercube poll-and-shu�e

algorithm simulated on a fat tree performing only
p
logn phases per cycle. For

every � > 0 there is a choice of the constant c such that

Tpar 2 (1 + �)
Tseq

n
+ ~O

�
h
p
log n

�
:

Proof: (Outline) Similar to proof of Theorem 2. This time we need a factor

O(
p
logn) more cycles than for the hypercube case. But a cycle takes no more

time than in the hypercube case.

4.3 Local random polling

Instead of taking a detour over a hypercube algorithm we can also use algorithms

which exploit the full communication capacity of meshes and fat trees. Phases are

su�ciently long that we can do communication anywhere within the subnetworks

during every phase. We could even (locally) apply the deterministic load balancing

schemes described in [6, 13, 5].

One attractive possibility is to replace the phases of each cycle by the random

polling algorithm described in the introduction. Requests are sent to randomly

selected PEs within a partition of diameter n1=r

logn
on the mesh and

p
logn on the

fat tree. There is no synchronization between phases but busy PEs service requests

in intervals no shorter than Tphase. Random permutations are initiated as often as

before.

Theorem 4 On meshes and fat trees, the algorithm de�ned by replacing the phases

of a cycle by a local random polling scheme are asymptotically as e�cient as poll-

and-shu�e.

Proof: (Outline) During local random polling in a time span of iTphase at most

2i subproblems can be derived from one subproblem; all other subproblems have

unrelated positions. This observation can be used to derive a lemma similar to

lemma 3. When we are not too late in a cycle, idle PEs will be well distributed over

the partitions. And if there are n idle PEs, every subproblem receives a request

with probability at least =2 during a time span of Tphase. The remainder of the

proof is analogous to the earlier results.

10

5 Conclusion

The load balancing algorithms for tree shaped computations presented in this pa-

per are a promising family of algorithms. For low diameter networks they achieve

e�ciencies arbitrarily close to 1 for a per PE load in O(h) which is asymptotically

optimal since the sequential component of the problem is of the same order. There-

fore, the new algorithms are at the same time asymptotically as scalable as tree

embedding techniques and have the same communication economy as earlier tree

splitting based algorithms which require larger problem sizes for good e�ciency.

For meshes, the algorithms have a better scalability (by a factor logn) than the

best previously known algorithms. In the important case of logarithmic depth trees

(h 2 O(logn)), the required per PE load of O(d) is asymptotically optimal. The

new algorithms for fat trees are by a factor
p
log n better than the best previously

known ones.

5.1 Future work

An interesting observation is that as the algorithms get simpler and more practical

the analysis gets more involved. In fact, there is a number of additional attractive

modi�cations whose e�ectiveness we have not yet been able to verify:

� Perhaps, synchronizations between phases can be completely omitted even for

the hypercube case.

� Shu�ing subproblems can be simpli�ed by using permutations which are easy

to determine and easy to route. For example, neighboring PEs can agree on

a random bit and exchange their subproblems if it is a 1-bit. Iterating this

for all dimensions might be a su�ciently random permutation. This random

exchange can even be interleaved with the computation.

� The algorithms based on local random polling could mix local and global

requests in such a way that the average cost for a request is not substantially

changed. (For example allowing a global request with probability O(1= logn)

on a mesh.) Random permutations are then only an additional provision for

the case that something goes wrong. Simulation experiments indicate that this

approach works well even if random permutations are completely disabled.

References

[1] O. I. El-Dessouki and W. H. Huen. Distributed enumeration on between com-

puters. IEEE Transactions on Computers, C-29(9):818{825, September 1980.

[2] R. Feldmann. Game Tree Search on Massively Parallel Systems. PhD thesis,

Universit�at Paderborn, August 1993.

[3] R. Finkel and U. Manber. DIB| A distributed implementation of backtracking.

ACM Trans. Prog. Lang. and Syst., 9(2):235{256, Apr. 1987.

[4] C. Kaklamanis and G. Persiano. Branch-and-bound and backtrack search on

mesh-connected arrays of processors. In ACM Symposium on Parallel Archi-

tectures and Algorithms, 1992.

[5] G. Karypis and V. Kumar. Unstructured tree search on SIMD parallel comput-

ers. IEEE Transactions on Parallel and Distributed Systems, 5(10):1057{1072,

1994.

11

[6] V. Kumar and G. Y. Ananth. Scalable load balancing techniques for parallel

computers. Technical Report TR 91-55, University of Minnesota, 1991.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

[8] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao. Randomized routing

and sorting on �xed-connection networks. Journal of Algorithms, 17:157{205,

1994.

[9] T. Leighton. Introduction to Parallel Algorithms and Architectures. Morgan

Kaufmann, 1992.

[10] T. Leighton, M. Newman, A. G. Ranade, and E. Schwabe. Dynamic tree em-

beddings in butteries and hypercubes. In ACM Symposium on Parallel Archi-

tectures and Algorithms, pages 224{234, 1989.

[11] C. E. Leiserson. Fat trees: Universal networks for hardware e�cient super-

computing. In International Conference on Parallel Processing, pages 393{402,

1985.

[12] T. Minkwitz. Personal communication. Department of Informatics, University

of Karlsruhe, 1995.

[13] C. Powley, C. Ferguson, and R. E. Korf. Depth-�st heuristic search on a SIMD

machine. Arti�cial Intelligence, 60:199{242, 1993.

[14] S. Rajasekaran. Randomized algorithms for packet routing on the mesh. In

L. Kronsj�o and D. Shumsheruddin, editors, Advances in Parallel Algorithms,

pages 277{301. Blackwell, 1992.

[15] A. Ranade. Optimal speedup for backtrack search on a buttery network.

Mathematical Systems Theory, pages 85{101, 1994.

[16] V. N. Rao and V. Kumar. Parallel depth �rst search. Part I. International

Journal of Parallel Programming, 16(6):470{499, 1987.

[17] V. N. Rao and V. Kumar. Parallel depth �rst search. Part II. International

Journal of Parallel Programming, 16(6):501{519, 1987.

[18] P. Sanders. Analysis of random polling dynamic load balancing. Technical

Report IB 12/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, April 1994.

[19] P. Sanders. A detailed analysis of random polling dynamic load balancing. In

International Symposium on Parallel Architectures Algorithms and Networks,

pages 382{389, Kanazawa, Japan, 1994. IEEE.

[20] P. Sanders. Massively parallel search for transition-tables of polyautomata. In

Parcella 94, VI. International Workshop on Parallel Proccessing by Cellular

Automata and Arrays, pages 99{108, Potsdam, 1994.

[21] P. Sanders. Randomized static load balancing for tree shaped computations. In

Workshop on Parallel Processing, TR Universit�at Clausthal, page (to appear),

Lessach, 1994.

12

