
KfK 5234
August 1993

An Approach to the Machine
Front-End Services

for the CIMC·Open System
Architecture (CIM-OSA)

.
'

Wu-Nan Hou
Institut für Angewandte Informatik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Angewandte Informatik

KfK 5234

An Approach to the Machine Front-End Services
for the CIM-Open System Architecture

(CIM-OSA) *)

Wu-Nan Hau

*) von der Fakultät für Informatik der Universität Karlsruhe

genehmigte Dissertation

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript gedruckt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 76021 Karlsruhe

ISSN 0303-4003

ABSTRACT

This thesis presents an approach to the development of Mach/ne Front-End

Services within the framework of CIM Open System Architecture (CIM-OSA).

CIM-OSA is in development by ESPRIT AMICE projects since 1986. lt defines an

integrated methodology to support all phases of a CIM system life-cycle from

requirements specification, through system design, implementation, operation and

maintenance. CIM-OSA provides a Modelling Framework and an lntegrating
lnfrastructure (IIS). The Modelling Framework supports the modelling of business

activities of an enterprise. The lntegrating lnfrastructure is an operating infrastructure

supporting the execution of CIM-OSA models. With both Modelling Framework and

lntegrating lnfrastructure, CIM-OSA enables a consistent and complete information

processing from the process design to the manufacturing.

The lntegrating lnfrastructure comprises of · four blocks of services: the

Gommunication Services for the management of the Iiaison with communication

subsystems and transparency mechanism; the Business Services for the control of

execution of CIM-OSA models; the Information Services for the system-wide

information exchange and the Front-End Services for the integration of enterprise

resources. ln CIM-OSA, three types of enterprise resources are distinguished:

machins control programs, human interactive programs, and application programs.

These resources are reflected in the Front-End Services, comprising of three

elements, namely Machine, Human and Application Front-End Services (MF, HF

and AF).

The dissertationwas initiated during the validation of CIM-OSA, the main objective of

the ESPRIT project VOICE. lt was found that there are no products nor specifications

available for the Machins Front-End. The Machins Front-End should, on one side,

take the control and management of execution of CIM-OSA elementary Function

Models, and on the other side, integrate heterog·eneous manufacturing devices. ln

the IIS environment of client-server model, the Machins Front-End has a two-fold

function: as a client and as a server.

The proposed approach provides a Control Model Llbrary and a Control Eng/ne.

The Gontraf Model Library contains the application-specific control knowledge of

enterprise functions (called Functional Operations in CIM-OSA Terminology), while

the generic control mechanism is the kernel of the Gontraf Engine. The separation of

these two basic elements is crucial for the MF development in such an environment

with multiple clients and servers.

The approach makes use of the concept of Service Units which may invoke services

of the international standard MMS (Manufacturing Message Specification) or the

proprietary services. lt provides an easy way for the migration of existing proprietary

applications into a CIM system and also Ieads to the fulfilment of user requirements.

Furthermore, it applies the object modelling technique to specify the MF capability,

and uses the principle of the complementary interaction model to define the

interaction between the Machins Front-End and its Clients.

Based on these ideas, the Machins Front-End has been specified in detail and

implemented by use of a highly portable programming language, the C-language. A

testing environment was established for the validation of the MF Prototype. lt is not

only used for this work to validate the proposed approach and to investigate the

behaviour of the Machins Front-End in a CIM-OSA system, but also offers a good

basis to implement the whole lntegrating lnfrastructure. The MF prototype has

become an important part of deliverablas for the ESPRIT AMI CE project 5288.

The CIM-OSA concept was enhanced through the implementation of the Machins

Front-End in the McCIM system. This work has made a considerable contribution to

the evolution and credibility of the CIM-OSA concept.

This thesis begins with the introduction of CIM-Architectures in Chapter 1. lt

discusses various CIM models and the research activities in the CIM area, but the

focus is on CIM-OSA. Chapter 2 describes the problern statement and the goals of

this work. The concepts proposed for the MF design are given in Chapter 3 to 6, and

the implementation and the results of testing are presented in Chapter 7. Some

perspectives on further development of a CIM-OSA system are discussed in Chapter

8 and the important results of this work are concluded in the last chapter.

The text and figures in this thesis use a number of abbreviations and acronyms

which are listed prior to Chapter 1.

Ein Ansatz für das Maschinen-Frontend der offenen
CIM-Systemarchitektur CIM~OSA

Zusammenfassung

Diese Arbeit behandelt Entwurf, Prototypentwicklung und Evaluation eines

Maschinen-Frontends in der offenen CIM-Systemarchitektur (CIM-Open System

Architecture- CIM-OSA). Das Maschinen-Frontend dient der Integration heterogener

Fertigungseinrichtungen.

CIM-OSA wird vom ESPRIT-AMICE-Konsortium schon seit i 986 entwickelt und

definiert eine integrierte Methodik, die alle Phasen zum Aufbau eines CIM-Systems

von der Anforderungsspezifikation über den Systementwurf, die lmplementation, den

Betrieb, bis hin zur Instandhaltung unterstützt. CIM-OSA umfaßt zwei

Hauptkomponenten: ein Model/ierungsgerüst und eine integrierende

Infrastruktur. Das Modellierungsgerüst dient der Beschreibung der

Geschäftsprozesse eines Unternehmens, und die integrierende Infrastruktur der

Ausführung der erstellten Prozeßmodelle. Mit Hilfe dieser beiden Komponenten

ermöglicht CIM-OSA eine durchgängige Informationsverarbeitung vom

Prozeßentwurf bis zur Fertigung.

Die integrierende Infrastruktur umfaßt vier Dienstblöcke: die Kommunikations

Dienste zum unternehmensweiten Datenaustausch, die Business-Dienste zur

Interpretation der CIM-OSA-Prozeßmodelle, die Informations-Dienste zur Integration

heterogener Informationssysteme und die Frontend-Dienste zur Integration der

Unternehmensressourcen. ln CIM-OSA werden die Unternehmensressourcen in drei

Klassen untergliedert: Maschinensteuerungsprogramme, interaktive Benutzer

Ein/Ausgabe und Applikationen. Diese Ressourcen spiegeln sich in den Frontend

Diensten wider, die drei entsprechende Elemente enthalten, nämlich die

Applikations-, Human- und Maschinen-Frontend-Dienste (MF, HF und AF).

Diese Arbeit wurde im Rahmen des ESPRIT-VOICE-Projektes begonnen, das die

CIM-OSA-Konzepte in industriellen Umgebungen validieren sollte. Es wurde erkannt,

daß CIM-OSA nur eine globale konzeptionelle Beschreibung des Frontends

vorgegeben hat. Eine brauchbare Spezifikation lag nicht vor, und es existierte auch

kein verfügbarer Lösungsansatz, welcher die Aufgaben des Maschinen-Frontends

realisieren konnte. Das Maschinen-Frontend muß in der Lage sein, einerseits die

CIM-OSA-Grundfunktionen abzuarbeiten und andererseits die heterogenen

Maschinensysteme zu integrieren. Außerdem hat das Maschinen-Frontend innerhalb

der Client-Server-Architektur der integrierenden Infrastruktur eine doppelte Rolle, es

ist sowohl Client als auch Server.

Der in dieser Arbeit vorgeschlagene Lösungsansatz unterscheidet sich von der

üblichen Methode zum Entwurf von Client-Server-Anwendungen in der Trennung

des applikationsspezifischen Steuerungswissens von den allgemeinen Steuerungs

mechanismen. Dieser Ansatz erfüllt nicht nur die CIM-OSA-Rahmenbedingungen,

sondern erleichtert auch die lmplementation der CIM-OSA-Grundfunktionen.

Nach diesem grundlegenden Ansatz wird das Maschinen-Frontend in zwei

Komponenten gegliedert: eine Contra/ Model Library und eine Gontraf Engine. Die

Control Model Library enthält das spezifische Steuerungswissen der CIM-OSA

Grundfunktionen, und die Contra/ Engine die allgemeinen Steuerungsmechanismen.

Darüberhinaus wurde das Konzept der Service Units eingeführt, die mit den

internationalen Standard-MMS-Diensten (Manufacturing Message Specification)

oder mit herstellerspezifischen Diensten realisiert werden können. Ferner wurde die

Object Modelfing Technique zur Spezifikation des Dienstumfangs des Maschinen

Frontends verwendet und die Interaktion zwischen dem Maschinen-Frontend und

dessen Klienten durch ein Paar komplementärer Interaktionsmodelle realisiert.

Basierend auf diesem verfeinerten Entwurf wurde das Maschinen-Frontend

spezifiziert und in einer prototypischen I mplementation realisiert. Die Anwendbarkeit

des Konzepts wurde anhand des Prototypen mit mehreren Prozeßmodellen auf

einem Testszenario erprobt. Es wurde erstmals der wichtige Aspekt von CIM-OSA,

die 11ausführbaren Modelle 11
, demonstriert. Das Konzept sowie der erstellte Prototyp

wurden vom ESPRIT-AMICE-Konsortium sehr gut angenommen.

Das CIM-OSA-Konzept wurde durch die lmplementation des Maschinen-Frontends

im McCIM-System aufgewertet. Diese Arbeit hat damit einen wesentlichen Beitrag

zur Akzeptanz und zur Weiterentwicklung des Cl M-OSA-Konzepts geleistet.

ACKNOWLEDGEMENTS

This work was carried out in the Institute for Applied lnformatics (lAI) in the Nuclear

Research Center of Karlsruhe (KfK). I would like to thank the KfK for the schalarship

support during this research work.

I am grateful to Prof. Dr.-lng. H. Trauboth and Prof. Dr.-lng. U. Rembold for their

useful advice and encouragement, and also Prof. Dr.-lng. R. Dillmann for his

evidence.

I am deeply indebted to Dr. E. Holler for his support and helpful advice to achieve

this work, and to my colleagues Mrs. M. Didic, Dr. W. Molisz, F. Neuscheler, F.-J.

Kaiser, M. Huber, L. Bogdanowicz, P. Gymer, and Ph. Guittot for many fruitful

discussions and their help on the establishment of the test environment.

Also I greatly appreciate the engagement of Mr. M. Klittich from the Daimler Benz

AG in applying this work in the ESPRIT AMICE Project.

Espcially, I am grateful to my family for their continued care and encouragement

throughout the period of this research.

CONTENTS

1) CIMG:!Arch itectures .. 1

1.1) lntroduction to Computer lntegrated Manufacturing (CIM) 1

1.2} Vendor Concepts of CIM Architectures ... 3

1.2.1) IBM CIM-Architecture .. 3

1.2.2) DEC CIM-Concept ... 5

1.2.3) Siemens CIM-Concept ... 7

1.3) CIM-Open System Architecture (CIM-OSA) ... , .. 9

1.3.1) The ESPRIT Projects of CIM-OSA .. 9

1.3.2) The CIM-OSA Concepts .. 12

1.3.2.1) The Modelling Framewerk .. 14

1.3.2.2) The lntegrating lnfrastructure (IIS) ... 20

1.3.3) State-of-the-Art in the CIM-OSA Development.. 28

2) Problem Statement and Motivation .. 32

2.1) Problem Statement. ... 32

2.2) Objectives of the Work .. 35

3) Conceptual Basis of the Machine Front-End (MF) Design 38

3.1) Features of the Machine Front-End ... 38

3.2) A Possible Solution to the MF Design and the Problems 41

3.3) Basic Concept of the Approach to the MF Design ... 44

4) The Control Model library .. 48

4.1) Information Tree of the Control Model Library ... 48

4.2) Control Model of the Machine Functional Operation (MFO) 50

4.3) Model Acquisition and Representation .. 51

4.4) Support of the Control Modellmplementation ... 58

5) The Control Eng ine lllilii&Uiiliiilllilll.liiiiiiillilillililll&&aaalil&.lilliiiiiiCII!IDDCIIIDIIDIIIilllll.lilll •• a •• a.a••·····~~~~········ 62

5.1) Transformation Agent .. 63

5.2) The Receiving and lndication Service Modules ... 66

5.3) MF Pending Queues ... 68

6) M F Abstract Objects and Protocols ... 71

6.1) Object Modelling Technique .. 71

6.2) Specification of MF Abstract Objects and Services 75

6.3) The MF-Abstract Object Control Structure .. 82

6.4) Interaction between the Machins Front-End and its Clients 87

6.5) MF Protocols ... 88

7) lmplementation and Validation ... 90

7.1) Goals of Validation .. 90

7.2) Prototyping of the Machins Front-End ... 91

7.3) Requirements for Testing Environment ... 93

7.4) Testing Environment ... 96

7.5) Gase Study .. 99

7.6) Testing and Evaluation of the Results : .. 103

8) Recommendations with respect to CIM-OSA 116

9) Conclusions ===oeCII:IQQCI&CIIillilii&liililliJO&Iillllllll··········~~··· 120

LITERATURE

FIGURES

Fig. 1.1

Fig. 1.2

Fig. 1.3

Fig. 1.4

Fig. 1.5

Fig. 1.6

Fig. 1.7

Fig. 1.8

Fig. 1.9

The IBM-Architecture ... 4

The Concept of DEC CIM-System : .. 6

The CIM Concept of Siemens .. 8

History of AMI CE Projects and the Deliverables 10

AMICE 11/M Project Werkplan .. 11

Current Software Development of a CIM-Application 13

The CIM-OSA Architectural Framewerk .. 15

Definition of an Enterprise Function ... 16

CIM-OSA Functional Decomposition ... 17

Fig. 1.10 A Domain Process Model for the Test Scenario 19

Fig. 1.1 1 CIM-Open System Architecture (CIM-OSA) .. 20

Fig. 1.12 Components of CIM-OSA lntegrating lnfrastructure 21

Fig. 1.13 The Content of the Business-Services ... 23

Fig. 1.14 Environment of the Front-End Services ... 25

Fig. 1.15 The Co-operating Partners of the AF ... 27

Fig. 1.16 The Co-operating Partners of the HF .. 27

Fig. 1.17 The Co-operating Partners of the MF .. 28

Fig. 1.18 Relationship between the MFO's and the MF 31

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 5.1

Fig. 5.2

Fig. 5.3

Client-Server Relationship in the MF Environment.. ~ 39

lnteractions between MF-Ciients, MF and MF-Servers 40
I

The MF Structural Components ... 41

The Basic Structure of the Machins Front-End 45

The Model-supported Machins Front-End ... 46

The Information Tree of the Control Model Library 49

An Example of the Data Flow within a MFO Control Model 51

The Processing of the Control Model Library 54

Program Structure of the Control Model Library 57

An Overview of the MF Design Alternatives .. 63

The Model Execution Control .. 65

The Link between the two MF Panding Queues 69

Fig. 6.1

Fig. 6.2

Fig. 6.3

Fig. 6.4

Fig. 6.5

Fig. 6.6

Fig. 6.7

Fig. 6.8

Fig. 7.1

Fig. 7.2

Fig. 7.3

Fig. 7.4

Fig. 7.5

Fig. 7.6

Fig. 7.7

Fig. 7.8

Fig. 7.9

Outline of MMS Services Classes .. 72

BasicElementsofa State Transition Diagram 73

The Overall Objects Structure of MMS-EASE 74

MF _oc State Transition Diagram ... 76

The Process of the Machins Front-End ... 83

The Control Structure of the MF Abstract Objects 86

MFO Standard Control Structure ... 87

Service Sequences of Operations ... 89

A Prototype of the MF Control Engine ... 92

Testing Environment for the MF Prototype .. 96

The IIS-Processes on a Gell Controller Station 97

McCIM System (A CIM-OSA Demonstrator) .. 99

System for the Measurement of the MF Performance 1 07

Execution Tim es with Single MFO ... i 09

Frequency Distribution of the MF Process Time 110

The MFO Execution Time with three MFO's 11 i

Interval of the Service Unit Calls (with 3 MFO's) i 11

Fig. 7.10 Execution Times with Multiple MFO's .. i 12

Fig. 8.1 A revised CIM-OSA lntegrating lnfrastructure 118

List of Abbreviations and Acronyms

C/M-OSA Termjnolog,v:

AC Activity Control (an IIS component)

AF Application Front-End Services (an IIS component)

AFE Application Functional Entity (a type of CIM-OSA conformed CIM-Module)

AFO Application Functional Operation (a type of FO)

BC Business Process Control (an IIS component)

BP Business Process Model (lntermediate Ievei of a CIM-OSA model)

CM Communication Management (an IIS component)

DM Data Management Services (an IIS component)

DP Domain Process Model (Top Ievei of a CIM-OSA model)

EA Enterprise Activity (Bottom Ievei of a CIM-OSA model)

FO Functional Operation (elementary CIM-OSA Function Model). There are

three types of FOs distinguished, namely: Human, Application and

Machine Functional Operation (HFO, AFO, MFO)

HF Human Front-End Services (an IIS component)

HFE Human Functional Entity (a type of CIM-OSA conformed CIM-Module)

HFO Human Functional Operation (a type of FO)

lEE lntegrated Enterprise Engineering (CIM-OSA build-time environment)

IEO lntegrated Enterprise Operation (CIM-OSA run-time environment)

IIS lntegrating lnfrastructure (Operating platform of CIM-OSA system)

MF Machine Front-End Services (an IIS component)

MFE Machine Functional Entity (a type of CIM-OSA conformed CIM-Module)

MFO Machine Functional Operation (a type of FO)

PR Procedural Rule

RM Resource Management (an IIS component)

SD System-wide Data Services (an IIS component)

SE System-wide Exchange (an IIS component)

B-Services

C-Services

F-Services

I-Services

Business Services (an IIS main component)

Communication Services (an IIS main component)

Front-End Services (an IIS main component)

Information Services (an IIS main component)

Addjtiona/:

AMICE reverse acronym for European Computer lntegrated Manufacturing

Architecture (an ESPRIT consortium)

API Application Program Interface

APU Application Program Unit (a type of Program Unit)

CIM Computer lntegrated Manufacturing

CIM-OSA CIM-Open System Architecture (Result of the ESPRIT AMICE Projects)

ESPRIT European Strategie Programme for Research and Development in

Information Technology

ExecCtriFiag Execution Control Flag (an attribute of the ModeiExecCtrl data object

used for the control of model execution)

FT AM File Transfer and Access Management (an ISO standard protocol)

HPU Human Program Unit (a type of Program Unit)

lAI Institut für Angewante Informatik (Institute for Applied lnformatics-KfK)

ISO International Standard Organization

KfK Kernforschungszentrum Karlsruhe GmbH (a research center in Germany)

MAP Manufacturing Automation Protocol, International Standard

MMS Manufacturing Message Specification (an ISOstandard protocol)

Model ExecCtrl Model Execution Control Data Object (a data structure used

for the control of execution of a model)

ModeiExecCtrllist Model Execution Control List (a Iist of Model Execution

Control Data Objects)

MPU Machins Program Unit (a type of Program Unit)

OSI Open System lnterconnection (ISO Reference Model)

PDU Protocol Data Unit

PU Program Unit, a basicprogram function implemented in external program

which co-operates with the Front-End Services to achieve a specified FO.

According to the FO types three types of PUs are distinguished, namely:

RPC

SQL

su
VDB

VMD

VOICE

Human, Application and Machine Program Unit (HPU, APU, MPU)

Remote Procedural Call (an ISOstandard protocol)

System Query Language

Service Unit

Variables Description Block (for the description of the model variables)

Virtual Manufacturing Device

Validating Open System Architecture in lndustrial CIM Environment (an

ESPRIT consortium)

1. CIM-Architectures

1) CIM-Architectures

This chapter introduces various CIM-Architectures which have recently been

published. lt identifies requirements of the present manufacturing enterprises in

building a CIM system and derives the capabilities which a good CIM-Architecture

should have. Several CIM models defined by well-known computer companies are

discussed. However, the focus of this work is on the CIM-Open System Architecture.

1.1) lntroduction to Computer lntegrated Manufacturing (CIM)

With the proliferation of the information technology, Computer lntegrated

Manufacturing (CIM) has been recognized as being a very important key for the

success of a manufacturing enterprise. Among other factors such as labour costs,

technology, and qualification/education of employees, CIM is one of the most

promising opportunities for enterprises which intend to stay competitive and keep

their position in the rapidly changing marketplace [Pans90a, KaCE92j.

CIM can be defined as a computer-based information processing system which

integrates all types of computer systems within a manufacturing enterprise. A CIM

system covers all the business activities of an enterprise which are the decision

support, production planning, automatic control of manufacturing processes, quality

control, maintenance, stores, accounting, cost analysis, etc. A CIM system provides

an appropriate integration of enterprise operations throughout the enterprise by

means of an efficient information exchange. lt aims at the reduction of development

time and production costs, the reaching of a higher product quality and a better

planning, and the usage of the available resources.

When building a CIM system the following requirements have to be met, thereby

reducing some of the limitations of the present manufacturing enterprises:

• integration of 'islands of automation': Automation has been realized with locally

optimized manufacturing systems in the last decades. The physical and logical

connection of these systems is difficult because of different data formats used by

the various business functions. This has led to a problern known as 'islands of

automation' [Stra89].

• interoperability/portability of vendor-dependent devices/software: Nowadays, the

equipment for manufacturing systems is supplied by a multitude of vendors. For

1

1. CIM·Architectures

example, there are approxiamtely 200 manufacturers of industrial robots alone,

each having a controller of its own choice of computer hardware [ChDa89]. Most

of these devices have their own local programs and proprietary operating

systems. Thus software represents a large percentage of the total automation

cost, also maintenance is critical.

o support in overall optimization of enterprise operations: Most manufacturing

systems are implemented to achieve specific functions accordingly to a bottom-up

approach. A complementary top-down approach for the integration of all the

enterprise operations is needed in order to optimize global manufacturing

objectives [Remb90b].

• flexibility to respond quickly to changes in the enterprise environment: The

continuously changing market and technology has enforced enterprises to keep

their manufacturing processes in a new perspective of flexibility, adaptibility and

reliability, instead of stability. The need for rapid adaptation of the manufacturing

processes to the new enterprise environment becomes an important aspect.

Therefore, a good CIM-Architecture should be able to overcome these drawbacks

and provide the following capabilities:

• support of enterprise modelling: This concerns the definition and manipulation of

models used to describe the real world of manufacturing enterprises. The user

should be supported with the design and implementation of his own CIM system.

• system openness: This concerns the international standardization efforts for

hardware as weil as for software application protocols, e.g. models, interfaces,

communication protocols.

o (re-)use of standard software modules: This implies the application of standard

software modules which can easily be adapted to a CIM system. The availability

of such software moduleswill enable rapid adaptation of manufacturing processes

to a new enterprise environment.

o support for the operation of a CIM system: This involves the facility of dynamic

system configuration. An established CIM system should be reconfigurable in a

changing enterprise operation environment.

.. integration support: This entails the integration of existing 'islands of automation'

and other proprietary applications into a CIM system. The existing investment can

be thereby protected.

2

1. CIM-Architectures

A Iot of work has been done so far to achieve the goals listed above. Weil known

vendors as weil as researchers contributed to this task. Actually, several CIM

architectures were conceived by companies like IBM, DEC and Siemens.

Various CIM models have been discussed in [Remb90a], which focuses on the

standardization efforts in CIM. The following sections briefly describe the basic

structures and concepts of CIM architectures introduced by world-leading computer

companies. There arealso several CIM achievements from the research institutions.

An example of such an achievement is the CIM-BIOSYS Plattarm (CIM-Building

lntegrated Open Systems) [West90-91]. The platform provides a data interface and a

set of data modelling tools for the information integration of CIM modules.

Several ESPRIT projects (E.uropean .S.trategic E.rogramme for ß&D in lnformation

Iechnology) concentrate on CIM systems [Espr92]. Same of them obtained good

results in various aspects, for example, the IMPPACT Project (lntegrated Modelling

of Products and Processes using Advanced Computer T echnology) used the

feature-based approach to integrate product and process modelling [GiBH91,

Meie91,Craw93]; the ISA Project (lntegrated Systems Architecture for Open

Distributed Processing) developed the ANSA Platform (Advanced Networked

Systems Architecture) which provides an integrated set of structures, functions,

design recipes and implementation guidelines for building distributed systems

[Ansa89). Perhaps the best conceptual basis and the most advanced architecture is

affered within the ESPRIT AMICE projects under the name CIMmOpen System

Architecture (CIM-OSA). The CIM-OSA concepts are outlined later in this chapter.

1.2) Vendor Concepts of CIM Architectures

This section describes the most advanced concepts of CIM architectures proposed

by Isading companies, like IBM, DEC and Siemens. At the moment they are not

available as complete systems; some elements are on the market, but the other

ones are still in development. This section, however, attempts to present the state

of-the-art in this field.

1.2.1) IBM CIM-Architecture

The IBM CIM-Architecture defines an overall structure for information systems which

supports information sharing and business process integration for an industrial

3

1. CIM-Architectures

enterprise. lt focuses on the storage of shared information, its delivery throughout

networks and its presentation to application programs, devices and users [Hug 91].

The IBM CIM-Architecture is based on a layered structure. lt offers layers of software

services that provide functions like data management, presentation and

communication to the application developer and end user. Figure 1.1 shows the

components of the IBM CIM-Architecture [IBM 91].

Fig. 1.1 The IBM CIM-Architecture

The IBM CIM-Architecture functions will be implemented on the operating

environments of IBM's Systems Application Architecture (SAA) and JBM's Advanced

lnteractive Executive (AIX). SAA is for consistency and compatibility among software

products and AIX is for the UNIX environment.

The data repository and data store are used to manage the enterprise's shared data.

The data repository contains a directory of shared data elements, data definitions

recognized throughout the enterprise, relationships between data elements, and

4

1. CIM-Architectures

data storage locations. The data store is the set of storage facilities containing the

shared data.

The system and application enablers offer application integration functions ranging

from generic system management to specific application functionalities. They provide

the necessary support for new applications to integrate data and business

processes. Three types of system enablers are distinguished: 1) data management

enabler supporting a variety of data repository functions, ranging from file transfer

requests to the complex queries, to allow data to be shared easily across the

enterprise; 2) communication enablers providing a variety of communication

protocols and network to allow the interconnection of devices, systems and people;

3) presentation enablers providing applications with a device-independent interface

to input/output devices such as workstations, industrial computers, sensors, control

systems and production equipment. The application enablers provide an App/ication

Program Interface (AP~ to their application family. They are built on the system

enablers.

The importlexport facilities provide data exchange support through an interface with

data management enabler for the integration of existing applications. They extract,

transform and communicate data to the data repository and data store.

For the implementation flexibility the IBM CIM-Architecture is used in two

environments, bui/d-time and run-time environment. ln the bui/d-time · environment,

data objects, relationships between objects, and business processes are defined.

These definitions are stored in the data repository. They are application-independent

and therefore can be shared by multiple diverse applications throughout the

enterprise. ln run-time, applications use enablers and the build-time information in

the data repository to control application program execution. The run-time

environment supports the day-to-day operation of applications, data integration and

business process integration.

1.2.2) DEC CIM-Concept

The CIM concept of Digital Equipment Gorparation means the improvement of a

manufacturing process with the aid of the Information Technology and the integration

of the information processing of all enterprise activities [FiatBB]. lt focuses on the

integration of applications by information exchange. With top-down approaches to

5

1. CIM-Architectures

functionalities of business processes, all the enterprise activities are modelled into

several functional blocks. Each functional block may reflect a branch of enterprise

activities, such as marketing, sales, budgetting, product design, production and

assembly, warehause or quality control. They are interconnected by an intensive

information flow. The DEC CIM model with the information flow can be found in

[Remb90a].

The DEC CIM concept is realized by the integration of information from multiple

applications which act as CIM components. DEC provides a number of CIM

components (hardware and software products) for building a CIM system._ Each of

them can cover one or more branches of the enterprise activities. Figure 1.2 gives

the basic outline of a CIM systern provided by DEC [DEC 91].

Corporate lnf. Plant-wide Process Monitaring Decision
Systems Systems & Control Support

Order Mgmt. MPCS Supervisory Process Control Real-time XPS

Costing/Financial
Document Mgmt Distributed Control Systems

Compound Doc.
Reporting Systems

Customer Service Maintenance Programmable Logic Controllers Spread-sheets

Fig. 1.2 The Concept of DEC CIM-System

ln the CIM concept, DEC offers Network Application Support (NAS) to the

manufacturing environment. NAS is an extensive product set designed to integrate

applications and information across the manufacturing enterprise. lt provides

functions to link applications and information from multiple operating systerns such

as VMS, UNIX, OS/2, VAX-System. NAS is built using the network communication

protocol of Ethernet and OSI, such as MAP, X.25, X.400. lt provides services to

access the shared data stored in Data Warehouse. The Data Warehause contains a

6

1. CIM-Architectures

global directory of shared data definitions and data elements, their locations, etc. for

various applications.

NAS environment involves a DEC product, called BASEstarwhich offers software for

integrating manufacturing equipment and applications. The important capabilities of

BASEstar are: 1) data management for event-driven collection, manipulation, and

distribution of plant data, 2) application programming interface for manufacturing

integration, 3) ability to control and synchronize application processing, 4) services

for controlling and monitaring device operations, as weil as for managing the

operators and device files, etc. [DEC 91].

Gorparate Information Systems include order management, costing & financial

reporting and customer services. They provide a complete picture of the business

through availability of order, customer service and financial information.

Plant-wide Systems include manufacturing plarining & control systems (MPCS),

maintenance management systems and document management systems. They

allow manufacturing operations to be streamlined. MPCS is used to control material

flow throughout the manufacturing process to maintain quality and monitor inventory,

while maintenance systems enable manufacturers to reduce down-time and lengthen

the life of their production equipment. The document management system provides

a timely, efficient, and paperlass environment through on-line communication

throughout the manufacturing enterprise.

Process Monitaring and Control Systems use the supporting services of BASEstar.

They include supervisory process control systems, distributed control systems

(DCSs) and programmable logic controllers (PLCs). They monitor and control the

production processes to establish consistency in the manufacturing operations,

which in turn increases productivity and reduces costs.

Decision Support Tools include three types of systems: real-time expert systems

providing continuous guidance to the operators during operation of complex

systems; compound document systems; spreadsheets providing ad-hoc reports.

1.2.3) Siemens CIM-Concept

The CIM concept of Siemens is to provide an enterprise with a well-structured

strategy for the stepwise integration of all the enterprise subsystems. lt gives the

7

1. CIM-Architectures

user a guide to realizing an integrated information system for the enterprise.

Siemens does not provide a CIM architecture such as IBM or DEC, which serves as

a basis for the integration of CIM components. lt rather focuses on the grouping of

enterprise activities according to their functionality in several domains. Then it goes

into well-structured details of each domain and of information flows between these

domains. The integration of the domain systems is achieved by the information

exchange, via the network systems. Figure 1.3 shows the CIM concept of Siemens

[BaKW89, Remb90a].

• Investment • Test planning
• Finance • Test procedures
• Personnel • Quality control
• Production • Quallty docum.

• Quality reportlng

CAM
Material flow control
• Material transportation

• Warehousing
• ln-process buffering

Fig. 1.3 The CIM Concept of Siemens

The concept incorporates a Computer Aided Organization (CAO) activity which

includes accounting, personnel and finance. CIM covers a number of domain

8

1. CIM-Architectures

activities such as planning, purchasing, sales, PP&G, GAD, GAP, GAQ, material flow

control, shop floor control, and maintenance, etc. Each domain activity is described

by the functions and the interfaces to other domains. They are interconnected by

intensive information flows.

The distribution of data and the access to the data are of crucial importance for an

integrated enterprise-wide data processing system. They will affect the intensity of

information flow within a domain system as weil as with other domain systems.

Therefore, the data should be weil classified and distributed in a way that can be

easily accessed and maintained. To achieve these functionalities, Siemens applies

the concept of hierarchical structure for organizing the domain activities of a

manufacturing enterprise in five Ieveis which are namely, Factory, Area, Gell,

Station, and Machinery Level. Each Ievei processes data which is mainly stored in its

own Ievei. Thus it improves the information flow and reduces the communication

Ioads within and between the hierarchicallevels.

Siemens supplies a large set of hardware and software products which can mostly

cover the needs of domain activities of a manufacturing enterprise and of

communication between the hierarchical Ieveis. The Siemens products can be

interconnected to build a 'partial' GIM-system. However, the integration of products

from other companies needs sophisticated adaptation work. ln recent years,

Siemens has actively participated in the international standardization efforts, in order

to fufill the increasing user requirements of the integration of GIM-components from

different vendors.

1.3) CIM-Open System Architecture (CIM-OSA)

This section describes the CIM-OSA concepts. First it sketches the activities of

ESPRIT GIM Projects related to GIM-OSA. Following the basic GIM-OSA concepts,

the two main elements, the Modelling Framework and the lntegrating

lnfrastructure (IIS), will be outlined. The detailed description and analysis of the IIS

can be found in [Hau 92].

1.3.1) The ESPRIT Projects of CIM-OSA

The ESPRIT program was conceived in 1981 by the Goromission of the European

Communities and European industries. ESPRIT is an industrially oriented R&D

9

1. CIM-Architectures

program with the aim of improving the industrial competitiveness of the European

Community industries. CIM is an important subject of the ESPRIT programme

because the economy of Europe depends heavily on manufacturing industries.

Within ESPRIT CIM, key technologiss are being developed to address the

manufacturing and engineering industries. ln order to develop a CIM Architecture in

which multi-vendor production system can be implemented at reasonable cost, the

ESPRIT project was initiated in i 986 and perlormed by the AMICE (reverse acronym

for .European {lomputer jntegrated Manufacturing jjrchitecture) consortium.

The AMICE consortium is the main body which addresses the development of CIM

OSA. lt was launched for the ESPRIT Project 688 in 1986 and has been continuing

on the consecutive ESPRIT Projects 2422 and 5288. By the end of 1992 the AMICE

Projects has spent an amount of about 60 million DM. Figure 1.4 shows the history

of the AMI CE projects and the deliverables of CIM-OSA documents [WZL 90].

CIM-OSA
AD0.5

688

CIM-OSA
AD 1.0

CIM-OSA
DRS 1

Legend:

E = Extension
P = Preface
M = Maln Phase
AD= Archltectural Descrlptlon
DRS1 = Draft Speclficatlon Release 1

CIM-OSA
(Prototype)

Fig. 1.4 History of AMICE Projects and the Deliverables

The AMICE consortium grouped a changing number of participants, for example in

1989 it consisted of 21 companies from 7 European countries. CIM users, CIM

implementors, software houses and research institutions were represented

[AMIC89]. These were CAP Gemini SESA (Belgium); Proces (Denmark); AEG, DEC,

Dornier, IBM, Siemens, Volkswagen, WZL-Aachen Uni. (Germany); Aerospatiale,

Alcatel, Bull, Hewlett-Packard (France); FIAT, ltalsiel, SEIAF (ltaly); APT Nederland

BV, Philips (Netherlands); British Aerospace, GEC, ICL (United Kingdom).

10

1. CIM-Architectures

The main goal of the current AMI CE 11/M Project is to develop, validate and publish a

first set of CIM-OSA functional specifications (CIM-OSA Release 1). This Release 1

will be validated through prototyping and real operation of relevant parts of CIM

OSA. These prototypes will also be used for demonstrating the capabilities of CIM

OSA. Figure 1.5 shows the AMICE 11/M Project werkplan [AMIC90].

Rel. 1

Rel. 2

Rel. 3

Draft Spec. DRS2

CIM-OSA Tool Development for DRS1 and DRS2

CIM-OSA Promotion

Project
Milestones:

Fig. 1.5 AMICE 11/M Project Werkplan

ln parallel to the AMICE Project, two other ESPRIT projects have been started in

1991 for the validation of the CIM-OSA concepts. One is the ESPRIT Project 5510

VOICE (J!.alidating .Qpen System Architecture in Jndustrial {;.IM .Environment).

Another one is the ESPRIT Project 5499 CODE (.QQmputer-supported enterprise

wide Qata Engineering).

The VOICE Project is to validate the CIM-OSA concepts in three industrial sites: a

car manufacturing plant, a part manufacturing plant and a casting plant [VOIC90].

VOICE intends to demonstrate the CIM-OSA on two testbeds by end of 1992. From

the first analysis result to the current state of IIS, it is recognized that the

implementation of IIS is not possible. lt is not only because of the programming

manpower, but mainly due to the underdeveloped IIS. A so-called Special Interast

Group VOICE-AMICE Cooperation (SIG-VAC) formed by both consortia is therefore

11

1. CIM-Architectures

called upon to cooperate and further develop the 118. ln order to enable the

demonstration of CIM-OSA 118 in VOICE testbeds, the current activity in VOICE

Project is focused on searching for existing software products which are able to

cover the necessary 118 functionality to some realistic extent.

The CODE Project aims at supporting the process of enterprise-wide data

engineering in all phases of the system life-cycle [CODE90J. lt deals mainly with the

concepts of the CIM-OSA instantiation process for the information view. The project

intends to detail the methodologies for the creation of 'information' reference models

and for the instantiation of these reference models into the particular models of a

certain enterprise. lt will evaluate the constructs of information view given by CIM

OSA, as weil as the SCHEER's reference rnodels [Sche89, Hars92] by use of the

tool set developed by the Manager Software Productions GmbH. ln the project, two

testbeds will be utilized for the implementation of all tools and functionalities

developed by CODE.

1.3.2) The CIM-OSA Concepts

CIM-OSA defines an integrated methodology to support all phases of a CIM system

life-cycle from requirements specification, through system design, implementation,

operation and maintenance [AMICB9]. lt provides a Modelling Framework and an

lntegrating lnfrastructure (IIS). The Modelling Framewerk supports the modelling

of business activities of an enterprise. The IIS is an operating infrastructure

supporting the execution of CIM-OSA models and the integration of heterogeneaus

systems. With both Modelling Framewerk and lntegrating lnfrastructure, CIM-OSA

enables a consistent and complete information processing from the process design

to the manufacturing. Thus it enables the enterprises to perform their business in a

real time adaptive mode. Serveral papers appeared to introduce the basic concepts

of CIM-OSA [Kosa90, Klit90-91, Pans90, Beec90, JoVe90, Vern90, Quer91].

The spirit of CIM-OSA may become obvious, by first identifying the problems and

requirements of current CIM-applications, and then introducing the CIM-OSA

concepts. Figure i .6 depicts the software development of a CIM-application in a

current industrial environment. The task of software engineering can be globally

divided into four subtasks: requirements definition, design specification,

implementation and testing. The whole software engineering task is an iterative

approach. A review or modification of previous subtasks is often needed in order to

12

1. CIM-Architectures

achieve a desired result in the current subtask. After sufficient testing and Validation,

the software product will then be released.

Distributed CIM-Application

(Locai/Remote)

Fig. 1.6 Current Software Development of a CIM-Application

ln this kind of released software program, however, not only the · Task Order

Sequence is embedded, but also a large number of functions are included. The

Task Order Sequence describes the process order of the application. The functions

can be classified into four types: 1) computational functions for arithmetical

operations; 2) data access functions for storing and getting data from the data

bases, 3) machine control functions for sending the control signals to and getting

machins status information from manufacturing devices; and 4) dialogue functions

for interacting with operators. A function may also include all or some of these

functionalities.

The current CIM-applications contain a large number of different types of functions.

These functions are used for the data exchange with the vendor-dependent devices,

e.g. manufacturing machines, storage media, display and input devices. Therefore,

any change of devices in an enterprise environment needs a modification of the

application. lt is well-known that the adaptation of an existing application to the new

environment is mostly very time-consuming and costly.

13

1. CIM-Architectures

lf a CIM-application is used for an environment in which the required functions and

the operating devices are very stable for a lang period, problems will not be met.

However, in todays situation, particulary in the manufacturing area an enterprise can

keep in competition with its products, only if it is able to adapt its manufacturing

resources immediately to achanging environment. From the CIM viewpoint, besides

the data communication, the following new requirements have tobe fulfilled:

.. the Task Order Sequence should be kept flexible such that it can be reconfigured

by the CIM user;

.. the functions should be implemented as program units which can be loaded,

removed, or started according to the user needs;

~~~ the CIM user should be supported, by describing the Task Order Sequence as 

weil as the functions which the user requires. 

These requirements clarify that the Task Order Sequence of a CIM-application 

should be separated from the functions and should be configurable for the CIM user. 

ln order to fulfil the requirements described above, CIM-OSA provides a Modelling 

Framewerk and an lntegrating lnfrastructure which are outlined in the following 

sections. Moreover, CIM-OSA addresses also the integration of 'islands of 

automation' and the interoperability/portability of vendor-dependent devices. 

1.3.2.1) The Modelling Framewerk 

The Modelling Framewerk is known as the CIM-OSA cube shown in Figure 1.7 

[AMICB9,Beek90,JeVo90, Vern90, Vlie90]. lt provides a Reference Architecture which 

Particular Architectures, covering the needs of individual enterprises, can be 

instantiated from. 

The Reference Architecture includes two architecture Ieveis, called Generic and 

Partial Level. lt provides a set of generic building blocks, partial models and user 

guidelines for each of the three modelling Ieveis (requirements definition, design 

specification and implementation description). The partial models are used to reduce 

the modelling effort and to increase the portability of models for a particular 

enterprise. They are applicable to one or more industrial sectors, such as autornative 

manufacture, machins tool, electronic, aerospace, etc. 

14 



1. CIM-Architectures 

The Particular Architecture is provided for modelling a particular enterprise, i.e. it 

exhibits a given CIM solution. lt contains the requirements for the specific enterprise 

with all its system components. The contents of the Particular Architecture can be 

instantiated from those of the Reference Architecture. 

Stepwise Instantistion 

Fig. 1.7 The CIM-OSA Architecture Framework 

For each modelling Ievei, CIM-OSA provides 4 different views to describe the 

enterprise activities. These are: 1) Function View for decomposing functions of a 

Domain Process; 2) Information View for describing information objects that are 

used to carry out the functions; 3) Resource View for describing the available 

resources in order to optimize them regarding the integration requirements; and 4) 

Organization View for charging the responsibilities of organizational entities for the 

execution of domain processes and functions. 

15 



1. CIM-Architectures 

CIM-OSA describes the enterprise activities by the constructs (building blocks) of 

Enterprise Function (EF). The Enterprise Function is the generic construction used 

for the description of the enterprise at each Ievel of functional decomposition, such 

as for the Domain Process, Business Process, Enterprise Activity, or Functional 

Operation defined below. lt provides a uniform way of defining functionality, 

behaviour and functional structure of any CIM-OSA domain. Figure 1.8 shows the 

definition of an Enterprise Function [Kiit91b] which is described in two parts: 

a) a Controi/Behaviour Structure consisting of more elementary Enterprise 

Functions, Procedural Rules and a set of structural links. The Procedural Rules 

dictate the behaviour of the structure by the use of conditions. 

b) a Transformation Function consisting of input/output information described by a 

Iist of object views. 

EF: Enterprise Funclion 
TF: Transformation Function 
PR: Procedural Rules 

.,~,~~~:r:UU:lf:i@ill~[:j[~~jrJ[f~[·,·Jf,![i,~~~~~~,i~:::••·• . 
Structure + Behaviour 

Function 
Input 

Transformation Function 

Control Control 
Input Output 

Raseurea Resource 

Function 
Output 

Input Output 
~ ~ ~ --- --.... ---- .. ---- --- ---. -.. ----------- ---- ------ ----- -- -------_:_----- ---- --- ----- -- --... ------- --- --- ----- ----- -- .. -- -- -.. -.. --- .. : 

Fig. 1.8 Definition of an Enterprise Function 

The functional decomposition is described in a top-down hierachical structure. Figure 

1.9 shows a tree of functional decomposition. The uppermost Ievel of the tree is 

called Domain Process. A Domain is a selected working area for the achievement of 

a specified task within an enterprise. lt can be for the description of all the activities 

of a manufacturing cell. lt can also be for a business goal like 'Make Profit'. A 

Domain Process contains the task description of the domain, including the running 

procedure and information. 

16 



........ 

........ 

I 

r~~ tl ~ s11-j:: :::: ................... ::: 

... ... 

... 
... 

I L I 

1. CIM-Architectures 

. .. 
Control 
Structure 
of DP 

Control 
Structure 
of BP2 

Control 
Structure 
of EA24 

Fig. 1.9 CIM-OSA Functional Decomposition 

Keys are: DP: Domain Process, 
F : Functionality, 
PR: Procedural Rule, 

BP : Business Process, 
B : Behaviour, 
FO: Functional Operation. 

17 

EA: Enterprise Activity, 
S : Structure, 



1. CIM-Architectures 

A Domain Process can contain a number of ordered Business Processes or 

Enterprise Activities. A Business Process can be further decomposed into more 

elementary Business Processes, or can consist of Enterprise Activities. An 

Enterprise Activitiy is defined by a set of Functional Operations. The tree of the 

CIM-OSA functional decomposition (cf. Fig. 1.9) represents the Task Order 

Sequence which is embedded in a traditional application process as shown in Fig. 

1.6. This however in CIM-OSA is extracted from the application process, and 

therefore can be defined and reconfigured by the modeller in a moreflexible way. 

Functional Operation (FO) is considered as the basic elementary CIM-OSA 

Function Model. Within the Modelling Framework, a Functional Operation is defined 

as a basic controllable unit of information processing which is not required to be 

further decomposed. lt is for accomplishing a specified job, e.g. mounting screws on 

a car body. The CIM-OSA modelling methodology consists of splitting Functional 

Operations into three categories which are called Application, Human and 

Machine Functional Operation (AFO, HFO and MFO). 

Figure 1.1 0 shows a Domain Process Model which is designed for a simple master

slave control system in a manufacturing cell. lt reads the path coordinates of a 

master robot driven by an operator and then sends them to a slave robot. With the 

received path coordinates the slave robot follows its path accordingly. The Domain 

Process Model has only one Business Process Model. The Business Process Model 

contains five Enterprise Activities in an order of consequence. The Procedural Rules 

are constructed by predefined objects. For the sake of simplification, each Enterprise 

Activity contains simply either a single Functional Operation or two Functional 

Operations in parallel. 

The function model 'Control' of MF0-30 is used to read the path coordinates of the 

master robot and to send them to the slave robot. With the received path coordinates 

the slave robot moves along its path accordingly. The 'Monitoring' of MF0-40 is used 

to read the path Coordinates of both robots and put the path deviations into a 

database for the analysis. MF0-1 0 and MF0-50 are used toset up andrelease both 

robots respectively. The HF0-20 is provided for the human intervention. An operator 

can stop, restart or terminate the activities of 'control' and 'monitoring'. This Domain 

Process Model is used for the testing of the MF-Prototype, which is described in 

detail in Chapter 7. 

18 



DP: Domain Process 
BP: Business Process 
EA: Enterprise Actlvity 
PR: Procedural Rule .. • • · · ... 
S :Start .. ~~ .. ·· ... 
F :Finish .............. · 
MFO: Machine Functional Operation 
HFO: Human Functional Operalion 

EA 

DP/BP 

... . .. ... 

1. CIM-Architectures 

... 
... 

Fig. 1.10 A Domain Process Model for the Test Scenario 

Figure 1.11 shows the main feature of CIM-OSA. lt provides a link between the 

process design and the manufacturing. After the modelling task, a number of 

Particular Enterprise Models (i.e. Domain Process Models) associated with 

information/resource objects are released for a particular enterprise. They are stored 

as CIM-OSA data in external storage media and can be thereafter started by an 

operator. 

CIM-OSA is involved in two environments: lntegrated Enterprise Engineering and 

lntegrated Enterprise Operation environment. The lntegrated Enterprise 

Engineeringenvironment is a build-time environment in which CIM-OSA provides the 

CIM-user with the Modelling Framewerk to define their business activities. The 

lntegrated Enterprise Operation environment is a run-time environment in which the 

lntegrating lnfrastructure uses the information objects to control application program 

execution. The lntegrating lnfrastructure is described further in the next section. 

19 



lntegrated Enterprise Engineering Environment 
(Build-Time System) 

1. CIM-Architectures 

Open Distributed Application 

lntegrated Enterprise Oparational Environment 
(Run-Time System) 

!fi]::=·: ·: ·Ilill· :-. ::=:::[Zl:'•"• Ilil 

Fig. 1.11 CIM-Open System Architecture 

1.3.2.2) The lntegrating lnfrastructure (IIS) 

The lntegrating lnfrastructure is an operating infrastructure supporting the 

execution of CIM-OSA models [AMIC89,Kiit90-91,Quer91]. lt is a software program 

which may include several modules to achieve its specified functions. Depending on 

the configuration of a given CIM-OSA system, the software modules of the 

lntegrating lnfrastructure can be installed on several network stations. Figure 1.12 

depicts the main frame of the lntegrating lnfrastructure which comprises four blocks 

of services: Business, Front-End, Information and Communication Services 

[ WZL90]. Their functionality and content is briefly described below. 

Communication Services {C-Services) 

The Communication Services serves as a bridge between the other IIS 

components and the underlying communication subsystems. lt is used to enable the 

other IIS components to cooperate system-wide, while isolating them from the 

underlying communication subsystems; it provides functions for location, access and 

performance transparency. CIM-OSA deals with all the communication facilities, not 

20 



1. CIM-Architectures 

only for the OSI networks, but also for proprietary communication networks. The 

current Communication Services consists of two elements [ CIM-OSA 90/CS-1 000, 

Moli92], namely: 

• System Wide Exchange (SE) which provides a set of callable functions for 

message-passing and service administration. lt offers synchronaus and 

asynchronaus communication. lt handles the intra-node communication and 

allows inter-node communication by means of the underlying Communication 

Management. 

• Communication Management ( CM) which provides functions to manage the use 

of underlying communication service for the inter-node communication through 

networks. lt provides a transparent access to the underlying communication 

subsystems and manages the communication resources. 

Business 
Process 
Control 

Activity 
Control 

Resource 
Management 

System 

Wide 

Exchange 

Application 
Front-End 

Machine 
Front-End 

Human 
Front-End 

Fig. 1.12 The lntegrating lnfrastructure of CIM-OSA 

21 



1. CIM-Architectures 

Business Services (B-Services) 

The Business Services provides functions required to control the execution of the 

CIM-OSA models (i.e. Domain Process Models). lt deals mainly with the results of 

the Function View and Resource View of the CIM-OSA modelling task, i.e. it 

manages the occurrences (instances) of Business Processes and Enterprise 

Activities, schedules the manufacturing resources and dispatches the Functional 

Operations to the Front-End Services for the control of their execution. The Business 

Services includes three elements [CIM090/C5-4000j, namely: 

• Business Process Control (BC) which manages and dispatches the execution of 

business processes and enterprise activities by interpreting the Procedural Rules; 

• Activity Control (AC) which controls the execution of Enterprise Activities by 

dispatehing the Functional Operations which are carried out by the enterprise 

resources under the control of the Front-End Services; 

• Resource Management (RM) which reserves and dynamically schedules the 

enterprise resources. 

Figure 1.13 depicts the content of Business Services with the working process. The 

processing of a Domain Process Model can be described as follows: 

i) a Domain Process Model can be started by a human operator. A Domain Process 

Model may consist of several Business Processes (BPs); 

2) BC creates BP-occurrences (instances) and requests RM to schedule the BP

occurrences; 

3) RM creates a schedule for the BP-occurrences. The schedule is designed by use 

of behavioural structure (task flow control) of the BP-occurrences. Each BP

occurrence may consist of a number of Enterprise Activity (EA) occurrences such 

that each of them in turn may contain several ordered Functional Operations 

(FO's); 

4) BC checks the schedule. When the input condition of an EA in the schedule table 

is met, BC will ask AC to execute the EA; 

5) AC controls the processing of each FO involved in the EA; 

5-1) AC asks RM to assign Resource Units for the first FO of the EA; 

5-2) RM assigns Resource Units to the FO; 

5-3) AC requests the Front-End Services to execute the FO; 

22 



1. CIM~Architectures 

5-4) After reception of the FO response from Front-End Services, AC starts the 

next FO (if any). After the last FO of the EA has been completed, AC reports 

this to BC; 

6) BC acts on the status of the EA and checks next EA of the BP-occurrence 

(repeats the points 4 and 5). When the last EA is completed, BC acts on the 

status of the BP-occurrence and continues to start the next BP-occurrence. 

Information Services (I-Services) 

The Information Services provides functions required to access all the CIM-OSA 

distributed data in a unified way. lt integrales existing data storage systems, such as 

Database Management System or File System, and accomodates fundamentally 

different data structures whilst presenting them in a unified way. The Information 

Servicesdeals mainly with the results of the Information View of CIM-OSA modelling. 

lt is designed as a service which provides only a set of callable functions for its 

23 



1. CIM-Architectures 

users. The Information Services consists of two elements [CIM090/C5-2000]. These 

are: 

• System Wide Data ( SD) which coordinates and transforms the data requests sent 

by the other IIS services in CIM-OSA format into System Query Language (SQL)

format. lt provides its users with a unified access to data without any concern for 

the data location and the data storage structure, and without taking care of all 

processing associated with the distributed nature of the accessed data (e.g. 

replication, difference in schemas, system-wide consistency enforcement and 

access rights enforcement). 

• Data Management (DM) which translates the data requests in SOL-format into 

the access language of a particular DBMS or File system. lt provides its unique 

client, SO, with functions for storage, retrieval and conversion of data. 

Front-End Services (F-Services) 

The Front-End Services takes, on one side, the control and management of 

execution of CIM-OSA elementary Function Models, and on the other side, 

integrates the heterogeneaus world of enterprise resources. lt deals with the 

problern of interfacing the vendor-specific applications. However it is not only simply 

an interface between other IIS components and the external CIM-Modules. 

Moreover, it should take the control of function execution to some extent. 

ln CIM-OSA, three types of enterprise resources (external CIM-Modules) are 

distinguished: machins control programs, application programs and human 

interactive programs. These enterprise resources are referred to as Application, 

Human and Machine Functional Entity (AFE, HFE and MFE). They are controlled 

by the three corresponding elements of Front-End Services[C/M-OSA90/C5-3000]: 

• Application Front-End Services (AF) provides functions for interfacing pure 

data-processing applications. lt has to integrate all application-specific data 

processing functions such as CAD (Computer Aided Design), CAM (Computer 

Aided Manufacturing), PPC (Production Planning & Control), PMS (Production 

Management System), stock management, computer aided maintenance, etc.; 

• Human Front-End Services (HF) provides functions for mediating between the 

IIS and its human users. CIM-OSA IIS provides the HF to integrate the human 

work by separating the dialogue component from the actual application programs. 

The HF supports services for the device-independent part of this dialogue 

24 



1. CIM-Architectures 

component and therefore provides an environment in which good user interlaces 

can be constructed, implemented, executed, modified, evaluated and maintained; 

• Machine Front-End Services (MF) provides functions for integration and control 

of manufacturing devices. lt has to integrate machins specific functions such as 

robots, NC-machines, programmable control applications, etc. 

Figure 1.14 gives an overview of the Front-End Services environment and its internal 

relationships. The dotted lines indicate only the virtual connections. 

Fig. 1.14 The Environment of the Front-End Services 

Keys are: lEE: lntegrated Enterprise Engineering, 
AFE: Application Functional Entitiy 
HFE: Human Functional Entity, 
MFE: Machine Functional Entity, 
MMS: Manufacturing Message Specification, 
B : Business Services, 
I : Information Services, 

APU: Application Program Unit, 
HPU: Human Program Unit, 
MPU: Machine Program Unlt, 
API: Application Program Interface. 
F : Front-End Services, 
C : Communication Services. 

ln the CIM-OSA world, the information exchange between the IIS components are by 

use of callable functions of the System Wide Exchange. Three types of Protocols 

defined for Front-End Services are distinguished: Access, External and Agent 

25 



1. CIM-Architectures 

Protocol. The Access Protocol is used by other IIS services to send and receive 

message to/from the Front-End Services. The message unit is called Protocol Data 

Unit. The content of Protocol Data Unit depends on the services supported by the 

three elements of Front-End Services. The Externat Protocol is used to co-operate 

with external CIM-Modules. CIM-OSA intends to use the international or de-facto 

standards as External Protocol, e.g. MMS-protocols, X/Open Protocols, Standard 

Application Program Interface. The Agent Protocol is used for the co-operation 

between two of the same elements of Front-End Services, e.g. between two Machins 

Front-Ends, installad on different network nodes. The Agent Protocol is not 

presented in Figure 1.14. 

The external CIM-Modules (i.e. AFE, H and MFE) consists of a number of 

Program Units which are called Application, Human and Machine Program Unit 

(APU, HPU and MPU), respectively. A Program Unit is an application-dependent 

program function which performs the functions of its corresponding FO. The call of a 

Program Unit can be achieved by means of software mechanisms such as a 

procedure call (remote or local), the execution of a process or of a set of processes, 

sending a message to a mailbox, or sending a message to a pipe or to a queue, etc. 

All three elements of Front-End Services have very similar functions. Each of them 

provides for the control and management of one of the three types of FO's. As stated 

before, FO's result from the Domain Process' hierarchical decomposition of CIM

OSA modelling framework. At the Function View of the Design Specification 

Modelling Level, CIM-OSA provides a construct for the description of FO. 

For the execution of a FO, the Front-End Servi.ces will call the appropriate Program 

Unit installad in the external CIM-Modules. As stated, the external CIM-Modules are 

viewed as enterprise resources required to perform FO's. And they are described by 

constructs of the Resource View of the Design Specification Modelling Level. 

The content of each type of external CIM-Modules is tuther shown in Figures 1.15, 

1.16 and 1.17. They sketch the position of each Front-End Services element and its 

co-operating partners. Each of them should be able to manage several CIM-Modules 

on behalf of other IIS services. Figure 1. i 5 shows that the Application FrontuEnd 

(AF) presents to other external CIM-Modules (i.e. AFE's) a standard Application 

Program Interface (AP~. An Application Functional Entity (AFE) can be implemented 

as a set of procedures, a process under the control of an operating system, or a set 

of (local, remote or distributed) communicating processes. 

26 



1. CIM-Architectures 

Fig. 1.15 The Co-operating Partners of the AF 

The Human Front-End (HF) presents to other external CIM-Modules (i.e. HFE's) a 

standard interface, e.g. X/Open. A Human Functional Entity (HFE) is comprised of 

the oparational human user, the interaction device, the device control (device 

drivers), and the Device Agent. A Device Agent consists of a number of Program 

Units. lt performs as far as necessary the network services, protocol conversions 

between the HF-External Protocol and the special device protocols, etc. 

Fig. 1.16 The Co-operating Partners of the HF 

27 



1. CIM-Architectures 

The Machine Front-End (MF) presents a uniform protocol to the various types of 

external CIM-Modules (i.e. MFE's) such as robot controllers, numerical controllers, 

programmable logic controller, process monitoring, control systems, etc. This 

protocol is called MF-External Protocol which will be based an the international 

standard of MMS (Manufacturing Message Specification). A Machine Functional 

Entity (MFE) is comprised of the machine physical device, the machine specific 

device controller, and the machine control program. ln case of MMS-devices, the 

machins control program will use the MMS supported services primitives. 

Fig. 1.17 The Co~operating Partners of the MF 

1.3.3) State-of-the-Art in the CIM-OSA Development 

The goal of CIM-OSA is to upgrade manufacturing enterprises to perform their 

businesses in a real time adaptive mode. CIM-OSA provides a global solution, by 

allowing the building of flexible and consistent enterprise models that are designed 

and maintained using appropriate engineering tools, and are directly executable 

through an lntegrating lnfrastructure in an operational environment. lt improves the 

enterprise oparational flexibility and multi-disciplinary information (knowledge) 

integration and system integration. 

Coming to the conclusion, CIM-OSA provides a Modelling Framework to ease the 

description of the real world of manufacturing enterprises. The modelling 

28 



1. CIM-Architectures 

methodology is composed of an integrated set of reference models (generic building 

blocks) supporting modelling and optimizing the enterprise requirements, design and 

implementation in terms of functions, information, resources and organization. The 

top-down approach supports a good means for the overall optimization of enterprise 

operations. Moreover, it allows the CIM-user to apply user-specific algorithms for the 

scheduling of enterprise resources. ln order to achive the scheduling, the Resource 

Mgmt. of the Business Services is provided to manage the enterprise resources. 

The results of a modelling task are executed by the lntegrating lnfrastructure which 

deals with communication, information, front-end and business process management 

services to integrate heterogeneaus manufacturing and information technology 

environments. 

ln comparison with the current software development of a CIM-application shown in 

Figure 1.6, CIM-OSA provides a complete information process from the modelling of 

enterprise activities to their operation throughout an enterprise. ln addition to the 

concepts described before, two other aspects are discussed below: 

• Separation of the Function Initiator from the Function Executor. 

As stated before, the current CIM-application involves a number of functions so 

that it acts on the one hand as the function initiator and on the other hand as the 

function executor. CIM-OSA separates these two elements. lt supports the 

Business Services acting as the function initiator to issue the elementary Function 

Models (i.e FO's) for the execution. The Business Services takes over the task 

control of the execution of a domain process and requests the Front-End Services 

to execute FO's. The Front-End Services acts as the function executor. ln 

response to this request, the Front-End Services co-operates with external CIM

Modules to achieve the job specified by the FO. This concept improves flexibility 

for the design and implementation of CIM-OSA models. Therefore, it covers the 

user needs for the adaptation of their manufacturing processes to continuously 

changing markets and technologies. 

• System Opennass and the integration of heterogeneaus enterprise re-sources: 

CIM-OSA offers an architecture which satisfies the requirements for an open 

system. An open system is characterized by the independence of the system from 

vendor-specific applications. lt enables the CIM-user to concentrate on the · 

description of the functions he needs, he will then have a wide spectrum to select 

a system from any vendor which can fulfil these functions. However, the openness 

of a system can only be achieved if there are international standard protocols 

29 



1. CIMeArchitectures 

applied by vendors and users. The standardization efforts of CIM-OSA are 

needed not only in the Modelling Framewerk and the lntegrating lnfrastructure, 

but also in the interfaces of lntegrating lnfrastructure to the external CIM-Modules. 

The CIM-OSA concepts of the integration of the modelling task and the execution, 

the system openess, as weil as the availability of standard software modules will 

provide a great flexibility for enterprises to respond quickly to a changing 

environment. Therefore, CIM-OSA has been recognized as the most comprehensive 

and well-structured CIM-architecture for the manufacturing industry [Remb90a]. 

Although, a large number of research institutions, universities and industrial 

companies have made their contributions to the CIM-OSA development, CIM-OSA is 

still in a stage of conceptual and global description. At present, the AMICE project is 

in a consolidation phase. The development of a CIM-OSA IIS prototype, being the 

main goal of the current AMICE project, was not achieved and so has been 

postponed for a future project. The CIM-OSA results are evaluated and summarized 

as follows: 

'" There are only some generic building blocks defined for the modelling of the 

Function View and Information View ot the Requirement Definition Level; 

'" CIM-OSA provides guidelines for building IEE-tools (lntegrated Enterprise 

Engineering) to assist the modeller in handling the building blocks. A prototype of 

IEE-tool is being developed within the AMICE Project; 

'" The concepts of the CIM-OSA Modelling Framework, Modelling Building Blocks, 

IIS Framewerk and IIS Service/Protocol Definition are foreseen to be 

internationally standardized. The Framewerk for Modelling was issued by 

CEN/CENELEC as the European Pre-Norrn ENV 40003, but the current AMICE 

project concentrates more on the development of the Modelling Building Blocks 

and the IIS than on the standardization efforts; 

'" ln the 118 there arestill some gaps in the definition of services. Only the structure 

of the Communication Services has been given. Prototyping however needs more 

detailed specification. The Information Services is the most completely defined 

service block of the lntegrating lnfrastructure. A prototype can be made if the 

interface to the existing relational database management systems is clarified. For 

the Business Services, the basic ideas have been sketched and some services 

are identified. However, any implementation needs still a Iot of effort for the 

specification of services in detail and the definition of the internal representation 

30 



1. CIM-Architectures 

form of the Domain Process Model including the Procedural Rufes. The Front-End 

Services contains three types of services which are still black boxes, only their 

objectives, functionalities are globally described. 

This dissertation deals with the development of the Machins Front-End. The Machins 

Front-End should, on one side, take the control and management of the MFO 

execution, and an the other side, integrate heterogeneaus manufacturing devices. 

Figure 1.18 is to clarify the relationship between the Machins Functional Operations 

(MFO's) and the Machins Front-End. The functionality of a MFO is achieved by the 

co-operation between the Machins Front-End and the Machins Functional Entity (i.e. 

external machins controller). Therefore, the description of a MFO resulting from the 

Modelling Framework should be implemented in two parts: one is the cantrot part in 

the Machins Front-End and the other is the execution part in the external machins 

controllers. The execution parts are realized by the Program Units described before. 

Business 
Services 

Fig. 1.18 Relationship between the MFO's and the MF 

Furthermore, the Machins Front-End has a two-fold nature in the IIS environment of 

the client-server model: it acts as a client and as a server. The following chapters will 

describe the problern statement and the proposed solution in detail. 

31 



2. Problem Statement and Motivation 

2) Problem Statement and Motivation 

This chapter states the problems which arose during the validation task of CIM-OSA. 

lt identifies the objectives of the Machins Front-End development including the 

definition ot requirements and capabilities. 

2.1) Problem Statement 

After a careful study and analysis of CIM-OSA, it was found that CIM-OSA provides 

a very promising integrated methodolgy in the area of CIM-models. lt is also known 

that under the Modelfing Framework as weil as the lntegrating lnfrastructure (1/S) 

there are still many concepts to be validated and explored in further detail. 

AMICE provides only a document which consists of various pieces of information 

about the Front-End-Services [ CIM090/C5-3000]. Each piece of information is 

described in a style of so-called Formal Reference Base. From the analysis of this 

document we recognize that [GHLS91] 

• the development of Front-End-Services by AMICE is only in the conceptual phase. 

So far only the objectives, functionalities, some relationships with the external 

CIM-Modules are described. The content of all three types of Front-End-Services 

is still a black box; 

.. there are no products nor specifications available which could be used to 

implement the concept of Front-End-Services. 

Therefore, in the VOICE project the Front-End-Services could be validated with 

respect to the basic concept only. lt was found, however, that the approach of CIM

OSA IIS concept is sound and feasible and therefore worth a prototype-oriented 

Validation. As shown in Figures 1.4 and 1.5, the development of an IIS prototype is 

also the main objective of the present AMI CE project 5288. 

From the previous description of all three elements of Front-End-Services, we can 

find that they are similar in nature: 

• They should provide other IIS components with several types of services; 

32 



2. Problem Statement and Motivation 

.. They should manage and control the execution of CIM-OSA elementary Function 

Models (i.e. Functiona/ Operations- FO's); 

.. They should integrate heterogeneaus enterprise resources (external CIM

Modules) by use of External Protocols; 

.. The external CIM-Modules should consist of a number of Program Units. Each of 

them represents the execution part of a Functional Operation resulting from the 

CIM-OSA modelling framework. These Program Units should perform the protocol 

conversions to the device-specific protocol and control the actions of physical 

manufacturing devices; 

.. The external CIM-Modules are viewed as enterprise resources described by 

constructs of CIM-OSA Resource View. 

From the experience obtained during the building of a migration platform [Hou 91], 

the author found that the Machins Front-End has various functions which are similar 

to the Transformation Module shown in Figure 2.1. ln the CIM-OSA terminology, 

the Server Station in the figure can be viewed as a Machins Functional Entity (i.e. 

external CIM-Module). The proprietary distributed application processes act as the 

Business-Services which issues elemntary functions to the Transformation Module 

for their execution. However, there are two main problems if we apply this approach 

to the MF design: 

.. lt may not be possible to represent a Program Unit installad in Machins Functional 

Entity by just one indication function, i.e. a Machins Functional Operation may 

need a number of indication functions to accomplish its functionality; 

.. The capability of the Machins Front-End can only be changed via the 

configuration of its parameters by an external tool. This means that the 

modification of program source codes of the Machins Front-End by adding or 

removing a program unit must be avoided. 

Taking all the above constraints into account, the author decided to begin with the 

MF design and to develop a prototype for the demonstration of CIM-OSA concepts. 

The development should be based on the CIM-OSA concept and reflects the 

industrial user requirements. The prototype should become a major basis for the 

product oriented developments of the lntegrating lnfrastructure in the future. 

33 



2. Problem Statement and Motivation 

Fig. 2.1 Migration of Proprietary Distributed Application into MAP/MMS 

Keys: DFx:proprietary Distributed Function REQx: Request Function CONFx: Confirmation Function 
INDx: lndication Function TPB:Transformation Parameter Block 

34 



2. Problem Statement and Motivation 

So far, we have learned from the CIM-OSA documents that the description of the 

Machine Front-End (MF) is restricted to the objectives, functionalities and some 

relationships to the external applications. A guideline for the definition of a set of 

services for the oparational control is also available, but how the control part of an 

elementary Function Model (i.e. Machine Functional Operation) is implemented in 

the Machins Front-End and how the Machins Front-End co-operates with other IIS 

components as weil as with the machins controllers is not clear. ln other words, 

there is no methodology described by AMICE for the MF design and also no 

approach available in the research area which can be used to implement the 

Machins Front-End. 

2.2) Objectives of the Work 

This work will emphasize on the design of a methodology for the Machins Front-End 

and thereatter a prototype will be developed as a basis for the CIM-OSA 

demonstration. The development of the Machins Front-End should on the one hand 

conform to CIM-OSA concepts and OSI standards, and on the other hand satisfy the 

industrial user requirements. 

The conformance of the MF development to CIM-OSA concepts means that the 

Machins Front-End should support the execution of CIM-OSA models in cooperation 

with other IIS components, particularly the Business Services. lt should be able to 

integrate heterogeneaus manufacturing devices. The following concepts of the 

Machins Front-End must be realized for the MF development: 

• ln the IIS framework, the Machins Front-End should act on one side as a server to 

its clients (MF-Ciients are Business Services, Human Front-End, etc.) and on the 

other side as a client to its servers (MF-Servers are e.g. machins controllers). 

• According to the CIM-OSA Modelling Framework, a Machins Functional Operation 

(MFO) is defined as the smallest unit for accomplishing a job specified in the CIM

OSA model. However, the functionality of a MFO can not usually be implemented 

by use of a single underlying MMS service primitive. ln order to provide a freedom 

of description and implementation of MFO's, and to ease the migration of 

proprietary machins controllers into the CIM-OSA system, the Machins Front-End 

should have some knowledge within it for taking over the control and monitaring of 

the MFO's execution. 

35 



2. Problem Statement and Motivation 

• Communication with shop floor devices should be preferably based on the 

functional profile of the international standard MAP (Manufacturing Automation 

Protoco~ [MAPB9, COMPB9, CONC90b]. The specific model of shop floor devices 

and its communication protocol must be transparent to the MF-Ciient. 

Furthermore, the Machins Front-End should be able to deal, sequentially or in 

parallel, with a number of Functional Operations requested by several MF-Ciients. lt 

should be able to control and manage several manufacturing devices concurrently. 

Satisfication of the industrial user requirements is also an important factor for the MF 

development. From the analysis of the VOICE industrial partners and some reports 

of the AMICE projects, the most important user requirements to the Machine Front

End have been summarized. These user requirements are vague in their description 

and not precise. ln practice, it is often difficult to define precise requirements 

because of the many seenarios possible in any given application, therefore the user 

requirements given below are generalized to encompass all possible eventualities: 

a) remote monitaring of the production processes, shop floor devices; 

ln an assembly or production line, an operator often needs to know the status of 

the concerned production processes or shop floor devices. The status data 

captured for the monitaring needs to be displayed immediately to the operator. 

b) automatic production data collection; 

There is a quite Iot of data in a manufacturing enterprise which is needed later for 

analysis. This kind of data is captured and stored in a data base first. 

c) control, synchronization of shop floor devices; 

The control and the synchronization of activities of several shop floor devices are 

basic requirements in manufacturing processes. 

d) alarmsignaland error condition handling; 

When a status data is beyond the allowed range, the system should alarm the 

operator to readjust the system to the normal range. 

e) emergency condition handling, e.g. a stop action by an operator; 

The emergency signal indicates that the system state is critical and could darnage 

the system. Therefore, the system should support the operator to immediately 

take actions, e.g to stop the process. 

f) time critical operations; 

36 



2. Problem Statement and Motivation 

ln manufacturing processes, some operations are required to be accomplished in 

a given time interval. The time interval required is dependent on the process, 

which can range from miliseconds to several minutes. 

g) local and remote access to MMS Servers (Manufacturing Message Specification) 

and non-MMS Servers; 

The access and location of diverse manufacturing devices should be hiden from 

the system user and should be easily configurable. 

h) Integration of multi-vendor devices; 

This deals with facility for the integration of heterogeneaus devices. 

i) support for the design and implementation of CIM-OSA models; 

j) user oriented integrated engineering tools for the configuration of the CIM-OSA 

system; 

The requirements: (a) - (h) represent the additional capabilities which the Machine 

Front-End should possess. The items (i) and (j) reflect the engineering support for 

the building of CIM-OSA models, they beleng to the scope of the CIM-OSA 

lntegrated Engineering Tools (IEE-Tools). From the CIM-OSA concept, the two user 

requirements, time-critical operation and emergency handling, are discussed below. 

The lntegrating lnfrastructure (IIS) acts as a cell controller in a manufacturing cell 

and needs several processes to achieve its functions. The IIS processes should be 

installad on a multi-tasking operating system which will influence the execution time 

of a CIM-OSA model in addition to other factors such as the underlying network 

communication subsystem, machins control system, etc. Therefore, the lntegrating 

lnfrastructure is used more for the overall control than for time-critical operations. 

The operations to be accomplished within the miliseconds range should be put down 

to the machins station Ievei. However, some mechanisms, such as a priority-driven 

execution which allows the process of the models with higher priority first, can be 

introduced in the MF design. 

Both the 'error condition handling' and the 'emergency handling' may need 

intervention by an operator, this means that the Human Front-End must provide the 

facility to mediate with an operator. Since the three elements of the Front-End 

Services have similar features, the developed MF prototype can be also used to co

operate with an operator. However, this work does not intend to define any External 

Protocols for the Human Front-End or for the Application Front-End. 

37 



3. Conceptual Basis of the MF Design 

3) Conceptual Basis of the Machine Front·End (MF) Design 

The chapter describes the conceptual basis applied to the MF design. Beginning at 

the discussion on the features of the Machins Front-End, an advanced approach for 

the MF design is presented. The approach consists in providing a Control Model 

Libray and a Control Engins and introduces the concept of Service Units. 

3.1) Features of the Machins Front-End 

ln the Client-Server Architecture of the lntegrating lnfrastructure (1/S), the Machins 

Front-End has three features: 

" a twofold function, as a client and as a server; 

.. a provision of specific services for the other IIS components; 

.. an application program for the CIM-OSA users, not a setvice provider. 

A twofold function as a client and as a server 

The message passing between two co-operating partners in the CIM-OSA IIS 

environment is based on the Client-Server Architecture. According to the MMS

Service definition, the Server is defined as the peer communicating entity which 

behaves as a VMD ( Virtual Manufacturing Device) for a particular service request 

instance. The Client is the peer communicating entity which makes use of the VMD 

for some particular purpese via a service request instance [/SO 90]. 

The Machine Front-End is not simply a server. lt acts both as a server to its 

clients (Activity Control, Resource Mgmt. Human Front-End, etc.) and as a 

client to its servers (e.g. machine controllers). The client-server relationships of 

the Machins Front-End to its client and server are described in Figure 3.1. According 

to a MF-Service Request (MFO call) sent by MF-Ciient, an appropriate MF-Service 

lndication Function is started. Within this function a number of service requests with 

associated request data are formed and then sent to the MF-Server. The service 

requests issued by the Machins Front-End have other service classes which are 

based on the agreement between the Machins Front-End and its server. They 

should be understood by the MF-Server in order that it can take the desired 

operations. 

38 



3. Conceptual Basis of the MF Design 

execut/on 

MF-Service Confirmation · 

Service Response 

Fig. 3.1 ClienteServer Relationships in the MF Environment 

The Machine Front-End acts as an agent between the service requestor (MF-Ciient) 

and the service executor (MF-8erver). After receiving a MFO call, it generates 

corresponding service request(s) and sends them to the appropriate MF-8erver. 

ln the CIM-08A 118 environment, the Machins Front-End should be able to deal, 

sequentially or in parallel, with multiple MF-Service Requests (MFO calls) from more 

than one MF-Ciients. 

Figure 3.2 shows the relationships of the Machine Front-End with two clients and two 

servers. lt describes in detail the functional interactions of the Machine Front-End 

with its clients and servers. Each bleck represents a program function. MF_xxx_req 

indicates a callable function supported by the Machins Front-End and ss_xxx_req is 

Iabeiied for a callable function supported by MF-8erver (a machins control system or 

any other 118 component). The character u indicates that the function is a user

specific function, and the xxx indicates a specific service type. Within the execution 

of a MF-Indication Function (u_MF_xxx_lnd( ... )) several service requests may be 

sent to the MF-8erver to ask for the execution of specified jobs. After the Machins 

Front-End has sent a service request (ss_xxx_req( ... )) of a MF-Indication Function, it 

should be able to continue to handle the other MF-Indication Functions without 

waiting for the response data. 

39 



3. Conceptual Basis of the MF Design 

ss_xxx_req( ... ) 

ss_xxx_req( ... ) 

ss_xxx_req( ... ) 

ss_xxx_req( ... ) 

Fig. 3.2 lnteractions between MF-Ciients, MF and MF-Servers 

A provjsion of specific services for the other IIS components 

For the interaction between the Machine Front-End and its clients, the Machine 

Front-End should provide several sets of services to its clients. 

An application program for the CIM-OSA users. not a service provider 

A service provider supports a set of services which can be called by a main program, 

so they can be linked tagether as a task. A service provider can also be implemented 

as a task which provides other tasks with services via data exchange. The Machine 

Front-End is a service provider to the Business Services, but it is not a service 

40 



3. Conceptual Basis of the MF Design 

provider to the CIM-OSA users (process modeller, implementor of CIM-OSA models, 

and operator) because it (actually all the IIS processes) provides no services to the 

CIM-OSA users. lt is an application program which is transparent to the CIM-OSA 

users who don't need to know about the Machins Front-End. 

3.2) A Possible Solution to the MF Design and the Problems 

One straighttorward solution to the MF design might consist of building a necessary 

set of indication/confirmation functions within the Machins Front-End. Based on this 

solution the Machins Front-End can be designed as shown in Figure 3.3. 

service request_a 

service request_x 

Fig. 3.3 The MF Structural Components 

41 



3. Conceptual Basis of the MF Design 

The Machins Front-End processes two kinds of input messages and two kinds of 

output messages. The input messages are the MF-Service Requests (MFO calls) 

from MF-Ciients and the confirmation messages from MF-Servers. The output 

messages are the service requests to MF-Servers and the MF-Service Responses to 

MF-Ciients. For tracking each of the outstanding messages two queues are applied, 

the lndication Pending Queue and Request Pending Queue. The lndication Pending 

Queue is used to pipeline the outstanding MF-Service lndications, and the Request 

Pending Queue is used for the outstanding service requests. 

When a MF-Service Request (MFO cal~ is received, the Machins Front-End parses 

the Protocol Data Unit (PDU), then assigns an indication queue data structure to it. 

This indication queue data structure will then be pipelined into the lndication Pending 

Queue. ln consequence of this, the lndication Service Module will pick up an 

outstanding indication from the Queue according to the FIFO (First-ln First-Out) 

principle and will call the appropriate MF lndication Function. 

Similarly, when a service request is issued, the Machins Front-End assigns a 

request queue data structure to it and pipelines this data structure into the Request 

Pending Queue for tracking the outstanding requests. As soon as the Machine Front

End receives confirmation data from its server, it will examine the outstanding 

requests to pick up the one for which its confirmation data was meant. The 

confirmation data is stored tagether with a pointer to the corresponding request. The 

Confirmation Service Module is therefore called to process the corresponding 

Service Confirmation Functions. The resulting data may be needed later to form the 

next request data or the MF-Service Response data, which however is not shown in 

the figure. 

At the end of execution of a MF-Service lndication, the MF will send response data 

back to the MF-Ciient and then remove all the associated queue data for the MF

Service lndication (requests, confirmations and indication) from the two queues. 

Figure 3.3 also shows the entire operating procedures of the Machins Front-End 

described above. Three service modules are applied to process the queue data and 

pass the control to the MF-Indication Functions and the Service Confirmation 

Functions. These are Receiving Service Module, lndication Service Module and 

Confirmation Service Module. They will be periodically called by the MF. 

42 



3. Conceptual Basis of the MF Design 

However, in this kind of solution, some disadvantages can be anticipated: 

• Recompilation of the MF source program: 

Even for a small change in a MF-Service Request (MFO cal~, the service 

requests which will be sent to the MF-Server may need an appropriate 

modification. This in turn will require the recompilation of the MF source program. 

ln order to avoid this recompilation, a large library of indication/confirmation 

functions for each type of Machine Functional Operation must exist. The problern 

is, that even a large program does not guarantee that the appropriate 

indication/confirmation functions that match the requirements of the new Machine 

Functional Operation will be found in this library. 

• lnability to handlethetime critical MFO execution: 

An interruption of an indication function which is being processed needs more 

sophisticated design. The indication functions can only be processed by the 

Machine Front-End one after another. Even the request of a time critical MFO 

execution has to wait until the last processing function is completed. This also 

causes the MF to spend more time in a wait-state, i.e. the efficiency of the MF is 

greatly reduced. 

• Problems with the implementation and portability of Function Models: 

Each Function Model is implemented in two parts: the execution part as a 

program unit in the machine controller and the control part as an indication 

function in the Machine Front-End. The co-operation of these two parts achieves 

the functions of the represented Machine Functional Operation. Adding a new or 

removing an existing indication function to/from the MF source program may 

cause additional problems because indication functions are part of the MF source 

program. lt is also difficult to carry these two parts to other machine controllers for 

the same Function Model, i.e. one of the CIM-OSA goals, the provision of 

standard software modules, can thereby not be reached. 

• Complication in the management of MF Abstract Objects: 

The services provided in a client-server model are based an the Abstract Objects 

defined for the server (see Chapter 6). The services acting an an Abstract Object 

should be designed as being complementary between client and server. ln the IIS 

environment the Machine Front-End should be able to co-operate with several IIS 

components. This means that the Machine Front-End may have a number of 

43 



3. Conceptual Basis of the MF Design 

Abstract Objects and these objects must be managed in a way that multiple 

service requests from the MF-Ciients can be served efficiently and concurrently. 

However, the management of the MF Abstract Objects in such an approach of the 

MF Design needs information about the connection of user indication/confirmation 

functions with the Abstract Objects. This will make the implementation more 

complicated. 

3.3) Basic Concept of the Approach to the MF Design 

An advanced approach is introduced in this section, which is: 

.. to reach the two objectives of the MF design described in Section 2.2; 

"' to meet the three MF features given in Section 3.1; 

.. to overcome the disadvantages caused by the solution discussed in Section 3.2. 

As stated, every indication function contains the control knowledge of its related 

Machine Functional Operation (MFO). The content of an indication function depends 

on the design specification of MFO's resulting from the CIM-OSA modelling. 

Therefore, the control knowledge contained in the indication functions is MFO

specific (Function Model-specific). 

The Machine Front-End is not defined as a service provider such as MMS and 

FTAM. lt is an application program tor the CIM-OSA users (process modeller, 

implementor of CIM-OSA models, and operator). Even the implementor of the CIM

OSA elementary Function Models (i.e. MFO's) doesn't need to know about the 

Machine Front-End. 

Therefore, the indication/confirmation functions should be extracted from the 

Machine Front-End, i.e. the MFO-specific control knowledge should be separated 

from the generic control mechanism of the Machine Front-End. The separation of 

these basic elements has crucial importance for the MF development. This allows 

the problems to be solved, which were stated in the last section, and supports the 

openness of the development. 

Following this basic strategy, a structure of the Machine Front-End is given in Figure 

3.4 with the relations to its multiple clients and servers. The Machine Front-End 

consists of a Contra/ Model Libray and a Contra/ Engine. 

44 



3. Conceptual Basis of the MF Design 

Fig. 3.4 The Basic Structure of the Machine Front-End 

The Control Model Libray actually represents a database containing control models 

(all the MFO-specific control knowledge of an application) to be interpreted by the 

Control Engine. lt participates in the transformation of the MF-Service lndications 

(MFO ca//s) into a sequence of service requests tobe sent to its MF-Servers. 

The Control Engine is the kernel program of the Machins Front-End. lt contains the 

generic control mechanism which manages the pending indications and service 

requests, selects the appropriate control knowledge and controls the MF Abstract 

Objects, etc. lt includes a Transformation Agent which uses the Contra/ Model Libary 

to control and monitor the MFO execution at the MF-Servers, instead of calling the 

user indication/response function. 

Figure 3.5 gives details on the structural components of the Machine Front-End. lt is 

designed according to the proposed approach. 

45 



3. Conceptual Basis of the MF Design 

Fig. 3.5 The Model-supported Machine Front-End 

The Control Model Library contains the MFO-specific control knowledge. As can be 

seen, the MF-Indication Functions and Service Cantirrnation Functions, shown in 

Figure 3.3, are replaced by the Contra/ Model Library. The Control Engine implies 

three service modules: Receiving Service Module, lndication Service Module and 

Transformation Agent. lt arranges the incoming messages in two queues (lndication 

Pending Queue and Request Pending Queue), manages the MF Abstract Objects 

and processes the Gontraf Model Library. The Cantirrnation Service Module shown 

in Figure 3.3 is included in the Transformation Agent. 

The Receiving Service Module is an interface for the message passing. lt is 

responsible for receiving and checking the messages for the Machins Front-End. ln 

the framewerk of the lntegrating lnfrastructure it will be implemented by use of the 

callable functions of the System Wide Exchange. However, other facilities for 

message passing can be applied in this module as weil. This enables the Machins 

Front-End to be moreadaptive to its environment. 

46 



3. Conceptual Basis of the MF Design 

The lndication Service Module reads an indication message from the lndication 

Pending Queue placed there by Receiving Services Module. lt generates an 

appropriate control record for the Transformation Agent to control the execution of 

the specified Machine Functional Operation. 

The Transformation Agent is the central part of the Contra/ Engine. lt transforms the 

MF-Service lndications (MFO Calls) received from clients into a sequence of service 

requests for sending to its servers (e.g. MMS Devices) by use of the Contra/ Model 

Library. lt registers the issued request data and manages the received confirmation 

data for the use of the succeeding requests to be issued. 

Similar as in Figure 3.3, two queues, the lndication Pending Queue and Request 

Pending Queue, are applied to track the outstanding messages. They contribute also 

to the capabilities of the Machins Front-End with respect to processing multiple 

indications and requests concurrently. 

ln this approach of MF design, except the basic strategy discussed above which 

separates the application-specific control knowledge of Function Models from the 

generic control mechanism, the Machine Front-End uses the concept of Service 

Units and applies the object modelfing technique to specify the capability of the 

Machine Front-End. These will be discussed in detail in the following chapters. 

47 



4. The Control Model Library 

4) The Control Model Library 

The Gontraf Model Library is the first fundamental part of the proposed Machins 

Fron-End. lt contains the application-specific control knowledge of elementary 

Function Models(i.e. MFO's), and consists of a number of Control Models. Each 

Control Model is responsible for the control of execution of a specified MFO. Several 

advanced techniques, such as Al- or object-oriented techniques, have been 

investigated for the model representation. They appeared, however, as being not 

suitable in the context · of the MF design and finally a command language was 

chosen. This chapter describes the structure of the Control Model Library and some 

important key elements of the command language used for the building of the 

Control Models. The Abstract Objects are discussed in Chapter 6. 

4.1) Information Tree of the Control Modellibrary 

The Control Model Library contains the application-specific control knowledge of 

Function Models resulting from CIM-OSA modelling. lt consists of a number of 

Control Models such that each of them participates in transformation of MF-Service 

Request (call to a specified Machine Functional Operation) into sequences of service 

requests for sending to the MF-Servers. 

ln the CIM-OSA IIS environment, data communication with the Machine Front-End 

(MF) can be divided into two types: the communication with other IIS components 

and communication with external machine controllers. The firsttype can directly use 

the services provided by other IIS components. For the second type two 

considerations should be taken into account: 

• To accomplish a MFO execution one may need a number of interactions between 

the MF and the MFE's (i.e. machine controllers). As stated before, the functionality 

of a MFO can not be usually mapped exactly to, and accomplished by a single 

MMS service primitive. Therefore, for each type of MFO execution a Control 

Model should be provided and contain the expert knowledge which contributes to 

the control of interactions between the MF and the machine controllers. 

.. The MF should be able to handle the diverse types of machine controllers. The 

protection of the existing investments has been recognized as one of the most 

important requirements of the CIM-user for building a CIM-OSA system. The 

48 



4. The Control Model Library 

integration or migration of the existing proprietary machine controllers into a CIM

OSA system should be possible and cost effective. 

The content of a MFO Control Model is dependent on the functionality of its 

represented MFO, which can be just a simple sequential control or a very complex 

control algorithm. lt may also consist of a number of interactions with other entities: 

e.g. data accesses to a database or filestore system, mediating with human 

operator, data exchanges with other applications, or interactions with other 

machines. However, the support for the representation of MFO Control Models 

should cover the user needs. ln the section 4.3 several techniques will be discussed. 

All MFO Contra I Models of the library should be organized in a specialform suchthat 

they can be easily accessed. Figure 4.1 describes the information tree of the Contra/ 

Model Libary. The capability of the Machins Front-End is defined by a number of 

Abstract Objects, which applies the object modelling technique described in Chapter 

7. An Abstract Object is used to define a set of supported services by the Machine 

Front-End for the MF-Ciients. Several Abstract Objects of the Machins Front-End are 

identified by CIM-OSA, which are e.g. for the Operation Control, Resource Mgmt., 

Information Store, etc. [CIM090-C5-3000]. All the MFO Control Modelsare linked to 

their related Abstract Object and are the bottarn elements of the information tree. 

Fig. 4.1 TheInformation Tree of the Control Modellibrary 

Depending on the received MF-Service type, a MFO Control Model will be triggered 

by the Transformation Agent. As stated before, to achieve the functions of a 

specified MFO type, a MFO Control Model must co-operate with the Program Unit 

installad in the machins controllers. So, the MFO Control Model as weil as the 

corresponding Program Unit must be consistent with the design specification of the 

49 



4. The Control Model library 

MFO resulting from the CIM-OSA modelling. The implementation of Program Units 

can be influenced by the machins environment, e.g. the services and protocols used, 

but the Control Models should be kept independent of the machins environment. 

4.2) Control Model of the Machine Functional Operation (MFO) 

As we have seen before, the functionality of a MFO can only be achieved by the Co

operations between the Machins Front-End and the external machins controller. lt is 

implemented in two parts: the control part embedded in the Machins Front-End and 

the execution part in the external machins controller (cf. Fig. 1.18). ln the proposed 

MF design, the application-specific control parts of Function Models (i.e. MFO's) are 

implemented in a separate library consisting of a number of Control Models. Each 

Control Model holds knowledge to control the execution of its corresponding 

Function Model. 

The lntegrating lnfrastructure of CIM-OSA is placed on top of the OSI

Application Service Elements (e.g. MMS, FTAM). Therefore, the full utilization of 

the facilities of underlying processes to ease the implementation of the MFO Control 

Models becomes an interesting aspect. These facilities are e.g. MMS, FTAM, 

Remote Procedure Call, distributed operating systems. The following advantageswill 

appear obvious if some functions of the control part of a MFO are extracted from the 

Control Modeland embedded in the underlying process: 

• lt will ease the task on the implementation of the MFO Control Models. A Control 

Model may contain only a sequence of Service Unit ldentifiers and some 

instructions for preparing the input data for those Service Units. The Service Unit 

ldentifiers will be activated by the underlying process, called Service Unit Provider, 

which consists of a number of Service Units. A Service Unit is defined to achieve 

a closed and consistent function. 

• The developed Service Units can be re-used by other MFO Control Models; 

• The MFO Control Models will become independent of the protocols used by the 

underlying process and the remote machins controllers. ln other words, the 

technology dependency has been moved from the IIS down to the Service Unit 

Provider, which will enable the creation of the Machins Front-End widely 

applicable for diverse types of machins controllersandalso ease the integration of 

heterogeneaus manufacturing devices. 

50 



4. The Control Model Library 

The concept of Service Units applied in this approach of the MF design is consistent 

with the term of External Protocol identified by CIM-OSA, although still none of the 

External Protocols are declared there. 

An example of data flow within a MFO Control Model is presented in Figure 4.2. Any 

previously received data can be used as the input data to the consecutive Service 

Units. According to the received response data the Machins Front-End can send a 

request to other IIS components, such as Human Front-End, to ask for information 

for the next Service Unit. The MF-Service Response data may consist of some 

received data units from the MF-Server. 

Business 
Services Machins Front-End (MF) SU-Provider 

(MMS-Ciient) 
Machins 
Controller 

Fig. 4.2 An Example of the Data Flow within a MFO Control Model 

4.3) Model Acquisition and Representation 

Some questionswill arise when the Control Models of the library are going to be put 

into the computer for processing: 

51 



4. The Control Model Library 

"' How to support the application developer to capture their knowledge for building 

Control Models ? 

.. How to present the Control Models in a computable way ? 

• How to access and process several Control Models in a quasi-parallel way ? 

• Which MF Access Protocols and MF External Protocols should be provided ? 

For the capture and the representation of Control Models, it is worth examining the 

advanced techniques of information technology, such as AI-(Artificial lntelligence) or 

object-oriented technique. 

ln the Al, the techniques of knowledge acquisition and knowledge representation are 

widely applied in knowledge base systems. The knowledge acquisition deals with the 

process of extracting, structuring, and organizing knowledge from sources, such as 

textbooks, reports, data base, case studies, empirical data, and particularly human 

experts, so it can be used in a program [Atty85, Hau 87]. This is the first task of 

knowledge engineering in building a knowledge base system. After the acquisition 

process, the knowledge has to be structured in a way that can be processed by a 

computer program. The well-known methods for representing the knowledge in a 

computable way are [RoWL83, Jack86]: 

• Rule-based method: The knowledge is organized as a set of facts and rules. A 

rule is a formal way of specifying a recommendation, directive, or strategy, 

expressed as I F premise TH EN conclusion or I F condition TH EN action; 

• Frame-based method: The knowledge is organized as a frame hierarchy for 

inheritance and procedural attachment. A frame is a network of nodes and 

relations organized in a hierachy, where the topmost nodes represent general 

concepts and the lower nodes more specific instances of those concepts. A node 

may stand for an object, concept or event and is described in terms of slots 

(attributes) and their values. A slot can have procedures (e.g. lf-added procedure, 

lf-removed procedure, lf-needed procedure, etc.) attached to it. They are 

executed when the value of the slot is changed. These procedures may then 

modify values in other slots, continuing the process until the desired goal is 

achieved; 

.. Semantic net-based method: The knowledge is organized as a network of nodes, 

standing for concepts or objects, connected by arcs describing the relationships 

52 



4. The Control Model Library 

between the nodes. This method is often used to represent a subset of a natural 

language. A semantic net system can be considered to be a frame-based system. 

Accompanying with the advanced Al techniques, a number of commercial knowledge 

base-building tools have already allowed the user to represent the knowledge in a 

hybrid way, which supports all of the above mentioned methods. The AHechnique 

allows experts to express their heuristic knowledge in a natural way. Their expertiss 

can be used by other people by means of induction/deduction reasoning techniques. 

However, because of indeterminate time behaviour in the inference processing, 

caused by the so-called Combinatorial Explosion and Garbage Col/ection [WiHo89, 

Appe85], the technique is not very suitable for application of real-time control 

environment [Kern89]. 

Recently, the object-oriented approach has become a recognized method, not only 

in the research institutions, but also in the industrial applications which are applied in 

the programming paradigm, database systems, etc. By using the concept of 

hiearchical classes and instances, the object-oriented design methodology brings 

mainly two advantages into information technology. These are the capability of 

inheritance and the re-use of the defined objects and methods [Pime90, Bor/92]. 

ln the case of MF design, every Control Model is responsible for the control of its 

corresponding MFO. lt is independent of the other Control Models, indeed there is 

no relationship between these models. Therefore, we can simply apply the technique 

of a command language for the representation of the Control Models. This traditional 

technique has the advantage of a determinitive performance. lt is used particulary in 

the manufacturing environment, such as the two wide-spread implementations of 

international standard MMS (Manufacturing Message Specification) [ISO 90, 

SISC90] and RPC (Remote Procedural Ca/~ [SUN 90]. 

Since the model building is the task of the application developer, being viewed as an 

expert in the field, so the support for acquiring expertiss can be limited only to the 

support of a comfortable user interface. lt is well-known that the formation of 

knowledge representation is very dependent on the kind of knowledge to be applied. 

lt is known that the simpler the forms of the suopported model representation is, the 

less and the more constant processing time the Transformation Agent needs. 

Consequently, it will reach a higher performance which plays a very important roJe in 

the manufacturing processes. This in turn promises the success of this MF-design. 

The criteria of the support for the model representation are identified as follows: 

53 



4. The Control Model library 

• The formation for the model representation should, if possible, provide just a 

simple form, as lang as it can cover the industrial user needs. Camplex forms 

which could cause a lang and varying processing time should be avoided; 

• lt should be expandable; 

• lt must be easy to use by the application developer without additionallearning; 

• The implemented Control Models must be independent of the services and 

protocols applied in the machine controllers. 

When looking for an appropriate command language, two packages were choosen, 

the AEG-GeAmatics Production Contra/ System [AEG 90] and the EasyMap System 

[PROC90]. These were discussed and evaluated within the cooperation task 

between both VOICE and AMICE Projects. However, these were not accepted 

because of the need for extensive adaptation of these systems to the CIM-OSA 

environment and the problern on obtaining source codes. Therefore, a decision was 

made to define a command language which can achieve the concept of the MF 

design described before. Same important key elements of the language and its use 

are discussed in Section 4.4. 

Figure 4.3 sketches the processing procedure of the Control Model Library from the 

capture of Control Models to the generation of the oparational models which can be 

accessed by the Control Engine. 

Applloation 
Developer 

Applloatiön 
User 

Oparational 
Control 
Models 

Fig. 4.3 The Processing of the Control Model Library 

54 



4. The Control Model Library 

The application developer builds the Control Models by use of a text editor. The 

Control Model Library File, consisting of a number of Control Models, is stored as a 

text file in a storage media. A compiler is used to check the syntax and compile the 

text file into a binary file with a specific format. ln alliance with the compiled Control 

Model Library File, a configuration file is created additionally. The configuration file 

contains a table of all the Control Models' names existing in the Control Model 

Library File. The application user can use a text editor to update this table and select 

the Control Models needed for the session. When the MF process is initiated, the 

required Control Models will be extracted from the Control Model Library and loaded 

into the working memory. The reason for this is to avoid loading a large number of 

Control Models which are not needed in the running of the session. 

At the initialization process all the Control Models of the library to be loaded are 

organized in a hierarchical structure and stored in the working memory. They can 

afterwards be accessed by the Control Engins at the requests sent by MF-Ciients. 

The basic reason for this type of procedure is to speed up the processing time of 

Control Models by the Control Engine. 

To investigate to what extent the support for model building should be provided, one 

needs to examine the industrial user requirements with respect to the MF which have 

been listed in Section 2.2. The concept of Service Units, which provides Control 

Models with a number of closed and consistent functions, Ieads to a significant 

simplification of the MF design. Some important control mechanisms for the model 

representation are discussed below: 

" Repeat a sequence of actions: 

This support can be used to construct the control sequence for the Function 

Model in which some actions should be repeated a number of times or some parts 

of manufacturing devices should be periodically monitored; 

• Branch to undertake a given action on the appearance of a predefined condition: 

This support is for the case when for example, during the execution of a Function 

Model a problern occurs. ln this case, the Machins Front-End must, either 

automatically or according to intervention by the operator, take the control of the 

execution of some specified jobs; 

• Send request to ask to start a given Service Unit: 

This support is used to send a Protocol Data Unit to the underlying process which 

provides a number of Service Units; 

55 



4. The Control Model Library 

• Wait to synchronize the actions of several manufacturing devices: 

This support can be used where several manufacturing devices on the network 

need to take actions synchronously. lt can also be applied when it just simply 

waits for a specified event, before it can continue the next action; 

• Timing operation: 

Timing is a very important feature in the manufacturing process. The operation on 

the timing should be supported. The timing operation can be used for the 

schedule, synchronization and polling mechanism, etc. 

Moreover, it is also important to support the priority-driven execution, particularly 

in an environment (such as the MF environment) of a manufacturing process in 

which multiple Co-operations should be undertaken. The requests with higher priority 

should be processed before those with lower priority. 

Figure 4.4 depicts the program structure of the · Control Model Library. A Control 

Model Library File can contain an unlimited number of Control Models. However, the 

number of Control Models to be loaded is limited by the size of working memory. As 

stated before, a configuration file is provided for the application user to select the 

Control Models needed. 

A Control Model is identified by a unique name. lt contains several service blocks 

such that each block stands for one type of service requests. The number of service 

blocks in a Control Model depends on the number of service types for an Abstract 

Object to which the Function Model is applied. All the Control Models are grouped by 

Abstract Objects and stored in a Control Model Library File. 

The implementation of the Control Model Library is the task of an application 

developer. He codes the design specification of CIM-OSA elementary Function 

Models (i.e Machine Functional Operations) into a program by use of the supported 

command language. ln order to create an example of implementation of Machine 

Functional Operations, like the one shown in Figura 1.1 0, the Abstract Objects and 

services provided by the Machins Front-End should be specified. They are described 

in Chapter 6 and the example is given in Chapter 7. The next section describes the 

support of the Control Models implementation and its use. 

56 



4. The Control Model Library 

MODELSLIBRAY Library-Name 

CONST 

/* Constants definition */ 

TYPEDEF 

I* Types definition */ 

MODELDEF 

Fig. 4.4 Program Structure of the Control Model Library 

57 



4. The Control Model Library 

4.4) Support of the Control Model lmplementation 

This section describes some important key elements of the defined command 

language and shows, by use of examples, how the two industrial user requirements 

of monitaring and synchronization can be fulfilled. The techniques applied for the 

handling of the model variables and of the changing message size, the internal 

representation format of commands and the data types supported for the internal 

model representation, and the run-time control structure of the Control Model Library 

are given detailedly in [Hou93b]. 

For the handling of the model variables, a Variables Description Block ( VDB) for 

each Control Model is generated at the MF initialization. The VDB is implementedas 

an array, each element of the array presents a unique variable. ln VDB, a model 

variable is described by the type, size and value or apointer to the value block. 

The syntax of the command language is defined by an Operation Code and several 

Operands. The Operation Code specifies the kind of operation. The Operands are 

expressed in form of variables, constants, logical addresses or Service Unit 

ldentifiers. The general format of a command is given below, where the square 

bracket indicates that the operand is optional. 

Opcode [Operand_1] [,Operand_2] [,Operand_ 3] 

A Service Unit ldentifier will be responded to by a Service Unit implemented in the 

Service Unit Provider. lt is issued by the REQUEST command. The following 

describes some important key elements of the defined command language which 

appear in the examples given later in this section. 

• Request:This command is used to send a request Protocol Data Unit to the MF

Server. The SU_Id is the system-wide unique Service Unit ldentifier which will be 

responded to by the underlying Service Unit Provider. Both ReqVar and ConfVar 

are variables. The ReqVar is for the request Protocol Data Unit to be sent to the 

MF-Server, while the ConfVar is for the confirmation Protocol Data Unit to be 

received from the MF-Server. 

REQUEST SU_Id, ReqVar, ConfVar; 

• Response: This command is used to make a reservation for the store of a 

response Protocol Data Unit tobe sent to the MF-Ciient. 

RESPONSE RspVar; 

58 



4. The Control Model Library 

• Wait: This command is used to wait for a given confirmation of the previously 

issued request. lt can not continue to execute the next command, until the waiting 

confirmation has arrived. 

WAIT ConfVar; 

• WaitAII: This command is used to wait for confirmations of all the previously 

issued requests. lt can't continue to execute the next command, until all the 

waiting confirmations have arrived. There is no operand for this command. 

WAITALL; 

• SYSTIME: This command is used to get the current system daytime value. 

SYSTIME SysTimeVar; 

• INTERVAL: This command is used to delay a given time duration. 

INTERVAL DelayType, BaseTime, lnterval; 

The BaseTime is the absolute daytime value, which can be obtained by the 

SYSTIME command. The DelayType identifies the effects of the command on the 

time delay and has an enumerate type with three variants which are: 

a) ABSOLUTETIME which is used in the case when the MF should wait until the 

absolute daytime specified in the BaseTime is reached. lf the specified daytime 

has run out, no delay will be performed. The value of Interval is ignored; 

b) REFSYSTIME which is used when the Machins Front-End waits for a time 

delay specified in the lnterval. ln this case the reference time is the current system 

daytime. The value of BaseTimeis ignored; 

c) REFBASETIME which is used when the Machins Front-End waits until a 

specified timepoint is reached. The timepoint is calculated by use of the Interval 

and the BaseTime. After the execution of the command, the BaseTime will be 

replaced by the sum of the previous BaseTime and the lnterval. 

The supported commands above can achieve the functions of both the monitaring of 

the shop floor devices and the synchronization of manufacturing devices. These two 

functions are the important user requirements in the manufacturing process. For 

example, in an assembly or production line, it is a rule that the operator needs to 

know the status of shop floor devices. ln this case, the Machins Front-End should 

send service requests to the shop floor devices in a given time interval to retrieve 

59 



4. The Control Model Library 

their status data. A Profile of the example below outlines the monitaring function by 

reading the status of two machines in 5-second intervals. 

MODEL M_Monitor_Example( .... ) 

VAR 

/*variable definition */ 

BEG IN 

END; 

BLOCK START( ... ) 

SYSTIME BaseTimeVar; /* get the current system daytime in sec. *I 
REPEAT 

I* request to read status data of machins 1 */ 

REQUEST SU_a_ld, Req1_Var, Conf1_Var; 

I* request to read status data of machins 2 *I 
REQUEST SU_b_ld, Req2_ Var, Conf2_ Var; 

I* delay 5 seconds */ 

INTERVAL REFBASETIME, BaseTimeVar, 5000; 

UNTIL (condition is TRUE); 

BLOCKEND; 

The synchronization of activities of several shop floor devices · needs more 

sophisticated design than above. The example below describes the handling of 

synchronization of two robots activities. Suppose that due to the overlap of work area 

by both robots, robot-A can screw a part onto a workpiece only when robot-B has 

placed the part on Assembly and moved the arm back. Similarly, robot-B can place a 

part on Assembly only when robot-A has screwed the previous part onto the 

workpiece and moved the arm back. A profile of the Control Model is given below 

which assumes that the programs on both robots have already been loaded. 

MODEL M_Synchron_Example( .... ) 

VAR 

/*variable definition */ 

BEG IN 

BLOCK START ( ... ) 

/* request robot-B to pickapart from Pallet *I 

REQUEST SU_a_ld, Req20_ Var, Conf20_ Var; 

60 



END; 

4. The Control Model library 

WAIT Conf20_Var; 

I* request robot-8 to place the part on Assembly *I 
REQUEST SU_b_ld, Req21_Var, Conf21_Var; 

WAIT Conf21_Var; 

REPEAT 

I* request robot-A to screw a part onto the workpiece *I 
REQUEST SU_c_ld, Req10_Var, Conf10_Var; 

I* request robot-8 to pick next part from Pallet *I 
REQUEST SU_a_ld, Req20_ Var, Conf20_ Var; 

I* wait till robot-A has finished the screwing and moved the arm back *I 

WAIT Conf10_Var; 

WAIT Conf20_Var; 

I* request robot-B to place the part on Assembly *I 
REQUEST SU_b_ld, Req21_Var, Conf2i_Var; 

I* wait till robot-B has finished the placing and moved the arm back *I 

WAIT Conf21_ Var; 

UNTIL (condition is TRUE); 

BLOCKEND; 

BLOCK STOP ( ... ) 

Another example for the synchronization can be found in the COMETOS system 

which was developed by the Institute for Applied lnformatics [Lawo90]. The 

COMETOS stands for the .QQ.ordinate .Mß,asuring and IQoling System. lt is a highly 

flexible handling system for tooling of large casting. The COMETOS system is 

designed as a manufacturing cell. lt consists of three robots which are for cutting, 

measuring and deburring of workpieces. They are connected by an Ethernet. ln the 

COMETOS system, before the deburring robot can be set into the status of 

deburring, it should be taught by the measuring robot driven by an operator. The 

teaching of the deburring robot is realized through an interaction (synchronization of 

activities) of both robots. ln this teaching phase, the measuring robot reads the 

coordinate data of its moving path on a workpiece and sends this data to the 

deburring robot. With these coordinate data the deburring robot corrects its moving 

path. A Control Model for this cooperation is given in Chapter 7, which is also used 

for the MF0-30 'Control' of the Domain Process Model shown in Fig. 1.1 0. 

61 



5. The Control Engine 

5) The Control Engine 

The Control Engine is the second fundamental part of the Machine Front-End (MF). 

lt contains the generic control mechanism such as the arrangement for the incoming 

messages, the management of the MF Abstract Objects and the processing of the 

Contra/ Model Library. 

ln addition to the basic mechanisms which are used in operating systems [PeSi84, 

XuPa90j, the Contra/ Engine of the Machine Front-End has the following features: 

.. it has a characteristic similar to the Virtual Manufacturing Device [/S090J for the 

interaction with its clients; 

"' it is an intelligent interface which co-operates with multiple clients and servers by 

use of Protocol Data Units for their data exchange; 

.. it is an application program to the CIM-OSA users (process modeller, 

implementor of CIM-OSA models, and operator) such that it is transparent to 

those users; 

" the Machine Front-End inside the CIM-OSA framewerk is fully portable and 

therefore supports the open systems architecture and can be applied to any CIM

OSA Modules; 

.. the lntegrating lnfrastructure which includes the Machine Front-End is actually 

the highest layer, and may use alternative underlying lower layers such as MMS, 

FTAM, RPC and other distributed operating system functions. Figure 5.1 gives an 

overview on those design alternatives. 

The Contra/ Engine includes three service modules: the Receiving Service Module, 

lndication Service Module and Transformation Agent. These service modules and 

the two pending queues are described in this chapter, and the specification can be 

found in [Hou93b]. 

62 



MF-Ciients 

MMS: Manufacturing Message Specification 
RPC : Remoie Procedure Call 
FTAM: File Transfer & Aceass Mgmt. 

5. The Control Engine 

MF-Servers 

Fig. 5.1 An Overview of the MF Design Alternatives 

5.1) Transformation Agent 

The Transformation Agent is the central element of the MF Control Engine. For 

each new pending indication, an instance of Model Execution Control Object 

(ModeiExecCtrf) will be created by the Jndication Service Module. The 

Transformation Agent then uses this instance data to process a Control Model. 

Mode/ExecCtrl contains all information for the Transformation Agent to execute a 

Control Model. lt includes the location of the model program codes and the Variables 

Description Block, MFO identifier, current program counter of the Control Model, flag 

for the model execution control, a Iist of waiting confirmations, etc. lt is initialized with 

the data from the run-time control structure of the Control Model Library which 

represents the information tree described in section 4.1. 

ln this MF design, each service request issued by the Machine Front-End is Iabeiied 

by an invoke identifier. lt is a unique number given by the Machine Front-End and 

can be used to recognize the confirmation which the previously issued request is 

responded to. Therefore, a waiting confirmation can be marked by both the 

confirmation and the MF invoke identifiers. Within the execution of a Control Model, 

all the waiting confirmations are registered in an array such that each array element 

63 



5. The Control Engine 

represents a waiting confirmation. The array element will be removed, when the 

confirmation arrives. 

Foreach active MF-Service lndication there is an instance of ModeiExecCtrl for the 

control of its specified MFO execution. All the ModeiExecCtrl instances are put into 

the Model Execution Control List (ModeiExecCtriUst) and indexed by their 

priority. The priority has a data type of integer with two-bytes defined as follows: 

• the higher byte contains the MFO priority issued by the MF-Ciient, and 

• the lower byte holds the priority of the Machins Front-End operating on the 

applied Abstract Object. This priority is assigned by the Machins Front-End. For 

example the priority order of the Machins Front-End operating on MF-OC (see 

Fig. 6.4) is Load (highest), Unload, Terminate, Stop, Start and then the lnitialize 

Service (lowest). 

Figure 5.2 shows the ModeiExecCtriList with the associated Control Models and 

Variables Description Blocks. According to the Abstract Objects described in Chapter 

6, a particular service block of a Control Model may have to be started internally, 

when the execution for a MF-Service Request is completed. For example, in MF ~OC 

the service block for lnitialize-Service should be started after the execution of the 

service block for Start-Service has been finished or terminated. ln this case, an 

instance of ModeiExecCtrl describing the service block for lnitialize-Service will be 

inserted into the ModeiExecCtriList. 

ln addition to the support for the priority-driven processing, a ModeiExecCtrl contains 

a flag, ExecCtriFiag, tor the control of the model execution. The Transformation 

Agent can use the ExecCtriFiag to determine which command of the Control Model it 

should process to, before it jumps to the next Control Model. The ExecCtriFiag has 

an enumerate type with four variants: EXEC_ TOEND, EXEC_ONESTEP, 

EXEC_UNTILNEXTWAIT, EXEC_NOTHING. 

EXEC_ TOEND indicates that the Transformation Agent should complete the whole 

Control Model before it continues to process other Control Models. lt is particular 

useful for the time-critical operations. EXEC_ONESTEP is for the execution of only 

one command. EXEC_UNT/LNEXTWAIT teils the Transformation Agent to process 

the Control Model until it meets the WAIT or WAITALL command. EXEC_NOTHING 

means that the process of the Control Model is found in a stop state. ln this case the 

Transformation Agent does not need to process the Control Model. 

64 



5. The Control Engine 

Other attributes shown in Figure 5.2 are: Client_ld is the identifier of a MF-Ciient; 

MfoCode is the identifier of a MFO; CodeList is a pointer that points to a location 

which in turn contains several pointers, each of them points to a service block of the 

Control Model; VDB is a pointer to the location of the Variables Description Block 

associated with the Control Model; and the PC is the model program counter which 

indicates the current process step on the model program code. 

VDB 

VDB 
/owest 

Model Execution Control List 

VDB 

Fig. 5.2 The Model Execution Control 

By use of the Model Execution Contra/ List, the Transformation Agent can process a 

number of Control Models concurrently. lt is able to deal with several CIM-OSA 

models in a quasi parallel way. The Transformation Agent interprets each instruction 

of a Control Model and takes the correspohding actions. As soon as the 

Transformation Agent has completed a service request, it will change the state of the 

associated Abstract Object lnstance (cf. Section 6.3). 

The Transformation Agent consists mainly of two program modules which are called 

Model Execution Control Unit (ModeiExecCtr/Unit) and Command Execution 

65 



5. The Control Engine 

Unit ( ComExecUnit). The Mode/ExecCtr/Unit() examines the Model Execution 

Contra/ List and processes a Control Model by use of the references to the model 

codes and the Variables Description Block. lt uses the ExecCtr!Fiag to decide how to 

proceed in the Control Model. lt begins to process the Control Model to which the PC 

points. lt calls the ComExecUnit() to execute the commands of the Control Model 

and takes the responsibility for the actualization of the Mode/ExecCtr/List and of the 

state of the associated Abstract Object lnstance. Each time when the Transformation 

Agent is called, it will process all the Control Models through the Mode/ExecCtr/List 

at one time. 

The Command Execution Unit ( ComExecUnit) is called by Mode/ExecCtr!Unit(). lt 

interprets each command of the Control Models which are stored in the specified 

format. ln response to each command, a procedure will be called to perform the 

required operations. All the procedures used to respond to commands have two 

input parameters: a pointer to the instance of Mode/ExecCtrl and an another pointer 

to the address of the command to be processed. They have the same return value 

as those from ComExecUnit(). 

5.2) The Receiving and lndication Service Modules 

CIM-OSA system is a distributed CIM system. The main features of a distributed 

system are: 1) multiple processes installed in the hardware elements are allowed to 

do their activities concurrently; 2) the message exchanges between these processes 

can be executed independently. 

The lntegrating lnfrastructure (IIS) achieves the functions of a distributed 

(concurrent) system by taking the controls of all processes connected to the system. 

ln addition to the external processes, the lntegrating lnfrastructure itself requires 

several processes for its implementation. ln the CIM-OSA concepts, all the data 

communications between the productive IIS service processes (i.e. Business, Front

End, and Information Services) are done through the process of Communication 

Services. Virtually, the Communication Services acts as a server process within the 

client-server relationships of the IIS processes. During data exchange the 

Communication Services will not react to a pending request from its client. This 

means that, e.g. if a service request is sent by the Business Services to the Machins 

66 



5. The Control Engine 

Front-End, the Communication Services will not inform the Machine Front-End to 

pick up this request, it just puts this request message into a queue. 

To satisfy this CIM-OSA concept, the Receiving Service Module is designed to be 

periodically called by the Machine Front-End. lt is not designed to be triggered by the 

Communication Services when the Communication Services receives a message for 

the Machine Front-End. 

The messages queued in the Communication Services for the Machine Front-End 

can be either the MF-Service Requests from the MF-Ciients or the service responses 

from MF-Servers. lf the message is a MF-Service Request, an indication data unit 

will be constructed and then inserted into the Pending lndication Queue. lf it is a 

service response, it will be linked with the previously issued service request and put 

into the Pending Request Queue. The key for searching the service request can be 

the lnvoke ldentifier issued by the MF when that service request was sent. 

The lndication Service Module is responsible for processing MF-Service lndications 

which are placed by the Receiving Service Module in the Pending lndication Queue. 

lt reads indication messages from the Queue and validates these messages. lf any 

unknown or invalid information in an indication message is detected, an error 

response will be immediately sent back to the MF-Ciient. Otherwise, it will generate 

and initialize an instance of the Model Execution Gontraf Object and put it into the 

Model Execution Contra/ List. 

lndication data units are distinguished by both the client identifier and the indication 

identifier. The client identifier is a CIM-OSA system wide unique identifier which is 

given by the Communication Services, and the indication identifier is the same as the 

invoke identifier issued by the MF-Ciient when the request was sent. There are four 

states defined for the description of an indication status. These are: 1) IND _NEW for 

an indication which is not yet processed by the MF; 2) IND_RENEW for an indication 

which was stopped and is now restarted; 3) IND_ACTIVE for an indication being in 

processing; 4) IND_COMPLETED for a completely processed indication. 

ln fact, the Machine Front-End communicates only with two processes. These are 

the Communication Services for the transfer of MF-Access Protoco/ Data Unit, and 

the underlying Service Units Provider for the MF-Extemal rotoco/ Data Unit. ln the 

structure of the Communication Services given by AMICE [Hau 92], the 

communication with the underlying Service Units Provider can be arranged through 

67 



5. The Control Engine 

the 'Transfer Agent, a part of the Communication Services. ln the MF design 

specification, there are four interface functions used by the Machins Front-End for 

sending and receiving messages, which are: 

• S_RecvMsg() to receive messages from the Communication Services; 

" S_SendMFMsg() tosend messages to the Communication Services; 

"' S_RecvSURsp(} to receive messages from the underlying Service Units Provider; 

.. S_SendSUReq() tosend messages to the underlying Service Units Provider. 

To conform to the CIM-OSA concept, these four interface functions should use the 

callable functions of the System Wide Exchange (SE), e.g. SE_ TELL() for sending 

and SE_ACCEPT() for receiveing messages [C/M090-C5-3000]. These interface 

functions are system-dependent. When the implemented Machins Front-End is going 

to be transferred into a different platform, these interface functions should be 

adapted to the new environment. 

5.3) MF Pending Queues 

As given in Figure 3.5, two queues are used to track the outstanding messages: the 

Pending lndication Queue (MFINDPEND) for the pipeline of the pending MF

Service lndications and the Pending Request Queue (MFREQPEND) for the 

registration of the issued service requests. 

Figure 5.3 shows the link between these two queues. ln order to register all the 

issued service requests within a Control Model for a specified indication, these two 

queues are linked by a pointer. Each confirmation data received from MF-Server is 

joined with its previously issued service request. 

Each indication data unit of the Pending lndication Queue contains a MF Access 

Protoco/ Data Unit. Similarly, each request data unit of the Pending Request Queue 

holds a MF Externa/ Protocol Data Unit which includes the Service Unit-specific 

request data and confirmation data. The request and confirmation data are 

registered for use by the subsequent service requests of a Control Model. After a 

response is sent back to the MF-Ciient, the indication data unit and all the request 

and confirmation data units for the indication are removed. 

68 



Pending 
lndication 
Queue 

MFINO 
PEND 

Pendlng 
Request 
Queue 

MFREQ 
PEND 

•lnd 
lndState Info 

Ptr 

DbiLnk char 

•Req 
Info 
Ptr 

•Req 
Beg in 
Ptr 

char 

•Conf 
Info 
Ptr 

DbiLnk 

•Req 
Begin 
Ptr 

5. The Control Engine 

•Req 
Beg in 
Ptr 

MF: Machine Front-End 
SU: Service Unit 

Fig. 5.3 The link between the two MF Pending Queues 

ln order to ease the removing or adding of a data unit from/to a queue, a double-link 

is used, which is represented by the attribute Db/Lnk. The lndState indicates the 

state of the indication data unit which can be one of the IND_NEW, IND_RENEW, 

IND_ACTIVE or IND_COMPLETED described in the previous section. The lnd/nfoPtr 

is a pointer which points to the indication data unit, and the ReqBeginPtr is used to 

link the issued service requests to the MF-Server. The service request data (i.e. SU 

Request Data) is pointed to by the ReqlnfoPtr, while the confirmation data (i.e. SU 

Confirmation Data) is pointed to by the Conf/nfoPtr. These two attributes belang to 

the Pending Request Queue of MFREQPEND. 

The parallel processing of multiple Function Models is considered to be one of the 

important keys for the success of the MF design. This can be achieved by the 

Contra/ Engine specified so far. The Machins Front-End doesn't need to complete a 

MF-Service /ndication at once. lt can serve another pending MF-Service /ndication, 

even if there are already several MF-Service lndications being processed. This 

means that the MF is able to process a number of CIM-OSA models concurrently. 

Similarly, a number of service requests can be issued immediately one after another. 

lf it is not demanded, the Machine Front-End doesn't need to wait for the response. 

The Machine Front-End can recognize the incoming confirmation which the 

previously issued service request has responded to. ln this sense, the Machins 

69 



5. The Control Engine 

Front-End is able to deal with a number of service requests/confirmations within a 

CIM-OSA model in a parallel way. 

Moreover, for the time critical operations in a distributed system, the Contra/ Engine 

supports the priority-driven operation and the control-oriented execution. This 

means, that the Function Models with higher priority will be processed prior to those 

with lower priority, and the execution control of a Function Model can be set to a 

state such that it should be completed before other Function Models can be 

processed. 

70 



6. MF Abstract Objects and Protocols 

6) MF Abstract Objects and Protocols 

This chapter mainly addresses the interaction between the Machine Front-End (MF) 

and the other components of the lntegrating lnfrastructure. lt discusses the Object 

Modelling Technique used by the international· standard Manufacturing Message 

Specification (MMS). The proposed approach of the MF design applies this 

technique to specify the MF capability. Based on the guidelines given by CIM-OSA, 

an Abstract Object for the oparational control is defined and from this object the 

supporting services are specified. Furthermore, the management of the Abstract 

Objects, the definition of Access, External Protocol and some Service Units are 

described. 

6.1) Object Modelling Technique 

The data communication between two co-operating partners in the CIM-OSA world is 

based on the Client-Server Architecture, in that the communication must be able to 

service any request and response between the two partners. A partner can act either 

as a client by sending a service request, or as a server on receipt of the service 
request. 

So far, the approach to the MF design was introduced. 8oth the support for the 

building of the Control Model Library and the Control Engine were specified. The 

separation of the Control Model Library and the Control Engine has a crucial 

importance for this approach. lt not only solves the implementation problern of the 

application-specific control knowledge, but also provides a great flexibility for the 

modelling of enterprise activities. 

Up to now, the interactions of the Machine Front-End with its clients (e.g. Business 

Services, Human Front-End, etc.) and the support for these interactions were not 

addressed. Before we are going to deal with these problems, it is worth examining 

the Object Modelling Technique which was used for the widely accepted 

Manufacturing Message Specification (MMS) [IS090]. The MMS is intended for 

machine to machine communication, i.e. the communications between computers 

and programmable devices like robots, NC-machines, Programmabis Logic 

Controllers and realtime process controllers [Ho/191]. 

71 



6. MF Abstract Objects and Protocols 

The modelling technique used in the MMS describes the Abstract Objects, the 

characteristics of such objects, and the operations on those objects. Any 

manufacturing device can be modelled by an entity, called a Virtual Manufacturing 

Device (VMD) or a MMS-Server, which contains several Abstract Objects and 

provides a number of services. A MMS-Ciient can use these services to manipulate 

these Abstract Objects, that means to change the behaviour of the VMD. 

The MMS provides 84 basic services for operating on MMS objects. The MMS 

objects are grouped into 12 classes: Named Variable, Scatter Access, Named 

Variable List, Named Type, Semaphore, Event Condition, Event Action, Event 

Enrollment, Journal, Domain, Program lnvocation and Operator Station Object. 

These objects belang to three scopes, called Application Association (AA), VMD and 

Domain Scope. Figure 6.1 gives an outline of MMS services which are grouped into 

10 sets. 

Interface to a 
human operator 

Entry and 
retrieval of 
time-sequenced 
information 

Controls operation 
under event occurences 
and obtain notification 

Builds/Relinguishes 
communication 

between clienVserver 

Controls access to 
share resources 

Information Upload 
and Download 

Program execution 
and control 

'nes Variables/types 
and reads/writes 
variable value 

Fig. 6.1 Outline of MMS Services Classes 

ln MMS, services which are used to manipulate a MMS object are defined on the 

basis of the Object State Transition Diagram. Each service is described in a 

tabular form with their arguments and results. 

72 



6. MF Abstract Objects and Protocols 

Besides the Variables and the Types, all the other objects are modellad by the 

Object State Transition Diagram. lt describes the major states and intermediate 

states. The intermediate states exist only between an indication primitive and the 

response primitive or between a request primitive and a confirm primitive. While 

these states are transient, the MMS object may be in this state for some period of 

time. The major state exists after processing a response primitive or a confirm 

primitive. A major state can also be an intermediate state. 

Figure 6.2 shows the basic elements of a State Transition Diagram. A box indicates 

an object state. A line indicates the transition. S1, S2 and S3 are major states, 01 is 

an intermediate state. After the process receives an indication, it will change the 

state of the object from S1 to 01. 

Fig. 6.2 Basic Elements of a State Transition Diagram 

lt is also worth analyzing the MMS software product to get a more detailed 

understanding of the MMS and the implementation technique. The analysis of the 

object structure of MMS-EASE (MMS-Embedded Application Service Element), the 

most notable product of the MMS implementation [SISC90], is given in Figure 6.3. 

MMS-EASE provides several local logical channels for each network node. Each 

channel can be used by a user application. The application processes on each 

network node must be assigned to the local channels. Then, the associations 

between application processes can be established via the connections of the logical 

channels. ln a multi-tasking environment, it is possible at one time to establish a 

number of applications' associations for a physical connection and to execute the 

data exchange within each association simultaneously and independently. 

ln MMS-EASE, a logical channel represents an association with another process and 

is modellad by a Channel Information Object. lt contains all information about the 

73 



6. MF Abstract Objects and Protocols 

established association of two application processes, e.g. the current state of the 

channel, the selected presentation context (MMS core or Campanion Standard), the 

local and the remote application process names, the type of the request service and 

response service, a link to the AA-specific Domain Object and a link to the selected 

VMD Contra/ Object, etc. 

AA-specific 
Domain Qnr.,,..,,_.---

VMD-specific 
Domain 0 

Event 
Condition 

Named 
Variable Named 

Variable 
List 

Event 
Action 

Scattered 
Access 

a Named Domain Control Object) 

Journal 

Named 
Type 

Obj: Object 
DOM: Domain 
AA : Application Association 
VMD: Virtual Manufacturing Device 
EASE: Embedded Application 

Service Element 

Fig. 6.3 The Overall Objects Structure of MMS-EASE 

ln MMS-EASE, a VMD Contra/ Object (VMD Control) is used to represent a VMD. lt 

is linked with its preceeding and succeeding VMD Contra/ Objects. This means that 

several VMD's can be established for a server application. This object contains the 

VMD-specific information: a VMD-specific Domain Object, pointers to the Domain, 

Program lnvocation, Operator Station and Named Domain Control object, etc. 

74 



6. MF Abstract Objects and Protocols 

A VMD may contain several Domain Objects such that each of them is managed by 

a Named Domain Control Object (DOM Control). A Named Domain Control Object 

contains the domain-specific information, such as the domain name, the domain 

state and an Domain Object, etc. 

A Domain Object of MMS-EASE includes a number of MMS-objects, such as Named 

Variable, Scattered Access, Named Variable List, Named Type, Journal, Semaphore 

and Event. ln MMS, most of these objects are erdered according to all the three 

scopes: AA (Application Association}, VMD and Domain Scope. ln conformance with 

MMS, MMS-EASE allows the creation of the Domain Objects for any of the three 

scopes. 

ln MMS-EASE, all the MMS objects are implemented as dynamic objects. lt means 

that they come into existence during the course of operation of the VMD. They can 

be created either on the request service primitive sent by the client or through the 

local service support within the server application. 

ln the client-server architecture of the CIM-OSA IIS environment, the Machine 

Front-End (MF) can be viewed as an entity which is similar to a MMS-Virtual 

Manufacturing Device. The Machins Front-End can be described by several 

Abstract Objects, each object represents a subset of the MF capability and is used 

for a specific purpose. lt is important to point out that the Abstract Objects defined for 

the Machins Front-End are mainly used to specify the supporting services and the 

procedures of these services called by its clients. lt is not the purpese to map these 

Abstract Objects to a real device in the way of MMS. 

6.2) Specification of MF Abstract Objects and Services 

The Machins Front-End should provide its clients with several sets of services for the 

interactions. Each set of services is defined to oparate on an Abstract Object 

representing a subset of MF capabilities. The Abstract Objects and the supporting 

services required for the Machins Front-End are dependent on the requirements of 

all the MF-Ciients (other components of CIM-OSA lntegrating lnfrastructure). 

CIM-OSA has given a guideline for the definition of a set of services for the control of 

the MFO execution [ CIM090/C5-3000J, which includes Load, Unload, Start, Stop, 

75 



6. MF Abstract Objects and Protocols 

Terminate and lnitialize. ln conformance with this definition and by means of the 

Object Modelling Technique described before, an Abstract Object is specified. This 

Abstract Object is called the MFmOperation Control Abstract Object (MF_OC). lt is 

modelled by the Object State Transition Diagram shown in Figure 6.4 and contains 

the information of states and transitions. The MF _OC exists at and is manipulated by 

the Machine Front-End on behalf of a MF-Ciient, and describes the behaviour and 

interactions between the Machine Front-End and its clients. 

7 

Transition lines for the modal are: 

1 - Load.indication 
2 - Load.response (+) 
3 - Load.response (-) 
4 - Unload.indication 
5 - Unload.response (+/-) 
6 - Start.indication 
7 - Start.response (+/-) 

8 - Terminate.indication 
9 - Stop.indication 

(resumable) 

1 0- lnitialize. indication 
11- lnitialize.response (+) 
12- lnitialize.response (-) 
13- M F Interna! transition 

Fig. 6.4 MF _OC State Transition Diagram 

76 



6. MF Abstract Objects and Proteecis 

ln the MF _OC State Transition Diagram, the intermediate states are indicated by the 

blank-boxes, whereas the major states are shown in the shadow-boxes. When an 

object stays in an intermediate state, the Machine Front-End is co-operating with its 

servers by use of Control Models. For example, after the Machine Front-End has 

received a Start indication, it changes the MF _OC state from the major state of 

READY into the intermediate state of EXECUTING. During the phase of 

EXECUTING state, the Machins Front-End is interacting with its servers by use of 

the Control Model. As soon as the Machins Front-End has accomplished this task or 

met an error, it sends a Start response message back to its client and then changes 

the MF _OC state into the major state of EXECUTED. At the EXECUTING state, the 

MF-Ciient can interrupt or stop the MFO execution. lf the execution of a MFO is 

stopped, it can be continued from the STOPPED state or re-initialized. 

For a specified MFO execution requested by a MF-Ciient, there should exist an 

instance of the appropriate Abstract Object for controlling and monitaring the MFO 

executions. An instance of MF _OC comes into existence only if the machins control 

program which is required for the MFO execution is successfully installad in the MF

Server. The instance will be removed after the program has been unloaded or 

explicitly declared to be unusable. 

Both the Load and Unload services are used to preprare the resources (i.e. machins 

control programs) for a MFO execution. The loading procedure checks if the 

Program Units for the MFO execution is properly installad in the MF-Server. lf it is 

not, it will begin an installation process. ln contrast, the unloading procedure is to 

remove the Program Units from the server. According to the CIM-OSA concept these 

two services are issued by the Resource Management of the Business Services. The 

content of Resource Management is still not defined, so we are not concerned with 

these two services in this work. Therefore, it is supposed that all the machins control 

programs are ready for the execution before the Activity Control of the Business 

Services issues a Start service. The description of MF _OC is given as follows: 

Object: MF _oc 
Key Attribute: MF _OC lnstance ldentity (Key=Ciient_ld + Server_ld + MfoCode) 

Attribute: State (INCOMPLETE, LOADING, UNLOADING, READY, EXECUTING, 

EXECUTED, STOPPING, STOPPED, TERMINATING, 

TERMINATED, INITIALIZING) 

Attribute: Client identifier 

Attribute: Server identifier 

Attribute: MFO Code 

77 



6. MF Abstract Objects and Protocols 

The four services of Start, Stop, Terminate and lnitialize are described below. 

ME-Start Service: 

This service can be called by a MF-Ciient to start the execution of a specified MFO. 

The service structure is shown in the table below: 

Parameter Req lnd RsQ 

Argument M M(=) 

MFO name M M(=) 

Start Argument u U(=) 

Result M 

Response Event M 

Executed State s 
Terminated State s 
Stopped State s 

Result Data u 

The parameter types in the service table indicate [ISO 90a]: 

M- parameter is mandatory for the service primitive; 

U- parameter is a user option; 

C- parameter is conditional upon other parameters; 

- (blank) parameter is never present; 

Cnf 

M(=) 

M(=) 

S(=) 

S(=) 

S(=) 

U(=) 

S - parameter is a selection from a collection of two or more possible parameters. 

=- this code following one of the codes M, U, C or S indicates that the parameter 

is semantically equivalent to the parameter in the service primitive to its 

immediate left in the table 

Parameter description: 

a) Argument: 

This parameter conveys the parameters of the Start Service request. 

a.1) MFO name: 

This parameter, of type ldentifier (character string) specifies the MFO that 

will be started. 

78 



6. MF Abstract Objects and Protocols 

a.2) Start Argument: 

This parameter is an optional field which may be used to pass data to the 

Control Model for the specified MFO. lt is either a character string or an 

externally coded value. 

b) Result: 

This parameter indicates that the service request succeeded or failed, the state of 

the MF _OC instance and the MFO state. 

b.1) Response Event: 

This parameter identifies the state of MF _OC instance (EXECUTED, 

TERMINATED or STOPPED). 

b.1 .1) Executed State: 

This parameter identifies the MFO state if the Response Event is 

EXECUTED. lt can be one of the following states: EXECUTED 

REUSABLE, EXECUTED UNUSABLE, DEADLOCK, LIVELOCK. 

b.1.2) Terminated State: 

This parameter identifies the MFO state if the Response Event is 

TERMINATED. lt can be one of the following states: TERMINATED 

REUSABLE, TERMINATED UNUSABLE, DEADLOCK, LIVELOCK. 

b.1.3) Stopped State: 

This parameter identifies the MFO state if the Response Event is 

STOPPED. lt can be one of the following states: STOPPED REUSABLE, 

STOPPED UNUSABLE, STOPPED RESUMABLE, DEADLOCK, 

LIVELOCK. 

b.2) Result Data: 

This parameter is an optional field which may be used to pass data to the 

MF-Ciient. lt is either a character string or an externally coded value. 

79 



6. MF Abstract Objects and Protocols 

MF-Stop Service: 

This service can be called by a MF-Ciient to arbitrarily interrupt the execution of a 

started MFO with option to re-start it later. The Stop Service does not have an own 

response. The service structure is shown in the table below: 

Parameter Req lnd Rsp Cnf 

Argument M M(=) 

MFO name M M(=) 

Stop Argument u U(=} 

farameter descriptioo: 

a) Argument: 

This parameter conveys the parameters of the Stop Service request. 

a.1) MFO name: 

This parameter, of type ldentifier (character string), identifies the started 

MFO that will be stopped. 

a.2) Stop Argument: 

This parameter is an optional field which may be used to pass data to the 

started MFO that will be stopped. lt is either a character string or an 

externally coded value. 

MF-Terminate Service: 

This service can be called by a MF-Ciient to terminate the execution of a started 

MFO at a defined state. ln cantrast to the Stop service, after the termination, it can 

not be restarted. The Terminate Service does not have an own response as the Stop 

Service. Similarly, a Terminate MFO lndication is responded to by a Start Response 

as weil. The service structure is shown in the table below: 

Parameter Req lnd Asp Cnf 

Argument M M(=) 

MFO name M M(=) 

Terminate Argument u U(=} 

80 



6. MF Abstract Objects and Protocols 

Parameter description: 

a) Argument: 

This parameter conveys the parameters of the Terminate Service request. 

a.1) MFO name: 

This parameter, of type ldentifier (character string), specifies the started 

MFO that will be terminated. 

a.2) Terminate Argument: 

This parameter is an optional field which may be used to pass data to the 

started MFO that will be terminated. lt is either a character string or an 

externally coded value. 

ME-Initialize Service: 

This service can be called by a MF-Ciient to reset an interrupted MFO (which is 

found in a Stopped state). The service structure is shown in the table below: 

Parameter Req lnd Rsp Cnf 

Argument M M(=) 

MFO name M M(=) 

lnitialize Argument u U(=) 

Result (+) s S(=) 

Result (-) s S(=) 

Error Type M M(=) 

Parameter description: 

a) Argument: 

This parameter conveys the parameters of the lnitialize Service request. 

a.1) MFO name: 

This parameter, of type ldentifier (character string), specifies the stopped 

MFO that will be initialized. 

81 



6. MF Abstract Objects and Protocols 

a.2) lnitialize Argument: 

This parameter is an optional field which may be used to pass data to the 

stopped MFO that will be initialized. lt is either a character string or an 

externally coded value. 

b) Result: 

This parameter indicates that the service request succeeded or failed. 

b.1) Error Type: 

This parameter indicates the error type if the service request failed. 

6.3) The MF-Abstract Object Control Structure 

This section discusses the concept for the store and management of the State 

Transition · Diagrams which describe the Abstract Objects. lt defines a control 

structure for the Control Engine to process the lnstances of the Abstract Object. 

Before a MF-Ciient can send a service request (i.e. MFO call) to the Machins Front

End, it has to establish an association with the Machins Front-End. A Machins Front

End can be implemented as a process and identified by a CIM-OSA system wide 

uniqua number. By use of the proposed approach a Machins Front-End can deal 

with multiple MFO calls from several MF-Ciients concurrently. Figure 6.5 shows a 

MF process and its environment, where the Communication Services and the OSI 

network are not presented. 

As stated before, an Abstract Dbject can occur as a number of instances such that 

each instance stands for the control of a specified MFO execution. An Abstract 

Object, in fact, provides the following two functionalities: 

• to check if the received indication is valid. lf it is detected as being invalid, the 

Machins Front-End will reject it by immediately sending an error response to its 

client. 

• to indicate the Control Engine to implicitly start a particular service, e.g. to 

internally start an lnitialize-Service automatically, after it has successfully 

completed the execution of a Start-Service request. 

82 



SU : Service Unit 
PU : Program Unlt 
MFO: Machins Functional Operation 
MMS: Manufacturing Message Specification 
FTAM: File Transfer & Aceass Mgmt. 
RPC: Remoie Procedure Call 

6. MF Abstract Objects and Protocols 

Fig. 6.5 The Process of the Machine Front-End 

The state of an Abstract Object lnstance is maintained by the Control Engine. The 

Control Engins changes the state of an Abstract Object lnstance when 

• it begins to execute a MFO Control Model; 

• it has finished the execution of a MFO Control Model; 

• it recognizes that a particular service must be "internally" started. This means the 

forthcomming operation on the specified MFO can not be activated by a MF

Ciient. The Control Engins must take the responsibility of initiating and running the 

corresponding service bleck of the Control Model. 

In order to ease the access and maintenance of the instances of Abstract Objects, all 

the Abstract Objects and their instances must be weil organized. Before the control 

structure for the Abstract Objects is defined, the concept for the management of 

Object State Transition Diagrams will be outlined first. 

83 



6. MF Abstract Objects and Protocols 

ln the approach of the MF Design, every Event of an Object State Transition 

Diagram is identified by a predefined constant, called Event ldentifier. An Event is 

an action which causes the change of the state, and is shown by the arrow in the 

diagram. There are three types of Events which are indication, response and internal 

transition (Fig. 6.4). The Event Jdentifier is predefined and unique within the MF. lt 

consists of two parts: one part is an Abstract Object Jdentifier, and the other part is 

either an indication code, a response code or an internal transition code, which is 

given below. 

a) partition-1: lndication code 

Abstract Object ldentifier b) partition-2: Responsecode 

c) partition-3: Interna! transition code 

The components of an Event ldentifier 

ln fact, the Event ldentifiers for the indication codes can be used for the definition of 

the IIS-Service ldentifiers as weil. This has the advantage of reducing the mapping 

task between the IIS-Service ldentifiers and the Event ldentifiers for the indications. 

The Event ldentifiers for the internal transition codes must contain the information 

such that the Control Engine can recognize that a particular service must be initiated 

by itself. The identifier of the particular service is itself an Event ldentifier for an 

indication code. So that the Event /dentifier for the Interna/ transition code consists of 

the Event ldentifier of the particular service and the base address of the partition-3. 

From this known base address the Control Engine is able to induce the service 

which should be started by itself. 

A Transition of the Object State Transition Diagram describes an Event with a 

source and a destination state. The number of states and events defined for an 

Abstract Object can be different, therefore for generic purposes, the transitions 

should be defined in a universal way. This is expressed by the data structure of 

TRANSITION given below. As an example, the State Transition Diagram defined for 

the MF _OC is represented by the array of MF_OC_ TransTable[}. Each element of 

the array has the type of TRANSITION and describes a transition of the MF _OC 

object. 

typedef enum {SDUMMY} MF _STATE; /* dummy element for generic use *I 

typedef enum {EDUMMY} MF _EVENT; 

84 



typedef struct 

{ 

MF _STATE SourceState; 

MF _EVENT Event; 

MF _STATE DestState 

} TRANSITION; 

TRANSITION MF _OC_TransTable[] = 

{ 

6. MF Abstract Objects and Protocols 

{OC_INCOMPLETE, OC_LOAD_IND, OC_LOADING}, 

{OC_LOADING, OC_LOAD_RESPPOS, OC_READY}, 

{OC_LOADING, OC_LOAD_RESPNEG, OC_INCOMPLETE}, 

{OC_READY, OC_UNLOAD_IND, OC_UNLOADING}, 

{OC_UNLOADING, OC_UNLOAD_RESP, OC_INCOMPLETE}, 

{OC_READY, OC_START_IND, OC_EXECUTNG}, 

{OC_EXECUTING, OC_START_RESP, OC_EXECUTED}, 

{OC_EXECUTING, OC_TERMINATE_IND, OC_TERMINATING}, 

{OC_EXECUTING, OC_STOP _IND, OC_STOPPING}, 

{OC_TERMINATING, OC_START_RESP, OC_TERMINATED}, 

{OC_STOPPING, OC_START_RESP, OC_STOPPED}, 

{OC_STOPPED, OC_START_IND, OC_READY} 

{OC_EXECUTED, OC_INITIALIZE_T1, OC_INITIALIZING}, 

{OC_ TERMINATED, OC_INITIALIZE_ T1, OC_INITIALIZING}, 

{OC_STOPPED, OC_INITIALIZE_IND, OC_INITIALIZING} 

{OC_INITIALIZING, OC_INITIALIZE_RESPNEG, OC_INCOMPLETE} 

{OC_INITIALIZING, OC_INITIALIZE_RESPPOS, OC_READY} 

}; 

In order to provide that the state of every Abstract Object lnstance can be easily 

accessed and actualized, a control structure of Abstract Objects is given in Figure 

6.6. This control structure is started with the MF_AGENT which contains all the 

information about the Machins Front-End. An attribute of MF_AGENT, ObjList, points 

to all the Abstract Objects defined for the Machins Front-End. 

85 



6. MF Abstract Objects and Protocols 

char AGENTID long 

MF_AGENT 
AgentName Agent_ld AgentState 

MF _STATE TRANSITIO MF_OBJ 

MF_OBJ •StatesList *TransTable • Next 

MF _OBJINST AGENTID AGENTID MFO_COD MF_OBJI 

MF_OBJINST • Next Client_ld Server_ld MfoCode InsiStale • Next 

Fig. 6.6 The Control Structure of the MF Abstract Objects 

An Abstract Object is represented by the data structure of MF_OBJ which contains 

the Abstract Object-specific information, e.g. the Abstract Object name, identifier, all 

the possible states and the state transition table. An attribute of the MF_OBJ, 

ObjlnstList, points to all created instances of the Abstract Object. 

An Abstract Object lnstance is represented by the data structure of MF_ OBJINST. lt 

comes into existence only when a Control Model for the specified MFO is going to be 

started by the Machins Front-End. The Control Engine uses the information stored in 

the State Transition Table ( TransTable of MF_OBJ) to change the state of the 

Abstract Object lnstance and, if needed, to initiate a particular service by itself. The 

instance will be removed when a Control Model has been completed or failed at the 

execution of the Control Model. 

The Cantrot Structure of the MF-Abstract Objects can be created with some 

preferred parameters when the system initializes. Thereafter, the MF should be able 

to add or remove an Abstract Object /nstance to/from the control structure du ring run 

time. 

86 



6. MF Abstract Objects and Protocols 

6.4) Interaction between the Machine Front-End and its Clients 

The interaction between the Machine Front-End and its client is based on the Client

Server Architecture, which can be characterized by a pair of complementary 

interaction models. ln other words, the MF-Ciient should have an interaction 

model for use which should be consistent with the corresponding Abstract 
Object and services supported by the Machine Front-End. The model is called 

Standard Control Structure because it is predefined and stored in the client 

process for use. 

Figure 6. 7 describes the Standard Control Structure used by the Activity Control 

of the Business Services (a MF~Ciient). lt is established in consistence with the MF

Operation Contro/ Abstract Object (MF_ OC) defined before. According to this 

control structure the Activity Control issues service requests to the Machins Front

End for the control of the MFO execution. 

:··--------------,· 
: lnitialize ! 

----------~ MFO ~. ~~, 

·----------------· 
S:Start :··--------------, 

F: Finish : lnitialize : 
PR:ProceduraiRule L........-------------:, MFO , 
MFO: Machine Functional Operation '----------------' 

Fig. 6.7 MFO Standard Control Structure 

The action in the dotted blank box indicates that the service is not issued by the 

Activity Control. lnternally, it is automatically triggered by the Machine Front-End. For 

example, after a Start MFO Service Request issued by the Activity Control has been 

sucessfully executed, the Machine Front-End should itself execute the lnitialize 

service block of the Control Model, not because of an Jnitialize MFO Service Request 

issued by the Activity Control. 

87 



6. MF Abstract Objects and Protocols 

Each of the Procedural Rules (PRi to PR4) is described by a predefined condition. 

For example, PR1 can be defined as a logical object and initialized with the value 

FALSE. When an operator stops the execution of a MFO through a Control Panel, 

PR1 will change to the value TAUE and then the Activity Control will send a Stop 

Service Request to the Machine Front-End. 

6.5) MF Protocols 

A protocol is a set of rules (syntactic and semantic) which govern the use of the 

services by the service users. The message unit for the data transfer between the 

service user and the service provider is called the Protoco/ Data Unit (PDU). The 

PDU contains the protocol information and possible user data, if any. 

ln order to validate the proposed MF design by means of prototyping, the 

specification, including some MF Protocols, was defined by a high levellanguage (C

programming language) [Hou93b]. The effort an the protocol specification expressed 

by a neutral notation, such as ASN.1 (Abstract Syntax Notation One) [ISO 87, 

GoSp90j, makes sense, only if all the components of the lntegrating lnfrastructure 

areweil defined, validated and are ready for use. 

Figure 6.8 gives some typical sequences of services which can be issued by a MF

Ciient. These services are provided by the Machins Front-End by means of the 

MF _OC Abstract Object described in Section 6.2. 

Two types of MF Protocols are defined for use of the MF-prototype: the Access 

Protoco/ used by other IIS components to exchange messages with the MF, and the 

External Protocol is used by the MF to co-operate with the machine controllers. 

The content of MF-Access Protocol depends an the services provided by the MF. lt 

should include: 1) identifier of the MF-Ciient; 2) identifier of the MF; 3) invoke 

identifier issued by the MF-Ciient; 4) MF-Service code; and 5) MF-Service specific 

data unit, e.g. for the Start Service Request or Start Service Response. 

The proposed approach applies the concept of Service Units. So the content of the 

MF-External Protocol depends an the Service Unit used. lt should contain: 1) 

identifier of the MF; 2) indication identifier; 3) invoke identifier issued by the MF; 4) 

Service Unit identifier; and 5) Service Unit-specific data unit. 

88 



6. MF Abstract Objects and Protocols 

MF-Ciient (Service User) I MF (Service Provider) 

Start Service Request > a 
.c.;: Start Service Response 

Start Service Request > 
b Terminate Service Request > 

.c.;: Start Service Response 

Start Service Request > 
Stop Service Request "' , 

c < Start Service Response 

(Re)Start Service Request > 
< (Re)Start Service Response 

Start Service Request > 
Stop Service Request > 

d < Start Service Response 

lnitialize Service Request > 
< lnitialize Service Response 

Fig. 6.8 Service Sequences of Operations 

Considering that the Manufacturing Message Specification (MMS) is the most 

recommended standard for the manufacturing message transfers, it was conceived 

as being a good starting point for the Service Units tobe constructed on the basis of 

the MMS service primitives. According to the needs for the test environment, several 

Service Units are specified. As stated in Section 4.2, a Service Unit is used to 

achieve a closed and consistent function. lt may need several service primitives to 

achieve its function. For example, the Service Unit for loading a program requires 

three MMS service primitives, namely: lnitiateDownLoadSequence, DownLoad

Segment and TerminateDownLoadSequence. 

lt should be pointed out that in this work it was not the intention to define a complete 

set of Service Units. More importantly, it is necessary to validate the proposed 

approach to the MF design and to investigate the behaviour of the Machins Front

End in a CIM-OSA System. Some Service Units defined for the case study are given 

in [Hou93b]. 

89 



7. lmplementation and Validation 

7) lmplementation and Validation 

This chapter outlines the creation and testing of a MF prototype. The prototype was 

implemented in the C-programming language using the approach proposed in the 

previous chapters. A testing environment has been defined according to the 

available resources. Three CIM-OSA models have been used for the validation of 

the Machine Front-End, and the model described in Chapter 1 is discussed. Finally, 

the results of the validation are evaluated. The test scenario was presented for the 

ESPRIT-AMICE Project as the first CIM-OSA demonstrator and has been registered 

as the McCIM System, a KfK development of the CIM-OSA system. 

7.1) Goals of Validation 

Verification and validation are important activities in the overall software life cycle. 

Verification is defined to be the comparision at each stage of the software life cycle 

to determine that there has been a faithful translation of that stage into the next one. 

Validation is to determine the Ievei of conformance between the system 

requirements and an oparational sofware system under oparational conditions 

[EWIC83-84]. 

Validation (system testing) is undertaken when all the related hardware and 

software have been integrated and the whole system has been established. lt will 

assure that the code meets the requirements expressed in the software 

requirements specification. A validated system can still exhibit unsatisfactory 

performance, however, due to poor, incomplete or erroneous specifications [Quir85]. 

A guideline for the verification and validation of critical computer systems and some 

applicable techniques are discussed in [Redm88j. System validation should detect 

software errors and estimate the overall system reliability based on the results of 

systematic testing, probabilistic testing and operating experience. 

Within this dissertation, a more realistic validation of the Machine Front-End was 

considered. lt was not possible to accomplish a full testing of the Machine Front-End, 

under all possible oparational conditions, because of the inavailability of certain 

resources. However, the validation could show with the available resources, how far 

the proposed approach can achieve the two main objectives given in Section 2.2, the 

90 



7. lmplementation and Validation 

conformance with the CIM-OSA concept and the satisfication of the industrial user 

requirements. 

To enable this Validation a MF prototype as weil as a testing environment were 

established. Both of them are described in the following sections and the evaluation 

of the results is discussed in Section 7.6. 

7.2) Prototyping of the Machine Front-End 

For the prototyping of the Machins Front-End (MF) an implementation, instead of 

simulation, was chosen. The Validation by means of an implementation needs more 

effort than simulation, but it provides an opportunity to justify the concept. Moreover, 

it gives a possibility to closely examine the specifications and to perform the stepwise 

refinement. This choice was identical with the main goal of the ESPRIT-AMICE 

project 5288. 

Figure 7.1 shows the prototype of the MF Control Engine which was implemented in 

the C-programming language, the most portable language available now. The 

implementation uses the modular design technique which can easily be realized by 

the C-programming language. 

ln the figure, eirelas indicate information, while boxes are for the procedural 

operations. The /nitialize Service Module, MFinitMod(), selects the Control Models 

required for running the session. lt generates control structures for the access to 

both the Contra/ Model Library and the Abstract Objects. The 'Loaded Cantrot 

Models' and 'State- Transition Diagrams of Abstract Objects' are static, i.e. they stay 

in the working memory and will not be modified. 

The Receiving Service Module, RecvServMod(), gets messages which are queued in 

the Communication Services and are waiting for the Machins Front-End. There are 

two types of input messages: the MF-Service Requests (MFO Call) issued by the 

MF-Ciients and the responses from the MF-Servers. The MF-Service Requests are 

put into the Pending lndication Queue, while the responses are stored in the Pending 

Request Queue. 

91 



MF : Machins Front-End 
MFO: Machins Functional Operation 
SU :Service Uni! 
A. Ob).: Abstract Object 
IIS-C: Communication Services of 

the lntegrating lnfrastructure 

7. lmplementation and Validation 

II S-C 

Fig. 7.1 A Prototype of the MF Control Engine 

The 'Mode!ExecCtr!Usf contains a Iist of control records. Each control record holds 

information for the processing of a Control Model for a specified MFO execution. 

These control records are initiated by the lndication Service Module, lndServMod(), 

and used by the Transformation Agent. Within the processing of a Control Model the 

Transformation Agent may send requests to the underlying Service Unit Provider for 

controlling the MFO execution at the MF-Server. As soon as a Control Model is 

92 



7. lmplementation and Validation 

completely processed, the Transformation Agent sends a response back to the MF

Ciient. 

Some aspects described below have been regarded in this MF prototype. These 

aspects are important for the development of a complete lntegrating lnfrastructure as 

weil as for its portability. These are: 

• Clear definition of interface functions: For sending and receiving messages they 

are realized by three interface functions, S_RecvMsg(), S_SendSUReq() and 

S_SendMFRsp(}. Only these three functions are dependent on the environment 

which the Machine Front-End is connected to. 

• Access to information by use of aseparate control procedure: The Machins Front

End uses a control structure to access the loaded Control Models. Similarly, it 

uses a control structure to access the description of Abstract Objects. This 

concept allows to add or remove 'static' information (Control Models or Abstract 

Objects) without changing the control mechanism. Thus, it allows the easy 

insertion of the further developed Abstract Objects, it needs just the insertion of 

the 'static' description of Abstract Objects without changing the control procedure. 

• Portability of the MF program: The implementation in the C-programming 

language makes the MF program easily portable to other operating systems. 

7.3) Requirements for Testing Environment 

The Machine Front-End is a component of the lntegrating lnfrastructure (IIS). lt, 

tagether with other IIS components, is to achieve the execution of CIM-OSA models 

resulting from the Modelling Framework. ldeally, the validation of the proposed 

approach of the Machine Front-End requires: 

• a complete implementation of the lntegrating lnfrastructure; 

• several well-designed CIM-OSA models, resulting from the Modelling Framework, 

which describe the real manufacturing activities; 

• a real environment with appropriate software and manufacturing devices; 

To establish such a scenario was beyond the scope of this dissertation, since too 

many components of CIM-OSA still exist in the conceptual phase. The Machine 

93 



7. lmplementation and Validation 

Front-End, proposed and developed in this work, is the first contribution to CIM-OSA, 

which has resulted in a prototype. None of the other IIS components is available. 

Nevertheless, the testing environment for the validation of the Machine Front-End 

(MF) should contribute to achieve the following goals: 

• investigation of the MF capabilities and behaviour in a CIM-OSA system; 

• demonstration of the 'Executable Mode! which is the key purpose of the 

lntegrating lnfrastructure; 

• establishing of a basis for integrating the successive implementation of other IIS 

components. 

Considering available software and hardware, the resulting requirements for the 

testing environment were given as follows: 

• lmplementation of the lntegrating lnfrastructure: The Business Services should be 

implemented to some extent to achieve its functional flow, and the Communication 

and Information Services need only to be implemented to make the test of the MF 

prototype possible. 

• Service Unit Provider: lt should preferably use a software product which 

implements the international standard MMS. 

• Network Communication: lt should preferably use the international standard for 

the manufacturing communication MAP (Manufacturing Automation Protocol). 

There were three MAP-Boards and the communication protocol software from 

GONCORD Co. available [CONC90a-b]. 

• Manufacturing Devices: There were two robots of type 'Mitsubishi RV-M1' 

available [Mits90]; 

• Domain Process Model: lt should be designed such that it is feasible with the 

resources available and the realization time. However, some MF capabilities, e.g. 

parallel processing, monitaring and synchronization, should be able to be verified 

by use of the model. 

• Computer Stations: There were several IBM compatible personal computers 

available; 

• Operating System: lt should be a multi-tasking operating system which is 

discussed below; 

94 



7. lmplementation and Validation 

A CIM-OSA system is a distributed and concurrent system, so that the lntegrating 

lnfrastructure (IIS) must co-operate with a number of application processes. These 

application processes can be installad on various network nodes and can be run on 

different operating systems. The lntegrating lnfrastructure itself also needs several 

processes for its implementation which can be also installad on several network 

nodes. Therefore, a CIM-OSA system requires a multi-tasking operating system. 

According to the CIM-OSA concepts, the Business, Front-End and Information 

Services use the callable functions of the System Wide Exchange (an element of the 

Communication Services) to exchange messages. Multi-tasking operating systems 

usually support interface functions for message passing between processes. 

Therefore, from the viewpoint of practical implementation the callable functions of the 

System Wide Exchange should be realized by using the interface functions 

supported by the applied operating system. This in turn means that the 

implementation of the System Wide Exchange will be strongly influenced by the 

operating system used, while the implementation of other IIS components is 

independent of it. ln conclusion, the following restrictions on the testing 

environment were identified: 

• The choice of an operating system was limited by the computers used and the 

software products available. Considering these two points, the MicroSoft 

Windows operatingsystemwas chosen; 

" The data exchange between the IIS processes directly used the Dynamic Data 

Exchange supported by the MicroSoft Windows, and the transparency of access 

and location was not concerned in this work. The reason was that the 

specification of the Communication Services was not yet stable and still needed 

improvement by AMICE; 

• The Information Services was implemented so far just for the storage and 

retrieval of the process data. No functions specified by AMICE and data 

conversions were incorperated; 

• The Business Services was simulated in functional flow by use of the Petri-Nets 

Tool, PACE [PACE91]. PACE supports utilities for the creation of CIM-OSA 

models and the graphical execution of the created models down to the Ievei of 

Functional Operations; 

95 



7. lmplementation and Validation 

• The Service Unit Provider used the LiveData [CYCL92], an implementation of 

MMS, because of its ease of use and a mutual cooperation with Cycle Software 

lnc. This product is still a ß-version (testing by user). 

The testing environment as weil as a partial implementation of the lntegrating 

lnfrastructure are described in the next section. 

7.4) Testing Environment 

Figure 7.2 gives the overview of the testing environment. lt consists of three stations 

connected by a MAP network: one station acts as a cell controller on which the IIS 

processes are installed; the other two as MF-Servers containing machine control 

programs. The testing environment with detailed description of system components 

is depicted in Figure 7.4. 

Business 
Services 

Manufacturing 
Automation 
Protocol (MAP) 

Cell Controller 

Services 

Shop Floor Station Shop Floor Station 

Physical Device 

with 

Device Driver 

Machine 
Control 
Program 

Physical Device 

with 

Device Driver 

Machine 
Control 
Program 

Fig. 7.2 Testing Environment for the Machine Front-End (MF) 

96 



1. lmplementation and Validation 

Figure 7.3 describes the IIS processes and the message exchange between them. ln 
this prototype, the Dynamic Data Exchange of Microsoft Windows [Micr90], instead 

of the System Wide Exchange of CIM-OSA, for the message exchange between the 

IIS processes was used. Three message types of Dynamic Data Exchange are 

shown in the figure: POKE is used by a client process to send a message to the 

server process without waiting for the attention by the server process; Both 

REQUEST and DATA build asynchronaus dialogue to get a message from a server 

process. The numbers in circles help in understanding the sequence of a MFO 

execution. 

SU : Service Unit 
CONV: Converstion 

CMSG: Message Mgmt. Gfililiilllliilllliilll~lJtlyg;:Mllll 

Fig. 7.3 The IIS-Processes on a Cell Controller Station 

The prototype uses the concept of sharable global memory to store the messages to 

be transferred between the processes. Each message unit has a unique identifier 

assigned to it. For the message passing, the method of message identifier transfer is 

97 



7. lmplementation and Validation 

applied. The message exchange between the Business, the Machins Front-End and 

the Information Process (via the Communication Process) uses the MF-Access 

Protocol Data Unit, while between the Machins Front-End and the Service Unit 

Provider the MF-External Protocol Data Unit is applied. Both types of Protocol Data 

Units are described in Section 6.4. 

Each process has a Conversation Module (GON V) which is responsible for the 

management of conversations (associations) with other processes. The 

Communication Process includes a Message Management Module ( CMSG) which 

manages the messages queued in the Communication Process. ln the case of a 

synchronaus dialogue, established by REQUEST and DATA, a time-out for the 

duration of the request is set to prevent the dead-lock situation where the client 

process is waiting for a response from a server process which is not able to respond. 

The whole IIS Processes, including the MF prototype, were implemented in C

programming language by the author, while the other system components were 

realized by several colleagues. 

Figure 7.4 depicts the system components of the testing environment which includes 

two demo applications: one for a Casting Plant and the other one for an 

Automobile Plant from the two industrial partners of the ESPRIT-VOICE project. 

These two applications are shown inside dotted lines, respectively [ VOIC93]. The 

Business Process has been replaced by an Interface and a PACE Station. The 

Interface, on one side transfers the data between the PACE Station and the Cell 

Controller Station via a serial port of RS 232, and on the other side it sends and 

receives data from/to the Communication Services. The PACE Station uses the 

Petri-Nets tool PACE to create the CIM-OSA modelsvia a graphical interface and to 

execute the model down to the Ievei of Machins Functional Operations 

[DiNe91,DNBK93]. 

ln these two demo applications, several packages for the process simulation and 

visualization, such as lnTouch, Excel, and VisuaiBasic have been added. The 

lnTouch package provided the simulation and animation of the aluminium process of 

the Casting Plant [lnTo92, Gyme93]. The Excel package produced the graphical 

representation of the product and process tracking data [Exce90, Rafi92J. The 

VisuaiBasic package was used for the operator interface, the robot process 

visualisation, and the robot interface [Visu91, Guit92j. The operator interface was 

incorperated to input the setup points in the Casting Plant Application, as weil as to 

98 



7. lmplementation and Validation 

provide a control panel which allows the Automobile Plant Application to be 

terminated, stopped and restarted. The robot interface between the MMS-Sever 

program and the robot devices was required because the LiveData software 

package does not support a connection to the serial port of RS232. 

PACE Station 

IIS: lntegrating lnfras1ructure 
MMS: Manufacturing Message 

Spec~ication 
MAP: Manufacturing Automation 

Protocol 

Cell Controller 
(IIS Station) 

Shop Floor Station Shop Floor Station 

Fi . 7.4 McCIM S stem (A CIM-OSA Demonstrator) 

This test scenario has been registered as the McCIM System, a KfK development of 

CIM-OSA system. Based on this work as weil as the experience gained, it is the 

intention to launch further CIM projects. 

7 .5) Case Study 

Three CIM-OSA models (Domain Process Models) have been designed as input for 

the Validation of the Machins Front-End. The models were designed as close as 

possible to meet the real manufacturing activities, but had to be a compromise with 

respect to feasibility (w.r.t. the resources available) and realization time. 

99 



7. lmplementation and Validation 

Two viewpoints of the Domain Process Model, which was designed by the author 

and introduced in Figura 1.1 0, are discussed below: 

• the Procedural Rules and Functional Operations of the model; 

• the Control Model for a Machine Functional Operation. 

The other two Domain Process Models, which were based on the model above, can 

be found in [ VOIC93]. They were designed particularly to meet the requirements of 

the two industrial project partners of ESPRIT-VOICE. Actually, these three models 

have a similar structure, but the model in Figure 1.10 gives a clearer understanding 

about the view points above without having to describe the requirements of the 

respective industrial project partners. 

However, it should be also pointed out that some aspects in all the three models -

like information and resource management - are not considered. This is because 

that other IIS components are not completely implemented. 

The Procedural Rules and Functional Operations of the model 

To get a better understanding of the description below, it is recommended to recall 

the description about the processing of a Domain Process Model by the Business 

Services described in pages 22-23. 

ln Figura 1.1 0, suppose that PR1 contains two logical objects and PR2 only one 

logical object. They are initialized with the value FALSE. When both robots are 

successfully set up, the two logical objects of PR1 will be set to TRUE. The Activity 

Control can then simultaneously start the occurrences of EA2, EA3 and EA4 on the 

requests of Business Process Control. When an operator terminates the scenario, 

both the EA3 and EA4 occurrences will be terminated first and consequently EA2 will 

terminate itself. After the termination of the EA2 occurrence the logical object of PR2 

is set to TRUE and the Business Process Control will then request Activity Control to 

start the EA5 occurrence to close shop floor. 

ln order to reactivate the support for operator intervention, the HF0-20 should be 

restarted again every time the Activity Control receives a response from the 

operator. The HF0-20 will be terminated when both MF0-30 and MF0-40 are 

terminated. ln this work, the MF Control Engine was used also for the control of the 

100 



7. lmplementation and Validation 

HFO execution because the Human Front-End was not yet available. The 

functionality of the five FO's used in the model are given below: 

a) Set-up: This type of MFO is used to down Ioad the required robot programs and to 

set-up the robot to an initial state. 

b) Operator Intervention: This type of HFO supports an operator with a Control Panel 

which has three options (Stop, Restart and Terminate) to control the activities of 

the shop floor devices. 

c) Control: This type of MFO is used to read the path coordinates of the master robot 

and to send them to the slave robot. With the received path Coordinates the slave 

robot moves along its path accordingly. 

d) Monitoring: This type of MFO is used to read path coordinates of both robots and 

put the deviations into a database. The data can then be displayed to an operator. 

e) Shut-down: This type of MFO is used to reset the robot and upload the log files. 

Since all the five types of FO's in the Domain Process Model apply to the same 

MF_OC Abstract Object, the Activity Control uses the same model of Standard 

Control Structure (cf. Section 6.4) to issue services to the Machins Front-End. 

The Control Model for a Machins Functional Operation 

As an example, the Control Model for the MF0-30 'Control', where three Service 

Units are used, is given below: 

~~~ SU_ReadCoord for reading the actual coordinate data of the master robot; 

~~~ SU_WriteCoord for sending the coordinate data to the slave robot; 

111 SU_ WriteSignal for reporting the Operation status of the Machine Functional 

Operation (MFO) on a Signal Panel. 

The last Service Unit is introduced here to control the Signal Panel indicating the 

status of the MFO execution. lmagine that each status corresponds to a respective 

indicator. The SU_WriteSignal controls the appropriate indicator. 

Since the Machine Functional Operation applies the Abstract Object of MF_OC, the 

Control Model should include four service blocks: each of them stands for the Start, 

Stop, Terminate and lnitialize Service, respectively. The work to be done in each 

service block depends on the description of the Machins Functional Operation. 

101 



1. lmplementation and Validation 

Except for the Start service block, all the other service blocks have the same function 

of reporting the operation status of the Machins Functional Operation (MFO). There 

are two types of reponses, the Start Service Response and the lnitialize Service 

Response, which are to be sent back to the MF-Ciient (i.e. Activity Control). The 

status data for both of the responses are set by the Control Engine, according to the 

situation of the MFO execution. The Control Model given below explains itself by the 

comments. 

MODEL M_Controi(ServiceData: TServiceData) 

VAR I* variables definition *I 

BEG IN 

BLOCK START /*Start service block *I 

I* variables initialization *I 

I* set operation status signal to Start *I 

Set value of WriteSignaiReqVar to 1; 

I* send the status data to the Signal Panel *I 

REQUEST SU_WriteSignal_ld, WriteSignaiReqVar, WriteSignaiConfVar; 

WAIT WriteSignaiConfVar; 

I* read the first coordinate data of the master robot *I 

REQUEST SU_ReadCoord_ld, ReadReqVar, ReadConfVar; 

REPEAT 

I* wait until the coordinate data has arrived *I 

WAIT ReadConfVar; 

I* copy the coordinates of master robot to WriteReqVar *I 

I* send the data to the slave station, the salve robot follows the path*l 

REQUEST SU_WriteCoord_ld, WriteReqVar, WriteConfVar; 

I* read next coordinate data of the master robot *I 

REQUEST SU_ReadCoord_ld, ReadReqVar, ReadConfVar; 

I* wait until the moving of the slave robot has been finished *I 

WAIT WriteConfVar; 

UNTIL (TRUE); 

BLOCKEND; 

BLOCK STOP I* Stop service block *I 

I* set operation status signaltoStop *I 

102 



END 

7. lmplementation and Validation 

Set value of WriteSignaiReqVar to 2; 

I* send the status data to the Signal Panel *I 

REQUEST SU_WriteSignal_ld, WriteSignaiReqVar, WriteSignaiConfVar; 

WAIT WriteSignaiConfVar; 

BLOCKEND; 

BLOCK TERM/NATE I* Terminate servicebleck *I 

I* set operation status signal to Terminate *I 

Set value of WriteSignaiReqVar to 3; 

I* send the status data to the Signal Panel *I 

REQUEST SU_WriteSignal_ld, WriteSignaiReqVar, WriteSignaiConfVar; 

WAIT WriteSignaiConfVar; 

BLOCKEND; 

BLOCK INITIALIZE I* lnitialize servicebleck *I 

I* variables initialization *I 

I* set operation status signal to lnitialize *I 

Set value of WriteSignaiReqVar to 4; 

I* send the status data to the Signal Panel *I 
REQUEST SU~WriteSignal_ld, WriteSignaiReqVar, WriteSignaiConfVar; 

WAIT WriteSignaiConfVar; 

BLOCKEND; 

7.6) Testing and Evaluation of the Results 

On the validation of the proposed Machine Front-End, the two points below should 

be identified first: 

• What is the goal of the Validation? 

• which attributes are important for the system evaluation? 

The two goals of the validation in this work has been stated in Section 7.1, so that 

the Validation has to prove how these goals can be achieved. 

The first goal, the conformance with the CIM-OSA concepts, has been achieved 

by means of: 

103 



7. lmplementation and Validation 

111 the IIS Client-Server Architecture which has been examined through the 

information exchanges within the lntegrating lnfrastructure as weil as between 

the Machine Front-End and the machins controllers; 

• the contribution to the 'Executable Model' which has been proved by successful 

use of the three CIM-OSA models in the Test Scenario; 

• the portability of the implemented Functional Operations which has been 

achieved by the Control Models that are implemented independent of the 

manufacturing environment; 

• the Integration of heterogeneaus manufacturing devices which will be discussed 

tagether with the second goal below. 

The secend goal, the satisfication of the industrial user requirements, has been 

validated through the Observations by means of the C-Programming Debugger and 

the Testpoints-Display during the testing of the McCIM system with the three CIM

OSA models. The following will discuss some important attributes for the system 

evaluation with regard to the industrial user requirements listed in Section 2.2, 

which are: 

• Monitaring and data collection: The process data captured for the monitaring 

needs an immediate display to the operator, while the data for the data collection 

is stored for analysis for later use. These have been achieved by the Machins 

Front-End of the McCIM system. The number of devices that can be monitared or 

served by the Machins Front-End are unlimited, but they will influence the 

processing speed required by the user; 

111 Control and synchronization: The Domian Process Models used for the case 

studies have included these two functions, and the success of the McCIM system 

has proved that they have been accomplished; 

• Alarm and Emergency handling: The alarm handling may require the operator to 

readjust the system back into the normal state, while the emergency signal 

indicates that the system state is critical and could cause damage, therefore the 

operator should immediately take actions. The alarm handling has been proved 

through the support for the input of setpoint values in the Casting Plant 

Application, and the emergency handling through the support of a Control Panel 

in the other two applications. The reaction time required by the alarm and 

emergency handling, as weil as the strategiss for the emergency handling, will be 

discussed later in this section; 

104 



7. lmplementation and Validation 

• Time critical operation: The proposed approach provides two mechanisms for the 

time-critical MFO's: the priority-driven operation and the control-oriented 
execution. The MFO-calls with a higher priority are processed by the Machins 

Front-End prior to those with the lower priority, and the Machins Front-End can 

be asked to control the execution of a MFO which doesn't want to be interrupted 

until it is completed. These two mechanisms provide a possibility of improving the 

operations of the time-critical MFO's. The time required by the execution of a 

MFO will be also discussed later in this section; 

• Integration of heterogeneaus manufacturing devices: This can be realized by the 

proposed concept of Service Units. The Service Units are implemented in the IIS 

underlying process which involves the device-dependent services (cf. Fig. 6.5); 

• Integration engineering tool: This concerns tools that can be used for the CIM

OSA modelling task, the configuration of the lntegrating lnfrastructure and the 

implementation of a CIM-OSA system. lt belongs to one of the main tasks in 

ESPRIT-VOICE as weil as AMICE projects, and is not dealt with in this werk. 

The attained MF capabilities have been matched with the user requirements and are 

represented in the table below. 

ln the table, cross (x) means that the particular capability is involved in satisfying the 

user requirement. The capabilities highlighted by the symbol of '*' denote that they 

are not directly related to the Machins Front-End and is a facility provided by the 

other CIM-OSA components which are not yet available. For example, the Access 

Transparency which is to hide the local/remote accesses is the task of the 

Communication Services, not of the Machins Front-End. These capabilities are only 

included here because they are needed to achieve the user requirements, identified 

in Section 2.2. 

The fulfilment of a particular user requirement may need several MF capabilities; for 

instance, the 'Remote Process Monitoring' requires the Parallelism, Timing/Polling, 

REQUEST-/WAIT-Operation and Service Units. The MF capabilities (1-7) were 

described in detail in the previous chapters. The lndirect Intervention is described 

later in this section and the Migration Transparency is discussed in Chapter 8. 

105 



7. lmplementation and Validation 

* ti' * 
c: >. c: C]) \.) !!! 0 c: 

~ 
g> 

~ 
'.j:l ·B !8. 

MF Capabilitles ~ ::I 

~ 0> c: ~ 
c::: c: 

0. "' ~ 0 C]) 

~ c: c: C]) 

·~ c: "' j = C]) ·c: 0 .-IQ c: 0> 
E 0 > 0 ~ c: !!l ~ 1- -o c: 

Cl. ·c: C: ~ :::> .5 1- c: lii ·c::: 
.!!l -o 0 (/) .Q 0) -.. w äi 0> ~ '.j:l ~ 0 "' ~ E 2! ::I :::> ~ "' ~ 

c 'I:: 

~ 0 ·~ ~ ~ E ·c;, ·e 0 

~ '6 0> 0 'I:: w rJl ~ ~ c: 
User Requlrements Cl. F Cl. w a:: .5 (.) w 

;:: @' c;) ~ 10 w r:::- 00 o;- s ..- @' ... ..... ..... 

a) Remoie Process Monitaring X X X X X 

b) Data Collection X X X X X 

c) Synchronization X X X X 

d) Alarm Handling X X X X 

e) Emergency Handling X X X 

I) Time Critical Operation X X 

g) Locai/Remote Access X 

h) Integration of Vendors Devices X X 

i) lmplementation of FOs X 

j) Integration Engineering X 

Execution Time of a Machine Functional Operation (MFO) 

From the viewpoint of OSI-Reference Model, all the IIS-processes are placed on top 

of the OSI-7th layer. Actually, the lntegrating lnfrastructure (IIS) itself has also a 

layered structure. There are three layers distinguished in the IIS implementation: the 

Service Unit Provider with Application Service Elements (e.g. MMS, FTAM) in the 

lowest layer, the Communication Process in the middle, and the Business, Front-End 

and Information Processes in the highest layer. lt is conceived that through this 

multi-layered structure the execution of a Domain Process Model needs more time 

than a traditional program involved in the same task. 

ln addition to the above table which shows the evaluation in a qualitative way, the 

possibility to attain the performance of the Machine Front-Endas a quantitative value 

was examined. Through the observation during the testing phase, it was concluded 

106 



7. lmplementation and Validation 

that the evaluation of the MFO execution time can not identify the MF perlormance 

because the time required by the Machins Front-End itself is not significant in 

comparison with the time required by other contributing system components. The 

factors which dominantly influence the execution time of a MFO are: 

• the functionalities of the MFO's to be achieved and the process time of 

manufacturing devices; 

• number of the CIM-OSA models or MFO's tobe processed concurrently; 

• the multi-tasking operating system on which the IIS-processes are installed: The 

time required for the execution of some operations within a process is strongly 

impacted by the task switching mechanism of the applied operating system. 

• the applied software packages and hardware. 

• the underlying Communication Subsystem; 

Figure 7.5 depicts the components used for proving the above statement. lt was part 

of the testing environment shown in Figure 7.4. 

Business 
Interface 

(Turbo 
Pascal 
Program) 

Manufacturing 
Automation 
Protocol (MAP) 

Cell Controller 

MF-Prototype 

(C..Program) 

Shop Floor Station 

MMS-Server Program 

(UveData) 

MAP 3.0 Carrier Band 

Fig. 7.5 Configuration for the Measurement of the MF Performace 

107 



7. lmplementation and Validation 

The components were: 

• the cell controller consisting of a Service Unit Provider and all the IIS processes, 

which was installad on a Toshiba T6400DX personal computer with clock 

frequency 33MHz; 

• one shop floor station consisting of a MMS-Server Program, which was installad 

on an IBM compatible personal computer with 33MHz. No manufacturing device 

was connected; 

• a MAP 3.0 carrier band based on GONCORD Boards; 

ln addition to get the performance of the Machins Front-End, the time required by 

the contributing system components for the execution of a MFO was also evaluated. 

A set of tim er functions with resolution 1 IJS was provided for the time measurement 

[Kais89]. They were inserted into the programs. For the input of the Machine Front

End, three types of MFO's were implemented. They were sent directly by the 

Business Interface. These three types of MFO's were: 

a) a MFO which required only one Service Unit for writing a value to the shop floor 

station; 

b) a MFO which required only one Service Unit for reading a status data from the 

shop floor station; 

c) a MFO which required the above two Service Units. 

The Business Interface sent the next MFO only when the previous MFO had been 

completed. This means that the Machins Front-End had only one MFO to process at 

a time. ln each of the three experiments, 100 of the same type of MFO's were used 

for the measurement. Since the three experiments have similar results, only the first 

type of MFOs' result is shown in the following figures 7.6 and 7.7. Figure 7.6 depicts 

the process time of a MFO required by the contributing system components. The 

curve numbers indicate: 

1 = MF Process Time which is the time required by the Machins Front-End for the 

queue management, access of the Control Model Library and processing of the 

corresponding Control Model. The curve of the MF Process Time remains very 

close to the X-axis, and so is represented by the circles; 

108 



7. lmplementation and Validation 

2 = Task Switching Time which is the time required for the task switching 

operations by the MicroSoft Windows Operating System. lt includes only the task 

switching time within the MF Process; 

3 = Service Unit Execution Time which is the time required for the execution of a 

Service Unit including the underlying communication subsystem and the shop 

floor station; 

4 = MF Total Time which is the time required for the processing of a MFO by the MF 

Process. lt is calculated from the receiving of a MFO-call to the sending of the 

response, and is the sum of the MF Process Time, Service Unit Execution Time 

and Task Switching Time; 

5 = MFO Execution time which is the time required from the issue of a MFO-call by 

the Business Interface to the arrival of the response. lt includes the MF Total 

Time and the time required by the other IIS processes. 

300 

250 

200 

! 5 

Q) 150 4 

.~ 
E-4 

3 

100 

50 

2 

0 ~~~~~~~~~~~~~~~~~~~~~~~~! 
rl ~ m ~ ~ rl ~ m ~ ~ rl ~ m ~ ~ rl ~ m ~ ~ rl ~ m ~ ~ 

rl rl N N N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 00 00 00 m m 

TestNurober 

Fig. 7.6 Execution Times with Single MFO 

The time required by the Machins Front-End itself, as predicted, was not significant, 

and takes only an average of 1.3ms (i.e. 0.71% of the MF Execution Time). The 

Task Switching Timetakes 17,7ms (i.e. 9,7%) with a standard deviation 3.4ms. The 

Service Unit Execution Timetakes a large part of the required time; an average of 

141 ,6ms (i.e. 77 ,6%). lt will increase when the manufacturing device is connected, 

e.g. a Service Unit for the movement of a robot arm from one point to another point 

109 



7. lmplementation and Validation 

can take several seconds. The MF Total Time and the MFO Execution Time include 

the Service Unit Execution Time, so the three have a similar curve. Some peaks 

appeared in the Service Unit Execution Time, which were assumed to be caused by 

the Service Unit Provider (implemented in LiveData) and the MicroSoft Windows. 

Figures 7.7 shows the frequency distribution of the MF Process Time. lt was hard to 

recognize the kind of distribution because different curves appeared in several 

experiments with the same type of MFO, even if they had the same average time. 

25 1-111- 11FPmcessTine I 
20 

5 

0 +----+-----1-------+----+----+------l 

1,15 1,20 1,25 1,30 

Tine ins] 

1,35 1,40 1,45 

Fig. 7.7 Frequency Distribution of the MF Process Time 

Another evaluation was performed for the investigation of the system behaviour on 

the processing of multiple MFO's concurrently by the Machins Front-End. 

Figure 7.8 shows the MFO Execution Time of three MFO's with the same first type, 

and Figure 7.9 depicts the time interval between two Service Unit Requests (SU

Calls). The three MFO's were processed concurrently by the Machine Front-End. 

Similarly to the result shown in Figure 7.6, most of MFO Execution Time was for the 

execution of the Service Unit with remote shop floor station. The difference between 

two MFO Execution Times was about 200ms, even if the Machine Front-End sent 

the three Service Unit Requests to the Service Unit Provider in an interval of 23.8ms 

shown in Figure 7.9. This was also assumed to be caused by the Service Unit 

Provider and the MicroSoft Windows Operating System. 

110 



900 

800 

.!:! 700 

Q) 

~ 600 
E-4 

g 500 
..-1 
~ ::s 400 
0 
Q) 

&) 300 

0 
~ 200 

100 

35 

33 

31 

29 

!.ll 27 
a ..... 
Q) 25 

~ 
E-4 23 

21 

19 

17 

7. lmplementation and Validation 

TestNurn ber 

Fig. 7.8 The MFO Execution Time with three MFO's 

-- ~:u ~ all]1tervaH 

- - - SU ~~ all]1terval-2 

~ ~ ~ 0 M ~ m N ~ 00 ~ ~ ~ 0 M ~ m N ~ 00 ~ ~ ~ 0 M ~ m N ~ 00 ~ • ~ 0 
~ ~ ~ ~ N N N M M M • ~ • • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 00 00 00 m m m 0 

~ 

TestNurn ber 

Fig. 7.9 Interval of the Service Unit Calls (with 3 MFO's) 

111 



7.1mplementation and Validation 

A detailed analysis of these two packages using the methods described in [BoAk82] 

was not possible because of insufficient information. There are several methods 

discussed for the analysis of the performance of a distributed system, which include 

the analytical model building, simulation by use of the Queueing Network Models. 

The evalution of the Machine Front-End in this work was performed by use of the 

measurement method. 

Figura 7.10 shows the result of 5 types of execution time by a number of MFO's. The 

X-axis indicates the number of MFO's being processed by the Machine Front-End 

concurrently. The Y-axis shows the average of total test runs for each type of 

execution time. The MF Process Time is still not significant. The Task Switching 

Time is almost constant, while the Service Unit Execution Time increases with the 

number of MFO's. The MF Total Time and the MFO Execution Time include the 

Service Unit Execution Time, so they have a similar curve. However, the MFO 

Execution Time increases marginally faster than the Service Unit Execution Time 

because it includes also the task switching time of the other IIS processes which 

increases also with the number of MFO's in process. 

700 -111- H FO Executbn Tin e 

600 

-{}-- ~~ F TotalT in e 

~· 
SOO -o-- TaP.kSwitehhgTine ---------------~~~ + 

i 400 -:.~.-m~---·~ 
«300 ~~~ 
200~ 

• 

-+- SU ExecutbnTine 

100 

oi~===========t.==========~•==========~.~==========-~. 
1 2 3 4 5 

Num berofM FO 's 

Fig. 7.10 Execution Times with Multiple MFO's 

112 



7. lmplementation and Validation 

The table below gives some statistical values. They are presented as an average, for 

example with three MFO's being processed in parallel, each MFO Execution Time of 

the three MFO's was averaged first by i 00 test runs, and then the mean of the three 

averages was calculated. 

Time (ms) MF Process T ask Switch- Service Unit MF Total MFO Exec. 
Time inq Time Exec. Time Time Time 

1 MFO 
Averaqe 1.292 17.660 141.588 160.540 182.436 
Minimum 1.149 11.797 88.529 104.902 126.394 
Maximum 1.441 23.073 241.199 254.474 278.633 
Stadard Dev. 0.083 3.376 15.225 15.656 15.994 
Percent {%) 0.71 9.68 77.61 88.00 100 

2MFO's 
Average 1.724 22.657 229.816 254.197 289.332 
Minimum 1.394 19.111 170.704 195.170 230.515 
Maximum 2.707 24.986 383.455 406.329 443.826 
Stadard Dev. 0.260 1.698 27.574 28.023 29.122 
Percent (%) 0.60 7.83 79.43 87.86 100 

3 MFO's 
Average 1.972 22.617 337.159 361.748 425.250 
Minimum 1.405 4.587 210.771 233.568 344.219 
Maximum 2.842 26.118 571.441 596.794 659.598 
Stadard Dev. 0.342 2.331 55.679 56.103 45.905 
Percent {%) 0.46 5.32 79.29 85.07 100 

4MFO's 
Average 2.030 23.661 396.175 421.866 517.078 
Minimum 1.541 7.522 308.093 338.240 443.044 
Maximum 2.585 30.045 526.971 553.202 615.424 
Stadard Dev. 0.286 3.292 41.987 41.533 32.229 
Percent (%) 0.39 4.58 76.62 81.59 100 

5 MFO's 
Average 2.174 27.339 504.548 534.061 651.962 
Minimum 1.647 2.149 416.047 443.680 567.114 
Maximum 2.794 65.879 762.153 785.748 863.850 
Stadard Dev. 0.313 10.751 48.818 46.957 38.767 
Percent {%) 0.33 4.19 77.39 81.92 100 

Consequently, the evaluation results have shown that the time required for the 

execution of a MFO is influenced by the task switching mechanism of the applied 

operating system. The time required by the IIS processes themselves can be 

negligible in comparison with the other contributing system components. Therefore, 

113 



7. lmplementation and Validation 

the execution time of a specified MFO can be estimated by the sum of the total task 

switching time and the total execution time of Service Units used within the MFO. 

Strategies for the Emergency handling 

ln a CIM-OSA system, every activity in the external CIM-Modules is triggered and 

controlled by the lntegrating lnfrastructure by use of Domain Process Models. This 

implies that there should exist at least a Human Functional Operation in a Domain 

Process Model for the emergency handling, e.g. to stop a process by an operator. 

The Human Functional Operation should present to an operator a Iist of emergency 

handling methods and the Human Front-End should be able to accept the action 

given by the operator. To accomplish the operator action the following two strategiss 

are considered. 

" Direct intervention: This strategy relates to the immediate interaction between 

the Human Front-End and the Machins Front-End. After the Human Front-End 

receives an emergency action from an operator, it sends a corresponding 

message to the Machins Front-End to change the control of the MFO execution 

directly; 

• lndirect intervention: This strategy relates to the interaction between the Human 

Front-End and the Activity Control to change the control of the MFO execution. 

The Human Front-End first sends a corresponding message to the Activity Control 

to change the value of control input objects (Procedural Rule) of the 

corresponding MFO-Standard Contra/ Structure. This causes then the Activity 

Control to send a service request, e.g the Stop or Terminate Service Request, to 

the Machins Front-End to change the control of the MFO execution. 

The first strategy immediately intervenes with a MFO execution. lt can be used when 

the process requires a high degree of 'emergency' handling, but it needs a definition 

of the Co-operation between the Machins Front-End and the Human Front-End. The 

second strategy causes a time delay because the operator action has to be passed 

first to the Activity Control, this gives a possibility that an operator can change not 

only a specified MFO execution but also the sequence within a Domain Process 

Model. ln the case study, the second strategy is applied for the operator intervention 

and the Human Front-End uses the MF Contra/ Engine. 

114 



7. lmplementation and Validation 

The testing has proved that the proposed solution for the MF design conforms to the 

CIM-OSA concept, particulary in view of the Client-Server Architecture and the CIM

OSA Executable Model. Also the testing has proved that most of the industrial user 

requirements can be satisfied. 

115 



8. Recommendations w.r.t. CIM-OSA 

8) Recommendations with respect to CiM-OSA 

This chapter discusses some important aspects for further developments in CIM

OSA. lt concentrates on the CIM-OSA executable models, the generic approach to 

all three types of Front-End Services, and the migration of the proprietary machins 

control systems into the CIM-OSA system. 

CIM-OSA is a lang running research project of the Commision of the European 

Communities in the CIME area (Computer-lntegrated Manufacturing and 

Engineering). lt supports the efficient design, manufacture and distribution of high 

quality products, and provides European enterprises with the flexibility to respond 

rapidly to market opportunities. CIM-OSA applies the most advanced information 

technologiss to: process modelling, real-time planning and scheduling, information 

integration, factory communication, automation, etc. Furthermore, CIM-OSA is an 

open system architecture which enables component developers, suppliers and end 

users to join tagether in product development. 

However, CIM-OSA is still under development. Even if the main framewerk of the 

CIM-OSA concepts has been established, there are still details to be improved. 

These will be a challenge for research institutions, software houses, industrial CIM

users, etc. 

Executable Model of Cl M-OSA 

CIM-OSA provides an integrated methodology from the process design to the 

manufacturing. A set of lntegrated Enterprise Engineering Tools will be used to 

support an enterprise modeller to manipulate the constructs. The outcome of this 

task are the Domain Process Models with associated data objects. They are stored 

tagether in external Data Base Management Systems. The models and the data 

objects can be directly accessed and executed under the control of the lntegrating 

lnfrastructure (118). This feature enables a consistent and complete information 

processing from the process design to the manufacturing, and is known as a CIM

OSA Executable Model. 

The test scenario has shown the feature of a CIM-OSA Executable Model but only 

limited to the Function View ot the modelling task. lt would be interesting to examine 

the complete 118 behaviour by extending the case study to the Information, Resource 

116 



8. Recommendations w.r.t. CIM-OSA 

and Organization View, when the whole IIS prototype is available in the future. 

However, we have to keep in mind that the CJM-OSA Executable Model can be 

achieved only if the representation format of the process models and information 

objects from the Model/ing Framework are clearly defined and standardized, so that 

the lntegrating lnfrastructure can understand and execute them. 

Generjc approach to all three types of Front-End Services 

Actually, all three elements of Front-End Services have the same nature in the 

control of the FO execution, although the functionalities of the respective FO's 

remain different. The approach to the MF design separates the generic control 

mechanism from the FO-specific control knowledge. This approach can be adapted 

to the development of the other two elements of Front-End Services: Application and 

Human Front-End. ln fact, this was shown in the test scenario where the execution of 

the Human Functional Operation is controlled by the Machins Front-End. The MF 

Contra/ Engine is able to deal with all types of CIM-Modules implemented according 

to the CIM-OSA concept. These types of CIM-Modules are called CIM-OSA 

conformed CIM-Modules. Each of them consists of a number of Program Units 

which represent the execution part of CIM-OSA elementary Function Models (i.e. 

Functiona/ Operations - FO's). 

However, the support for the integration of the existing proprietary (non-CIM-OSA 

conformed) CIM-Modules is indeed very important for the manufacturing industries 

in building a CIM system. From the pragmatic viewpoint, the integration of the 

proprietary CIM-Modules, e.g. the CAD applications for the product design, should 

focus more on the information integration than on the business activities integration. 

CIM-OSA offers the Application Front-End (AF) for the control of these types of 

proprietary applications to enable them to access the common data stored in 

external Data Base Management Systems. This strategy, however, complicates the 

AF design, because the Application Front-End not only has to achieve the 

capabilities of the Machine Front-End but also should include a Client-Server 

relationship with these proprietary applications. 

An alternative solution to this problern is to add another component into the 

lntegrating lnfrastructure. This component should manage several interface 

adapters, such that each one is responsible for the interfacing between a proprietary 

CIM-Module and the Information Services. Figure 8.1 depicts a revised CIM-OSA 

117 



8. Recommendations w.r.t. CIM-OSA 

lntegrating lnfrastructure. lt aims at the integration of both business activities and 

information. The external CIM-Modules are therefore divided into two types: the CIM

OSA conformed CIM-Modules and the proprietary CIM-Modules. They are 

integrated into a CIM-OSA system by the Front-End Services and the Interface 

Adapter, respectively, which allows the co-existence of both types of CIM-Modules. 

lt is conceived that such a CIM-OSA system will be more widely applied by allowing 

the execution of proprietary CIM-Modules without the control of the Business 

Services. 

Business 
Services 

Fig. 8.1 A revised CIM-OSA lntegrating lnfrastructure 

Keys are: HFE: Human Functional Entity, 
AFE: Application Functional Entitiy, 
PP&C: Production Planning & Control, 
HF: Human Front-End, 
AF: Application Front-End, 

MFE: Machine Functional Entity, 
CAD: Computer Aided Design, 
F-Services: Front-End Services, 
MF: Machine Front-End, 
DBMS: Data Base Mgmt. System. 

Integration of the proprietary machine control systems into CIM-OSA systems 

CIM-OSA provides enterprises with a Modelling Framework and an lntegrating 

lnfrastructure for the software development for the generation and operation of new 

118 



8. Recommendations w.r.t. CIM-OSA 

(sub)systems. However, the protection of existing investments and therefore the 

integration of existing applications to a CIM system is an important factor when 

considering a new investment in a CIM-OSA system. 

Generally, there are two methodologies for the integration of existing applications: 

the integration by intertacing and the integration by migration. The integration 

by interfacing has been shown in the form of Interface Adapter in the previous 

recommendation above. 

Migration of an application into a given system, means the change of the application 

structure in conformance with the structure of the given system in order to achieve 

an integrated system. Migration of a proprietary (distributed) application into an open 

system is a difficult task. lt has to deal with the functional procedures and information 

objects of the proprietary application. There are several migration processes 

suggested: the analysis of the proprietary application software, the extraction of the 

distributed functions, the transformation of the distributed functions, and the testing 

[Hou 91]. The migration of a proprietary application into a CIM-OSA system needs to 

design a Domain Process Model which contains the procedural functions of the 

proprietary application. 

The approach of the MF design uses the Control Modelsand the Service Units to 

control the MFO executions. Each Service Unit is used for a specific purpese to co

operate with remote machine controllers. Therefore, a Service Unit, tagether with its 

co-operating Program Unit of the machine controller, can be viewed as a basic 

oparational unit for a specified job. ln fact, these basic oparational units provide a 

good basis not only for the implementation of Function Models, but also for the 

migration of the distributed functions of proprietary applications. 

The integration by interfacing concentrates only on the information exchange of 

the proprietary parts with the CIM-OSA applications. The proprietary applications 

remain almost unchanged. By the short-term strategy of an enterprise, this kind of 

integration can achieve an integrated working system in a short time, but from the 

long-term aspect it loses the benefits of a CIM-OSA system. 

119 



9. Conclusions 

9) Conclusions 

The development of a concept for the Machine Front-End (MF) design was initiated 

by the study and analysis of the CIM-OSA concept, from which the two main MF 

objectives have been derived: 

o the support of the execution of CIM-OSA models resulting from the Modelling 

Framework; 

o the integration of heterogeneaus manufacturing devices. 

ln the Client-SeNer Architecture of the lntegrating lnfrastructure (1/S), the Machins 

Front-End has three features: 

• a twofold function, as a client and as a seNer; 

o a provision of specific seNices for the other IIS components; 

o an application program for the CIM-OSA users, not a seNice provider. 

The conventional approach, consisting in building the client and seNer applications 

with a set of indication/confirmation functions, was investigated and found to be not 

applicable for the design of the Machine Front-End. Therefore, an advanced 

approach was proposed, which can achieve the two objectives and realize the three 

features of the Machine Front-End. 

The proposed approach provides a Control Model Libary and a Control Engine. The 

Control Model Libary contains the application-specific control knowledge of the CIM

OSA models, while the Control Engine holds the generic control mechanism. The 

approach makes use of the concept of Service Units which may invoke the seNices 

of the international standard MMS (Manufacturing Message Specification) or any 

proprietary seNice. lt applies the object modelling technique to specify the MF 

capabilities, and uses the principle of the complementary interaction model to define 

the interaction between the Machine Front-End and its clients. 

Based on these concepts, a Control Engine was specified. Also a command 

language was developed for the support of the implementation of the elementary 

CIM-OSA Function Models, and the implemented models are contained in the 

Control Model Libary. Furthermore, a MF prototype, a testing environment and three 

CIM-OSA models (i.e. Domain Process Model which describes the task of a selected 

120 



9. Conclusions 

working area within an enterprise) were created for the validation of this approach 

and the investigation of the MF behaviour in a CIM-OSA system. 

The CIM-OSA models created are presently only for 'laboratory investigation•, they 

include ,however, the subsets of the two selected industrial applications of the 

ESPRIT-VOICE Project. A more complex and realistic CIM-OSA model of 

manufacturing environment for the extensive testing of the Machine Front-End 

requires a complete implementation of the lntegrating lnfrastructure (IIS). However, 

due to the current state of the IIS development, much effort is still needed in the 

design of the specification and the implementation. 

The important results of this work can be summarized as follows: 

• An advanced approach for the MF design was proposed which conforms to the 

CIM-OSA concept and satisfies the industrial user requirements. The separation 

of the application-specific control knowledge of CIM-OSA models from the generic 

control mechanism, not only provides a great flexibility in the implementation of 

the CIM-OSA elementary Function Models, but also supports their portability; 

• lt was shown that it is possible to establish a link between the process design and 

the manufacturing. The implemented Test Scenario is the first CIM-OSA 

demonstrator which shows the CIM-OSA executable model. The scenario was 

registered as the McCIM system by KfK. 

• Through the implementation of the Machine Front-End in the McCIM system, the 

CIM-OSA concept was enhanced. This work has made a considerable 

contribution to the evolution, acceptance and credibility of the CIM-OSA concept. 

Both the proposed approach of the MF design and the created MF prototype were 

accepted by the ESPRIT-AMICE Consortium and recognized as being one of the 

important contributions to the whole CIM-OSA development. 

121 



LITERATURE 

[AEG 90] 

[AMIC89] 

AEG-GeAmatics Production Control System; AEG; '90. 

ESPRIT Consortium AMICE: "Open System Architecture for CIM", 

ESPRIT Project 688 AMI CE Volume 1, '89, Springer-Verlag. 

[AMIC90] Technical annex of ESPRIT Project no. 5288. AMICE 11/M Consortium, 

Sept. '90, Brussels/Belgium. 

[Ansa89) "ANSA: An Engineer's lntroduction to the Architecture" and "The ANSA 

Reference Manual"; Architecture Projects Management Limited, 

Poseidon House, Castle Park, Cambridge, CB3 ORD, U.K. '89. 

[Appe85] H.-J. Appelrath: "Von Datenbanken zu Expertensystemen"; Informatik

Fachberichts 102, Springer-Verlag, '85. 

[BaKH89] Baumgartner, H., Knischewski, K., Wieding, H.: "CIM-Basisbetracht

ungen", Siemens AG, '89. 

[Beec90] Beeckman,D.:"CIM-OSA- An Illustrative example of how to apply the 

Modelling Framework";CIMCOM Conf.,Gaithersburg USA,22-24 May '90. 

[Borl92] Bordland Co.: "Borland C++: Programmierhandbuch", Feb. '92. 

[CIM090] CIM-OSA: "CIM-OSA Documents: 

C5-1 000 Communication Services Complex; 

C5-2000 lnfomation Services Complex; 

C5-3000 Front-End Services Complex; 

C4-1 000 & C4-2000 Modelling Framework and IIS; 

80,81,82,83 Modelling"; '90-'91. 

[CODE90] Technical annex of ESPRIT Project no. 5499. CODE Consortium, Sept. 

'90, Brussels/Belgium. 

[COMP89] COMPUTROL: "COMPUTROL MAP 3.0 Software Manual for MS

DOS/PC-DOPS"; July '89. 

[CONC90a] CONCORD: "OS I Programmer's Package: Programmer's Reference 

Manual"; July'90. 

[CONC90b] CONCORD: "MAP-Board Controller User's Manual"; April'90. 

[ChDa89] Chan,B.; Daly,D.: "The MAP Solution in the General Motors Oshawa, 

Ontario Car Body Assembly Plant"; SPIE Vol. 1179 Fiber Networking and 

Telecommunications, Sept. '89. 

[Craw93] Crawford, R.:"lntegrating 3D modelling and process planning by 

features: a case study"; lnt. J. Computer lntegrated Manufacturing, 

Vol.6, NOS.1 & 2, p113-118, '93; 



[CYCL92] Cycle Software lnc., 60 Kinnaird St., Cambridge, MA 02139, USA; User's 

Guide of CYCLE LiveData: An Open Networking Tool for Real-Time 

Data, Version 1.06. 

[Das 92] Das, S.K.: "A Scheme for classifying integration types in CIM"; lnt. 

Journal Computer lntegrated Manufacturing, Vol. 5, No. 1, p1 0-17, '92. 

[DEC 91] Digital Equipemt Coporation: "Neue Dimensionen in der flexiblen 

Fertigung mit CIM", "BASEstar", "Digital's lntegrated Manufacturing 

Management Solution", '90-'91. 

[Didi92] Didic,M.: "Rapid Prototyping for MAP/MMS based CIM-OSA 

Environment". The 3rd lnt. Workshop on Rapid System Prototyping. 

North Carlonia, USA, June 23-25, '92. 

[DiNe91] Didic,M.; Neuscheler,F.: "Analysis and Requirements for Tool 

Supplementsand Additions for the ESPRIT Project VOICE"; KfK/IAI; 

Primärbericht; Dec. '91. 

[DNBM93) Didic,M.; Neuscheler,F.; Bogdanowicz,L.; Klittich,M.: "McCIM: Execution 

of CIMOSA Models"; Proc. of the 9th CIM-Europe Annual Conf., 12-12 

May '93, Amsterdam, The Netherlands. 

[Exce90] 

[Espr92] 

Excel -- User's Guide; Version 3.0; Microsoft Corporation, '90. 

"Esprit: Computer-lntegrated Manufacturing and Engineering"; "Esprit: : 

Information Processing System and Software" and "Esprit: Advanced 

Business and Home Systems -Peripherals"; The Synposes; Commission 

of the European Comminities; Oct. '92. 

[EWIC83] Techniques for Verification and Validation of Safety Related Software, 

EWICS TC? WP 400, May '83. 

[EWIC84] Guidelines for Verification and Validation of Safety Related Software, 

EWICS TC7 WP 333, October '84. 

[Fiat88] Flatau,U.: "CIM Architecture Framework", Digital Equipment Corporation, 

Digital Competence Center Manufacturing lndustries Europe, Munich, 

Germany, '88. 

[GHLS91] Grandjacques,B.; Hou,W.-N.; Leuschner,R; Shi,H.; Segarra,G.; Bruei,P: 

"Front-End Services Feasibility Report", VOICE Project, June, '91. 

[GiBH91) Gielingh,W.F.; de Bruijn,W.J., Halbert,J.R. : "lmplementation Levels for 

Semantic Integration of Open System CIM Modules"; Proc. of the 7th 

CIM-Europe Annual Conf., 29-31 May '91, Turin, ltaly. 

[Guit92] Guittot,Ph.: "Entwicklung einer Anwendung zur Demonstration der CIM

OSA-Konzepte"; KfK internal report; '92. 



[GoSp90] Gora,W.; Speyerer,R: "ASN.1 (Abstract Syntax Notation One)"; 

DATACOM Verlag; '90. 

[Gyme93] Gymer,P.: "VOICE- ELVAL Simulation in lnTouch"; KfKIIAI, internal 

report; Feb. '93. 

[Hars92] Hars,A; et al.: "Reference Models for Data Engineering in CIM"; Proc. of 

the 8th CIM-Europe Annual Conf., 27-29 May '92, Birmingham, UK. 

[Holl9i] Holler,H. E; et al.: "Untersuchung der Anwendbarkeit terrestrischer 

Standards zur Produktionsautomatisierung auf Weltraumanwendungen"; 

Primärbericht, KfK/IAI, Germany, Oct. '91. 

[Hau 87] Hou,W.-N.: "Entwicklung eines Prototypen für ein Expertensystem zur 

Diagnose und Reparatur von Steuerungssystemen in der Zement

industrie"; Holderbank Management & Beratung AG/Switzerland; '87. 

[Hau 91] Hou,W.-N.: "A Migration Plattarm for the lntroduction of Open Cornmuni

cation into a CIM-Environment (McCIM)"; KfK/IAI internal report, '91. 

[HoKG92] Hou,W.-N.; Klittich,M.; van Gerwen,R.: "The Knowledge Base-ariented 

Machins FRont-End Services for the lntegrating lnfrastructure of CIM

Open System Architecture (CIM-OSA)"; Proc. of the 8th CIM-Europe 

Annual Conf.; 27-29 May '92; Birmingham, UK. 

[Hau 93a] Hau, W.-N.: "An Approach to the Development of the Machins Front-End 

Services in a CIM-OSA Environment"; Proc. of the 3rd lnt. Conf. on 

Flexible Automation and lntegrated Manufacturing; 28-30, June, 

Limerick, lreland. 

[Hau 93b] Hau, W.-N.: "Specification of the Machins Front-End of the CIM-OSA 

lntegrating lnfrastructure"; KfKIIAI internal report, June '93. 

[Hug 91] Hug, H.: "Die Kommunikations-lnfrastruktur in der Fertigung"; CIM

Management; 1 /'91. 

[IBM 91] International Business Machines: "IBM CIM Architecture", "CIM 

Communication and Data Facility", "IBM Computer lntegrated 

Manufacturing", '90-'91. 

[lnTo92] lnTouch- the Application Generator for the Man-Machine-lnterface; 

User's Guide; Version 3.21, WenderWare Software Development 

Corporation, '91. 

[ISO 87] ISO 8824: "Specification of Abstract Syntax Notation One (ASN.1 )"; 

ISO 8825: "Specification of Basic Encoding Rules for Abstract Syntax 

Notation One (ASN.1 )"; May '87. 

[ISO 90] ISO 9506: "Manufacturing Message Specification (MMS): Part i: 

Service Definition and Part 2: Protocols Definition"; '90. 



[Jack86] Jackson, P.: "lntroduction to Expert Systems"; Addison-Wesly, '86. 

[JoVe90a) Jorysz, H.R.; Vernadat,F.: "CIM-OSA Part 1: Total Enterprise Modelling 

and Function View"; International Journal of CIM, Vol 3 # 3/4 '90. 

[JoVe90b] Jorysz, H.R.; Vernadat,F.: "CIM-OSA Part II: Information View"; 

International Journal of CIM, Vol 3 # 3/4 '90. 

[KaCE92] Kathawala,Y.;Chawla,S.; Elmuti,D.: "Same Strategie Aspsets of 

Computer lntegrated Manufacturing"; lntegrated Manufacturing System, 

Vol.3 No. 1, '92, pp.27-34. 

[Kais89) Kaiser, F.-J.: "MAP-Pilotinstallation: Integrations- und lnteroperabilitäts

tests für eine zeitkritische Umgebung", KfK-Primärbericht, Juli '89. 

[Kern89] Kerndlmaier, M; et al.: "Technische Expertensysteme für Prozeßführung 

und Diagnose"; Oldenbourg Verlag; '89. 

[Kiit90) Klittich,M.: "CIM-OSA lntegrating lnfrastructure-The oparational Basis for 

lntegrated Manufacturing Systems"; lnt. Journal of CIM,Vol 3 # 3/4 '90. 

[Kiit91 a] Klittich,M.: " From CIM to CIM-OSA -a step ahead in system integration"; 

Proc. of the 7th CIM-Europe Annual Conf.; 29-31 May '91; Turin, ltaly. 

[Kiit91 b] Klittich,M.: "Front-End Service Candidates", internalpaper of AMI CE 

Project, Nov. '91. 

[Kosa90] Kosanke,K: "CIM-OSA: its role in Manufacturing Control"; Procesding of 

the 11th IFAC World Congress,TALLIN,ESTONIA,USSR;Aug. '90. 

[Kosa91] Kosake,K.: "Open Systems Architecture for CIM: Standards for Manu-

facturing"; Proc. of the lnt. Conf. on CIM, 2-4 Oct. '91; Sigapore. 

[Lawo90] Lawo,M.; et al.: "Automatisierung- und Steuerungskonzept für ein 

hochflexibles Handhabungssystem zum Gußputzen"; KfK/IAI internal 

report, '90. 

[MAP 89) MAP: "Manufacturing Automation Protocol Specification"; Version 3.0; 

Vol.1-4, European MAP Users Group(EMUG); '89. 

[Meie91] Meier, A: "Advantages of Using Features to lntegrate Product and 

[Micr90] 

[Mits90] 

[Neus90] 

Process Modelling- Results of IMPPACT (ESPRIT 2165)"; Proc. of the 

7th CIM-Europe Annual Conf.; 29-31 May '91; Turin, ltaly. 

Microsoft Windows Software Development Kit: "Guide to Programming"; 

"Reference- Volume 1 and 2"; Microsoft Corporation, '90. 

User Guide of Robot RV-M1; Mitsubishi, Japan; '90. 

Neuscheler, F.: "ESA/ESTEC-Report: Survey of Automation and Robotic 

Relevant Standards"; KfK/IAI-Report; '90. 

[PACE91] "PACE Tool Reference Manual"; Grossenbacher Elektonik AG; 

St. Gallen, Switzerland, '91. 



[Pans90a] Panse,R.: "CIM-OSA- A Vendor Independent CIM Architecture (lntegrat

ing lnfrastructure)"; Maple Conference; Ottawa Canada, May 15, '90. 

[Pans90b] Panse,R: "CIM-OSA- A Vendor Independent CIM Architecture 

(Modelling Approach)"; Proc. of CIMCOM Conf.; Gaithersburg USA, 

22-24 May '90. 

[PeSi84] Peterson,J.; Silberschatz,A.: "Operating System Concepts"; Addison

Wesley Pub I.; '84. 

[Pime90] Pimente!, J.-R.: "An Object Griented Environment for Intelligent 

Automation Systems"; lnt. Conf. on lndustrial Electronics, Asilomar, CA., 

Nov. '90. 

[PROC90] PROCOS AIS: "EasyMap User's Manual"; Nov. '90. 

[Quir85] Quirk,W.J.: "Verification and Validation of Real-Time Software"; 

Springer-Verlag; '85. 

[Quer91] Querenet, B.: "The CIM-OSA integrating infrastructure" Computing & 

Control Engineering Journal; May '91. 
[Rafi92] 

[ReDi86] 

Rafiee,N.:"Process Tracking für Renault"; KfK/IAI;internal report;Dec.'92. 

Rembold,U.; Dillmann,R.: "Computer-Aided Design and Manufacturing"; 

Springer-Verlag; '86. 

[Redm88] Redmill, R.J.: "Dependability of Critical Computer Systems 1 "; Elesevier 

Science Publisher Ud.; U.K.; '88. 

[Remb90a] Rembold,U.: "Standardization Efforts in Computer lntegrated 

Manufacturing"; Procesding of the 14th Alllndia Machins Tool Design & 

Research Conference, Bombay, lndia; Dec. 19-21 '90. 

[Remb90b) Rembold,U.; et al.: "CAM-Handbuch"; Springer-Verlag; '90. 

[RoWL83] Hayes-Roth,F.; Waterman,D.A.; Lenat,D.B.: "Building Expert Systems"; 

Addison-Wesly; '83. 

[Sche89] Scheer, A.-W.: "Enterprise-wide Data Modelling"; Information Systems in 

lndustry; Berlin, '89. 

[Sche90] Scheer, A.-W.: "CIM: Der computergesteuerte Industriebetrieb"; 

Springer-Verlag; '90. 

[Sche91] Scheer, A.-W.: "Architektur integrieter lnformationssysteme"; Springer

Verlag; '91. 

[SISC90] SISCO: "MMS-EASE Refernce Manual"; Revision 9; System Integration 

Specialists Company; '90. 

[Stra89] Strasser,T.D.: "MAP/TOP- Overcoming Barriers to Integration"; Journal 

of Electrical and Electronics Engineering, Val. 9, No. 4, '89. 

[SUN 90] Sun microsystems: "Network Programming Guide"; March, '90. 



[Vern90] Vernadat, F.: "Modelling and Analysis of Enterprise Information Systems 

with CIM-OSA"; Proc. of the CIM-Enrope 6th Annual Conf.; Lisbon 

Portugal; 15-17 May '90. 

[Visu91] Visual Basic -- User's Guide & Language Reference; Microsoft 

Corporation, '91. 

[VIie90] Vlietstra,J.: "The Architectural Framewerk and Models in CIM-OSA"; 

[VOIC90] 

[VOIC93] 

[Weat88) 

[West90] 

APMS (Advanced Production Management Systems) Conference, 

Helsinki, 21 August '90. 

Technical Annex of ESPRIT VOICE Project 5510, Oct. '90. 

Final report of ESPRIT VOICE Project 5510, Feb., '93. 

Weatherall, A.: "Computer lntegrated Manufacturing: From fundamentals 

to implementation"; Butterworths Publishing Co.; '88. 

Weston, R.H.; et al: "Highly Extendable CIM SystemsBasedon an 

Integration Platform"; Proc. of CIMCON Conf.; Gaithersburg, USA; '90 

[West91] Weston, R.H.: "CIM Enterprises of the 21st Century"; Proc. of ICCIM 

Conf.; Singapore, 2-4 Oct. '91; 

[West91] Westen, R.H.; et al: '"Soft' Integration and its lmportance in Design to 

Manufacturing"; Journal of Design and Manufacturing; 1; p47-56; '91. 

[WiHo89] Winston,P.-H.; Horn,B.-K.: "LISP 3rd Edition"; Addition-Wesley; '89. 

[WZL 90] "Education & Training Course on CIM-Open System Architecture"; 

Laboratorium für Werkzeugmaschinen und Betriebslehre (WZL); TH 

Aachen; Nov. '90. 

[XuPa90] Xu,J.; Parnas,D.L.: "Scheduling Processes with Release Time, 

Deadlines, Precedence, and Exclusion Relations"; IEEE Transactions on 

Software Engineering, Vol.16, No.3, March, '90; 


	Blank Page

