
Technical Report 25/96, Department of Computing Science, University of Karlsruhe

Separating Weakening and Contraction in a Linear Lambda Calculus

(Unabridged)

John Maraist
�

Abstract. We present a separated-linear lambda calculus based

on a re�nement of linear logic which allows separate control of

weakening and contraction. The calculus satis�es subject reduc-

tion and conuence, has a straightforward notion of standard

evaluation, and inherits previous results on the relationship of

Girard's two translations from minimal intuitionistic logic to lin-

ear logic with call-by-name and call-by-value. We construct a hy-

brid translation from Girard's two which is sound and complete

for mapping types, reduction sequences and standard evaluation

sequences from call-by-need into separated-linear �, a more sat-

isfying treatment of call-by-need than in previous work, which

now allows a contrasting of all three reduction strategies in the

manner (for example) that the CPS translations allow for call-

by-name and call-by-value.

O
ne fundamental application of the continuation-
passing transformations is to explain the di�er-

ent parameter-passing mechanisms of call-by-name and
call-by-value by di�erent translations from each re-
spective �-calculus into the continuation-passing cal-
culus [21, 22]. Each transformation makes the con-
trol operations of the respective mechanism explicit in
the transformed term, so that reduction of the trans-
formed term by either mechanism produces equivalent
results. In this paper, we will also compare di�erent
calling mechanisms by mapping them into a common
system, but rather than focusing on an explicit ow of
control such as through the continuation-passing style,
we will contrast the mechanisms in terms of the sub-
structural operations of the lambda calculus using lin-
ear systems, where the operations of weakening and
contraction are allowed only in conjunction with a new
modal connective. Moreover, rather than considering
linear systems with a single intuitionistic mode, as in
previous approaches to this problem, we will construct
as a target of the translations a separated -linear lambda
calculus, where the two key substructural operations
of weakening and contraction are enabled by distinct
modal connectives.

Typed lambda calculi generally have a Curry-
Howard correspondence [11, 14]: a close relationship
between their type systems and formal logical frame-
works, usually some variety of minimal intuitionistic

�Institut f. Programmstrukturen und Datenorganisation, Uni.
Karlsruhe (TH), Postfach 6980, D-76128 Karlsruhe, Germany. Email,

maraist@ira.uka.de; web URL, http://wwwipd.ira.uka.de/~maraist/Papers.

logic. In such logics, structural inference rules play an
important, if often overlooked, role: weakening allows
assumptions to be discarded, while contraction allows
duplication. Moreover, these rules are the only facility
for duplicating and discarding assumptions. So at the
level of the calculi, the corresponding typing rules are
the mechanisms by which we introduce the copying or
discarding of terms. A term is discarded when it is sub-
stituted for a variable which appears only on the left
side of a typing judgment, which can occur only as the
result of applying a weakening rule; a term is duplicated
when it is substituted for a variable which appears more
than once on the right side of a typing judgment, which
can occur only by a contraction rule.

In the three substructural lambda calculi �I [10], �A
and �L [15], the use of (respectively) weakening, con-
traction and both are simply banned. These systems
are not su�cient here: while we do want to make the
use of such rules explicit, we do not want to prohibit
them altogether. Instead, we will take as target cal-
culi systems whose type systems are related to logics
where the use of the structural rules must be explicitly
enabled.

In previous work [20], we explored translations into
a system based on the linear logic of Girard [12]. In lin-
ear logic the ability to weaken or contract is expressed
in a formula by a new connective !. Linear implication
requires the precedent to be used exactly once in the
proof of the consequent, and is written with a new con-
nective ��. Girard identi�ed an intuitionistic subset of
linear logic which is of particular interest to us here,
so henceforward when we write \linear logic" we will
mean this fragment, and will refer to the entire system
of Girard as \full linear logic." Girard described two
translations of intuitionistic logic into linear logic, which
center around the question of the appropriate image in
linear logic for the proposition A! B: under his stan-
dard translation �, we map intuitionistic implication to
(!A�) �� (B�), while under his steadfast translation �
we map to !(A� �� B�). Girard introduced the terms
to relate formulas in the logics; the extensions of the
translations to encompass term reduction became clear
later: both translations preserve typability of terms; the
standard (respectively steadfast) translation is sound
and complete (sound) for mapping general reduction se-
quences from call-by-name (call-by-value) [17, 20]; both

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197599438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

are sound and complete for mapping standard reduction
sequences [18].

The steadfast translation can also address call-by-
need. Call-by-need as we presented it with Ariola,
Felleisen, Odersky and Wadler [2] is a more suitable
basis for the analysis of lazy functional languages than
call-by-name. Although call-by-need uses a di�erent no-
tion of reduction than call-by-name, their observational
equivalence theories are the same for convergence both
to constants and to function-based closures. Unlike call-
by-name | but like call-by-value and implementations
of lazy functional languages such as Haskell | call-by-
need also has the property that reduction will only du-
plicate terms which have been reduced to values.

Call-by-need cannot be straightforwardly mapped
into the linear lambda calculus. The usual transfor-
mation would not be sound for reduction because call-
by-need allows any term to be discarded once it is clear
that the term will not be used; in the transformation
into the linear calculus, only values are marked as dis-
cardable: hence we previously used the a�ne calculus
as the target of the translation from call-by-need [20].
In a�ne systems, only copying is restricted; any term
may be discarded. This arrangement has two major
drawbacks: �rst, like call-by-value, the translation of
call-by-need reduction sequences to a�ne reduction se-
quences is not complete. This restriction undermines
the value of the translation as a tool for reasoning about
programs, since reduction of the transformed term may
suggest transformation not valid in the original system.
A second disadvantage is the fact that we must use sep-
arate systems as the target of the translations. Much
of the insight into call-by-name and call-by-value pro-
vided by the CPS or Girard translations arises from the
fact that the distinct calculi are mapped into a single
system; by using a separate target for call-by-need the
insights are somewhat muddled.

In this paper we consider the separate control of
weakening and contraction. We present a separated-
linear lambda calculus which has two di�erent connec-
tives !w and !c for weakening and contraction, respec-
tively, rather than a single ! operator enabling both
together. The adaptation of Girard's two transforma-
tions into this system is simple, and not surprisingly the
adapted transformations enjoy the same properties as
the respective transformations into the unitary linear
system. What is more insightful is the treatment the
separated system allows of call-by-need.

Call-by-name and call-by-value calculi translate as
well as they do into the linear calculus in part because
the opportunities for discarding and duplication in these
systems are coincident. In call-by-name, discarding and
duplication is allowed for | but only for | any func-
tion argument; in call-by-value, for any value. Call-by-
need, on the other hand, allows any function argument
to be discarded, but any value to be duplicated: in
the separated linear calculus we can separately describe
enabling the substructural operations as suggested by
this intuition. We need not resort to an a�ne system,
since the separated calculus includes a�ne-style reduc-
tion. Thus we present a hybrid translation ~ from call-

by-need into the separated calculus, taking intuition-
istic implication A ! B to the separated-linear type
!c((!wA~) �� B~). This new translation is sound and
complete for all typing judgments, reduction and stan-
dard reduction.

Related Work. Several approaches to the integration
of concepts from linear logic and the original Girard
translations into the lambda calculus have been pre-
sented, including (but not exhaustively) comments in
Girard's original paper on linear logic [12]; the work
of Abramsky [1], Benton, Bierman, dePaiva and Hy-
land [6, 7, 8, 9], Plotkin and Barber [4], della Rocca
and Roversi [23], and Wadler [24, 25]; and our previ-
ous work [18, 20], which is the speci�c framework we
extend here; all of these approaches have used a single
mode for enabling both weakening and contraction. Ja-
cobs [16] has addressed the issue of separate connectives
for weakening and contraction, but for full linear logic
and only in the model theory. To our knowledge, there
have been no previous attempts to allow individual con-
trol over weakening and contraction, nor to construct
the translation we call ~ for call-by-need.

Based on his earlier work on models for the substruc-
tural lambda calculi [15], Jacobs identi�ed a category
of models for a variant of linear logic with separate ex-
ponential connectives for each of weakening and con-
traction which generalizes a�ne and relevance logic as
special cases [16]. Jacobs limited the scope of his study
to the model theory, giving only a brief sketch of a possi-
ble syntax for the logic and not considering its relation
to intuitionistic systems. It would be fair to charac-
terize the calculus we present here as a syntax for an
intuitionistic fragment of Jacobs' system.

This paper is organized as follows. We begin with a
review of the relevant background. We consider three
calculi which make no restrictions on the use of weak-
ening and contraction in Section 1.1: the call-by-name,
call-by-value and call-by-need systems. We are build-
ing on previous work on calculi with a single mode for
enabling structural operations, and speci�cally on the
linear and a�ne lambda calculi which we review in Sec-
tion 1.2. The core of the present work is Section 2,
where we introduce the separated-linear calculus and
the three translations into it. Finally we conclude in
Section 3 with a discussion of various applications and
extensions. Following the primary material, we present
detailed discussions of marked separated reduction and
the standard reduction result in two appendices.

1 Background

1.1 Intuitionistic calculi

Figure 1 presents the details of the call-by-name and
call-by-value systems, and Figure 2 presents the de-
tails of the call-by-need calculus. The properties of the
�rst two are well-known [10, 21]; details of call-by-need
are less commonly known, but are available in previ-
ous work [2, 3, 18, 19]. Here and subsequently, we let
L;M;N range over terms with a subset of values over

2

Syntactic domains
Types A;B ::= Z j A! B

Values V ::= x j �x:M

Terms L;M;N ::= V jM N

Typing judgments

The typing axiom

Id
x : A ` x : A

Substructure rules

� `M : B

Weakening
�; x : A `M : B

�; y : A; z : A `M : B
Contraction

�; x : A `M [y := x; z := x] : B

Term structure rules

�; x : A `M : B

!-I
� ` �x:M : A! B

� `M : A! B � ` N : A
!-E

�; � `M N : B

Call-by-name reduction

(� !) (�x:M)N �����!
Name

M [x := N]

Call-by-name evaluation

Evaluation Contexts E ::= [] j E M

Answers A ::= V

(� !) (�x:M)N 7�����!
Name

M [x := N]

Call-by-value reduction

(� !v) (�x:M) V ���!
Val

M [x := V]

Call-by-value evaluation

Evaluation Contexts E ::= [] j E M j (�x:M) E

Answers A ::= V

(� !v) (�x:M) V 7���!
Val

M [x := V]

Figure 1: The call-by-name and call-by-value calculi.

which V;W range. We assume the existence of certain
base types, ranged over by Z, which we leave unspeci-
�ed. Types, over which A;B range, are either the base
type or a function type. Values are plain variables and
lambda abstractions. In Name and Val, terms can be
a value or an application; in Need terms may also take
the form of a let-binding, which describes the sharing
in a term. We omit the name of the reduction rela-
tion from under symbols when no confusion will result.
All reduction is taken to be compatibly closed under
arbitrary contexts, with ! denoting single steps and
!! for zero or more steps. We distinguish the unique
evaluation sequence of a term to an answer from the
general compatibly closed reduction relation by writing
the former as 7! rather than the ! of the latter. The
properties of these systems are investigated elsewhere:

Proposition 1.1 Properties of call-by-name [5, 10]:
� Name satis�es subject reduction.
� Name is conuent.
� If M �����!

Name
! A then there exists some call-by-name

answer A0 such that M 7�����!
Name

! A0.

Proposition 1.2 Properties of call-by-value [21]:
� Val satis�es subject reduction.
� Val is conuent.
� If M ���!

Val
! A then there exists some call-by-value

answer A0 such that M 7���!
Val
! A0.

Proposition 1.3 Properties of call-by-need [2, 3, 18,
19]:

� Need satis�es subject reduction.
� Need is conuent.
� If M ����!

Need
! A then there exists some call-by-need

answer A0 such that M 7����!
Need
! A0.

1.2 Unitary linear calculi

Figure 3 presents the (unitary) linear lambda calculus
Lin. Types here are base types, linear function or modal
types; members of the latter are expected to reduce to
an expression pre�xed with the ! operator. Terms, aside
from the usual variables, abstractions and applications,
can be pre�xed with the ! or be an eliminator to access
the body of such a pre�xed subterm. This system is
discussed is detail by Wadler [25] and in our previous
work [20]; we summarize its properties presently.

Proposition 1.4 Properties of linear lambda [18, 20]:
� Lin satis�es subject reduction.
� Lin is conuent.
� If M ���!

Lin
! A then there exists some linear lambda

answer A0 such that M 7���!
Lin
! A0.

Figures 4 and 5 present the standard and steadfast
Girard translations for call-by-name and call-by-value,
respectively.

Proposition 1.5 The translation � from Name to Lin
preserves substitution, typing judgments, reduction and
evaluation [18, 20]:

3

Syntactic domains As for Name and Val, plus:

Terms L;M;N ::= � � � j let x =M in N

Typing judgments As for Name and Val, plus:

� `M : A �; x : A ` N : B

Let
�; � ` let x =M in N : B

Call-by-need reduction

(I) (�x:M)N ����!
Need

let x = N in M

(V) let x = V in M ����!
Need

M [x := V]

(C) (let x = L in M)N ����!
Need

let x = L in (M N)

(A) let y = (let x = L in M) in N ����!
Need

let x = L in (let y =M in N)

(G) let x =M in N ����!
Need

N; if x is not free in N

Call-by-need evaluation

Evaluation contexts E ::= [] j E M j let x =M in E j let x = E in E[x]

Answers A ::= �x:M j let x =M in A

(I) (�x:M)N 7����!
Need

let x = N in M

(V) let x = (�y:M) in E[x] 7����!
Need

(E[x])[x := �y:M]

(C) (let x =M in A)N 7����!
Need

let x =M in (AN)

(A) let y = (let x =M in A) in E[x] 7����!
Need

let x =M in (let y = A in E[x])

Figure 2: The call-by-need lambda calculus.

Standard translation
Of types

Z
� � Z

(A! B)� � (!A�)�� B�

Of terms

x� � x

(�x:M)� � �y: let !x = y in M�

(M N)� � M
� !N�

Of typing contexts

(�; x : A)� � ��; x : A�

Figure 4: The unitary standard translation.

(i) (M [x := N])� �M�[x := N�].

(ii) � `Name M : A if and only if ��; � `Lin M
� : A�.

(iii) M �����!
Name

! N if and only if M� ���!
Lin
! N�.

(iv) M 7�����!
Name

! N if and only if M� 7���!
Lin
! N�.

Proposition 1.6 The translation � from Val to Lin pre-
serves substitution of values, typing judgments, reduc-
tion and evaluation [18, 20].

(i) (M [x := V])� �M�[x := V +].

(ii) �`ValM : A if and only if ��; �`LinM
� : A�, and

� `Val V : A if and only if ��; � `Lin V
+ : A+.

(iii) If M ���!
Val
! N then M� ���!

Lin
! N�.

(iv) M 7���!
Val
! N if and only if M� 7���!

Lin
! N�.

Steadfast translation
Of types

A
� � !A+

Z
+ � Z

(A! B)+ � (A� �� B�)

Of terms

V � � !V +

(M N)� � (let !z =M
� in z)N�

(let x =M in N)� � let !x =M
� in N�

x
+ � x

(�x:M)+ � �y: let !x = y in M�

Of typing contexts

(�; x : A)� � ��; x : A+

Figure 5: The unitary steadfast translation.

As a counterexample to completeness in Proposi-
tion 1.6.(iii) we can take M � I P M and N � P M
where I is the identity function I � �x: x and P is any
non-value. Then clearlyM 6! N in Val, but we do have
in Lin:

(I P M)�

� (let !w = (let !z = !I+ in z) P � in w)M�

����!
(�!)

(let !w = (�y: let !x = y in !x) P � in w)M�

�����!
(���)

(let !w = (let !x = P � in !x) in w)M�

���!
(!!)

(let !x = P � in let !w = !x in w)M�

����!
(�!)

(let !x = P � in x)M�

4

Syntactic domains
Types A;B ::= Z j !A j A�� B

Terms L;M;N ::= x j !M j let !x =M in N j �x:M jM N

Typing judgments

The typing axiom

Id
�; x : A ` x : A

Substructure rules

�; y : A; z : A; � `M : B

Contraction
�; x : A; � `M [y := x; z := x] : B

�; � `M : B
Weakening

�; x : A; � `M : B

�; x : A; � `M : B
Dereliction

�; x : A; � `M : B

Term structure rules

�; � `M : A
!-I

�; � ` !M :!A

�; � `M : !A 	; x : A; � ` N : B
!-E

�; 	; �; � ` let !x =M in N : B

�; �; x : A `M : B

��-I
�; � ` �x:M : A�� B

�; � `M : A�� B 	; � ` N : A

��-E
�; 	; �; � `M N : B

Linear lambda reduction

(���) (�x:M)N ���!
Lin

M [x := N]

(�!) let !x = !M in N ���!
Lin

N [x :=M]

(!��) (let !x = L in M)N ���!
Lin

let !x = L in (M N)

(!!) let !y = (let !x = L in M) in N ���!
Lin

let !x = L in (let !y =M in N)

Linear lambda evaluation

Evaluation contexts E ::= [] j E M j let !x = E in M

Answers A ::= x j �x:M j !M

(���) (�x:M)N 7���!
Lin

M [x := N]

(�!) let !x = !N in M 7���!
Lin

M [x := N]

Figure 3: The linear lambda calculus.

5

� (P M)�

So clearly completeness does not hold there. Complete-
ness does hold for standard reduction, where the (!��; !!)
rules do not appear.

Figure 6 presents the a�ne lambda calculus A� .
This system is just like Lin except that we allow weak-
ening anywhere, and regulate only contraction with the
modal operator. This change manifests itself in two
places. First, in the Weakening typing rule, the new
variable is added to the linear, rather than the intu-
itionistic zone. Thus in conjunction with Dereliction a
weakened variable can be used in any manner whatso-
ever in typing a term. Secondly, we have a new reduc-
tion rule (!W), which allows any subterm bound to a
variable introduced by Weakening | that is, one which
does not appear free in the body of an eliminator |
to be simply discarded without further evaluation, even
without an exposed pre�x.

Proposition 1.7 Properties of a�ne lambda [18, 20]:
� A� satis�es subject reduction.
� A� is conuent.
� If M ���!

A�
! A then there exists some a�ne lambda

answer A0 such that M 7���!
A�
! A0.

The shift from linear to a�ne lambda as the target
of the steadfast translation corresponds to a shift from
a strict to a lazy evaluation semantics in the source
calculus. In other words, we map not from call-by-value
into a�ne lambda, but rather from call-by-need.

Proposition 1.8 The translation � from Need to A�
preserves substitution of values, typing judgments, re-
duction and evaluation [18, 20].

(i) (M [x := V])� �M�[x := V +].

(ii) � `Need M : A if and only if ��; � `A� M
� : A�,

and
� `Need V : A if and only if �� `A� V

+ : A+.

(iii) If M ����!
Need
! N then M� ���!

A�
! N�.

(iv) M 7����!
Need
! N if and only if M� 7���!

A�
! N�.

Unfortunately, we can make no simple statement
about the translation of call-by-need into Lin instead
of A�, since we could not expect to soundly translate
both (V) and (G) steps. This discrepancy motivates
the �ner control obtained by separating weakening from
contraction, which we explore below.

2 The separated-linear lambda calculus

Figure 7 presents the types, terms and main reduction
rules of the separated linear lambda calculus SLin. A
type is a base type, a linear function, or one of two
modal types. As in Name and Val, basic terms include
variables, function abstractions and applications. We
have a number of new term forms, however, for the in-
troduction and elimination of the new modal operators.

The pre�xes !w and !c denote terms which one may dis-
card or duplicate, respectively; we refer to each pre�x
as the dual of the other. The corresponding !w- and !c-
eliminators strip pre�xes from expressions for discard-
ing, or for copying into another term. However, the
remaining eliminator has no corresponding pre�x, and
as such is a bit mysterious until one considers the struc-
ture of the typing rules.

Typing judgments in our previous work on Lin di-
vided the typing environment into two zones: one zone
held linear assumptions, on the variables of which no
weakening or contraction was allowed, while the other
held intuitionistic assumptions, on whose variables the
weakening and contraction rules could be applied. The
elegance of such a duality of assumptions has been noted
for full linear logic in general by Girard [13], and for the
intuitionistic fragment in particular by Barber [4]. Here,
since we want to separately enable weakening and con-
traction, we will have a total of four zones: in addition
to the linear and intuitionistic zones, we will have one
zone which admits weakening but not contraction, and
one zone which admits contraction but not weakening.

We let E and F range over such quadruples
�;�;�;	 of typing assumptions. We �nd it rather con-
fusing to write judgments with assumptions explicitly
separated, and instead we adopt the notation proposed
by Jacobs [16]: we write E ;Ilx : A to mean the quadru-
ple E extended by adding the assumption x : A to its
collection of linear assumptions, and similarly Iw , Ic

and Ii to extend respectively the zones which admit
weakening, contraction and both.

The role of the \extra" eliminator structure is now
clear: we must be able to eliminate variables from each
of the four zones, and this eliminator corresponds to
the intuitionistic zone. We have no intuitionistic pre�x
because such an amalgamation of the !w and !c pre�xes
is exactly what we are trying to avoid with this calculus.
We wish to enable weakening and contraction separately
from each other, and so an intuitionistic term is one
marked as both weakenable and contractable: that is,
of either form !w!cM or !c!wM ; the !i-eliminator does
not distinguish between the two.

The typing rules are straightforward. The Id rule
introduces a linear variable. We do not have introduc-
tion rules for other zones, but rather, the Dereliction
rules. Since maintaining an assumption in (for exam-
ple) the linear zone entails not performing certain activ-
ities, we can correctly move an assumption from a more
restrictive zone to a less restrictive zone at any time,
but not vice-versa. While the variable in the subject
of the derelicted assumption will not (yet) be used in
the newly enabled manner, the typing is still appropri-
ate, and we can subsequently apply the newly enabled
rules. We have two each of the Weakening and Contrac-
tion rules: one where the operation is performed from
a zone where the other operation is not allowed (for
example, the Weakening rule adds a variable into the
zone where weakening but not contraction is allowed)
and one where the operation is performed in the intu-
itionistic zone. Introduction of a modal pre�x is allowed
only if a term contains no free variables on which the

6

Syntactic domains As for Lin.

Typing judgments As for Lin, but changing Weakening as follows:

�; � `M : B

Weakening
�; �; x : A `M : B

A�ne lambda reduction As for Lin, plus the following:

(!W) let !x =M in N ! N; if x is not free in N

A�ne lambda evaluation

Evaluation contexts E ::= [] j E M j !E j let !x =M in E j let !x = E in E[x]

Answers A ::= x j �x:M j !A j let !x =M in A

(���) (�x:M)N 7���!
A�

M [x := N]

(�!) let !x = !M in E[x] 7���!
A�

(E[x])[x :=M]

(!��) (let !x =M in A)N 7���!
A�

let !x =M in (AN)

(!!) let !y = (let !x =M in A) in E[y] 7���!
A�

let !x =M in (let !y = A in E[y])

Figure 6: The a�ne lambda calculus.

operation enabled by the pre�x is not allowed. For ex-
ample, the !w-I rule requires that the contractable and
linear zones be empty; a term under a !w pre�x should
be discardable, but if such a free variable were discarded
we would violate the typing assumptions.

The reduction rules for SLin are given in Figure 8.
The main reduction rules for SLin are the �ve � rules
and the weakening rule. As usual, we have a � rule
whenever an elimination rule occurs immediately below
the corresponding introduction rule; we have two such
rules for the !i-eliminator since the two pre�xes to be
eliminated may arrive in either order. The weakening
rule allows us to take advantage of the fact that a term
pre�xed by !w may be discarded immediately if it is not
to be used, without necessarily �nding a !c pre�x for a
!i-eliminator.

The remaining reduction rules are commuting rules
for managing the additional structure. The rôle of the
(!��) and (!!) rules are the same as for the rules of the
same name in Lin. In the left-hand sides of the former, a
modal elimination rule can block a (���) step by hiding
an abstraction in the left subterm; in the left-hand sides
of the latter, a modal elimination rule can block a (�!)
step by hiding a correctly pre�xed term. In both cases,
the rule expands the scope of the variable bound by the
blocking eliminator to allow any blocked reduction at
that point. The (!!!) rules extend the (!!) rules to the
cases where an amalgamated eliminator \sees" one of
the two modal pre�xes required for a reduction step, but
under that pre�x another binding can hide the second
pre�x. Again, the (!!!) rules simply expand the scope of
the inner binding and remove it from a position where it
may no longer block the reduction of the outer binding.

Some rules might seem to be missing from the (!!!)
set, for example a rule:

let !ix = !w(let !cy = !cL in M) in N

! let !cy = !cL in let !ix = !wM in N : (1)

This rule | as would the similar rule with the !c's and

!w's exchanged | disallows the subject reduction prop-
erty. The reason is as follows: First, it may be that x
does not appear free in N , and so for the counterex-
ample we assume so; we moreover take M � !cM0. So
on the left-hand side we have some typing as shown in
Figure 9. However, L is not discardable: possibly, L
will reduce to an expression !wL0 whose pre�x can be
removed and the body discarded, but nonetheless L by
itself cannot in general be discarded. So when trying to
type the right-hand side of (1), we fail because the vari-
able y which eliminates the pre�x from L prevents the
addition of the !w pre�x to !cM0. The problem becomes
clearer if we allow the (�!i) contraction of the new inner
eliminator: since x 62 fv(N) we have

let !cy = !cL in (let !ix = !w!cM0 in N)

����!
(�!i)

let !cy = !cL in N ;

and since y 62 fv(N) as well, we would clearly have to
perform weakening on a variable which is exclusively
contractable. These problems do not arise for the (!!)
rules, since (for example) they would not move a !c-
eliminator from under a !w pre�x.

Failure of subject reduction does not explain all of
the absent possible (!!!) rules. The step

let !ix = !w(let !wy = !wL in M) in N

! let !wy = !wL in let !ix = !wM in N

as well as the similar rule with !c pre�xes rather than
the !w's both preserve subject reduction. We omit these
rules because we see no use for them. They are not
essential for any of the properties we seek, neither of
the calculus itself nor of any mapping into SLin from
another system. This uselessness is not entirely sur-
prising, since the inner subterm (let !wy = !wL in M)
is already a (much more interesting) �!i redex; since it
can be contracted immediately, it is hard to view as in

7

Syntactic domains
Types A;B ::= Z j A�� B j !wA j !cA

Terms L;M;N ::= x j �x:M jM N

j let !wx =M in N j !wM

j let !cx =M in N j !cM

j let !ix =M in N

Typing rules

The typing axiom

Id
Ilx : A ` x : A

Substructure rules

E;Icx : A; y : A `M : B

Contraction
E;Icz : A `M [x := z; y := z] : B

E `M : B

Weakening
E;Iwx : A `M : B

E;Iix : A; y : A `M : B
Contraction/W

E;Iiz : A `M [x := z; y := z] : B

E `M : B

Weakening/C
E;Iix : A `M : B

E;Ilx : A `M : B
Dereliction!w

E;Iwx : A `M : B

E;Ilx : A `M : B
Dereliction!c

E;Icx : A `M : B

E;Icx : A `M : B

Dereliction!w=C
E;Iix : A `M : B

E;Iwx : A `M : B

Dereliction!c=W
E;Iix : A `M : B

Term structure rules

Ii�;Ic� `M : A

!c-I
Ii�;Ic� `M : !cA

E `M :!cA F ;Icx : A ` N : B

!c-E
E;F ` let !cx =M in N : B

Ii�;Iw� `M : A

!w-I
Ii�;Iw� `M : !wA

E `M :!wA F ;Iwx : A ` N : B

!w-E
E;F ` let !wx =M in N : B

E `M : !w!cA F ;Iix : A ` N : B
!i-Ea

E;F ` let !ix =M in N : B

E `M : !c!wA F ;Iix : A ` N : B
!i-Eb

E;F ` let !ix =M in N : B

E;Ilx : A `M : B
��-I

E ` �x:M : A�� B

E `M : A�� B F ` N : A
��-E

E;F `M N : B

Figure 7: Syntax and typing rules for the separated linear lambda calculus.

8

�-reduction rules
(���) (�x:M)N ����!

SLin
M [x := N]

(�!c) let !cx = !cM in N ����!
SLin

N [x :=M]

(�!w) let !wx = !wM in N ����!
SLin

N [x :=M]

(�!i
cw
) let !ix = !w!cM in N ����!

SLin
N [x :=M]

(�!i
wc
) let !ix = !c!wM in N ����!

SLin
N [x :=M]

Weakening rule
(W!i) let !ix = !wM in N ����!

SLin
N; x 62 fv(N)

Commuting conversion rules

(!2��) (let !2x = L in M)N ����!
SLin

let !2x = L in (M N)

where !2 ranges over !w, !c, !i.

(!2!4) let !2x = (let !4y = L in M) in N ����!
SLin

let !4y = L in (let !2x =M in N)

where !2 and !4 each range over !w, !c, !i.

(!i!2!w) let !ix = !2(let !iy = !wL in M) in N ����!
SLin

let !iy = !wL in let !ix = !2M in N

where !2 ranges over !w and !c.

Figure 8: Reduction in the separated linear lambda calculus.

Well-typed left-hand side

�
�
�
P1

Ii� ` L : A0

!c-I
Ii� ` !cL : !cA0

�
�
�
P2

Ii�;Icy : A0 `M0 : B
!c-I

Ii�;Icy : A0 ` !cM0 :!
c
B

!c-E
Ii� ` let !cy = !cL in !cM0 :!

c
B

!w-I
Ii�;� ` !w(let !cy = !cL in !cM0) :!

w!cB

�
�
�
P3

E ` N : A
Weakening/C

E;Iix : B ` N : A
!i-E1

E;Ii�;� ` let !ix = !w(let !cy = !cL in !cM0) in N : A

Ill-typed right-hand side

�
�
�
P1

Ii� ` L : A0

!c-I
Ii� ` !cL : !cA0

�
�
�
P2

Ii�;Icy : A0 `M0 : B

!c-I
Ii�;Icy : A0 ` !cM0 : !

cB

(Illegal step)
Ii�;Icy : A0 ` !w!cM0 : !

w!cB

�
�
�
P3

E ` N : A

Weakening/C
E;Ii�;Icy : A0 ` let !ix = !w!cM0 in N : A

!i-E1
E;Ii�;� ` let !cy = !cL in let !ix = !w!cM0 in N : A

Figure 9: Example of the failure of subject reduction in an omitted (!!!) rule.

9

the way! The rule

let !ix = !w(let !iy = !cL in M) in N

! let !iy = !cL in let !ix = !wM in N

also turns out not to be required, but more importantly
it could complicate standard reduction, by changing the
evaluation status of a term. We return to this point in
Appendix B, in the context of the point in the proof
of standardization where it would cause a problem, fol-
lowing B.10.

One further suspicion can be raised about the (!!!)
rules: why do we require the innermost pre�x on the
subterms L? Although their presence is somewhat
unattractive, without them we lose conuence. Con-
sider the less restrictive rule

let !ix = !w(let !iy = L in M) in N

! let !iy = L in let !ix = !wM in N

and the term

let !ix = !w(let !iy = (let !cz = L0 in L1) in M) in N :

We can apply the new rule at the top level, and as the
(!i!c) rule to the subterm

let !iy = (let !cz = L0 in L1) in M :

After the latter contraction we can no longer apply a
(!!!) rule at the top level, since we have just restricted

let !ix = !w(let !cz = L0 in let !iy = L1 in M) in N

from being the left-hand side of a (!!!) rule for the sake
of subject reduction. Since we could have for example
L0 � w for some free variable w, conuence would not
hold in general.

Perhaps the biggest weakness of SLin is its complex-
ity. Many presentations of � avoid any mention of the
substructure typing rules at all, and certainly we re-
quire more rules for juggling the new terms structures
than what one might ideally prefer. Still, we believe
that the calculus as we present it here represents an
acceptable compromise between simplicity and expres-
siveness. If one wishes to control substructural opera-
tions, one must have some mechanism for doing so, and
furthermore separate mechanisms for separate control.
We have relegated most of this mechanism to the typ-
ing rules; while the commuting conversion reductions
are somewhat numerous, they are less so than in most
other (not even separated) linear calculi.

These di�culties aside, we can now assert the basic
properties of general reduction in SLin.

2.1 Substitution properties

Lemma 2.1 Typing proofs in SLin are well-behaved un-
der substitution.

1. Let E ;Ilx : B `M : A and F ` N : B.
Then E ;F `M [x := N] : A.

2. Let E ;Icx : B `M : A and Ii�;Ic� ` N : B.
Then E ;Ii�;Ic� `M [x := N] : A.

3. Let E ;Iwx : B `M : A and Ii�;Iw� ` N : B.
Then E ;Ii�;Iw� `M [x := N] : A.

4. Let E ;Iix : B `M : A and Ii� ` N : B.
Then E ;Ii� `M [x := N] : A.

Lemma 2.2 Let L;M;N 2 SLin where M ����!
SLin

N .

Then

1. L[x :=M] ����!
SLin
! L[x := N] and

2. M [x := L] ����!
SLin

N [x := L].

2.2 Subject reduction

With the above properties of substitution, subject re-
duction follows easily.

Proposition 2.3 SLin satis�es the subject reduction
property.

Proof: By induction on the depth of the typing tree.
For the � rules we use Lemma 1; for the other rules we
need simply rearrange the typing trees. �

2.3 Conuence

Conuence follows from the technical developments of
Appendix A, and we remove the proof to the end of
that section.

Proposition 2.4 SLin is conuent.

2.4 Standard evaluation

The notion of evaluation in SLin ful�lls a prediction
made by Jacobs [16]: that although the order of appli-
cation of !c and !w may be indistinguishable in many
sensible models, the terms !c!wM and !w!cM may rea-
sonably have di�erent operational interpretations1. The
di�erence is in the evaluation of the !i-eliminator, whose
evaluation depends on the order in which the two pre-
�xes are encountered. When the !c pre�x is outermost,
we reduce its subterm to �nd the expected !w pre�x, and
immediately substitute its body for the variable bound
by the eliminator: thus the evaluation context forms

E ::= � � � j let !ix = E in M j let !ix = !cE in M :

Conversely, when the !w pre�x is outermost, we delay
any further evaluation of the subterm under the pre�x,
and instead proceed with the evaluation of the body of

1To be speci�c: Jacobs wrote that a term of the form !c!wM would

be \less e�cient, because it involves doing nothing many times" than
one of the form !w!cM , although here the operational interpretation

of neither ordering of the pre�xes seems necessarily more e�cient
than the other. In his development of the models, he �rst presents
separate models where one operator distributes over the other but not

vice-versa, and then describes a model where the two combinations
are essentially equivalent.

10

Separated standard translation

Of types

(A! B)� � (!c!wA�)�� B�

Z� � Z

Of terms

x� � x

(�x:M)� � �y: let !ix = y in M�

(M N)� � M
� (!c!wN�)

Of typing environments

(�; x : A)� � ��; x : A�

Figure 11: The separated Girard translations into SLin.

the eliminator. Only when the eliminator-bound vari-
able is demanded do we resume evaluation under the
!w pre�x: this strategy is manifested in the evaluation
contexts

E ::= � � � j let !ix = E in M
j let !ix = !wM in E
j let !ix = !wE in E[x] ;

which are reminiscent of Need evaluation.
Arguably, we ought to treat the !w-eliminator is the

same manner: disallowing the (�!w) rule from evalua-
tion, and including an evaluation context of the form

let !ix = !wM in E :

Ultimately there is little di�erence between the two.
Since such an x appears at most once in the body of
the eliminator, we are not duplicating work when we
apply (�!w): in either case, M would be evaluated only
when x is demanded. Moreover, it will become clear
that neither con�guration would a�ect the translations
of the intuitionistic systems into SLin.

Proposition 2.5 If M ����!
SLin
! A then there exists some

separated linear lambda answer A0 such that M 7����!
SLin
!

A0.

We present the proof of this result in Appendix B, which
relies on the notion of marking redexes in Appendix A.

2.5 Translations into SLin

Figures 11 and 12 present the adaptations of the Girard
translations to the separated calculus. The translations
behave exactly as described in previous work [12, 20]:
the standard translation allows any function's argument
to be duplicated or discarded, while the steadfast trans-
lation allows any value to be duplicated or discarded.

Theorem 1 Let M;N 2 Name.

(i) (M [x := N])� �M�[x := N�].

(ii) � `Name M : A if and only if Ii�� `SLin M
� : A�.

Separated steadfast translation

Of types

A
� � !c!wA+

(A! B)+ � (A�)�� (B�)

Z
+ � Z

Of terms

V
� � !c!wV +

(M N)� � (let !iz =M� in z)N�

(let x =M in N)� � let !ix =M
� in N�

x+ � x

(�x:M)+ � �y: let !ix = y in M�

Of typing environments

(�; x : A)� � ��; x : A+

Figure 12: The separated Girard translations into SLin.

(iii) M �����!
Name

! N if and only if M� ����!
SLin
! N�.

(iv) M 7�����!
Name

! N if and only if M� 7����!
SLin
! N�.

Theorem 2 Let M;N 2 Val.

(i) (M [x := V])� �M�[x := V +].

(ii) �`ValM : A if and only if Ii�� `SLinM
� : A�, and

� `Val V : A if and only if Ii�� `SLin V
+ : A+.

(iii) If M ���!
Val
! N then M� ����!

SLin
! N�.

(iv) M 7���!
Val
! N if and only if M� 7����!

SLin
! N�.

The proofs of these two results as well as the counterex-
ample to completeness in Clause (iii) of Theorem 2 are
essentially the same as with the unitary target [20].

Finally, Figure 13 describes the hybrid translation
motivated in the introduction. We translate all val-
ues to be copyable but not necessarily discardable, and
all function arguments to be discardable, but not nec-
essarily copyable. So a call-by-need function mapping
the type A to the type B is translated to a copyable
linear function from the image of A made explicitly dis-
cardable, into the image of B: that is, into the type
!c((!wA~)��B~).

We now begin a series of lemmas which lead to The-
orem 3, the soundness and completeness result for the
hybrid transformation. We will use the grammar and
mapping of Figure 14, which we characterize by the fol-
lowing lemmas:

Lemma 2.6 Let M 2 Need and M~ ����!
SLin
! N . Then N

matches some S in the grammar of Figure 14. More-
over if and M~ 7����!

SLin
! N , N matches some S in that

grammar.

Lemma 2.7 Let M 2 Need. Then (M~)\ �M .

11

Syntactic domains
Evaluation contexts E ::= [] j E M

j let !cx = E in M j let !wx = E in M

j let !ix = E in M j let !ix = !cE in M

j let !ix = !wM in E j let !ix = !wE in E[x]

Answers A ::= �x:M j !wM j !cM j let !ix = !wM in A

Reduction rules

(���) (�x:M)N 7����!
SLin

M [x := N]

(�!c) let !cx = !cN in M 7����!
SLin

M [x := N]

(�!w) let !wx = !wN in M 7����!
SLin

M [x := N]

(�!i
cw
) let !ix = !c!wN in M 7����!

SLin
M [x := N]

(�!i
wc
) let !ix = !w!cN in E[x] 7����!

SLin
(E[x])[x := N]

(!i��) (let !ix = !wM in A)N 7����!
SLin

let !ix = !wM in (AN)

(!2!i) let !2x = (let !iy = !wM in A) in N 7����!
SLin

let !iy = !wM in (let !2x = A in N)

where !2 ranges over !w, !c, !i.

(!i!w!w) let !ix = !w(let !iy = !wM in A) in E[x] 7����!
SLin

let !iy = !wM in let !ix = !wA in E[x]

(!i!c!w) let !ix = !c(let !iy = !wM in A) in N 7����!
SLin

let !iy = !wM in let !ix = !cA in N

Figure 10: Evaluation in SLin.

Hybrid translation

Of types

A~ � !cA�

(A! B)� � (!wA~)�� B~

Z
� � Z

Of terms

V ~ � !cV �

(M N)~ � (let !cz =M
~ in z) (!wN~)

(let x =M in N)~ � let !ix = !wM~ in N~

x� � x

(�x:M)� � �y: let !ix = y in M~

Of typing environments

(�; x : A)~ � �~; x : A�

Figure 13: The hybrid translation from Need into SLin.

Lemma 2.8 Every SLin answer and evaluation con-
text formable from terms S are given by A and E, re-
spectively; every SLin evaluation context formable from
terms P is given by G.

Lemma 2.9 For all U and U , U1 and U1 are values
in Need; for all A, A1 is an answer in Need; for all E
and G, E\ and G\ are evaluation contexts in Need.

Proof: The above results are all clear, in some cases
with the obvious structural induction, from an easy in-
spection of the de�nitions. �

Lemma 2.10 Let E `SLin S :!c �A and F ;Icx :
�A `SLin D[x] : �B. Then (E ;F)\ `Need D

\[S\] : �B\.

Proof: Since x 62 fv(D) we have E `SLin let !
cz = S in z :

�A; then by Lemma 2.1, E ;F`SLinD[let !cz = S in z] : �B.
The result is immediate as (D[let !cz = S in z])1 �

D1[S\]. �

Lemma 2.11 Let D;S; T be as in Figure 14. Then:

D1[let x = S\ in T \] ���!
(C)
! let x = S\ in D1[T \] :

Proof: By induction on D. �

Under the preceding lemmas, completeness for ~ is im-
plied by the following soundness result for \:

Lemma 2.12 Let S; T; U and so forth be as in Fig-
ure 14.

(i) (S[x := U])\ � S\[x := U1],
(P [x := U])1 � P1[x := U1] and
(D[y][x := U])1 � (D1[y])[x := U1].

12

Reduction-closed images of Need types and terms

Types A;B ::= !c �A
�A; �B ::= (!wA)�� B j Z

Terms S; T ::= !cU j P (!wS)

j let !ix = !wS in T

j let !cx = S in (D[x] !wT) ; x 62 fv(D;T)

Values U ::= x j �y: let !ix = y in S

P ::= U j let !ix = !wS in P

j let !cx = S in D[x] ; x 62 fv(D)

D ::= [] j D (!wS)

Evaluation-closed images of Need types and terms

Terms S;T ::= !cU j P (!wS)

j let !ix = !wS in T

Values U ::= x j �y: let !ix = y in S

P ::= U j let !ix = !wS in P

j let !cx = S in x

Answers A ::= !c�y: let !ix = y in S

j let !ix = !wS in A

S-Evaluation Contexts E ::= [] j !cG j G (!wS)

j let !ix = !wS in E

j let !ix = !wE in E[x]

P -Evaluation Contexts G ::= [] j let !ix = !wS in G

j let !ix = !wE in G[x]

j let !cx = E in x

The inverse translation

Of types

(!c �A)\ � �A1

((!wA)�� B)1 � A\ ! B\

Z
1 � Z

Of terms

(!cU)\ � U
\

(P (!wS))\ � P
1
S
\

(let !ix = S in T)\ � let x = S
\ in T \

(let !cx = S in (D[x]) T)\ � (D1[S\]) T \

x
1 � x

(�y: let !ix = y in S)1 � �x: S
\

(let !cx = S in D[x])1 � D
1[S\]

(let !ix = S in P)1 � let !ix = S
\ in P1

[]1 � []

(D (!wS))1 � D
1
S
\

Of typing environments

(�; x : �A)\ � �\; x : �A1

(Ii�;Iw�;Ic�;Il)\ � �\;�\
;�\;	\

Figure 14: The inverse hybrid translation from SLin to
Need.

(ii) If E `SLin S : A then E\ `Need S
\ : A\,

if E `SLin P : A then E\ `Need P
1 : A1,

if E `SLin U : �A then E\ `Need U
1 : �A1 and

if E `SLin D[x] : �A then E\ `Need D[x]1 : �A1.

(iii) If S ����!
SLin
! T then S\ ����!

Need
! T \.

(iv) If S 7����!
SLin
! T then S\ 7����!

Need
! T \.

Proof: Clause (i) is straightforward; note that we may
in fact have x � y in the �nal equivalence.

For Clause (ii), we proceed by structural induction
on the depth of the typing proof. The reasoning for the
image of the structural SLin rules for all four syntactic
groups is the same, and is largely trivial; we write out
that reasoning once in Figure 15. We present the rea-
soning for terms S, P and U in Figures 16, 17 and 18,
respectively. For terms of the form D[x], where D � []
we have just the Id rule for Need; for D � D0 (!

wS) we
have an induction as in ��-E in Figure 16, replacing P
with D[x]. In many of these cases we may have struc-
tural rules mingled within the base trees in the �gures,
for example in a typing proof of a term S which ends
in a ��-E step we might have

�
�
�
P1

E ` P : (!wA)��B

�
�
�
P2

Ii�;Iw� ` S : A
!w-I

Ii�;Iw� ` !wS : !wA
Wkning

Ii�;Iw�; x : A0 ` !wS : !wA
��-E

E ;Ii�;Iw�; x : A0 ` P (!wS) : B

;

but it is clear that these rules can simply be shifted out
of the way; in this example we have simply

�
�
�
P1

E ` P : (!wA)��B

�
�
�
P2

Ii�;Iw� ` S : A
Wkning

Ii�;Iw�; x : A0 ` S : A
!w-I

Ii�;Iw�; x : A0 ` !wS : !wA
��-E

E ;Ii�;Iw�; x : A0 ` P (!wS) : B

:

For Clause (iii), we have soundness for top level re-
duction of S terms as shown in Figure 19, and top-level
P terms as shown in Figure 20. D and U terms are re-
ducible only within their S- and P -subterms. Compati-
ble closure is straightforward as the translations depend
only on the top-level structure of terms, and not their
subterms.

For Clause (iv), we have soundness with the preced-
ing lemmas about preservation of answers and evalua-
tion contexts as shown in Figures 21 and 22; compatible
closure follows again by the preservation lemmas. �

Lemma 2.13 Let A be a call-by-need answer and E
be a call-by-need evaluation context. Then A~ is a
separated-linear answer, and if we take []~ � [] then
E~ is a separated-linear evaluation context.

13

�
�
�
P

E `SLin M : B

Weakening
E;Iwx : A `SLin M : B

\;1
���!

�
�
�
P\

E\ `Need M
\ : B\

Weakening
E\; x : A1 `Need M

\ : B\

�
(E;Iwx : A)\ `Need M

\ : B\

�
�
�
P

E `SLin M : B
Weakening/C

E;Iix : A `SLin M : B

\;1
���!

�
�
�
P\

E\ `Need M
\ : B\

Weakening

E\; x : A1 `Need M
\ : B\

�
(E;Iix : A)\ `Need M

\ : B\

�
�
�
P

E;Icx : A; y : A `SLin M : B

Contraction
E;Icz : A `SLin M [x := z; y := z] : B

\;1
���!

�
�
�
P\

(E;Icx : A; y : A)\ `Need M
\ : B\

�
E\; x : A1; y : A1 `Need M

\ : B\

Contraction

E\; z : A1 `Need M
\[x := z; y := z] : B\

�
(E;Icz : A)\ `Need (M [x := z; y := z])\ : B\

�
�
�
P

E;Iix : A; y : A `SLin M : B
Contraction/W

E;Iiz : A `SLin M [x := z; y := z] : B

\;1
���!

�
�
�
P\

(E;Iix : A; y : A)\ `Need M
\ : B\

�
E\; x : A1; y : A1 `Need M

\ : B\

Contraction
E\; z : A1 `Need M

\[x := z; y := z] : B\

�
(E;Iiz : A)\ `Need (M [x := z; y := z])\ : B\

�
�
�
P

E;Ilx : A `SLin M : B
Dereliction!w

E;Iwx : A `SLin M : B

\;1
���!

�
�
�
P\

(E;Ilx : A)\ `Need M
\ : B\

�
E\; x : A1 `Need M

\ : B\

�
(E;Iwx : A)\ `Need M

\ : B\

�
�
�
P

E;Ilx : A `SLin M : B
Dereliction!c

E;Icx : A `SLin M : B

\;1
���!

�
�
�
P\

(E;Ilx : A)\ `Need M
\ : B\

�
E\; x : A1 `Need M

\ : B\

�
(E;Icx : A)\ `Need M

\ : B\

�
�
�
P

E;Icx : A `SLin M : B

Dereliction!w=C
E;Iix : A `SLin M : B

\;1
���!

�
�
�
P\

(E;Icx : A)\ `Need M
\ : B\

�
E\; x : A1 `Need M

\ : B\

�
(E;Iix : A)\ `Need M

\ : B\

�
�
�
P

E;Iwx : A `SLin M : B
Dereliction!c=W

E;Iix : A `SLin M : B

\;1
���!

�
�
�
P\

(E;Iwx : A)\ `Need M
\ : B\

�
E\; x : A1 `Need M

\ : B\

�
(E;Iix : A)\ `Need M

\ : B\

Figure 15: Soundness of \ for (completeness of ~ from) structural typing rules. We slightly abuse our metavariable
notation by writing M;N to range over any of the subsets S;U and so forth of SLin; we moreover handwave a bit
by not writing out explicitly that the terms and types on the right-hand side of the type inference statements of the
trees on the right-hand side of the arrows could also be translated with 1.

14

�
�
�
P

Ii�;Ic� `SLin U : �A
!c-I

Ii�;Ic� `SLin !
c
U : !c �A

\
�!

�
�
�
P1

(Ii�;Ic�)\ `Need U
1 : �A1

�
(Ii�;Ic�)\ `Need (!

c
U)\ : (!c �A)\

�
�
�
P1

E `SLin S :!c �A0

�
�
�
P2

F ;Icx : �A0 `SLin D[x] : (!
w
A)�� B

�
�
�
P3

Ii�;Iw� `SLin T : A
!w-I

Ii�;Iw� `SLin !
w
T : !wA

��-E
F ;Ii�;Iw�;Icx : �A0 `SLin D[x] !

w
T : B

!c-E

E;F ;Ii�;Iw� `SLin let !
c
x = S in D[x] !wT : B

\
�!

�
�
�
P1

E `SLin S :!c �A0

�
�
�
P2

F ;Icx : �A0 `SLin D[x] : (!
wA)�� B

Lemma 2:10
(E;F)\ `Need (D

1[S\]) : (!c �A)\ ! B\

�
(E;F)\ `Need (D

1[S\]) : A\ ! B
\

�
�
�
P3

\

(Ii�;Iw�)\ `Need T
\ : A\

! -E
(E;F)\; (Ii�;Iw�)\ `Need (D

1[S\]) T \ : B\

�
(E;F ;Ii�;Iw�)\ `Need (let !

c
x = S in D[x] !wT)\ : B\

�
�
�
P1

E `SLin S : !c �A

!w-I
E `SLin !

wS : !w!c �A

�
�
�
P2

Ii�;Iw�;Iix : �A `SLin T : B

!i-E1

E;Ii�;Iw� `SLin let !
ix = !wS in T : B

\
�!

�
�
�
P1

\

E\ `Need S
\ : (!c �A)\

�
E\ `Need S

\ : �A1

�
�
�
P2

\

(Ii�;Iw�;Iix : �A)\ `Need T
\ : B\

�
(Ii�;Iw�)\; x : �A1 `Need T

\ : B\

Let

E\; (Ii�;Iw�)\ `Need let x = S
\ in T \ : B\

�
(E;Ii�;Iw�)\ `Need (let !

i
x = !wS in T)\ : B\

�
�
�
P1

E `SLin P : (!wA)�� B

�
�
�
P2

Ii�;Iw� `SLin S : A
!w-I

Ii�;Iw� `SLin !
w
S : !wA

��-E
E;Ii�;Iw� `SLin P (!wS) : B

\
�!

�
�
�
P1

\

E\ `Need P
\ : ((!wA)�� B)\

�
E\ `Need P

\ : A\ ! B
\

�
�
�
P2

\

(Ii�;Iw�)\ `Need S
\ : A\

! -E

E\; (Ii�;Iw�)\ `Need P
1
S
\ : B\

�
(E;Ii�;Iw�)\ `Need (P (!wS))\ : B\

Figure 16: Soundness of \ for (completeness of ~ from) typing judgments for terms S.

15

�
�
�
P1

E `SLin S : !c �A

�
�
�
P2

F ;Icx : �A `SLin D[x] : �B
!c-E

E;F `SLin let !
cx = S in D[x] : �B

1
��!

�
�
�
P1

E `SLin S : !c �A

�
�
�
P2

F ;Icx : �A `SLin D[x] : �B
Lemma 2:10

(E;F)\ `Need D
1[S\] : �B1

�
(E;F)\ `Need (let !

c
x = S in D[x])1 : �B1

�
�
�
P1

Ii�;Iw� `SLin S : !c �A

!w-I
Ii�;Iw� `SLin !

w
S : !w!c �A

�
�
�
P2

F ;Iix : �A `SLin P : �B

!i-E1
Ii�;Iw�;F `SLin let !

i
x = !wS in P : �B

1
��!

�
�
�
P1

\

(Ii�;Iw�)\ `Need S
\ : (!c �A)\

�
(Ii�;Iw�)\ `Need S

\ : �A1

�
�
�
P2
1

(F ;Iix : �A)\ `Need P
1 : �B1

�
F\
; x : �A1 `Need P

1 : �B1

Let

(Ii�;Iw�)\;F\ `Need let x = S
\ in P1 : �B1

�
(Ii�;Iw�;F)\ `Need (let !

i
x = !wS in P)1 : �B1

Figure 17: Soundness of 1 for (completeness of \ from) typing judgments for terms P .

Id
Ilx : �A `SLin x : �A

1
��! Id

x : �A1 `Need x : �A
1

Id
Ily : !w!c �A `SLin y : !

w!c �A

�
�
�
P

E;Iix : �A `SLin S : B
!i-E

E;Ily : !w!c �A `SLin let !
i
x = y in S : B

��-I
E `SLin �y: let !

i
x = y in S : (!w !c �A)�� B

�
E `SLin �y: let !

i
x = y in S : (!wA)�� B

1
��!

�
�
�
P\

(E;Iix : �A)\ `Need S
\ : B\

�
E\; x : �A1 `Need S

\ : B\

! -I
E\ `Need �x: S

\ : �A1 ! B\

�
E\ `Need (�y: let !

ix = y in S)1 : ((!wA)�� B)1

Figure 18: Soundness of 1 for (completeness of � for) typing judgments for terms U .

16

(�y: let !ix = y in S) (!wT)

�����!
(���)

let !ix = !wT in S
\
�!

((�y: let !ix = y in S) (!wT))\

� (�x: S\) T \

���!
(I)

let x = T \ in S\

� (let !ix = !wT in S)\

(let !ix = !wS in P) (!wT)

������!
(!i��)

let !ix = !wS in P (!wT)
\
�!

((let !ix = !wS in P) (!wT))\

� (let x = S\ in P1) T \

����!
(C)

let x = S\ in P1 T \

� (let !ix = !wS in P (!wT))\

(let !cx = S in D[x]) (!wT)

������!
(!c��)

let !cx = S in D[x] (!wT)
\
�!

((let !cx = S in D[x]) (!wT))\

� D1[S\] T \

� (let !cx = S in D[x] (!wT))\

let !ix = !w!cU in S

�����!
(�!i)

S[x := U]
\
�!

(let !ix = !w!cU in S)\

� let x = U1 in S\

����!
(V)

S\[x := U1] with Lemma 2.9

� (S[x := U])\ with Lemma 2.12.(i)

let !ix = !w(let !iy = !wS in T) in T0
��������!
(!i!w!w)

let !iy = !wS in let !ix = !wT in T0

\
�!

(let !ix = !w(let !iy = !wS in T) in T0)
\

� let x = (let y = S\ in T \) in T
\

0

���!
(A)

let y = S\ in let x = T \ in T
\

0

� (let !iy = !wS in let !ix = !wT in T0)
\

let !cx = !cU in D[x] !wS

�����!
(�!c)

D[U] !wS
\
�!

(let !cx = !cU in D[x] !wS)\

� D1[U1] S\

� (D[U] !wS)\

let !cx = (let !iy = !wS0 in S1) in D1[x] !
wT1

�����!
(!c!i)

let !iy = !wS0 in let !cx = S1 in D1[x] !
wT1

\
�!

(let !cx = (let !iy = !wS0 in S1) in D1[x] !
wT1)

\

� let x = (let y = S
\

0
in S

\

1
) in D1

1
[x] T

\

1

���!
(A)

let y = S
\

0
in let x = S

\

1
in D1

1
[x] T

\

1

� (let !iy = !wS0 in let !cx = S1 in D1[x] !
wT1)

\

let !cx = (let !cy = S in D0[y] !
wT0) in D1[x] !

wT1

�����!
(!c!c)

let !cy = S in let !cx = D0[y] !
wT0 in D1[x] !

wT1

\
�!

(let !cx = (let !cy = S in D0[y] !
wT0) in D1[x] !

wT1)
\

� let x = (let y = S\ in D1
0
[y] T

\

0
) in D

\

1
[x] T

\

1

���!
(A)

let y = S\ in let x = D1
0
[y] T

\

0
in D

\

1
[x] T

\

1

� (let !cy = S in let !cx = D0[y] !
wT0 in D1[x] !

wT1)
\

Figure 19: Soundness of \ for reduction of terms S.

let !ix = !w(let !iy = !wS0 in S1) in P

��������!
(!i!w!w)

let !iy = !wS0 in let !ix = !wS1 in P
1
��!

(let !ix = !w(let !iy = !wS0 in S1) in P)
1

� let x = (let y = S
\

0
in S

\

1
) in P1

���!
(A)

let y = S
\

0
in let x = S

\

1
in P1

� (let !iy = !wS0 in let !ix = !wS1 in P)1

let !ix = !w!cU in P

�����!
(�!i)

P [x := U]
1
��!

(let !ix = !w!cU in P)1

� let x = U1 in P1

����!
(V)

P1[x := U1] with Lemma 2.9

� (P [x := U])1

let !cx = !w(let !iy = !wS0 in S1) in D[x]

��������!
(!i!w!w)

let !iy = !wS0 in let !cx = !wS1 in D[x]
1
��!

(let !cx = !w(let !iy = !wS0 in S1) in D[x])
1

� D1[let y = S
\

0
in S

\

1
]

����!
(C)
! let y = S

\

0
in D1[S

\

1
] by Lemma 2.11

� (let !iy = !wS0 in let !cx = !wS1 in D[x])1

let !cx = !cU in D[x]

�����!
(�!i)

D[U]
1
��!

(let !cx = !cU in D[x])1

� D1[U1]

� D[U]1

Figure 20: Soundness of 1 for reduction of terms P .

17

(�y: let !ix = y in S) (!wT)

7�����!
(���)

let !ix = !wT in S
\
�!

((�y: let !ix = y in S) (!wT))\

� (�x:S\) T \

7���!
(I)

let x = T \ in S\

� (let !ix = !wT in S)\

(let !ix = !wS in A) (!wT)

7������!
(!i��)

let !ix = !wS in A (!wT)
\
�!

((let !ix = !wS in A) (!wT))\

� (let x = S\ in A1) T \

7����!
(C)

let x = S\ in A1 T \ with Lemma 2.9

� (let !ix = !wS in A (!wT))\

let !ix = !w!cU in E[x]

7�����!
(�!i)

E[x][x := U]
\
�!

(let !ix = !w!cU in E[x])\

� let x = U1 in E[x]\

7����!
(V)

E[x]\[x := U1] with Lemma 2.9

� (E[x][x := U])\ with Lemma 2.12.(i)

let !ix = !w(let !iy = !wS in A) in E[x]

7��������!
(!i!w!w)

let !iy = !wS in let !ix = !wA in E[x]
\
�!

(let !ix = !w(let !iy = !wS in A) in E[x])\

� let x = (let y = S\ in A\) in E[x]\

7���!
(A)

let y = S\ in let x = A\ in E[x]\

� (let !iy = !wS in let !ix = !wA in E[x])\

Figure 21: Soundness of \ for evaluation of terms S.

let !ix = !w(let !iy = !wS in A) in G[x]

7��������!
(!i!w!w)

let !iy = !wS in let !ix = !wA in G[x]
1
��!

(let !ix = !w(let !iy = !wS in A) in G[x])1

� let x = (let y = S\ in A\) in G[x]1

7���!
(A)

let y = S\ in let x = A\ in G[x]1 with Lemma 2.9

� (let !iy = !wS in let !ix = !wA in G[x])1

let !ix = !w!cU in G[x]

7�����!
(�!i)

G[x][x := U]
1
��!

(let !ix = !w!cU in G[x])1

� let x = U1 in G[x]1

7����!
(V)

G[x]1[x := U1] with Lemma 2.9

� (G[x][x := U])1

let !cx = !w(let !iy = !wS in A) in x

7��������!
(!i!w!w)

let !iy = !wS in let !cx = !wA in x
1
��!

(let !cx = !w(let !iy = !wS in A) in x)1

� let y = S\ in A\

� (let !iy = !wS in let !cx = !wA in x)1

let !cx = !cU in x

7�����!
(�!i)

U
1
��!

(let !cx = !cU in x)1

� U1

Figure 22: Soundness of 1 for evaluation of terms P .

18

Proof: Simple, by induction on the size of the struc-
tures. �

Corollary 2.14 Let E be a call-by-need evaluation
context. Then there exists a separated-linear evaluation
context E0 such that for all x we have (E[x])~ � E0[x].

Proof: This E0 is simply E
~[!c[]]. �

Theorem 3 Let M;N 2 Need.

(i) (M [x := V])~ �M~[x := V �].

(ii) � `Need M : A if and only if Ii�~ `SLin M
~ : A~,

and �`NeedV : A if and only if Ii�~`SLinV
� : A�.

(iii) M ����!
Need
! N if and only if M~ ����!

SLin
! N~.

(iv) M 7����!
Need
! N if and only if M~ 7����!

SLin
! N~.

Proof: Clause (i) is trivial since all values are trans-
lated with the same pre�x. Soundness in Clause (ii)
follows by a straightforward induction on the depth of
the proof tree; we illustrate the reasoning for each Need
typing rule in Figure 23. Soundness in Clause (iii) fol-
lows by a similar analysis of each rule, shown in Fig-
ure 24. Finally, soundness for Clause (iv) follows by
the analyses of each rule in Figure 25, Lemma 2.13 and
Corollary 2.14.

For completeness we rely on the subset of SLin and
mapping from it to Need given in Figure 14. It is easy
to verify that this grammar includes all ~-images of
Need terms and is closed under general SLin reduction,
that the mapping \ is right-inverse to ~, and that \ is
sound for typing proofs and reduction sequences, which
together imply completeness in Clauses (ii) and (iii).
Finally, completeness in Clause (iv) follows since \ takes
SLin answers and evaluation contexts to Need answers
and evaluation contexts as well. �

Why is ~ complete for general reduction from Need into
SLin while � from Val into Lin or from Need into A� ,
which produce similar reduction-closed images of terms,
are not? The counterexample for � exploits the fact
that we cannot distinguish an eliminator introduced
by the translation for massaging the left-hand side of
an application from an eliminator which is the trans-
lation of a let-binding or an abstraction. Under ~ we
do not have this confusion: the former is translated as
a !c-eliminator while the latter becomes a !i-eliminator,
which can be distinguished in the inverse translation.

3 Conclusion

The separated-linear lambda calculus uses a more re-
�ned control of the substructural operations on types
and terms than previous systems based on linear logic.
The additional control allows call-by-need to be incor-
porated in a much more satisfying manner within the
scope of the Girard translation, by a new transforma-
tion, into the same system as call-by-name and call-by-
value, and in a way which is both sound and complete
for reduction. We end this report with a sketch of some

variations, extensions and application of the separated
calculus.

Omitting the structural typing rules. It is also
possible to formulate the typing rules for SLin with-
out the Dereliction, Weakening and Contraction rules.
Rather than a single Id rules and four Dereliction rules,
we would have one axiom link per zone; rather than ex-
plicit weakening and contraction rules, we would make
the di�erent abilities of di�erent zones implicit in other
rules. We present the typing relation `SRF in Fig-
ure 26 (structural rule-free). This formulation is simi-
lar to Barber's presentation of dual intuitionistic linear
logic [4].

Permission to weaken variables in certain zones in
implicit in the axiom rules. For example in Idl,

Idl
Ii�;Iw�;Ilx : A `SRF x : A

the variables in � and � are quite clearly unused, which
is acceptable since we allow weakening in those two
zones. On the other hand, no unused assumptions ap-
pear in the zones where weakening is not allowed. Per-
mission to contract is implicit in the elimination rules
with two inferences above the bar. For example in ��-
E, we can use variables in � and � to type the same
variables in both subterms of the application, which
is acceptable since contraction is allowed in those two
zones. On the other hand, in the other zones we must
use separate environments for the di�erent subterms.

Although we have fewer `SRF typing rules in to-
tal, they are individually more complicated than the
corresponding `SLin rules. Our shorthand with E , Il ,
etc. is not so useful here since the pairwise interac-
tions of zones is more important and must be made
explicit. Nonetheless, it is clear that the schemes pro-
duce judgments of the same types, and we believe that
the shorter, less intricate rules of `SLin allow simpler,
easier to read proofs, even if a few are longer.

However it should be noted that the removal of struc-
tural rules does allow a re�nement of the Curry-Howard
correspondence. Since under `SLin we can rearrange the
location of structural rules within a proof fairly arbitrar-
ily without changing a term, several proofs of a term's
type can be given. In other words, each well-typed term
can be Curry-Howard correspondent with many proofs
in the logic. Omitting the structural rules, we in fact
have an isomorphism between closed terms and theo-
rems (To see that isomorphism fails for open terms in
general one need only note that all four Id rules in `SRF
prove the same thing).

Larger logical issues. We have implictly raised but
not answered the question of what the decomposition of
! into !w and !c does to the original system of linear logic.
A complete answer to that question is clearly beyond
the scope of this report, where we take the logic to be in
service of the calculi. Nonetheless, we do believe that a
single-sided sequent calculus for a separated-linear logic
should be straightforward, although we have not yet
attempted to verify its relation to the models of Gi-
rard [12] or Jacobs [15].

19

Id
x : A `Need x : A

~
��!

Id
Ilx : A� `SLin x : A

�

Dereliction!c
Icx : A� `SLin x : A

�

!c-I
Icx : A� `SLin !

c
x :!cA�

Dereliction!w=C
Iix : A� `SLin !

c
x :!cA�

�
Ii (x : A)~ `SLin x

~ : A~

�
�
�
P

� `Need M : A

Weakening
�; x : B `Need M : A

~
��!

�
�
�
P~

Ii�~ `SLin M
~ : A~

Weakening=C
Ii�~; x : B� `SLin M

~ : A~

�
Ii (�; x : B)~ `SLin M

~ : A~

�
�
�
P

�; x : B; y : B `Need M : A
Contraction

�; z : B `Need M [x := z; y := z] : A

~
��!

�
�
�
P~

Ii(�; x : B; y : B)~ `Need M
~ : A~

�
Ii�~; x : B�; y : B� `Need M

~ : A~

Contraction=W
Ii�~; z : B� `Need M

~[x := z; y := z] : A~

�
Ii (�; z : B)~ `Need (M [x := z; y := z])~ : A~

�
�
�
P

�; x : A `Need M : B

! -I
� `Need �x:M : A! B

~
��!

Id
Ily :!wA~ `SLin y :!

w!cA�

�
�
�
P~

Ii�~; x : A� `SLin M
~ : B~

!i-E
Ii�~;Ily :!wA~ `SLin let !

i
x = y in M~ : B~

��-I
Ii�~ `SLin �y: let !

i
x = y in M~ : (!wA~) �� B~

!c-I
Ii�~ `SLin !

c
�y: let !ix = y in M~ : !c((!wA~)�� B~)

�
Ii� `SLin (�x:M)~ : (A! B)~

�
�
�
P1

� `Need M : A! B

�
�
�
P2

� `Need N : A
! -E

�;� `Need M N : B

~
��!

�
�
�
P~
1

Ii�~ `SLin M
~ : (A! B)~

�
Ii�~ `SLin M

~ :!c((!wA~)�� B~)

Id
Ilz : (!wA~)�� B~ `SLin z : (!

wA~)�� B~

Dereliction!c
Icz : (!wA~)�� B~ `SLin z : (!

wA~)�� B~

!c-E
Ii�~ `SLin (let !

cz =M~ in z) : (!wA~)�� B~

�
�
�
P~
2

�~ `SLin N
~ : A~

��-E
Ii�~;�~ `SLin (let !

cz =M~ in z)N~ : B~

�
Ii(�;�)~ `SLin (M N)~ : B~

�
�
�
P1

� `Need M : B

�
�
�
P2

�; x : B `Need N : A
! Let

�;� `Need let x =M in N : A

~
��!

�
�
�
P~
1

Ii�~ `SLin M
~ : B~

!w-I
Ii�~ `SLin !

w
M
~ :!wB~

�
Ii�~ `SLin !

w
M
~ :!w!cB�

�
�
�
P~
2

Ii(�; x : B)~ `SLin N
~ : A~

�
Ii�~; x : B� `SLin N

~ : A~

! Let
Ii�~;�~ `SLin (let !

i
x = !wM~ in N~) : A~

�
Ii (�;�)~ `SLin (let x =M in N)~ : A~

Figure 23: Soundness of ~ for types.

20

(�x:M)N

���!
(I)

let x = N in M
~
��!

((�x:M)N)~

� (let !cz = !c(�x: let !iy = x in M~) in z) (!wN~)

�����!
(�!c)

(�x: let !iy = x in M~) (!wN~)

�����!
(���)

let !ix = !wN~ in M~

� (let x = N in M)~

let x = V in M

����!
(V)

M [x := V]
~
��!

(let x = V in M)~

� let !ix = !w!cV � in M~

�����!
(�!i)

M~[x := V �]

� (M [x := V])~

(let x = L in M)N

����!
(C)

let x = L in (M N)
~
��!

((let x = L in M)N)~

� (let !cz = (let !ix = !wL~ in M~) in z) (!wN~)

�����!
(!c!i)

(let !ix = !wL~ in let !cz =M~ in z) (!wN~)

������!
(!i��)

let !ix = !wL~ in (let !cz =M~ in z) (!wN~)

� (let x = L in (M N))~

let x = (let y = L in M) in N

���!
(A)

let y = L in let x =M in N
~
��!

(let x = (let y = L in M) in N)~

� let !ix = !w(let !iy = !wL~ in M~) in N~

��������!
(!i!w!w)

let !iy = !wL~ in let !ix = !wM~ in N~

� (let y = L in let x =M in N)~

let x =M in N

����!
(G)

N ; x 62 fv(N)
~
��!

(let x =M in N)~

� let !ix = !wM~ in N~

�����!
(W!i)

N~

Figure 24: Soundness of ~ for general reduction.

(�x:M)N

7���!
(I)

let x = N in M
~
��!

((�x:M)N)~

� (let !cz = !c(�x: let !iy = x in M~) in z) (!wN~)

7�����!
(�!c)

(�x: let !iy = x in M~) (!wN~)

7�����!
(���)

let !ix = !wN~ in M~

� (let x = N in M)~

let x = V in E[x]

7����!
(V)

E[x][x := V]
~
��!

(let x = V in E[x])~

� let !ix = !w!cV � in (E[x])~

7�����!
(�!i)

E[x]
~
[x := V �]

� (E[x][x := V])~

(let x =M in A)N

7����!
(C)

let x =M in (AN)
~
��!

((let x =M in A)N)~

� (let !cz = (let !ix = !wM~ in A~) in z) (!wN~)

7�����!
(!c!i)

(let !ix = !wM~ in let !cz = A~ in z) (!wN~)

7������!
(!i��)

let !ix = !wM~ in (let !cz = A~ in z) (!wN~)

� (let x =M in (AN))~

let x = (let y =M in A) in E[x]

7���!
(A)

let y =M in let x = A in E[x]
~
��!

(let x = (let y =M in A) in E[x])~

� let !ix = !w(let !iy = !wM~ in A~) in (E[x])~

7��������!
(!i!w!w)

let !iy = !wM~ in let !ix = !wA~ in (E[x])~

� (let y =M in let x = A in E[x])~

Figure 25: Soundness of ~ for top-level standard reduction. Lemma 2.13 and Corollary 2.14 guarantee the applica-
bility of the standard SLin rules.

21

Idi
Ii�; x : A;Iw� `SRF x : A

Idw
Ii�;Iw�; x : A `SRF x : A

Idc
Ii�;Iw�;Icx : A `SRF x : A

Idl
Ii�;Iw�;Ilx : A `SRF x : A

Ii�;Ic� `SRF M : A

!c-I
Ii�;Ic� `SRF M : !cA

Ii�;Iw�0;
Ic�;Il	0 `SRF M :!cA Ii�;Iw�1;

Ic�; x : A;Il	1 `SRF N : B

!c-E
Ii�;Iw�0;�1;

Ic�;Il	0;	1 `SRF let !
cx =M in N : B

Ii�;Iw� `SRF M : A
!w-I

Ii�;Iw� `SRF M : !wA

Ii�;Iw�0;
Ic�;Il	0 `SRF M :!wA Ii�;Iw�1; x : A;

Ic�;Il	1 `SRF N : B
!w-E

Ii�;Iw�0;�1;
Ic�;Il	0;	1 `SRF let !

w
x =M in N : B

E `SRF M : !w!cA F ;Iix : A `SRF N : B
!i-E1

E;F `SRF let !
i
x =M in N : B

E `SRF M : !c!wA F ;Iix : A `SRF N : B
!i-E2

E;F `SRF let !
i
x =M in N : B

E;Ilx : A `SRF M : B
��-I

E `SRF �x:M : A�� B

Ii�;Iw�0;
Ic�;Il	0 `SRF M : A�� B Ii�;Iw�1;

Ic�;Il	1 `SRF N : A

��-E
Ii�;Iw�0;�1;

Ic�;Il	0;	1 `SRF M N : B

Figure 26: The structural rule-free typing relation `SRF for SLin.

Product and sum types. Generally as a basis for
programming languages one would want to consider
a larger calculus, in particular with product and sum
types. An extension to the standard translation to map
both sums and products from a suitable extension of
call-by-name, into the linear lambda calculus extended
with the multiplicative and additive sum connectives
(& and �, in Girard's formulation), is straightforward.
However, the extension of the steadfast translation is
less clear. While the extension for products is merely
quite awkward, it is not at all clear how to achieve the
extension for sums.

One can envision an extension of the hybrid transla-
tion in the manner of either original translation. For the
standard translation, the results are straightforward,
while an attempt in the style of the steadfast trasla-
tion inherits the di�culties of the original. We present
these issues in more detail elsewhere [18], and do not
pursue them further here.

Acknowledgments.

I'd like to thank Martin Odersky, David N. Turner,
Philip Wadler, Martin Wehr and a number of anony-
mous referees for their comments through the develop-
ment of this work.

References

[1] S. Abramsky, Computational interpretations of linear logic,

Theoretical Computer Science 111 (1993) 3{57.

[2] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky and

P. Wadler, A call-by-need lambda calculus, in: Conf. Rec.

POPL'95: 22nd ACM Symp. on Principles of Programming

Languages (ACM Press, San Francisco, California, January

1995) 233{246.

[3] Z. M. Ariola and M. Felleisen, The call-by-need lambda cal-

culus, in: (Technical Report CIS-TR-94-23, Department of

Computer Science, University of Oregon, October 1994; ex-

tended version submitted to: J. Functional Programming).

[4] A. Barber, DILL| dual intuitionistic linear logic (to appear;

draft paper, Dual intuitionistic linear logic, October 1995).

[5] H. P. Barendregt, The Lambda Calculus: Its Syntax and Se-

mantics, volume 103 of Studies in Logic and the Foundations

of Computer Science (North-Holland Publishing Company,

1981).

[6] P. N. Benton, G. Bierman, V. de Paiva and M. Hyland, Type

assignment for intuitionistic linear logic (Technical Report

262, Computing Laboratory, University of Cambridge, Au-

gust 1992).

[7] P. N. Benton, Strong normalisation for the linear term calcu-

lus, Journal of Functional Programming 5:1 (January 1995)

65{80.

[8] G. Bierman, What is a categorical model of intuitionistic

linear logic?, in: Proc. Second International Conference on

Typed Lambda Calculus (Springer Verlag, Lecture Notes in

Computer Science 902, Edinburgh, Scotland, April 1995).

[9] G. Bierman, On Intuitionistic Linear Logic (Ph.D. Thesis,

University of Cambridge Computer Laboratory, December

1993; also appears as Technical Report 346, Computing Lab-

oratory, University of Cambridge, August 1994).

[10] A. Church, The Calculi of Lambda Conversion (Princeton

University Press, 1941).

[11] H. B. Curry and R. Feys, Combinatory Logic, vol. 1 (North-

Holland, Amsterdam, 1958).

[12] J.-Y. Girard, Linear logic, Theoretical Computer Science 50
(1987) 1{102.

[13] J.-Y. Girard, On the unity of logic, Annals of Pure and Ap-

plied Logic 59 (1993) 201{217.

[14] W. Howard, The formulae-as-types notion of construction,

in: To H. B. Curry: Essays on Combinatory Logic, Lambda-

Calculus and Formalism (Academic Press, 1980).

[15] B. Jacobs, Semantics of lambda-I and of other substructure

lambda calculi, in: Typed Lambda Calculus and Applications

(Springer LNCS 664, 1994) 195-208.

[16] B. Jacobs, Semantics of weakening and contraction, Annals

of Pure and Applied Logic 69 (1994) 73{106.

[17] I. Mackie, The Geometry of Implementation (Ph.D. Thesis,

Imperial College London, 1994).

[18] J. Maraist, Comparing Reduction Strategies in Resource-

Conscious Lambda Calculi (Doctoral thesis, University of

Karlsruhe, to appear Winter 1996/7).

22

[19] J. Maraist, M. Odersky and P. Wadler, The call-by-need

lambda calculus (Unabridged) (October 1994, Technical Re-

ports 28/94, Fakult�at f�ur Informatik, Universit�at Karlsruhe

and FP-94-11, Department of Computing Science, University

of Glasgow; extended version submitted to: J. Functional

Programming).

[20] J. Maraist, M. Odersky, D. N. Turner and P. Wadler, Call-

by-name, call-by-value, call-by-need and the linear lambda

calculus, in: Proc. MFPS'95: Eleventh Conf. on the Math-

ematical Foundations of Programming Semantics (Elsevier

Publishers, ENTCS 1, New Orleans, March/April 1995).

[21] G. D. Plotkin, Call-by-name, call-by-value and the � calcu-

lus, Theoretical Computer Science 1 (1975) 125{159.

[22] J. C. Reynolds, The discoveries of continuations, Lisp and

Symbolic Computation 6:3/4 (November 1993) 233{248.

[23] S. R. della Rocca and L. Roversi, Lambda calculus and in-

tuitionistic linear logic (Manuscript, July 1994). Available

from L. Roversi, University of Pisa, rover@di.unipi.it.

[24] P. Wadler, Linear types can change the world!, in: M. Broy

and C. Jones, eds., Programming Concepts and Methods

(North Holland, Sea of Galilee, Israel, April 1990).

[25] P. Wadler, A syntax for linear logic, in: Proc. MFPS'93:

Ninth Int. Conf. on the Mathematical Foundations of Pro-

gramming Semantics (Springer Verlag, Lecture Notes in

Computer Science 802, New Orleans, Louisiana, April 1993).

A Marked Separated-Linear Reduction

Figure 27 describes SLin?, a variation of the SLin re-
duction rules. SLin? and SLin share a common term
language, but SLin? allows single (!��; !!) steps to move
more than one eliminator pre�x at a time. As a re-
sult, single-step SLin

? reduction relates more terms
than single-step SLin reduction, although their reex-
ive, transitive closures are clearly equal:

Lemma A.1 Let M;N 2 SLin. We have M ����!
SLin
! N if

and only if M �����!
SLin?

! N .

Figure 28 shows the syntax and Figure 29 the
reduction rules of the marked variant SLin?

0

of
SLin?. Compatible closure in SLin?

0

is more com-
plicated than usual, and we present these closure
rules in Figure 30. We refer to reduction by rules

(���0; �!
2
0; ?!

2��0; ?!
2��<0 ; ?!

2!40; ?!
2!4

<

0 ; !
i!2!w0; !

i!2!w
<

0)

as SLin?
0

0. We have the usual correspondence between
the marked and unmarked systems.

De�nition 1 Let M 0
2 SLin?

0

; then we take jM 0j to be
the SLin

? term formed simply by erasing all markings
in M 0.

Lemma A.2 Let �0 : M 0 �����!
SLin?0

N 0. Then jM 0j �����!
SLin?

jN 0j.

Proof: Trivial, since every rule of SLin? can be retrieved
by simply erasing the markings. �

In the above lemma, we refer to the sequence jM 0j �����!
SLin?

jN 0j as j�0j, and de�ne projection of multistep reduction
sequences accordingly as the concatenation of the pro-
jections of the single steps.

Lemma A.3 Let M 0
2 SLin

?0 and � : jM 0j �����!
SLin?

! N .

Then there exists some N 0
2 SLin?

0

, N � jN 0j, such
that �0 :M 0 �����!

SLin?0
! N 0 and � � j�0j.

Proof: Again, immediate from the correspondence of
the rules in the calculi. �

It will be useful to have a more speci�c lemma about
SLin?

0

0 reduction.

Lemma A.4 Let L0;M 0; N 0
2 SLin?

0

0, with M 0 �����!
SLin?00

N 0. Then:

� M 0[x := L0] �����!
SLin?00

N 0[x := L0].

� L0[x :=M 0] �����!
SLin?00

! L0[x := N 0].

Proof: Again the �rst result is by compatible closure,
and the second by structural induction. �

As usual, there is a correspondence between marked
terms and sets of references to redexes of the corre-
sponding unmarked term. A path is a �nite, possibly
empty sequence of symbols referring to subterms of a
term structure; a path is valid for a term if it actu-
ally corresponds to that term's structure. We leave the
symbols largely unspeci�ed; 0 and 1 will su�ce. For
example, in the term M � (�x:M0)M1, if we take 0
to mean the left- and 1 the right-subterm (or just 0 for
terms with only one child), then \0" is a valid path re-
ferring to (indexing) the term �x:M0, \00" indexes the
term M0, and \1" indexes the term M1; \01" is not a
valid path for M . For a term M , we let p(M) be the
set of valid paths into M , and let ; � range over paths.

We index (�; !!!) redex by a single path, and (!��; !!)
redexes by a pair of a path and a positive integer:

De�nition 2 An indexing set F for a term M 2 SLin?

is a subset of p(M) [(p(M)� N) where:

1. If 2 F , then indexes a (�; !!!) redex in M .

2. If (; n) 2 F , then indexes a (!��; !!) redex in M
which moves n eliminator pre�xes.

3. If (; n0); (; n1) 2 F , then n0 = n1.

It is clear from the de�nition of the rules that redexes
speci�ed by di�erent rules will never coincide at the
top-level: that is, if (0; n0); 1 2 F , then 0 6� 1.
Clause (3) of the de�nition allows us to make the claim
that indexing sets and marked terms are in one-to-one
correspondence; without that restriction we would be
able to mark certain terms as more than one redex.
The following lemma is then clear:

Lemma A.5 If F be an indexing set for M , then there
exists some marked termM 0 where jM 0j �M and every
redex indexed in F is marked in M 0. If M 0 is a marked
term, then there exists an indexing set F for jM 0j such
that every redex marked in M 0 is indexed.

23

Syntactic domains As in SLin, noting as well:

Pre�xes P ::= let !ix =M in j let !wx =M in j let !cx =M in

Main reduction rules As in SLin.

(!��) rules

(?!2��) (Pn let !2x = L in M)N �����!
SLin?

Pn let !2x = L in (M N)

where !2 ranges over !w, !c, !i.

(!!) rules

(?!2!4) let !2x = (Pn let !4y = L in M) in N �����!
SLin?

Pn let !4y = L in (let !2x =M in N)

where !2 and !4 each range over !w, !c, !i.

(!!!) rules As in SLin.

(!i!2!w) let !ix = !2(let !iy = !wL in M) in N ����!
SLin

let !iy = !wL in let !ix = !2M in N

where !2 ranges over !w and !c.

Displacement function

d(�; 0) = 0

d(� :M ������!
(�;W)

N;m) = �1; m > 0 and top-level �

d(� :M ����!
(!!!)

N;m) = 1; m > 0 and top-level �

d(� :M �����!
(!��)

N;m) = 0

d(� :M ���!
(!!)

N;m) = n; m > 0; top-level � and n pre�xes moved

d(P M ! P N;m) = d(M ! N;m� 1); m > 0

d(M ! N;m) = 0; other compatible closure

Figure 27: The generalized separated linear lambda calculus.

So it is sensible to write (jM 0j;F) �M 0 for the appro-
priate indexing set, and we adopt this notation hence-
forward.

The restriction of Clause (3) also means that we can-
not track every generalized redex in a term simultane-
ously, but since we are interested in SLin

? only for the
insight it allows into SLin, such a restriction is accept-
able.

A.1 Developments and their Finiteness

We de�ne residuals and developments as usual. Let
�0 : (jM 0j;F) � M 0 �����!

SLin?0
N 0; then there exists some

G such that N 0 � (jN 0j;G). Then we de�ne G to be the
residual(s) of the redexes in F with respect to �0. A
development of a marked term is a reduction sequence
which contracts only marked redexes, viz. a SLin?

0

0 se-
quence. A development is �nite if it has a �nite number
of steps, and a �nite development is complete if its �nal
result is unmarked. So to show that all developments
are �nite (Corollary A.14), we will show that SLin?

0

0 is
strongly normalizing (Lemma A.13).

As usual, for strong normalization of SLin?
0

0, we use a
decoration of the marked calculus with weights on vari-
able occurrences. We refer to the weighted calculus as
SLin?

�

and present the norm k : k : SLin?
�

! N in Fig-

ure 31. We take _M; _N and so forth to range over SLin?
�

terms. We take the same reduction rules in SLin
?� as

kxki = i

k�x: _Mk = k _Mk

k _M _Nk = 2k _Mk+ 2k _Nk

k _P _Nk = 2k _Pk+ k _Nk

klet !2x = _M ink = k _Mk

k!2 _Mk = k _Mk

Figure 31: The norm k : k on SLin?
�

terms.

in SLin?
0

, as refer to SLin?
�

0 as for SLin?
0

0. Once again,
we have the usual substitution results.

Lemma A.6 Let _L; _M; _N 2 SLin?
�

, with _M �����!
SLin?�

_N .

Then:

� _M [x := _L] �����!
SLin?�

_N [x := _L].

� _L[x := _M] �����!
SLin?�

! _L[x := _N].

Proof: The �rst result is again just compatible closure,
and the second follows by induction on the structure of
_L. �

Just as we can separate a marking from a term, we
can separate weights from a marked term. Given a term

24

Syntactic domains

Terms L0;M 0; N 0 ::= x j �x:M 0 j !wM 0 j !cM 0 jM 0 N 0 j PM

j [���](�x:M 0)N 0

j [?!
c
��n](Pn�1 cPM 0)N 0

j [?!
w
��n](Pn�1 wPM 0)N 0

j [?!i��n](Pn�1 iPM 0)N 0

General eliminator pre�xes P ::= iP j wP j cP

!i-eliminator pre�xes iP ::= let !ix =M 0 in

j i
w
P j i

c
P

j [?!i!wn]let !ix = (Pn�1 wPM 0) in

j [?!
i
!
c
n]let !ix = (Pn�1 cPM 0) in

j [?!
i
!
i
n]let !ix = (Pn�1 iPM 0) in

{ with a !w-pre�xed bound term i
w
P ::= let !iy = !wL0 in

j [�!
i
cw

]let !ix = !w!cM 0 in

j [!
i
!
w
!
w
]let !ix = !w(i

w
PM 0) in

{ with a !c-pre�xed bound term i
c
P ::= let !iy = !cL0 in

j [�!
i
wc

]let !ix = !c!wM 0 in

j [!
i
!
c
!
w
]let !ix = !c(i

w
PM 0) in

!c-eliminator pre�xes cP ::= let !cx =M 0 in j c
c
P

j [?!
c
!
w
n]let !cx = (Pn�1 wPM 0) in

j [?!
c
!
c
n]let !cx = (Pn�1 cPM 0) in

j [?!
c
!
i
n]let !cx = (Pn�1 iPM 0) in

{ with a !c-pre�xed bound term c
c
P ::= let !cy = !cL0 in

j [�!
c
]let !cx = !cM 0 in

!w-eliminator pre�xes wP ::= let !wx =M 0 in j w
w
P

j [?!
w
!
w
n]let !wx = (Pn�1 wPM 0) in

j [?!
w
!
c
n]let !wx = (Pn�1 cPM 0) in

j [?!
w
!
i
n]let !wx = (Pn�1 iPM 0) in

{ with a !w-pre�xed bound term w
w
P ::= let !wy = !wL0 in

j [�!
w
]let !wx = !wM 0 in

Figure 28: Syntax of the marked generalized separated-linear lambda calculus.

25

Main reduction rules
(���0)

[���](�x:M 0)N 0 �����!
SLin?0

M 0[x := N 0]

(���1) (�x:M 0)N 0 �����!
SLin?0

M 0[x := N 0]

(�!c
0
) [�!

c
]let !cx = !cM 0 in N 0 �����!

SLin?0
N 0[x :=M 0]

(�!c
1
) let !cx = !cM 0 in N 0 �����!

SLin?0
N 0[x :=M 0]

(�!w
0
) [�!

w
]let !wx = !wM 0 in N 0 �����!

SLin?0
N 0[x :=M 0]

(�!w
1
) let !wx = !wM 0 in N 0 �����!

SLin?0
N 0[x :=M 0]

(�!i
cw 0

) [�!
i
cw

]let !ix = !w!cM 0 in N 0 �����!
SLin?0

N 0[x :=M 0]

(�!i
cw 1

) let !ix = !w!cM 0 in N 0 �����!
SLin?0

N 0[x :=M 0]

(�!i
wc0

) [�!
i
wc

]let !ix = !c!wM 0 in N 0 �����!
SLin?0

N 0[x :=M 0]

(�!i
wc1

) let !ix = !c!wM 0 in N 0 �����!
SLin?0

N 0[x :=M 0]

(W!i
1
) let !ix = !wM 0 in N 0 �����!

SLin?0
N 0; x 62 fv(N 0)

(!��) rules

(?!2��0)
[?!
2
��n](Pn�1 �PM 0)N 0 �����!

SLin?0
Pn�1 �P (M 0 N 0)

(?!2��<
0
) [?!

2
��n](PmM 0)N 0 �����!

SLin?0
Pm ([?!

2
��n�m]M 0 N 0);

0 < m < n

(?!2��1) (Pn�1 �PM 0)N 0 �����!
SLin?0

Pn�1 �P (M 0 N 0)

(?!2��>
1
) [?!2��n](Pn�1 �P Rm �RM 0)N 0 �����!

SLin?0
Pn�1 �P Rm �R (M 0 N 0);

m � 0

where !2 ranges over !w, !c, !i

and correspondingly �P to wP, cP, iP (and �R).

(!!) rules

(?!2!40)
[?!
2
!
4

n]let !2x = (Pn�1
a
PM 0) in N 0 �����!

SLin?0
Pn�1

a
P (let !2x =M 0 in N 0)

(?!2!4
<

0)
[?!2!4n]let !2x = (PmM 0) in N 0 �����!

SLin?0
Pm ([?!

2
!
4

n�m]let !2x =M 0 in N 0);

where 0 < m < n

(?!2!41) let !2x = (Pn�1
a
PM 0) in N 0 �����!

SLin?0
Pn�1

a
P (let !2x =M 0 in N 0)

(?!2!4
>

1)
[?!
2
!
4

n]let !2x = (Pn�1
a
P �R

m
RM 0) in N 0 �����!

SLin?0
Pn�1

a
P Rm �R (let !2x =M 0 in N 0);

where m � 0

where !2 and !4 each range over !w, !c, !i

and correspondingly �P to wP, cP, iP (and �R).

(!!!) rules

(!i!2!w0)
[?!

i
!
2
!
w
n]let !ix = !2(i

w
P
n
M 0) in N 0 �����!

SLin?0
i
w
P
n
(let !ix = !2M 0 in N 0)

(!i!2!w
<

0)
[?!

i
!
2
!
w
n]let !ix = !2(i

w
P
m

i
w
R
n�m

M 0) in N 0 �����!
SLin?0

i
w
P
m
([?!

i
!
2
!
w
n�m]i

w
R
n�m

let !ix = !2M 0 in N 0)

where 0 < m < n

(!i!2!w1) let !ix = !2(i
w
P
n
M 0) in N 0 �����!

SLin?0
i
w
P
n
(let !ix = !2M 0 in N 0)

(!i!2!w
>

1)
[?!

i
!
2
!
w
n]let !ix = !2(i

w
P
n
i
w
R
m
M 0) in N 0 �����!

SLin?0
i
w
P
n
i
w
R
m
(let !ix = !2M 0 in N 0)

where 0 < m

where !2 ranges over !w and !c

Figure 29: (�; !��; !!!) reduction rules for the marked generalized separated-linear lambda calculus.

26

Let M 0 ����!
SLin

N 0. Then:

� �x:M 0 ! �x:N 0,

� !wM 0 ����!
SLin

!wN 0,

� !cM 0 ����!
SLin

!cN 0,

� L0M 0 ����!
SLin

L0 N 0,

� M 0 L0 ����!
SLin

N 0 L0,

� [���](�x: L0)M 0 ����!
SLin

[���](�x: L0)N 0,

� [?!
2
��n](Pn�1 �P L0)M 0 ����!

SLin

[?!
2
��n](Pn�1 �P L0)N 0,

where !2 ranges over !w, !c, !i with corresponding �P.

� [?!2!4n]let !2x = (Pn�1
a
P L0) in M 0 ����!

SLin

[?!2!4n]let !2x = (Pn�1
a
P L0) in N 0,

and [?!
2
!
4

n]let !2x = (Pn�1
a
PM 0) in L0 ����!

SLin

[?!
2
!
4

n]let !2x = (Pn�1
a
P N 0) in L0,

where !2 and !4 each range over !w, !c, !i with corresponding
a
P.

Let � : Pn �PM 0 ����!
SLin

N 0, where !2 and !4 each range over !w, !c, !i and with corresponding
a
P:

� [?!
2
��n](Pn �PM 0) L0 �����!

SLin?0
[?!
2
��n+d(�)](N 0) L0.

� [?!4!2n]let !4x = (Pn �PM 0) in L0 �����!
SLin?0

[?!
4

!
2

n+d(�)]let !4x = N 0 in L0.

Let � : i
w
P
n
M 0 ����!

SLin
N 0 and let !2 range over !w, !c:

� [?!
i
!
2
!
w
n]let !ix = (i

w
P
n
M 0) in L0 �����!

SLin?0
[?!

i
!
2
!
w
n+d(�)]let !ix = N 0 in L0.

Figure 30: Compatible closure in SLin?
0

.

M 2 SLin? we de�ne the variable-paths �(M) to be the
set

�(M) = f 2 p(M) :M j � x; any xg ;

that is, all paths indexing variables. Then a weighting
of a marked term M 0

2 SLin?
0

is just any total function
I from the variable-paths of jM 0j to integers:

I : �(jM 0j)! N :

The projection and lifting results for SLin?
�

into SLin?
0

,
and by extension SLin? as well, are clear. We will need
a lemma describing the interaction of substitution and
norms for particular terms.

Lemma A.7 Let _M; _N 2 SLin
?� such that for all oc-

currences of xi in _M we have k _Nk < i. Then k _M [x :=
_N]k � k _Mk.

Proof: Trivially, by induction; equality arises only when

x is not free in _M . �

We identify a particular class of weightings relevant to
marked reduction.

De�nition 3 A term _M 2 SLin?
�

has a decreasing
weighting if it meets all of the following conditions:

1. For every subterm [���](�x: _M0) _M1, and for all

occurrences of xi within _M0, we have k _M1k < 1.

2. For every subterm [�!2]let !2x = !2 _M0 in _M1 where
!2 ranges over !w; !c, and for all occurrences of xi

within _M1, we have k _M0k < 1.

3. For every subterm [�!i]let !ix = !2!4 _M0 in _M1 with
!2 and !4 dual, and for all occurrences of xi within
_M1, we have k _M0k < 1.

As suggested by the name, the norm is decreased by
SLin?

�

0 reduction of terms with a decreasing weighting.
Moreover, SLin?

�

0-reducing a term will again have a de-
creasing weighting.

Lemma A.8 Let _M �����!
SLin?�0

_N , where _M has a decreas-

ing weighting. Then k _Mk > k _Nk.

Proof: By a structural induction down to the various
possible top-level contractions. We show the base cases
for the groups of redexes, and a representative of the
trivial induction steps.

1. Top level marked (���) contraction. We have _M �
[���](�x: _M0) _M1 and _N � _M0[x := _M1]; by the
de�nition of a decreasing weighting we have that

the weighting of every occurrence of xi in _M0 is

greater than k _M1k, which by Lemma A.7 means

that k _M0[x := _M1]k � k _M0k. Then we have the
result with

k[���](�x: _M0) _M1k

= 2k _M0k+ 2k _M1k

> k _M0k

� k _M0[x := _M1]k :

27

2. Top level marked (�!2) contractions, !2 ranging

over !w; !c. We have _M � [�!2]let !2x = !2 _M0 in _M1

and _N � _M1[x := _M0]. We can again use
Lemma A.7 and the de�nition of a decreasing

weighting to show that k _M1[x := _M0]k � k _M1k.
Then similarly we have the result with

k[�!
2]let !2x = !2 _M0 in _M1k

= 2k _M0k+ k _M1k

> k _M1k

� k _M1[x := _M0]k :

3. Top level marked (�!i) contractions. We have _M �
[�!i]let !ix = !2!4 _M0 in _M1 with !2; !4 dual, and
_N � _M1[x := _M0]. Aside from the syntax, this
case is just as in the previous one: by the de�nition
of a decreasing weighting plus Lemma A.7 we have
k _M1[x := _M0]k � k _M1k. Then similarly we have
the result with

k[�!
i]let !ix = !2!4 _M0 in _M1k

= 2k _M0k+ k _M1k

> k _M1k

� k _M1[x := _M0]k :

4. Top level marked (?!2��) contractions. We con-
sider the case of steps of rank 1; higher ranked
steps can be seen as just multiple rank 1 steps.

k[?!
2
��1](let !2x = _L in _M) _Nk

= 4k _Lk+ 2k _Mk+ 2k _Nk

> 2k _Lk+ 2k _Mk+ 2k _Nk

= klet !2x = _L in (_M _N)k :

5. Top level marked (?!2!4) contraction. Again con-
sidering rank 1 steps, this case is straightforward:

k[?!
2!41]let !2x = let !4y = _L in _M in _Nk

= 4k _Lk+ 2k _Mk+ k _Nk

> 2k _Lk+ 2k _Mk+ k _Nk

= klet !4y = _L in let !2x = _M in _Nk :

6. Top level marked (?!i!2!w) contraction. We have a
simple analysis just as in the case for (?!2!4) steps:

k[?!
i!2!wn]let !ix = !2(let !iy = !w _L in _M) in _Nk

= 4k _Lk+ 2k _Mk+ k _Nk

> 2k _Lk+ 2k _Mk+ k _Nk

= klet !iy = !w _L in let !ix = !2 _M in _Nk ;

again with n-rank steps just as n 1-rank steps.

For non-top level reductions, the inductive step is sim-
ple since the norm of a term increases directly with the
norm of its subcomponents. Considering application,

let _L _M ! _L _N with k _Mk > k _Nk, and we have

k _L _Mk

= 2k _Lk+ 2k _Mk

> 2k _Lk+ 2k _Nk

= k _L _Nk :

The other cases are equally simple. �

The following argument occurs twice in the subsequent
lemma, so we present it just once right here.

Lemma A.9 Let _M; _N 2 SLin?
�

both have decreasing

weighting where for all occurrences of xi in _M we have

i > k _Nk. Then _M [x := _N] has a decreasing weighting.

Proof: Let _L be a marked �-redex in _M [x := _N], so

either _L � [���](�y: _L0) _L1, _L � [�!2]let !2y = !2 _L1 in _L0

or _L � [�!i]let !iy = !2!4 _L1 in _L0 for !2; !4 dual in the

latter case. If the considered occurrence of _L comes
from _M , the result follows from Lemma A.7: since
k _L1[x := _N]k < k _L1k by the hypothesis, the condi-
tion for decreasing weighting involving y continues to
hold. If the considered occurrence of _L comes from _N ,
then the result is trivial since it is unchanged. �

Lemma A.10 Let _M �����!
SLin?�0

_N be a top-level contrac-

tion, and let _M have a decreasing weighting. Then _N
has a decreasing weighting.

Proof: We consider each of the four possible reduc-
tion rules separately. In each case, we show that ev-

ery marked (���; �!) redex in _N again satis�es the
criteria for a decreasing weighting. This lemma and
Lemma A.11 below have the same role and reasoning
as Barendregt's proof of the similar result for call-by-
name [5, Lemma 11.2.18.(ii)]. Since our system is some-
what more complicated, we decompose the result into
two lemmas, �rst for marked redexes within the body
of the contractum, and then for redexes enclosing it.

1. Marked top-level (���) reduction. So _M �
[���](�y: _M0) _M1, and _N � _M0[y := _M1] has a
decreasing weighting by Lemma A.9.

2. Marked top-level (�!2) reduction. By the same rea-
soning as for marked top-level (���) reduction.

3. Marked top-level (?!2��) reduction. So _M �
[!2��](_P _M0) _M1, and we again let _L be a marked

(���; �!2)-redex in _N ; again _L is necessarily the

residual of a marked redex _L0 with decreasing

weighting in _M . If _L0 is a subterm of P , _M0 or
_M1 then the result is trivial, since _L is just the

same as _L0, just moved around within the term.

28

If on the other hand _L0 � (P _M0), then we must

also have _L0 �
[�!2]let !2y = !2 _L1 in _M0 and so

_L � [�!2]let !2y = !2 _L1 in (_M0
_M1); since y does

not appear free in _M1 the decreasing weighting

condition on _L is again satis�ed.

4. Marked top-level (?!2!4; ?!i!2!w) reduction. By a
similar analysis as for marked top-level (?!2��) re-
duction.

�

We can now state the general result that general marked
reduction preserves the property of having a decreasing
weighting.

Lemma A.11 Let _M �����!
SLin?�0

_N , where _M has a de-

creasing weighting. Then _N has a decreasing weighting.

Proof: We proceed by structural induction on _M . The
base case is a top-level redex, covered by Lemma A.10
above. The inductive steps correspond to the compati-
ble closure of the redex within non-contracted contexts;
these steps are non-trivial only for enclosure within
marked (���; �!2) redexes, which we consider presently.

1. Marked top-level (���) redexes. For _M we have
[���](�x: _M0) _M1, with two further cases depending
on which subterm is contracted.

(a) Reduction _M0 ! _N0. So we have _N �
[���](�x: _N0) _M1. Let xi occur in _N0; then

we must have xi occurring in _M0 as well since
reduction will not create new weightings of a
free variable, and by the initial conditions this

i > k _M1k.

(b) Reduction _M1 ! _N1. In this case we have
_N � [���](�x: _M0) _N1. Let xi occur in _M0;
then by the initial decreasing weighting con-

dition we have i > k _M1k. Moreover by

Lemma A.8 we have that k _M1k > k _N1k, and

so i > k _N1k and the weighting is again de-
creasing.

2. Marked top-level (�!2) redexes. By similar reason-
ing as for marked top-level (���) redexes.

The cases of commuting conversion reduction rules is
clear, and the lemma follows. �

Lemma A.12 Let M 0
2 SLin?

0

. Then there exists a
term _M 2 SLin?

�

, j _M j � M 0, such that _M has a de-
creasing weighting.

Proof: Considering a term with n free variables all of
weighting m, it is clear that the maximum norm of
such a term occurs in a left-nested (or equivalently,
right-nested) series of applications of one such vari-
able (or abstractions and/or !-enclosures thereof) to
another, i.e. (: : : ((xm1 xm2) x

m
3) x

m
n�1) x

m
n , with norm

(2 � 2n�1 + 2n�2 + 2n�3 + 2)m. So to give a variable
weight greater than a term whose weight is at least the
above quantity, (

Pn

i=0 2
i)m should su�ce.

Correspondingly, to construct a decreasing weighting
for a marked termM 0, we number all variable occurance
in M 0 beginning with 1 from right to left, except in an
eliminator where we number the bound term �rst. We
then give a term numbered i the weight fi, where f
is the recurrance relation de�ned by the following two
equations:

f1 = 1

fn =

nX
i=0

2i

!
� fn�1 ; n > 1

By the above arguments this weighting is clearly de-
creasing. �

Lemma A.13 SLin?
0

0 reduction is strongly normaliz-
ing.

Proof: By Lemma A.12 every term M 0
2 SLin?

0

has

a decreasing weighting _M , and so by Lemma A.8 and
Lemma A.11 all SLin?

0

0-sequences fromM 0 are of length

at most k _Mk. �

Corollary A.14 All SLin?-developments are �nite.

Proof: Immediate, since developments and SLin?
0

0 re-
duction are the same thing. �

A.2 Unique Completions

Lemma A.15 SLin?
0

0 reduction is weakly conuent.

Proof: We take M �����!
SLin?00

M0, M �����!
SLin?00

M1 and con-

struct the N such that

M0 �����!
SLin?00

! N: and

M1 �����!
SLin?00

! N :

We consider �rst the case of a top-level redex.

� Top-level (���0; �!
2
0) steps. For these top-level

steps the result is immediate by Lemma A.4.

� Top-level (?!2��0; ?!
2!40; ?!

i!2!w0) steps. Each of
these cases are simply an analysis of the various
cases, which are di�cult only in the bookkeeping.
We present the details in the author's thesis [18],
and omit the details here.

Cases with redexes in disjoint subterms and under com-
patible closure follow immediately. �

Corollary A.16 SLin?
0

0 reduction is conuent.

Proof: Follows from Lemma A.13 and Corollary A.16.
�

29

Proposition A.17 All SLin
?-developments are �nite

and can be extended to complete developments; all com-
plete SLin?-developments end in the same term.

Proof: Finiteness and extension follow from FD(SLin);
unique completion are by Lemma A.16 since develop-

ment of markings and SLin?
0

0 reduction are the same,
and since in a conuent system, normal forms are
unique [5, Corollary 3.1.13]. �

Conuence

Although in the classical lambda calculi it is possible
to deduce conuence directly from �nite developments
and unique completions, a subtle implicit assumption in
those systems does not hold here. In (say) Name, given
marked terms (M; �) and (M; ��), we will always have
that (M; � [��) is a valid marked term, and (trivally)
that the original two terms occur as partial develop-
ments of the latter. This property does not hold for
SLin: given two ranked marking of the same redex but
di�erent ranks, the simple set-theoretic union of the in-
dexing sets does not produce a marked term. We say
that two marking sets �1; �2 for a term M are joinable
if there exists some set �0 such that each of the �rst two
occur as partial developments of the third, and that all
markings are joinable if such a set exists for all mark-
ings of all terms. We discuss joinability in more detail
and in other contexts in our thesis [18].

Lemma A.18 All SLin?-markings are joinable.

Proof: It is clear that we can produce a valid marking
by taking the higher-ranked of two ranked redexes of
the same term, since the lesser ranked is a development
of the greater ranked redex. �

Proposition A.19 Reduction in SLin | excluding
(W!i) steps | is conuent.

Proof: By standard techniques with Lemma A.17 and
Lemma A.18. �

Lemma A.20 Reduction of SLin terms by (W!i) steps
is conuent.

Proof: Trivially, we can show by inspection that if
M �����!

(W!i)
M1 and M �����!

(W!i)
M2, then we have some

N such that for both i, Mi �����!(W!i)
= N . The full result

follows by induction. �

Lemma A.21 Let M;M1;M2 2 SLin, with M �����!
(W!i)

M1 and M ����!
SLin

M2, with the latter not by a (W!i)

step. Then there exists some N such that M1 ����!SLin
= N

and M2 �����!(W!i)
= N where the former is not by a (W!i)

step (where the = indicates reexive closure).

Proof: By an easy inspection of the di�erent possible
SLin steps and relative redex positions. �

Proof of Proposition 2.4: Reduction in SLin is
conuent.
Follows from Lemma A.19, Lemma A.20 and
Lemma A.21.

B Standard Evaluation

We have the usual, straightforward unique evaluation
context lemma for SLin, although the larger language
of terms means that this proof, as well as most of the
proofs in this section, is notably more complicated than
the standardization proofs of call-by-name, by-value or
by-need.

Lemma B.1 Let M 2 SLin. Then exactly one of the
following is true:

1. M is an answer in SLin.

2. M demands some x 2 fv(M).

3. There exists a unique top-level standard SLin redex
�, plus some unique evaluation context E such
that M � E[�].

Proof: By structural induction on M .

� M � x. Clearly only Clause 2 is possible, with
E � [].

� M � �x:M0. All function are answers, so we have
Clause 1 and clearly none other.

� M �M0M1. Clause 1 does not apply; no applica-
tion can be an answer. Applying the induction hy-
pothesis onM0, if Clause 1 applies for the subterm,
then the top-level redex is a top-level (���; !i��)
standard step. If Clause 2 or 3 applies for the sub-
term, then the same applies for the whole term as
well.

� M � !wM0. Then clearly only Clause 1 applies.

� M � (let !wx =M0 in M1). Trivially,M is not an
answer; we considerM0 according to the induction
hypothesis. If Clause 1 holds forM0, then depend-
ing on the two possible forms for a well-typed sub-
term we have a top-level standard (�!w; !w!i) step.
Otherwise, whichever clause holds forM0 holds for
M as well.

� M � !cM0 or M � (let !cx = M0 in M1). As in
the previous two cases.

� M � (let !ix = M0 in M1). This �nal case is
rather complicated. We consider M0 according to
the induction hypothesis. If Clause 2 or 3 applies
to M0, then the same applies to M . Otherwise if
M0 is an answer, we have an analysis of its exact
form:

{ M0 � !wN0. This �rst case is the most com-
plicated. Considering M1 inductively, if M1

demands x, then we must further consider
the clause which applies for N0. If N0 is

30

an answer, then M is a top-level standard
(�!i; !i!w!w) step, with the speci�c rule de-
pending on the form of N0. If N0 demands
a free variable or contains a standard redex,
then the same applies to M .

Otherwise, if M1 does not demand x, then
whatever rule applied for M1 applies for M
as well.

{ M0 � !cN0. If N0 is an answer than we have
M a top-level redex, and the speci�c rule is
dictated by the form of N0:

� N0 � !wN1. Here, the (�!
i) rule applies.

� N0 � (let !iy = !wN1 in A). In this case,
we can apply the (!i!c!w) rule.

Otherwise if Clause 2 or 3 applies to N0, then
the same applies to M .

{ M0 � (let !iy = !wN0 in A). We have that M
is a top-level standard (!i!i) step.

No other form of M is possible, and the proof is com-
plete. �

Figure 32 shows the notion of reduction for SLin?, de-
rived from evaluation in SLin just by moving to the
corresponding ?-steps of arbitrary rank.

Lemma B.2 Let M;N 2 SLin=SLin?. Then M 7����!
SLin
!

N if and only if M 7�����!
SLin?

! N .

Proof: Clear from the de�nitions of the rules; we simply
exchange each n-rank ? step in Need

? for n ordinary
steps in Need. �

Lemma B.3 Let M 2 SLin=SLin?. Then exactly one of
the following is true:

1. M is an answer in SLin/SLin?.

2. M demands some x 2 fv(M).

3. There exists at least one top-level standard SLin?

redex �, plus some unique evaluation context E
such that M � E[�].

Proof: As in Lemma B.1. �

Lemma B.4 Let A be a Need/Need? answer. Then
A[x :=M] is also a Need/Need? answer.

Proof: Easy; free variables do not appear in the de�ni-
tion of answers, and so the result is an easy structural
induction, observing that abstractions (respectively !w-
pre�xed, !c-pre�xed terms) remain abstractions (respec-
tively !w-pre�xed, !c-pre�xed terms). �

Lemma B.5 Let M;N 2 Need? where M [x := N] is a
Need/Need? answer and either

1. N is not an answer, or

2. M does not demand x,

or both. Then M is a Need/Need? answer.

Proof: Clear from analysis of the particular M . �

Lemma B.6 Let M;N 2 Need=Need?, where M de-
mands x. Then M [y := N] demands x.

Proof: Clear by induction of the evaluation context E
such that M � E[x]. �

Lemma B.7 Let M;N 2 Need? where M [y := N] de-
mands x and either

1. N does not demand x, or

2. M does not demand y,

or both. Then M demands x.

Proof: By analysis of M and the E where E[x] �
M [y := N]. �

Lemma B.8 Let M 7�����!
SLin?

N be top-level. Then

M [x := L] 7�����!
SLin?

N [x := L] is also top-level and stan-

dard.

Proof: Trivial, by inspection of the reduction rules. �

Lemma B.9 Let � : M �!
i

N in SLin? with z 62

fv(M;N). Then M demands z if and only if N de-
mands z.

Proof: We take M � E[z] and � : M � C[�] �!
i

C[�0] � N , and proceed with an analysis of C. If the
top-level structure of C is that of a non-empty evalua-
tion context (for example C � C0M0), then we have the
result by the induction hypothesis; if its top-level struc-
ture is not that of an evaluation context (for example
C � M0 C0), then the result is immediate. Otherwise,
for top-level � we consider the speci�c rule which ap-
plies.

1. M � (let !ix = !w!cM0 in M1) �������!i-(�!i
wc
)
M1[x :=

M0] � N , where M1 does not demand x. We must
have M1 demanding z, since no subterm of M0

could be in evaluation position; the result then
follows from Lemma B.6 and Lemma B.7.

2. M � (let !ix = !wM0 in M1) ������!i-(W!i)
M1 � N

where x 62 fv(M1). Trivially, if x 62 fv(M1) then it
must be that M1 demands z.

3. M � (i
w

P
n
M1)M2 ��������!

i-(?!i��)
iwP

n
(M1 M2) � N

where M1 is not an answer. We have two possibil-
ities. If M1 demands z, then the result is immedi-
ate. Otherwise, taking

iwPj � let !ixj = !wLj in ;

we have a strictly decreasing sequence ak, 1 � k �
m, 1 � ak � n, such that M1 demands x(a1),
L(aj) demands x(aj+1) and L(m) demands z. This
arrangement would clearly be preserved from one
side of the reduction arrow to the other.

31

Syntactic domains As in SLin.

Reduction rules
(���) (�x:M)N 7����!

SLin
M [x := N]

(�!c) let !cx = !cN in M 7����!
SLin

M [x := N]

(�!w) let !wx = !wN in M 7����!
SLin

M [x := N]

(�!i
cw
) let !ix = !c!wN in M 7����!

SLin
M [x := N]

(�!i
wc
) let !ix = !w!cN in E[x] 7����!

SLin
(E[x])[x := N]

(?!i��) (i
w
P
n
A)N 7����!

SLin

i
w
P
n
(AN)

(?!2!i) let !2x = (i
w
P
n
A) in M 7����!

SLin

i
w
P
n
(let !2x = A in M)

where !2 ranges over !w, !c, !i.

(!i!w!w) let !ix = !w(i
w
P A) in E[x] 7����!

SLin

i
w
P (let !ix = !wA in E[x])

(!i!c!w) let !ix = !c(i
w
P A) in N 7����!

SLin

i
w
P (let !ix = !cA in N)

Figure 32: Evaluation in SLin
?.

4. M � (Rn iwPM1)M2 ��������!i-(?!i��) Rn iwP (M1 M2) �

N where not all of the R are of the form iwP. This
case is similar to the previous one. We must have
some 0 � m < n such that the Rn can be parti-
tioned as

Rn � iwR
m
Rm+1R

n�m�1 ;

where Rm+1 is not of the form iwRm+1. Hence,
its bound term L is in evaluation position. Then
either L demands z, or we have a series ak among

the bound variables and terms of iwR
m

as in the
previous case which end in a bound term demand-
ing z.

5. M � (Pn let !2x = M0 in M1) M2 �������!
i-(!2��)

Pn (let !2x =M0 in M1 M2) � N where !2 ranges
over !w; !c. As in Case 4.

6. M � (let !2x = (i
w

P
n
M1) in M2) �������!

i-(?!2!i)
iwP

n
(let !2x = M1 in M2) � N , where M1 is not

an answer. As in Case 3, since M1 must itself be
demanded.

7. M � (let !2x = (PnM1) in M2) ��������!
i-(?!2!4)

Pn (let !2x = M1 in M2) � N , where not all P

are of the form iwP. As in Case 4.

8. M � (let !ix = !c(i
w

P
n
M1) in M2) ���������!

i-(?!i!c!w)
iwP

n
(let !ix = !cM1 in M2) � N . This case is rem-

iniscent of Case 6. We have either M2 demanding
z, or else some chain of demand as in Case 3.

9. M � (let !ix = !w(i
w

P
n
M2) in M3) ���������!i-(?!i!w!w)

iwP
n
(let !ix = !wM2 in M3) � N , where M2 is not

an answer. We have either M2 demanding z, or
elseM2 demanding x with one of the arrangements
of the previous case.

10. M � (let !ix = !w(i
w

P
n
A) in M) ���������!

i-(?!i!w!w)
iwP

n
(let !ix = !wA in M) � N where M does not

demand x. As before, except that the only possible
arrangement is that M demands z.

Finally, it is not possible for a top-level
(���; �!c; �!w; �!i

cw
) step to be internal, so the

proof is complete. �

Lemma B.10 Let � : M �!
i
N in SLin?. Then M is

an answer if and only if N is an answer.

This lemma motivates the restriction to the (!!!) rules
to which we alluded on page 10 but did not completely
explain. We rejected rules of the form

let !ix = !2(let !iy = !cM1 in M2) in M3

�������!
i-(!i!2!c) let !iy = !cM1 in (let !ix = !2M2 in M3) ;

where !2 ranges over !w; !c. Taking the case where !2 is
!w, if M3 is an answer then this rule will take an an-
swer to a non-answer, which should not happen under
any circumstances. Rather than convoluting the de�ni-
tions of standard reduction and answer to step around
this problem, we simply disallow these rules, which are
not required for any other properties of the calculus or
translations.

Proof: By structural induction on M .

� M � (let !ix = !w!cM0 in M1) �������!i-(�!i
wc
)
M1[x :=

M0] � N , where M1 does not demand x. M is an
answer if and only if M1 is an answer. Since M1

does not demand x, by Lemmas B.4 and B.5 we
have that M1 is an answer if and only if M1[x :=
M0] � N is an answer.

� M � (let !ix = !wM0 in M1) ������!i-(W!i)
M1 � N

where x 62 fv(M1). Clearly both sides are answers
exactly when M1 is an answer.

32

� M � (PnM1) M2 ��������!
i-(?!2��) Pn (M1 M2) � N

where M1 is not an answer. Trivially, neither side
is an answer.

� M � (let !2x = (PnM1) in M2) ��������!
i-(?!2!4)

Pn (let !2x = M1 in M2) � N , where M1 is not
an answer. Again, neither side is an answer, since
even if !2were !i, we would still not have its bound
term on either side under a !w pre�x.

� M � (let !ix = !2(i
w

P
n
M1) in M2) ���������!

i-(?!i!2!w)
iwP

n
(let !ix = !2M1 in M2) � N where !2 ranges

over !w; !c and either M1 is not an answer, M2

does not demand x, or both. If !2 is !c then the
neither side is an answer. Otherwise both sides
are clearly answers exactly when M2 is an answer.

We have compatible closure by the induction hypothesis
and de�nition of answer, and so the proof is complete.

�

Lemma B.11 Let ; � mark distinct internal SLin? re-
dexes in M , � :M ���!

()
N . Then every member of �=�

is internal.

Proof: Again, by induction on the structure of M . If
 � � then there are no residuals, and the result is
vacuously true, so we assume from now on that the two
are di�erent in some way, i.e. in rank if not position.
We begin with the case where is top-level, excluding
as usual those rules of which top-level steps cannot be
internal, and excluding as well (W!i) steps which cannot
be marked.

� M � (let !ix = !w!cM0 in M1) �������!i-(�!i
wc
)
M1[x :=

M0] � N , where M1 does not demand x. If �
indexes a redex in M1, then the residual is just �
again, which clearly remains internal: if it is within
a non-evaluation context at �rst, it will continue
to be so under the substitution of a non-demanded
variable. For � indexing a term is M0 the result is
again clear; ifM1 does not demand x, then it does
not demand the replacement for x.

� M � (i
w

P
n
M1) M2 ��������!i-(?!i��)

iwP
n
(M1 M2) � N

where M1 is not an answer. A variety of cases
arise; at the risk of being pedantic we catalog the
possibilities by considering the explicit structure
of the path �.

{ � � �. So � is a (?!2��) step of di�erent rank
m than but is also top-level. We comparem
and n: if m < n, then �=� is empty. If m >
n, then the single residual is the (?!2��) in

context (i
w

P
n
[]) with rank (m�n). This step

is clearly internal if and only if is internal
as well.

{ � < @1. We distinguish three cases, respec-
tively, reduction of a bound term, top-level
reduction of a subterm (i

w

Pm � � � i
w

PnM1), and
reduction within M1.

� � � @1(`2m)`1!1�0, m < n, i.e. reduction of

the bound term L in iwPm+1 � (let !ix =
!wL in). Since this redex is internal in M ,
either �0 is internal to L or ifM1 does not
demand x. Whichever condition is true in
M would continue to be true in N , so the
residual will be internal as well.

� � � @1(`2m), m < n. We have two possi-
bilities, either a (?!i!w!w) redex or a (�!i

wc
)

redex. Taking L2 �
iwPm+1 � � �

iwPnM1, in
the �rst case we have

(i
w

Pm � � � i
w

PnM1)

� let !ixm = !w(i
w

RL1) in L2 :

Since this redex is internal, we must have
either that L2 does not demand x, or that
L1 is an answer, or both. L2 demands x
if and only if iwPm+1 � � �

iwPn (M1 M2) de-
mands x, so the residual is internal as well.
For a (�!i

wc
) step, we have

(i
w

Pm � � � i
w

PnM1)

� let !ixm = !w!cL1 in L2 ;

which if internal means L2 does not
demand x, so again neither does
iwPm+1 � � �

iwPn (M1 M2), and so the
residual is internal.

� � � @1(`2n)�0. Since ((i
w

P
n
[])M2) is an

evaluation context, �0 must be internal to
M1, and so the residual must be internal
as well.

{ � < @2. Contraction within M2 in both M
and N is clearly internal.

� M � (Rn iwPM1)M2 ��������!i-(?!i��) Rn iwP (M1 M2) �

N where not all of the R are of the form iwP.

� M � (Pn let !2x = M0 in M1) M2 ��������!
i-(?!2��)

Pn (let !2x =M0 in M1 M2) � N where !2 ranges
over !w; !c.

These two cases rely on exactly the same reason-
ing as in the �rst (!i��) case. We must only distin-
guish the di�erent !2eliminator pre�xes since their
evaluation behavior, and thus the internal redexes
which they admit, di�er from a !i-eliminator with
an !w-pre�xed argument. It is clear though that
the criteria for these redexes to be internal is pre-
served in both M and N .

� M � (let !2x = (i
w

P
n
M1) in M2) �������!

i-(?!2!i)
iwP

n
(let !2x = M1 in M2) � N , where M1 is not

an answer. We again analyze the structure of �.

{ � � �. As in the (!2��) cases. A (!2!i) redex
of lesser rank would have no residuals, while
a (!2!4) redex of greater rank would clearly

33

remain internal: since both � and are inter-
nal inM , eitherM1 is not an answer,M2 does
not demand x, or both. Each condition would
hold in N as in M , and hence the residual of
� would be internal.

{ � < `1.

� � < `1(`2m)`1, m < n.

� � � `1(`2m), m < n. Both of these cases
are as in the corresponding case for a
(!2��) step.

� � � `1(`2m)�0. So �0 indexes an inter-
nal redex of M1, which clearly makes the
residual (`2n)`1�0 of � again internal.

{ � < `2. Since M1 is not an answer, contrac-
tions of M2 in N are clearly internal.

� M � (let !2x = (PnM1) in M2) ��������!
i-(?!2!4)

Pn (let !2x = M1 in M2) � N , where not all P

are of the form iwP. This case is again like the �rst
case of internal (?!2!i) reduction, noting variations
in the criteria for internal contraction, which again
 preserves.

� M � (let !ix =
!2(let !iy = !wM1 in M2) in M3) ��������!

i-(!i!2!w)
(let !iy = !wM1 in (let !ix = !2M2 in M3)) � N
where !2 ranges over !w; !c.

{ � � �. As for (?!2!4) steps of the same loca-
tion but di�erent rank.

{ � < `1. Since !2-pre�xed expressions cannot
be top-level redexes, we in fact have � < `1!1.

� � � `1!1. As in the (?!i��) case, we have
either a (�!i

wc
) or (?!i!w!w) step, which is

clearly again internal after contraction of
.

� � � `1!1. This step is internal either if �1
is itself internal in the bound term, or if
the bound variable is not demanded, or
both. The two conditions are clearly both
preserved by contracting , so the residual
is again internal.

� � < `1!1. If M2 demands x, then �1 must
index an internal redex in M1; otherwise
if M2 does not demand x the residual is
trivially internal.

{ � < `2. Trivially, �1 lust be internal in M2,
and so the residual of � will be internal as
well in N .

It is also possible that � will be top-level when � is
not. In that case we have the result by a similar in-
spection of the individual cases; by the preceding Lem-
mas B.9 and B.10 on the e�ect of internal contractions
on demand and answerhood, it is clear that the forms
of subterms required for � to be internal are upheld by
contraction of the redex at . For �; in distinct sub-
terms it again follows from Lemmas B.9 and B.10 that
if � had been in a non-evaluation context, contracting

 would not cause the context to become an evaluation
context. Finally, for �; in the same subterm the result
is immediate by the induction hypothesis. �

Lemma B.12 Let � : M0 �!
i
N0 and let N0 7! N1,

both in SLin?. Then M0 has a standard redex: there
exists some M1 such that M0 7!M1.

Proof: So we have:

� :M0 � C0[�0] �!i C0[�
0

0] � N0

N0 � E1[�1] 7! E1[�
0

1] � N1 ;

and we seek to construct or otherwise show the existence
of the E;� such that M0 � E[�] and � is a standard
step. We proceed by structural induction on M0, and
perform an analysis on C0 and E1.

We begin as usual where C0 � [], excluding as usual
the steps which cannot be both top-level and internal.

� Where

M0

� (let !ix = !w!cM1 in M2)

�������!
i-(�!i

wc
)

M2[x :=M1]

� N0 ;

with M2 does not demand x. Since � is internal,
we must have that M2 does not demand x. By
Lemma B.5, since M2[x := M1] has a standard
redex, we know that M2 is not an answer, and
similarly by Lemma B.7 it could not demand any
other variable, so by Lemma B.3 M2 must have
a standard redex, which would correspond to the
contraction in N0.

� M0 � (let !ix = !wM1 in M2) ������!i-(W!i)
M2 � N0

where x 62 fv(M2). Trivially, � � �1 and E �

let !ix = !wM1 in E1.

� M0 � (i
w

P
n
M1)M2 ��������!i-(?!i��)

iwP
n
(M1 M2) � N0

where M1 is not an answer. � � �1, and E de-
pends on E1:

{ E1 �
iwP

n
(E2 M2). Then E � (i

w

P
n
E2)M2.

{ E1 � iwP
m�1

(let !ixm =

!wE2 in iwP
n

m+1 (M1 M2)), where
iwP

n

m+1 (M1 M2) demands xm. Then E �

(i
w

P
m�1

let !ixm = !wE2 in
iwP

n

m+1M1)M2.

� M0 � (Rn iwPM1)M2 ��������!i-(?!i��) Rn iwP (M1 M2) �

N0 where not all of the R are of the form iwP, and

� Where

M0

� (Pn let !2x =M0 in M1)M2

�������!
i-(!2��) Pn (let !2x =M0 in M1 M2)

� N0

34

with !2 ranges over !w; !c. Both of these cases are
as in the �rst (!i��) case, the di�erence being that

for the R not of the form iwP the standard step
would be in the bound term, rather than the free
term, or else the � rule for a (let !wx = !wM in),
(let !cx = !cM in) or (let !ix = !c!wM in) pre�x.

� M0 � (let !2x = (i
w

P
n
M1) in M2) �������!

i-(?!2!i)
iwP

n
(let !2x = M1 in M2) � N0, where M1 is

not an answer. Since M1 is not an answer, ei-
ther the standard redex is within it, or is within

a bound term in the iwP
n
. In both cases we

have � � �1. In the former case we have sim-
ply E1 � iwP

n
(let !2x = E2 in M2), and so

E � let !2x = (i
w

P
n
E2) in M2. In the latter case

we have

N0 �
iwP

m
let !ixm = !wE2[�1]

in iwP
n

m+1 (let !
2x =M1 in M2)

where (i
w

P
n

m+1 (let !
2x =M1 inM2)) demands xm.

Then we can construct

E � let !2x = iwP
m
(let !ixm = !wE2[�1]

in (i
w

P
n

m+1M1))
in M2 :

� M0 � (let !2x = (PnM1) in M2) �������!
i-(?!2!i)

Pn (let !2x = M1 in M2) � N0, where not all P

are of the form iwP. Similar to the previous case,
again with the caveat that non-i

w

P pre�xes have a
di�erent evaluation behavior.

� M0 � (let !ix = !2(i
w

P
n
M1) in M2) ��������!

i-(!i!2!w)

(i
w

P
n
(let !ix = !2M1 in M2)) � N0 where M1 is

not an answer and !2 ranges over !w; !c. If !2 is
!c, then either the redex is within M1, or is by de-
mand within a bound term of the iwP. In the latter
case we have an analysis an in the previous similar
cases of this proof. If !2 is !i, then we either have
the standard step within M2, or M2 demanding x
and one of the arrangements for reduction under
the !w.

� M0 � (let !ix = !w(i
w

P
n
A) in M1) ��������!

i-(!i!w!w)

(i
w

P
n
(let !ix = !wA in M1)) � N0 where M1 does

not demand x. Trivially, the standard redex in
each case in within M1.

We can have no other top-level internal steps.
If E1 � [], then the result is immediate, with E � []

as well.
Otherwise the result is clear. If the topmost con�g-

uration of C0 is that of an evaluation context | that is,
if C0 and E0 both have the same immediate structure
such as

C0 � C1 L and

E1 � E1 L ;

then we have the result by the induction hypothesis.
Finally, when the internal and standard contractions are
in di�erent subterms, we have the result immediately by
Lemmas B.9 and B.10. �

Lemma B.13 Let � : M0 �!
i

N0 and M0 7 ��! N1

in SLin?. Then �=� contains a single element �1 which

is a standard redex of N0: N0 7
�1��! N .

Proof: The analysis is similar to that of the previous
proof, by a structural induction on M . Where both
contractions are in the same subterm we have result
immediately from the induction hypothesis. We have
three primary cases which remain: where one or the
other step is top-level, and where each is in a distinct
child of the top-level term. We take

� :M0 � C0[�0] �!i C0[�
0

0] � N0

M0 � E1[�1] 7! E1[�
0

1] � N1 ;

and construct in each case the required E and �.
If the standard step is top-level, then the result is

immediate from a consideration of the structure of the
terms following from each possible redex, with Lem-
mas B.9 and B.10.

If the internal step is top-level, we have the following
cases.

� With

M0

� (let !ix = !w!cM1 in M2)

�������!
i-(�!i

wc
)

M2[x :=M1]

� N0 ;

where M1 does not demand x. Since M1 does not
demand x, the standard step must be within M1,
so we have the result by Lemmas B.6 and B.8.

� M0 � (let !ix = !wM1 in M2) ������!i-(W!i)
M2 � N0

where x 62 fv(M2). We can have only E1 �

(let !ix = !wM1 in E2), and then E is just E2.

� M0 � (i
w

P
n
M1)M2 ��������!i-(?!i��)

iwP
n
(M1 M2) � N0

where M1 is not an answer. Either the standard
step is within M1 or a bound term of the iwP

n
. In

the former case we have

E1 � (i
w

P
n
E2)M2 ;

and so E � iwP
n
(E2 M2). In the latter case we

have some (i
w

Pm+1 � � �
iwPnM1) demanding x and

E1 � (i
w

P
m�1

let !ixm = !wE2

in iwPm+1 � � �
iwPnM1)M2

so then

E � iwP
m�1

(let !ixm = !wE2

in iwPm+1 � � �
iwPn (M1 M2))

:

35

� M0 � (PnM1) M2 ��������!
i-(?!2��) Pn (M1 M2) � N0

where not all of the P are of the form iwP. As in
the previous case, taking into account the di�erent
evaluation behavior of the non iwP pre�xes.

� M0 � (let !2x = (i
w

P
n
M1) in M2) �������!

i-(?!2!i)
iwP

n
(let !2x = M1 in M2) � N0, where M1 is not

an answer, and

� M0 � (let !2x = (PnM1) in M2) ��������!
i-(?!2!4)

Pn (let !2x = M1 in M2) � N0, where not all P

are of the form iwP.

Both of these cases are by a similar analysis as
for the (!!) cases in the previous proof, with the
obvious construction of the reshu�ed evaluation
contexts as in the (!2��) steps immediately above.

� M0 � (let !ix = !2(i
w

P
n
M1) in M2) ��������!

i-(!i!2!w)�
iwP

n
(let !ix = !2M1 in M2)

�
� N0 where M1 is

not an answer and !2 ranges over !w; !c. If !2 is
!c, then either the redex is within M1, or is by
demand within a bound term of the iwP, and we
have the same reshu�ing of the evaluation con-
texts as in the (!2!4) steps. Otherwise if !2 is !w

we have either the redex inM2 � E2[�1] and then

E �
�
iwP

n
(let !ix = !wM1 in E2)

�
, or else M2 de-

manding x and an arrangement as for when !2 is
!c.

� M0 � (let !ix = !w(i
w

P
n
A) in M1) ��������!

i-(!i!w!w)

(i
w

P
n
(let !ix = !wA in M1)) � N0 where M1 does

not demand x. Again, this �nal case is straight-
forward. We must have the standard step within
M1 � E2[�1], and its residual in N0 is just

(i
w

P
n
(let !ix = !wA in E2)).

If the two redexes are in di�erent subterms, then the
standard step | being outside of the e�ect of the inter-
nal step | could not be duplicated or discarded, and
so the residual is unique; by Lemmas B.9 and B.10 it is
again a standard step. �

Lemma B.14 Let � be a valid marking of SLin? redexes
in M , where (M; �) ���!

cpl
N . Then there exists some

term M0 with marking �0 such that

� : (M; �) ��������!
SLin?-dev! (M0; �0)

where j�j is a standard step M 7!!M0 and (M0; �0) ���!cpl
N by internal steps only. Graphically:

N

(M; �)

M

9 (M0; �0)

M0

?

cpl

6

j : j

.-
dev

-

.......................) i� cpl

. .--Z

:

Proof: By FD!(SLin?): we can contract marked stan-
dard redexes while they exist, and this sequence must
be �nite. We then can take the �nal term to be M0,
and complete the development by the remaining marked
steps. By Lemma B.11, this completion is by internal
steps only. �

Lemma B.15 Let � : (M; �) ����!
i-cpl M0 and M0 7

��! N

in SLin?. Then there exists some (N0; ��0) such that � :
M 7!! N0, �=� = ��0 and (N0; ��0) ����!i-cpl N . Graphically:

M0 N

(M; �) 9(N0; �0)

?

cpl

-

...........?

i� cpl

.--Z

Z :

Proof: By applying Lemma B.13 inductively for each
step in �, we have a redex at �1 whose single residual
with respect to � is �. Moreover, we know that �[f�1g
is again valid since no (�1; n) could be an internal step
if for some i we have that (�1; i) is the standard step.
So we can apply FD!(SLin?) and Lemma B.14 for the
result. �

Lemma B.16 Let M �����!
(W!i)

M0 7! N . Then there

exists some N0 such that M 7!= N0 �����!(W!i)
! N .

Proof: The result is a straightforward analysis of the
relative positions of the redexes. �

Lemma B.17 Let M �!
i
M0 7!! N . Then there exists

some N0 such that M 7!! N0 �!i! N .

Proof: We treat internal (!wW) steps separately from
internal contractions by other rules; for the former we
have the result simply by induction on the length of
the M0 7!! N sequence, with Lemma B.16 at each step.
Otherwise, noting �rst that M �!

i
M0 is a complete

development of a single redex, we proceed by induction
on the length of M0 7!! N , with Lemma B.15 at each
step. �

We can now proceed with the main standardization re-
sults. We �rst have a \pseudo-standardization" result
for the non-unique sequence produced by SLin?, and
then a full standardization result for SLin.

Proposition B.18 Let M �����!
SLin?

! A; then there exists

some A0 such that M 7�����!
SLin?

! A0 and A0 �����!SLin?
! A.

Proof: By the obvious induction on the number of in-
ternal steps in �, applying Lemma B.17 from the right
at each step to partition the reduction sequence into
a standard sequence followed by an internal sequence:
i.e. we have some M0 such that M 7!! M0 �!i! A. By

Lemma B.10, M0 is in fact another answer, A0. �

36

Proof of Proposition 2.5: If M ����!
SLin
! A then

there exists some separated-linear lambda answer A0

such that M 7����!
SLin
! A0.

We have that 7����!
SLin

selects a unique redex for every

(closed) non-answer by Lemma B.1, and that it always
�nds an answer when one is available by Lemma B.18
with Lemma B.2.

37

