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Abstract

We consider probability metrics of the following type: Let F be a

class of functions and let P and Q be probability measures. Then de-

�ne dF(P;Q) := sup
f2F j

R
f dP �

R
f dQj. A uni�ed study of such

integral probability metrics is given. We characterize the maximal class

of functions, which generates such a metric. Further we show how so-

me interesting properties of these probability metrics arise directly from

conditions on the generating class of functions. The results are illustra-

ted by several examples, including the Kolmogorov metric, the Dudley

metric and the stop-loss metric.
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1 Introduction.

Most of the models in applied probability are so complex, that an explicit
calculation of their characteristics is nearly impossible. Therefore approxima-
tions are of practical importance. But these approximations require some sort
of stability of the model. Very often it is convenient to express such stability
in terms of probability metrics. Since most of the characteristics are de�-

ned as an integral of some function f with respect to a probability measure P ,
probability metrics based on the comparison of integrals are of special interest.

In recent years there appeared a vast literature on the theory of probability

metrics. A lot of results have been summarized in the monography of Rachev

(1991). Many of the numerous metrics, that have been proved to be valuable,
are based on the comparison of integrals as follows: There is a class F of
functions, such that

d(P;Q) := sup
f2F

����
Z
f dP �

Z
f dQ

���� : (1.1)

�
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In Zolotarev (1983) metrics de�ned as in (1.1) are called probability metrics

with a �-structure. We will use the more intuitive notion integral probability

metric.

The purpose of this paper is to give a uni�ed study of these integral probabi-

lity metrics. After providing some preliminary results from functional analysis

in section 2, we compare in section 3 classes of functions generating the sa-

me metric. Especially we characterize the maximal generator of an integral

probability metric. In section 4 we give conditions on the generator, that in-

duce interesting properties of the probability metric. Special emphasis is given

to the relationship between convergence in the metric and weak convergence.

In section 5 we apply these results to several examples like the Kolmogorov

metric, the total variation metric and the stop-loss metric.

2 Preliminaries.

First we make some remarks about our notation. Sets of functions are mostly
denoted by capital fraktur letters as F;V;R;B, ..., whereas we use calligraphic

letters as A;B;S::: for �-algebras. Sets of (signed) measures are denoted by
letters in blackboard like IM; IP,... .

Let (S;S) be a measure space and b : S ! [1;1) a measurable function,

called weight function. We consider the set Bb of measurable functions f :
S ! IR, for which

kfkb := sup
s2S

jf(s)j

b(s)
<1:

For a signed measure � on S we denote the positive and negative variation

by �+ resp. ��. As usual j�j := �+ + �� is the total variation. Integrals are
sometimes written in the functional form �(f) :=

R
f d� :=

R
f d�+�

R
f d��.

Notice that �(f) exists and is �nite if and only if �+(jf j) + ��(jf j) <1.

The set of all signed measures � on S with j�j(b) = �+(b) + ��(b) < 1

is denoted by IMb. We write IP for the set of all probability measures (p.m.)

on S, and IPb := IP \ IMb is the restriction of IMb to IP. IPb is nonvoid as it
contains all p.m.'s with �nite support. IMN

b
is the set of all signed measures

with �(S) = 0. Notice that the di�erence of two p.m.'s lies in IMN

b
and that

every measure in IMN

b
is a multiple of such a di�erence, i.e. IMN

b
is the linear

span of IPb � IPb.

For the formulation of our �rst lemmas we need some notions of functional

analysis, which can be found e.g. in Choquet (1969), x22 or Robertson and
Robertson (1966).

A pair (E;F ) of vector spaces is said to be in duality, if there is a bilinear

mapping h�; �i : E � F ! IR. The duality is said to be strict, if for each
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0 6= x 2 E there is a y 2 F with hx; yi 6= 0 and for each 0 6= y 2 F there is an

x 2 E with hx; yi 6= 0.

Lemma 2.1 IMb and Bb are in strict duality under the bilinear mapping

h�; �i : IMb �Bb ! IR

h�; fi := �(f)
: (2.1)

Proof. Evidently Bb and IMb are vector spaces. For f 2 Bb we have jf j �

kfkb � b, and hence

j�(f)j � �+(jf j) + ��(jf j) � kfkb �
�
�+(b) + ��(b)

�
<1

for � 2 IMb. Thus the mapping h�; �i is well de�ned. It remains to show the

strictness of the duality.
(i) Bb contains the indicator functions of all sets A 2 S, as b � 1. Therefore
�(f) = 0 for all f 2 Bb implies �(A) = 0 for all A 2 S, and thus � � 0.
(ii) IMb contains all one point measures �s; s 2 S. Hence �(f) = 0 for all

� 2 IMb implies �s(f) = f(s) = 0 for all s 2 S and consequently f � 0. 2

Remark. In part (i) of the proof we needed the requirement b � 1 for the
weight function. Sometimes there is a naturally given weight function b0, which

only ful�ls b0 � 0. Then we can use b := b0 + 1, leading to IMb = IMb0 and
Bb0 � Bb, i.e. the measure space remains the same and even more functions
can be handled.

Unfortunately the duality (IMN

b
;Bb) is not strict, as �(f) = 0 for all � 2

IMN

b
only implies f constant. But strict duality can be obtained by identifying

functions which di�er only by a constant. Formally, we de�ne an equivalence
relation f � g if and only if f � g is constant. Denoting the corresponding
quotient space by Bb=� we get the following lemma.

Lemma 2.2 IMN

b
and Bb=� are vector spaces in strict duality under the bili-

near mapping (2.1).

A crucial role in our further investigations plays the bipolar theorem.

The polar M� of a set M � E (in the duality (E;F ) ) is de�ned by

M� := fy 2 F : jhx; yij � 1 for all x 2Mg:

The polar of a set N � F is de�ned analogously.

The following theorem is known as bipolar theorem (see e.g. Robertson
and Robertson (1966), p. 35),

Theorem 2.3 (Bipolar Theorem).

Suppose E and F are in strict duality and X � E. Then X�� is the �(E;F )-

closure of the absolutely convex hull of X.
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3 Maximal Generators.

Let (S;S) be an arbitrary measure space and let b : S ! IR be a weight

function. A mapping d : IPb � IPb ! [0;1] is called a probability metric, if it

possesses the following properties:

(i) d(P1; P2) = 0 if and only if P1 = P2.

(ii) d(P1; P2) = d(P2; P1).

(iii) d(P1; P3) � d(P1; P2) + d(P2; P3).

If (i) is replaced by the weaker requirement d(P;P ) = 0 for all P 2 IPb, then

we speak of a probability semimetric.

In this paper we only consider probability (semi)metrics, which are genera-
ted by integrals. For F � Bb we de�ne an integral probability (semi)metric dF
on IPb by

dF(P;Q) := sup
f2F

����
Z
f dP �

Z
f dQ

���� : (3.1)

Remarks: 1. As is common use in the theory of probability metrics,
the distance between to p.m.'s is allowed to be in�nite, compare e.g. Rachev
(1991), p. 10�.
2. In Zolotarev (1983) and Rachev (1991) probability metrics de�ned as in
(3.1) are called metric with �-structure. We think that the notion integral

probability (semi)metric is much more intuitive.
3. The metric dF is induced by a seminorm k � kF on IMN

b
: If we de�ne

k�kF := sup
f2F

j�(f)j; (3.2)

then dF(P;Q) = kP �QkF.
4. The function dF obviously is a probability semimetric. It is a metric, if and
only if F separates points in IMN

b
.

Next we compare di�erent classes of functions, which generate the same
probability metric.

One of the main purposes of this paper is to determine the maximal gene-
rator of an integral probability metric.

De�nition 3.1 Let F � Bb. The set RF of all functions f 2 Bb with the

property

jP (f)�Q(f)j � dF(P;Q) for all P;Q 2 IPb (3.3)

is called maximal generator.

Remark: Since IMN

b
is the linear span of IPb� IPb, f 2 RF holds if and only

if j�(f)j � k�kF for all � 2 IMN

b
.
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A direct consequence of the de�nition is the following result.

Lemma 3.2 Let F � V � Bb and P;Q 2 IPb.

a) dF(P;Q) � dV(P;Q).

b) RF � RV.

c) If V � RF, then dV and dF are identical.

The next two results show that RF is absolutely convex, contains the con-

stant functions and is closed under linear mixtures.

Theorem 3.3 Let F be an arbitrary generator of dF. Then:

a) RF contains the convex hull of F;

b) f 2 RF implies �f + � 2 RF for all � 2 [�1; 1] and � 2 IR;

c) If the sequence (fn)n2IN � RF converges uniformly to f , then f 2 RF.

We omit the easy proof.

Theorem 3.4 Let (
;A; �) be a probability space and let f : 
�S ! IR be a

A
 S-measurable function, which ful�ls the following assumptions:

(i) f(!; �) 2 F for all ! 2 
;

(ii) There exists a �-integrable function c : 
! IR�0 with

jf(!; s)j � c(!) � b(s) for all ! 2 
; s 2 S.

Then g(�) :=
R
f(!; �)�(d!) exists and belongs zu RF.

Proof. Since jf(!; x)j � c(!) � b(x) we have for all � 2 IMb:Z Z
jf(!; x)j �(d!)j�j(dx) �

Z
c(!)�(d!) �

Z
b(x)j�j(dx) <1: (3.4)

Specializing � = �s; s 2 S, we can infer the existence of

g(s) =
Z
f(!; s)�(d!):

Now (3.4) and (ii) imply kgkb �
R
c d� <1. Hence g 2 Bb and we can apply

Fubini's theorem. Thus we have for P;Q 2 IPb

jP (g) �Q(g)j = j
R
P (ds)

R
�(d!)f(!; s) �

R
Q(ds)

R
�(d!)f(!; s)j

�
R
�(d!) j

R
P (ds)f(!; s) �

R
Q(ds)f(!; s)j

�
R
�(d!)dF(P;Q) = dF(P;Q)

This yields g 2 RF. 2

Now we are ready for the main result of this section.
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Theorem 3.5 RF is the �(Bb; IMb)-closure of the absolutely convex hull of F

and the constant functions.

Proof. The assertion follows from the bipolar theorem for the duality (IMN

b
;Bb=�),

if we can show RF=� = (F=�)
��. But by de�nition of k � kF we have

f 2 (F=�)
�� , j�(f)j � 1 8� 2 (F=�)

�

, j�(f)j � 1 8� 2 IMN

b
with k�kF � 1

, j�(f)j � k�kF 8� 2 IMN

b

, f 2 RF=�:
2

Theorem 3.5 is rather of theoretical nature. As the �(Bb; IMb)-topology

is hard to handle, it is not very useful for applications. In our next result,
however, we give a su�cient condition for F = RF that is very easy to check.

Corollary 3.6 If F � V � RF, and V is absolutely convex, contains the

constant functions and is closed with respect to pointwise convergence, then

V = RF.

Proof. It is su�cient to show that V is closed with respect to the topology
�(Bb; IMb). Since IMb includes all one point measures, the �(Bb; IMb)-topology

is �ner than the topology of pointwise convergence. Hence each set, which is
closed under pointwise convergence, is also closed with respect to �(Bb; IMb).

2

4 Convergence and Uniformity.

There is a special interest in probability metrics, which metrize weak con-
vergence. Therefore, we now investigate the relationship between structural

properties of F and weak convergence. From now on we assume, that S is a
Polish (i.e. complete separable metric) space with metric d.

De�nition 4.1 Let S be some Polish space and let b : S ! [1;1) be some

weight function. Let dF be some probability metric on IPb. Then dF has

a) property (W1), if dF metrizes weak convergence;

b) property (W2), if

lim
n!1

dF(Pn; Qn) = dF(P;Q):

for all weak convergent sequences (Pn); (Qn) � IPb with limits P;Q 2 IPb.

c) property (W3), if

lim inf
n!1

dF(Pn; Qn) � dF(P;Q):

for all weak convergent sequences (Pn); (Qn) � IPb with limits P;Q 2 IPb.
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Remarks: 1. The implications (W1) ) (W2) ) (W3) are obvious, but in

the sequel we will see that none of these implications can be reversed.

2. Property (W2) is equivalent to the following condition:

(W �
2 ) If (Pn) converges weakly to P , then dF(Pn; P )! 0.

If dF has this property, then F is sometimes called a a uniform class with

respect to weak convergence, see Rachev (1991), p. 75.

In the following theorem we denote by Cb the set of all bounded continuous

functions.

Theorem 4.2 If F � Cb, then (W3) holds.

Proof. Let a := lim infn!1 dF(Pn; Qn) and " > 0. Then there is a subsequence
(kn) � IN and a n0 2 IN such that for all n � n0 and all f 2 F we have:

jPkn(f) �Qkn(f)j � a+ ":

Hence, if (Pn) and (Qn) are weak convergent sequences with limits P;Q and
F � Cb then

jP (f)�Q(f)j � a+ " for all f 2 F:

But this implies

dF(P;Q) = sup
f2F

jP (f) �Q(f)j � a+ ":

As " > 0 was arbitrary, the assertion follows. 2

For an arbitrary function f we de�ne the span of f by sp(f) := sup f�inf f .

A set F of functions is said to have uniformly bounded span, if

sup
f2F

sp(f) <1:

The following Theorem can be found in Bhattacharya and Ranga Rao

(1976), p. 16.

Theorem 4.3 An integral probability metric dF has property (W2), if and only

if F is equicontinuous and has uniformly bounded span.

Corollary 4.4 Property (W2) holds, if and only if the function d�(x; y) :=

dF(�x; �y) is continuous and bounded.
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A necessary and su�cient condition on F for (W1) to hold seems to be

unknown. From the preceding theorem it is evident that it is necessary for F

to have uniformly bounded span and to be equicontinuous. Another necessary

condition is the following:

The semimetric d� de�ned in Corollary 4.4 is topologically equivalent to d.

Example: Let S = IR and let

F := ff : IR! IR : kfkL � 1; kfk1 � 1; jf(x)� f(0)j � j1=xj; x 6= 0g ;

where k�kL is the so called Lipschitz-norm de�ned on an arbitrary metric space

(S; d) as

kfkL := sup
x6=y2S

jf(x)� f(y)j

d(x; y)
:

Then dF has property (W2), as F is uniformly bounded and equicontinuous.
But (W1) does not hold, since dF(�n; �0) = 1=n! 0 for n!1.

The following su�cient condition for (W1) can easily be deduced from Theo-
rem 4.3.2 in Rachev (1991).

Theorem 4.5 If F has uniformly bounded span, is equicontinuous and con-

tains for every closed set A � S and all n 2 IN the function

s! fn;A(s) := maxf0; 1=n � d(s;A)g;

then dF has the property (W1).

A well known example for an integral probability metric that metrizes weak

convergence is the Dudley-metric �. It is generated by the set

F := ff : kfk1 � 1; kfkL � 1g:

This metric obviously ful�ls the conditions of Theorem 4.5.

There are some more interesting properties of probability metrics. Some
of them are most easily de�ned in terms of random variables. Therefore we

sometimes use the notation dF(X;Y ) := dF(PX ; PY ).

De�nition 4.6 Let (S; d) be some metric vector space and let b : S ! [1;1)
be some weight function. Let dF be some (semi)metric on IPb. Then dF has

a) Property (R), if dF(�a; �b) = d(a; b);
b) Property (M), if dF(aX; aY ) = a � dF(X;Y ).

c) Property (C), if dF(P1 �Q;P2 �Q) � dF(P1; P2) for all p.m.'s Q.
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Theorem 4.7 Let RF be the maximal generator of the integral probability me-

tric dF on IPb.

a) Property (R) holds if and only if

sup
f2F

jf(x)� f(y)j

d(x; y)
= 1 for all x; y 2 S; x 6= y:

b) Property (C) holds if and only if RF is invariant under translations.

Proof. a) is trivial.

b) (i) If RF is invariant under translations, then f 2 RF implies f(�+ y) 2 RF
for all y 2 S. Hence

dF(P1 �Q;P2 �Q) = sup
f2RF

jP1 �Q(f)� P2 �Q(f)j

= sup
f2RF

����
Z
Q(dy) P1(f(� + y))�

Z
Q(dy) P2(f(�+ y))

����

� sup
f2RF

Z
Q(dy) dF(P1; P2)

= dF(P1; P2):

Hence (C) holds.
(ii) Now assume that (C) holds. Let f 2 RF and P1; P2 2 IPb. De�ne Q :=
�y; y 2 S. Then we can infer

jP1(f(�+ y))� P2(f(�+ y))j = jP1 �Q(f)� P2 �Q(f)j

� dF(P1 �Q;P2 �Q)
(C)

� dF(P1; P2):

Hence f(�+ y) 2 RF. 2

5 Examples.

A. The Kolmogorov metric.

A well known probability metric on S = IR is the Kolmogorov metric �

de�ned by
�(X;Y ) := sup

t2IR
jFX(t)� FY (t)j:

Since FX(t) =
R
1[t;1) dPX , the Kolmogorov metric is an integral probability

metric generated by the set F� of all functions 1[t;1); t 2 IR. One can use

b(s) � 1 as weight function, so that IPb consists of all probability measures on

IR.
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The maximal generator of � can be characterized in terms of total variation.

We denote the set of all functions of bounded variation by BV (IR). For a

partition Z = [x0; x1; :::; xn] of IR with x0 < x1 < ::: < xn we de�ne

V (f; Z) :=
nX

k=1

jf(xk)� f(xk�1)j:

Then the total variation of a function f 2 BV (IR) is de�ned by

V (f) := sup
Z

V (f; Z):

Lemma 5.1 The set F1 := ff 2 BV (IR) : V (f) � 1g is closed with respect to

pointwise convergence.

Proof. Endow BV (IR) with the topology of pointwise convergence. Then
for a �xed partition Z the functional f ! V (f; Z) is continuous. Hence
the functional f ! V (f) = sup

Z
V (f; Z) is lower semicontinuous, as it is a

supremum of continuous functionals. Thus the level set fV (f) � 1g is closed.
2

Theorem 5.2 The maximal generator RF of the Kolmogorov metric � is the

set of all functions f 2 BV (IR) with total variation V (f) � 1.

Proof. Let F1 be the set of all functions f 2 BV (IR) with V (f) � 1. Then
obviously F� � F1. The convex hull of F� is the set of all increasing step
functions, which assume only values in [0; 1]. But every increasing function
with range in [0; 1] can be approximated uniformly by such step functions.
Thus Theorem 3.3 implies that RF contains all monotone functions f with

V (f) � 1. Now the decomposition theorem of Jordan tells us that every
function f with V (f) � 1 can be written as a convex combination of two
monotone functions with this property. Hence applying Theorem 3.3 once
more yields F1 � RF. Now the assertion follows from Lemma 5.1 and Corollary

3.6. 2

Theorem 5.3 The Kolmogrorov metric � has the properties (C) and (W3).

Proof. a) The maximal generator of � obviously is invariant under translations.
Hence Theorem 4.7 implies (C).

b) By Theorem 4.2 the existence of a generator V � Cb is su�cient for (W3).
Such a generator is given by the set of all functions

fa;b(x) =

8><
>:

0 for x < a

(x� a)=(b� a) for a � x � b;

1 for x > b
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a; b 2 IR; a < b. 2

B. The total variation metric.

The set of all signed measures on an arbitrary measure space (S;S) can

be endowed with the so called total variation norm k�k := j�j(S). The corre-

sponding total variation metric � on the set of all probability measures is then

de�ned by �(P;Q) := jP �Qj(S), see Zolotarev (1983).

This is an integral probability metric. Choose b(s) � 1 and de�ne V� :=

f2 � 1B : B 2 Sg. Then V� is a generator of �, as

k�k = 2 � sup
A2S

j�(A)j

for all � 2 IMN

b
.

The proof of the following theorem is similar to that of Theorem 5.3.

Theorem 5.4 The maximal generator RF of the total variation metric � is

the set of all measurable functions f : S ! IR with sp(f) � 2.

Theorem 5.5 The total variation metric � has the properties (C) and (W3).

Proof. a) Property (C) follows immediately from Theorem 4.7.
b) We claim that V := RF\Cb is a generator of �. Property (W3) then follows
from Theorem 4.2.

Let f 2 RF and P;Q 2 IPb. De�ne � := P + Q. It is well known that the
continuous functions are dense in L1(�), see e.g. Hewitt and Stromberg (1965),
Theorem 13.21. Thus there is a sequence (�n) � V with

R
jf � �nj d� ! 0.

This yields

jP (f)�Q(f)j � jP (f � �n)�Q(f � �n)j + jP (�n)�Q(�n)j

� �(jf � �nj) + dV(P;Q)

! dV(P;Q):

Hence f 2 RV. Thus we have V � RF � RV and therefore dV = �. 2

C. The stop-loss metric.

Motivated by risk-theoretical considerations, Rachev and R�uschendorf (1990)

de�ned and investigated several so called stop-loss metrics. The most import-

ant one is

dsl(X;Y ) := sup
t2IR

jE(X � t)+ � E(Y � t)+j;
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de�ned for random variables with �nite expectation. This metric can already

be found in Gerber (1981).

If we de�ne on S = IR the weight function b(s) := 1 + jsj, then dsl is an

integral probability metric on IPb that is generated by the set Fsl of functions

s! �t(s) = (s� t)+; t 2 IR.

Before we can characterize the corresponding maximal generator, we need

some facts about di�erences of convex functions. We follow the notation of

Roberts and Varberg (1973). Let I be a closed interval with endpoints a; b.

For a partition Z = fx0; x1; :::; xng � I with x0 < x1 < ::: < xn and a function

f : I ! IR we de�ne

2if :=
f(xi)� f(xi�1)

xi � xi�1
and K(f; Z) :=

n�1X
i=1

j2i+1f �2if j:

Further, Kb

a
(f) := supK(f; Z), where the supremum is taken over all partiti-

ons Z. In case I = IR we write K(f) for short. Obviously it holds

K(f) := lim
a!�1

b!1

Kb

a
(f): (5.1)

In case [a; b] is a compact interval, a thorough treatment of the functional Kb

a

can be found in section 14 of Roberts and Varberg (1973). Using (5.1), these
results can easily be carried over to the case I = IR.

Lemma 5.6 a) It holds K(f) < 1, if and only if f is the di�erence of two

Lipschitz-continuous convex functions.

b) If K(f) <1, then the left and right derivatives D�f(x) und D+f(x) exist
for all x 2 IR and it holds

K(f) = V (D�f) = V (D+f):

By Lemma 5.6 b) D+f is of bounded variation, if K(f) < 1. Hence
limt!�1D+f(t) exists. Thus we can de�ne a functional K� by

K�(f) := K(f) +

���� lim
t!�1

D+f(t)

���� :

This functional can alternatively be de�ned as follows. For a partition Z de�ne

K�(f; Z) := j21f j +
n�1X
i=1

j2i+1f �2if j:

Then K�(f) = sup
Z
K�(f; Z).

Using this characterization, the following Lemma can be proved similarly

to Lemma 5.1.

12



Lemma 5.7 The set K1 := ff : IR ! IR : K�(f) � 1g is closed with respect

to pointwise convergence.

Theorem 5.8 The maximal generator RF of the stop-loss metric dsl is the set

of all functions f : IR! IR with K�(f) � 1.

Proof. a) Let K1 := ff : IR! IR : K�(f) � 1g. For �t(s) := (s � t)+; t 2 IR,

we have D+�t = 1[t;1), and therefore Lemma 5.6 implies

K�(�t) = K(�t) = V (D+�t) = 1:

Hence Fsl = f�t : t 2 IRg � K1.

b) Next we show K1 � RF.

From

jEX �EY j = lim
t!�1

jE(X � t)+ � E(Y � t)+j � dsl(X;Y );

we infer id 2 RF. Now �x f 2 K1 and de�ne

� := lim
x!�1

D+f(x) and � := K(f):

Then f(x) =: �x+ �f1(x), where f1 has the following properties:

(I) K(f1) � 1.

(II) jlimx!�1D+f1(x)j = 0.

Hence, if we can show that every function, which ful�ls (I) and (II) is contained
in RF, then id 2 RF implies K1 � RF.

Therefore suppose that f ful�ls (I) and (II), and let g := D+f . Since
V (g) = K(f) � 1, the function g has the properties:

(I') V (g) � 1.

(II') limx!�1 g(x) = 0.

From the decomposition theorem of Jordan we can deduce, that there is a

 2 [0; 1], such that g can be written as g = g1 � (1 � )g2, where g1; g2
are increasing functions, which also ful�l (I') and (II'). Thus we can assume

without loss of generality g to be increasing. But then g can be approximated

monotonely by increasing step functions

hn(x) :=
nX
i=1

�in � 1[�in;1) with �in � 0;
nX
i=1

�in � 1; �in 2 IR:

Hence, by Theorem 3.3

fn(x) := f(0) +
Z

x

0
hn(t) dt =

nX
i=1

�in � ��in(x) + const (5.2)

13



is contained in RF, and the monotone convergence theorem implies that (fn)

converges to f , from above on (�1; 0) and from below on [0;1). Applying

the monotone convergence theorem once more we get

lim
n!1

P (fn) = lim
n!1

(P (fn � 1(�1;0)) + P (fn � 1[0;1)))

= P (f � 1(�1;0)) + P (f � 1[0;1)) = P (f)

for every P 2 IPb. Since fn 2 RF, this implies for arbitrary P;Q 2 IPb

jP (f) �Q(f)j = lim
n!1

jP (fn)�Q(fn)j � dsl(P;Q):

Hence f 2 RF and thus we have shown K1 � RF.

c) By Lemma 5.7, K1 is closed with respect to pointwise convergence. It is
easy to see that K1 is absolutely convex and contains the constant functions.

Thus Theorem 3.6 implies K1 = RF. 2

Remark: Rachev and R�uschendorf (1990) de�ne a probability metric �1
generated by

F1 := ff : IR! IR : f 00 exists and
Z
jf 00(x)jdx � 1g:

They show that �1(X;Y ) = dsl(X;Y ) if EX = EY . But for EX 6= EY ,
�1(X;Y ) is not �nite, as F1 contains all functions s! �s; � 2 IR. Thus F1 is
not a generator of dsl. But if we modify F1 to

F�1 := ff : IR! IR : f 00 exists and j lim
x!�1

f 0(x)j+
Z
jf 00(x)jdx � 1g;

then we get a generator of dsl. To see this you only have to observe that for

a twice di�erentiable function f it holds K(f) =
R
jf 00(x)jdx, cf. Roberts and

Varberg (1973), p. 28, problem D (3).

Theorem 5.9 The probability metric dsl has the properties (R) and (C), but

none of the properties (W1)� (W3).

Proof. a) The properties (R) and (C) follow immediately from Theorem 4.7.

For (C) notice that the functional K� is invariant under translations.

b) We give the following counterexample for (W3). Let

Pn :=
n� 1

n
�0 +

1

n
�n

w
�! �0 =: P;

and

Qn :=
n� 1

n
�1 +

1

n
�n=2

w
�! �1 =: Q:
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Then dsl(Pn; Qn) = 1=2; n 2 IN, but dsl(P;Q) = 1. Hence (W1) � (W3) can

not hold. 2

If G is a non-negative unbounded continuous function, then the joint con-

vergence

Pn
w
�! P and

Z
G dPn !

Z
G dP

is called G-weak convergence, see Rachev (1991), Def. 4.2.2. Using this notion,

the following weakening of (W3) can be proved for dsl.

Theorem 5.10 De�ne G(s) = s+ and let (Pn); (Qn) be G-weak convergent

sequences with limits P and Q. Then it holds

lim inf
n!1

dsl(Pn; Qn) � dsl(P;Q): (5.3)

Proof. The functions ft(x) := �t(x) � G(x) = (x � t)+ � x+; t 2 IR are
bounded and continuous. Therefore G-weak convergence of (Pn) to P impliesR
�t dPn !

R
�t dP . Hence (5.3) can be proved similarly to Theorem 4.2. 2

The following example shows, that Fsl is not a uniform class with respect
to G-weak convergence. Let

Pn :=
n� 1

n
�0 +

1

n
��n:

Then the sequence (Pn) is G-weak convergent to P := �0, but dsl(Pn; P ) = n.
Hence dsl does not metrize G-weak convergence.

D. Further Examples.

Another well known integral probability metric is the Kantorovich metric

�1, which is generated by the set L1 of Lipschitz functions f with kfkL � 1,

see Zolotarev (1983), p. 284 or Dudley (1989), p. 330. It is well known that

for S = IR

�1(X;Y ) = `1(X;Y ) :=
Z
jFX(t)� FY (t)jdt;

see e.g. Rachev (1991), p.6. It is easy to see that L1 is the maximal generator
of �1 and that �1 has the properties (R), (M), (C) and (W3).

We have yet mentioned the Dudley metric as an integral probability metric
that metrizes weak convergence. The most familiar probability metrics with
this property are the Levy metric L and the Prohorov metric �, see Rachev

(1991). These two metrics are not generated by integrals. This follows from

the fact that they both ful�l

d(�0; (1� �)�0 + ��1=2) = minf�; 1=2g (5.4)
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for all � 2 (0; 1). But this is not possible for an integral probability metric,

since for an arbitrary generator F

dF(�0; (1 � �)�0 + ��1=2) = k� � (�0 � �1=2)kF = � � k�0 � �1=2kF;

in contradiction to (5.4).
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