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Low-capacitance Josephson junction arrays in the param-

eter range where single charges can be controlled are sug-

gested as possible physical realizations of the elements which
have been considered in the context of quantum computers.

We discuss single and multiple quantum bit systems. The

systems are controlled by applied gate voltages, which also
allow the necessary manipulation of the quantum states. We

estimate that the phase coherence time is su�ciently long

for experimental demonstration of the principles of quantum
computation.
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The issue of quantum computation has attracted much

attention recently [1]. Quantum algorithms can perform

certain types of calculations much faster than classical

computers [2]. The basic concepts of quantum compu-

tation are quantum operations (gates) on quantum bits

(qubits) and registers (arrays of qubits). A qubit can be

a two-level system which can be prepared in arbitrary su-

perpositions of its two eigenstates, usually denoted as j0i
and j1i. Quantum computation requires \quantum state

engineering", i. e. the controlled preparation and manip-

ulation of these quantum states. For quantum registers,

\entangled" many-qubits states (like the EPR state of

two spins) have to be constructed as well. This neces-

sitates a coupling between di�erent qubits. A serious

limitation is the requirement that the phase coherence

time is su�ciently long to allow the coherent quantum

manipulations. Several physical systems have been pro-

posed as qubits, the most advanced so far appears to be

a chain with trapped ions [3,4].

In this Letter we propose an alternative system, com-

posed of low-capacitance Josephson junctions. The co-

herent tunneling of Cooper pairs mixes di�erent charge

states. By controlling the gate voltages we can con-

trol the strength of the mixing. The physics of coherent

Cooper-pair tunneling in this system has been established

before [5{7]. The algorithms of quantum computation

introduce new, well-de�ned rules. Their realization in

experiments creates a new challenge. We consider �rst

an ideal one-bit system, and describe the possible ways

of constructing quantum states. Then we focus on a two-

bit system, where we propose a controllable coupling and

discuss the construction of two-bit states. Finally, we in-

clude the coupling to a realistic external electrodynamic

environment which limits the phase coherence time.

The ideal system which we propose as a qubit is shown

in Fig. 1a (with R = 0 and L = 0). It consists of two

small superconducting grains connected by a tunnel junc-

tion with capacitance CJ and Josephson coupling energy

EJ. An ideal voltage source is connected to the system

via two external capacitors, C. We assume that � is

the largest energy in the problem. At low temperatures

quasiparticle tunneling is suppressed. It is further well

established, from the study of parity e�ects [6,8,9], that

below a crossover temperature, T �, the superconducting
state is either totally paired (when the number of elec-

trons is even) or it has exactly one quasi-particle (when

the number of electrons is odd). The crossover temper-

ature is T � � �= lnNe� , where Ne� is the number of

electrons in the system near the Fermi energy. Typical

values for Aluminum are in the range of 100 : : : 200 mK.

In the following we require that the total number of elec-

trons in both grains is even. This condition is naturally

satis�ed for 50% of the qubits. If only one of the islands

has an unpaired excitation it can escape to normal parts

of the system - if such a channel is provided - since the

gap energy � is gained in such a process [9].

Possible quantum states of the system are then char-

acterized by the numbers of extra Cooper pairs on the

up and down islands, nu and nd. Due to the external

capacitors C, the total number N � nu + nd is �xed.

Hence the set of basis states is parameterized by the

number of Cooper pairs on one island or the di�erence

n � (nu � nd)=2. The Hamiltonian of this system is

H =
(n� CV=2)2

C + 2CJ
�EJ cos� ; (1)

where � is the conjugate to the variable n. To shorten

notations we use units where 2e = 1, �h = 1, except where

it helps to keep results transparent. We consider sys-

tems where the charging energy of the internal capaci-

tor ECJ
= (2e)2=2CJ is much larger than EJ. In this

regime, for most values of the external voltage V , the

energies of the states are dominated by the charging part

of (1). However, for those values of V where the charg-

ing energies of two neighboring states jni and jn+1i are
nearly degenerate, the Josephson coupling becomes rele-

vant. The eigenstates are now superpositions of jni and
jn+ 1i with a minimum energy gap EJ between both.

We concentrate on a voltage interval where only two

adjacent charge states play a role. Then it is convenient

to rewrite (1) in a spin-12 language:

H =
CV

2(C + 2CJ)
�z +

EJ

2
�x ; (2)
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where j "i � jni and j #i � jn+ 1i. Using this language

we propose a few one-bit operations. If one chooses the

operating point (i. e. the voltage) su�ciently far away

from the degeneracy, the eigenstates are just j #i and j "i.
Then, switching the system suddenly to the degeneracy

point for a time �t and suddenly back, we can perform

one of the basic one-bit operations - a spin 
ip:

U
ip(�t) =

�
cos (EJ�t=2) i sin (EJ�t=2)

i sin (EJ�t=2) cos (EJ�t=2)

�
(3)

We got rid of time-dependent phases by working in the

interaction picture, where the zero-order Hamiltonian is

the one at the operation point. To estimate the time-

width �t of the voltage pulse needed for a total spin 
ip

(the operation time), we note that a typical experimental

value of EJ is of order 1K. It cannot be chosen much

smaller, since the condition kBT � EJ must be satis�ed.

Therefore the operation time is very short: �t � 10�10s.
An alternative way to perform a coherent spin 
ip is

probably more easy to realize: The system is pushed adi-

abatically to the degeneracy point, and an ac voltage with

frequency EJ=�h is applied. The process is analogous to

the paramagnetic resonance (here the constant magnetic

�eld component is in the x-direction, while the oscillating

one is in the z-direction). The time-width of the ac pulse

needed for the total spin 
ip depends on its amplitude,

therefore it can be chosen much longer than 10�10s.
To perform two-bit operations which result in entan-

gled states, one has to couple the qubits in a controlled

way. The ideal situation, where the coupling can be

switched on and o�, appears di�cult to realize in micro-

scopic and mesoscopic systems. Instead we suggest a sys-

tem with a weak constant coupling between the qubits.

By tuning the energy gaps of the individual qubits we can

change the e�ective strength of the coupling. We pro-

pose to couple two qubits using an inductance as shown

in Fig.1b (with R = 0). For L = 0 the system reduces

to two uncoupled qubits, while for L = 1 the Coulomb

interaction couples both strongly. The values of L which

are suitable for our purposes will be speci�ed later. The

Hamiltonian describing this system is

H =
X
i=1;2

�
(ni � ViCt)

2

2CJ
�EJ cos�i

�

+
q2

2(2Ct)
+
�2

2L
� (n1 + n2)q

2CJ
� Ct

4C2
J

(n1 � n2)
2 : (4)

Here q denotes the total charge on the external capac-

itors of both qubits, � is its conjugate variable, and

C�1t = C�1J + 2C�1. The (q; �) oscillator produces an

e�ective mean-�eld coupling between the qubits for fre-

quencies smaller than !
(2)
LC = 1=

p
2CtL. In order to have

this coupling in a wide enough voltage range around the

degeneracy point, we demand

A � �h!
(2)
LC

EJ
� 1 : (5)

To obtain the mean-�eld coupling of the qubits we

eliminate the variables q and �. For this purpose we �rst

perform a canonical transformation ~q = q � (n1+n2)Ct

CJ

~�i = �i +
Ct

CJ

�, (� and ni unchanged), which leads to

the new Hamiltonian (we omit the tildes):

H =
X
i=1;2

�
(ni � CVi=2)

2

C + 2CJ

� EJ cos

�
�i �

Ct

CJ

�

��

+
q2

2(2Ct)
+
�2

2L
: (6)

We assume that the 
uctuations of � are weak

(Ct=CJ)
p
h�2i � 2� : (7)

Otherwise the Josephson tunneling terms in the Hamil-

tonian (6) are washed out. (Below we will show this

in a more rigorous way.) Assuming (7), we expand the

EJ cos(::) terms of (6) in powers of � and neglect powers

higher than linear. Then we can trace out the variables

q and �. As a result we obtain an e�ective Hamiltonian,

consisting of two one-bit Hamiltonians (1) and a coupling

term: Hcoup = EL [sin�1 + sin�2]
2
, where

EL = 2�2
C2
t

C2
J

E2
JL

�2
0

; (8)

and �0 � h=2e is the 
ux quantum. In the spin-1
2 lan-

guage we get

Hcoup = �(EL=4)
�
�(1)y + �(2)y

�2
: (9)

This term provides the required weak coupling if it is

small, i.e. if EL � ECJ
.

The mixed term in (9) is important in certain situ-

ations. If the voltages V1 and V2 are such that both

qubits are out of degeneracy, to a good approximation,

the eigenstates of the two-bit system without coupling

are j ##i, j #"i, j "#i and j ""i. In a general situation,

these states are separated by energies which are larger or

much larger than EJ or EL. Therefore, the e�ect of the

coupling is small. If, however, a pair of these state is de-

generate, the coupling may lift the degeneracy, changing

the eigenstates drastically. For example, if V1 = �V2, the
states j #"i and j "#i are degenerate. In this case the cor-
rect eigenstates are: 1p

2
(j #"i+j "#i) and 1p

2
(j #"i�j "#i)

with the energy splitting EL between them.

Now we propose a way to perform two-bit operations

which result in entangled states. For this we choose

the operating points for the qubits at di�erent voltages,

switch suddenly the voltages to be equal for a time �t

and switch suddenly back. The result is a \generalized"
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spin-
ip, which may be described in the basis fj ##i,
j #"i, j "#i, j ""ig by a matrix:

U
(2)

ip(�t) =

0
BB@

1 0 0 0

0 cos
�
EL�t
2

�
i sin

�
EL�t
2

�
0

0 i sin
�
EL�t
2

�
cos
�
EL�t
2

�
0

0 0 0 1

1
CCA : (10)

Instead of applying very short voltage pulses, one can

push the system adiabatically to the degeneracy point

(V1 = �V2), and apply an ac voltage pulse in the sym-

metric channel V1 + V2 = A exp(iELt).

The idealized picture outlined above has to be ex-

tended to account for possible dissipation mechanisms

which cause decoherence and energy relaxation. In this

Letter we focus on the e�ect of ohmic dissipation in the

circuit, which originates mostly from the voltage sources

(the quasi-particle tunneling is strongly suppressed at

T � T � [8,9]). We also consider the e�ect of LC res-

onances in the circuit. The system is shown in Fig. 1a,

including the inductance L explicitly since the LC oscilla-

tory mode plays an important role in the two-bit system.

The Hamiltonian of the system is

H =
(n � V Ct)

2

2CJ
� EJ cos � +

q2

2Ct
+
�2

2L
� nq

CJ

+
X
j

2
4 p2j

2mj

+
mj!

2
j

2

 
xj �

�j

mj!
2
j

q

!2
3
5 ; (11)

with �
2

P
j

�2j
mj!j

�(! � !j) = R!.

First, we estimate the energy relaxation time, �r, due

to the ohmic dissipation. We assume that the system

is prepared away from the degeneracy point in one of

its eigenstates (jni or jn + 1i). To apply the standard

Golden Rule results for the transition rate, we perform

two consecutive canonical transformations:

~� = �+
X
j

�j

mj!
2
j

pj ; ~xj = xj �
�j

mj!
2
j

q ; (12)

(q and pj unchanged), and �q = ~q � nCt

CJ

, �� = � + Ct

CJ

~�,

(~� and n unchanged). Then, the part of the Hamil-

tonian connecting the states jni and jn + 1i is Ht =
EJ

2 exp(i��) exp
�
�iCt

CJ

~�
�
+ h:c:, and the transition rate

from jni to jn+ 1i is given by [10,11]:

�(�E) =
�

2�h
E2
JP (�E) ; (13)

P (�E) =
1

2��h

Z 1

�1
dt exp

�
4
C2
t

C2
J

K(t) +
i

�h
�Et

�
; (14)

K(t) � h[ ~�(t) � ~�(0)]~�(0)i = 2

Z 1

0

d!

!

ReZt(!)

RK

��
coth

�
�h!

2kBT

�
[cos(!t) � 1]� i sin(!t)

�
: (15)

Here Z�1t = i!Ct + (R + i!L)�1 and �E is the energy

gap between the two states. The qualitative behavior

of the system is controlled by the dimensionless conduc-

tance g = RK=4R (RK � h=e2 is the quantum resis-

tance). In our system the controlling parameter is renor-

malized. From (14) one can observe that ~g = (C2
J=C

2
t )g

is the relevant parameter. Thus, choosing the external

capacitances, C, smaller than the internal one, CJ, we

can reduce the e�ect of the dissipation. Physically, this

means that the 
uctuations produced by the resistor are

screened by the small capacitors, and have little e�ect on

the junction.

To be more concrete, we exploit the asymptotic for-

mula for P (�E) [11]

P (�E) =
exp(�2
=~g)

�(2=~g)

1

�E

�
�

~g

�E

ECt

�2=~g
; (16)

where �(::) is the Gamma function. For large values of ~g

we obtain:

�r �
1

�(�E)
� �op

~g

2�2
�E

EJ
; (17)

where �op � h=EJ is the operation time (see (3)).

At the degeneracy point the system is equivalent to the

two-level model with a weak ohmic dissipation, which has

been studied extensively [12]. It is well known that when

~g � 1 coherent oscillations take place. These oscillations

make the spin-
ip operation (3) possible. The decay time

of the coherent oscillations is given by

�d �
~g

2�2
h

EJ
=

~g

2�2
�op ; (18)

and the energy gap EJ is slightly renormalized: EJ !
EJ(EJ=�h!c)

1=(g�1). The physical cut-o� !c is usually a

system-dependent property. For a pure ohmic dissipation

caused by a metallic resistor it may be as high as the

Drude frequency. However, when additional capacitances

and inductances are present in the circuit, the cut-o� is

lowered to the characteristic LC frequencies.

As indicated above, the LC phase 
uctuations can

wash out the Josephson coupling. To see this, we be-

gin with the Hamiltonian (11) and trace out the bath

variables and the oscillatory mode variables - �; q. The

partition function reads:

Z =
X
n0

n0Z
n0

DnD�exp

8<
:

�Z
0

d�

�
i� _n � (n � V Ct)

2

2CJ

+EJ cos �]�
�Z
0

�Z
0

d�d� 0
1

2
G(� � � 0)n(� )n(� 0)

9=
; ; (19)

where G(!n) = �(Ct=C
2
J)
�
1 + CtL!

2
n + CtRj!nj

��1
.

Below we show that in the relevant parameters' range

the following inequality holds
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1=(CtR)� 1=
p
LCt � R=L : (20)

Therefore, the natural cuto� for G(!n) is !c = !
(1)
LC =

1=
p
LCt. We approximate G(!n) � � Ct

C2

J

(1 � CtL!
2
n �

CtRj!nj) for !n < !c, and G(!n) = 0 otherwise. We fo-

cus on the inductive (second) term of G(!n), and apply

the standard charge representation technique [13]. Ex-

panding exp
hR �

0 d�EJ cos(�)
i
in powers of EJ and inte-

grating over � term by term, one obtains a path integral

over integer charge paths with instantaneous \jumps" be-

tween the di�erent values of n. Each \jump" contributes

a multiplicative factor of EJ=2�h to the weight of the path.

The inductive term contributes another multiplicative

factor for each \jump", so that EJ is renormalized as:

EJ ! EJ exp
�
�2LC2

t
!c

�RKC
2

J

�
. One can immediately observe

that the condition that EJ is not renormalized to zero

coincides with the small 
uctuations condition (7). We

emphasize that the phase 
uctuations which may wash

out the Josephson coupling are related to the \weakly


uctuating" phase �, rather than to the \strongly 
uc-

tuating" ~� (see (12)). Thus the e�ects of the inductance

and the dissipation are well separated in this regime. One

arrives at another way of viewing this separation by not-

ing that the LC phase 
uctuations are fast, therefore they

e�ectively wash out the slower processes (like Josephson

tunneling). These are the fast small 
uctuations of � that

are responsible for the two-bit coupling (9). On the other

hand, the phase 
uctuations caused by the resistor are

large only at low frequencies. In [14] we have extended

the present arguments and showed that also the two-bit

coupling is stable under the in
uence of the dissipation.

Several conditions have been assumed in this Letter in

order to arrive at the controlled manipulation of qubits.

Here we repeat these conditions and discuss the appro-

priate range of parameters. We start with EJ � 1K as

a suitable experimental condition. To satisfy EJ � ECJ

we take CJ � 10�16F, which is an experimentally acces-

sible value. As we would like A to be large (5), it seems

that L and Ct should be as small as possible. However,

the two-bit coupling energy, EL (8), should be larger

than the temperature of the experiment. Assuming a

reasonable working temperature of 20mK, we demand

EL � 0:1K. From (5) and (8) we get Ct = ELC
2
JA

2=e2.

To have a wide enough operation voltage interval we

take A � 10, and obtain Ct � 10�17 � 10�16F and

L � 10�8 � 10�7H. Thus the renormalization of g is of

the order of 10, and �r=�op � 102 � 103 (assuming the

realistic value R � 100
) (17). Finally we observe that

in this range of parameters the inequalities (7) and (20)

are always satis�ed. We conclude that the quantum ma-

nipulations we have discussed in this Letter can be tested

experimentally using the currently available lithographic

and cryogenic techniques. Application of the Josephson

junction system as an element of a quantum computer is

a more subtle issue, demanding either the fabrication of

junctions with CJ < 10�16F, or a further reduction of

the working temperature.
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FIG. 1. a) one-qubit system; b) two-qubit system.
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