
Reduced witnesses for the �-calculus

November 3, 1995

Alexander Kick�

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: kick@ira.uka.de

Abstract

Symbolic temporal logic model checking is an automatic veri�cation

method. One of its main features is that a counterexample can be con-

structed when a temporal formula does not hold for the model. Most model

checkers so far have restricted the type of formulae that can be checked

and for which counterexamples can be constructed to fair CTL formulae.

In a previous paper, we have presented an algorithm which constructs

counterexamples and witnesses for the whole �-calculus. The witnesses

constructed by this algorithm can be huge, however. In this paper, we

show how to construct reduced witnesses.

1 Introduction

Complex state-transition systems occur frequently in the design of sequential
circuits and protocols. Symbolic temporal logic model checking [CGL93] has

shown in practice to be an extremely useful automatic veri�cation method. In this

approach, the state-transition systems are checked with respect to a propositional
temporal logic speci�cation.

If the model satis�es the speci�cation the model checker returns true. Oth-
erwise, a counterexample can be constructed, which helps �nding the error in

the design. The latter facility is one of the most important advantages of model

checking over other veri�cation approaches.

�Supported by DFG Vo 287/5-2

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197599074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The symbolic model checker SMV developed at Carnegie Mellon University

([McM93]) can check fair CTL (FCTL) ([CGL93]) formulae and construct coun-

terexamples for these formulae. Model checkers which can check �-calculus for-

mulae [Koz83] have greater expressive power, since arbitrary �-calculus formulae

can be checked in contrast to the small subclass FCTL of the �-calculus, and are

more general since many problems can be translated into the �-calculus.

In [CGMZ94], it is described how to construct counterexamples for FCTL

formulae. To our knowledge, noone has yet investigated how to construct coun-

terexamples for arbitrary �-calculus formulae. To be able to construct counterex-

amples for �-calculus formulae, however, is necessary to make a �-calculus model

checker as useful as a CTL model checker. In this paper, we therefore investigate

how counterexamples for �-calculus formulae can be computed.

The rest of the paper is structured as follows. Section 2 consists of prelimi-

naries where the �-calculus is repeated and some terminology is introduced. In

Section 3, we repeat the de�nition of abstract and concrete witness as de�ned in
[Kic95]. In Section 4, we de�ne reduced witnesses and in Section 5, we present
an algorithm to construct such reduced witnesses. Note that we will not care

about counterexamples for a formula f in the rest of the paper since counterex-
amples are simply witnesses for the negation of formula f . In Section 6, we draw
some conclusions and compare our reduced witness construction for the whole
�-calculus to the witness construction in [CGMZ94].

2 The modal �-calculus

In this section we remind the reader of the syntax and semantics of the modal �-
calculus, we introduce some notation and give a slightly modi�ed model checking

algorithm which suits our purposes of witness construction. We mainly follow
[EL86]

2.1 Syntax and semantics

There are the following syntactic classes:

� PropCon, the class of propositional constants P;Q;R; : : :

� PropVar, the class of propositional variables X;Y;Z; : : :

� ProgAt, the class of program atoms or basic actions A;B;C; : : :

� Form, the class of formulae L� of the propositional �-calculus p; q : : : , de-

�ned by

p ::= P jXjp ^ qj:pj�X:pjhAip

2

where in �X:p, p is any formula syntactically monotone in the proposi-

tional variable X, i.e., all free occurrences of X in p fall under an even

number of negations.

The other connectives are introduced as abbreviations in the usual way: p_ q

abbreviates :(:p ^ :q), [A] p abbreviates :hAi:p and �X:p(X) abbreviates

:�X::p(:X).

The semantics of the �-calculus is de�ned with respect to a model. A model

is a triple M = (S;R;L) where S is a set of states, R : ProgAt ! P(S � S) is

a mapping from program atoms A to a set of state transitions involving A, and

L : S ! P(PropCon) labels each state with a set of atomic propositions true in

that state.

In the rest of the paper, we rarely need the program atoms. Therefore, we

introduce the abbreviation R :=
S
f(s; t)j(s; t) 2 R(A) ^ A 2 ProgAtg. A path

in M is a sequence of states: � = s0s1 : : : such that 8i � 0 : (si; si+1) 2 R.
We assume that the models we deal with in the following are �nite (i.e., S and
ProgAt are �nite). The semantics for the modal �-calculus is given via least and
greatest �xpoints. For the details, the reader is referred to [EL86].

The meanings of formulae is de�ned relative to valuations � : PropV ar !
P(S). The variant valution �[X=T] is de�ned by

�[X=T](Y) =

8<
:
T Y � X

�(Y) otherwise

The set of states satisfying a formula f in a model M with valuation � is induc-
tively de�ned as

[[P]]� = fsjP 2 L(s)g

[[X]]� = �(X)

[[p ^ q]]� = [[p]]\ [[q]]

[[:p]]� = S n [[p]]�

[[hAip]]� = fsj9t 2 S : (s; t) 2 R(A) ^ t 2 [[p]]�g

[[�X:p]]� =
\
fS0

� Sj[[p]]�[X=S0] � S0
g

We de�ne
s; � j= p, s 2 [[p]]�

2.2 Some terminology

hi shall stand for any hAi, [] for any [A]. The function occ(X; f) shall return

true if X occurs in formula f and false otherwise.

3

The terms subformula, closed formula, bound and free variables are used as

usual. We write p � q if p is a subformula of q. A �-, �-subformula is a subformula

whose main connective is � and �, respectively.

Alternation depth A(f) of a formula f is de�ned in [EL86]. L�i
shall denote

the sublanguage of L� with alternation depth i. The formulae �X:p(X) and

�X:p(X) have iteration depth 1, denoted by I(�X:p(X)) = 1;I(�X:p(X)) = 1,

if all proper �- and �-subformulae do not contain variable X (supposing that no

variables are quanti�ed twice).

�X:p(X) shall stand for either �X:p(X) or �X:p(X), � shall stand for either

[] or hi. Let b(X) = �X:p(X) if the latter formula appears as a subformula of

an original formula f . We say that X is in the scope of [], hi in formula f if X

is a subformula of a subformula of f of the form []q and hiq, respectively.

The length of a formula f (jf j) is de�ned as follows: jP j = 1, jXj = 1,

jp ^ qj = jpj + jqj + 1, jp _ qj = jpj + jqj + 1, jhipj = jpj + 1, j[]pj = jpj + 1,

j�X:pj = jpj+ 1.
A formula is said to be in propositional normal form (PNF) provided that no

variable is quanti�ed twice and all the negations are applied to atomic propo-

sitions only. Note that every formula can be put in PNF. It can be shown by
induction on the number of �xpoint iterations that each �X:p(X) can be trans-
formed into a formula without � or into �X:p(X), where X occurs in p(X) and
all occurrences of X in p(X) are in the scope of hi or []. In the rest of the paper
we suppose (without loss of generality) that all �-calculus formulae are in PNF

and closed and all subformulae �X:p(X) ful�ll the above constraint.

2.3 Model checking the modal �-calculus

The model checking problem is: given a model M , a formula f and a state s
in M , is s 2 [[f]]�? We do not need to care about �, since it can be arbitrary
in the case of closed formulae which we consider only. For this reason, we also

write s j= f instead of s; � j= f . To enhance understanding, we give here a model
checking algorithm which is a straightforward implementation of the semantics
of the �-calculus.

Algorithm 1 (Model checking algorithm)

input: f, M = (S,R,L)

output: labeling of all states with l(s; p) equal to s j= p for all subformulae p of f

procedure mc(f : L�)

begin

for all �X:p � f do

for all s 2 S do begin l(s;X) := false; l(s; �X:p) := false end;

for all �X:p � f do

for all s 2 S do begin l(s;X) := true; l(s; �X:p) := true end;

for i := 2 to jf j do

4

for p � f ^ jpj = i do

case p of the form

p ^ q : for all s 2 S do l(s; f) := l(s; p) ^ l(s; q)

p _ q : for all s 2 S do l(s; f) := l(s; p) _ l(s; q)

:p : for all s 2 S do l(s; f) := :l(s; p)

hip : for all s 2 S do l(s; f) := 9s0 2 S : (s; s0) 2 R ^ l(s; p)

[]p : for all s 2 S do l(s; f) := 8s0 2 S : (s; s0) 2 R! l(s; p)

�X:p :

repeat

changed := false;

for all s 2 S do if l(s; p) ^ :l(s;X) then

begin l(s;X) := true; l(s; �X:p) := true; changed := true; end;

if changed then mc(p);

until :changed

�X:p :

repeat

changed := false;

for all s 2 S do if :l(s; p) ^ l(s;X) then
begin l(s;X) := false; l(s; �X:p) := false; changed := true; end;

if changed then mc(p);

until :changed

esac

end

for all P � f do for all s 2 S do l(s; P) := P 2 L(s)
mc(f);

In [EL86] an improved algorithm for model checking is presented on which
the following theorem is based.

Theorem 1 (Emerson,Lei) Model checking can be done in time O((jM j�jf j)A(f)+1)
where jM j = jSj+ jRj and jf j is the length of formula f.

3 Witnesses for the �-calculus

The de�nition of witnesses for the �-calculus was motivated and de�ned in

[Kic95]. We repeat it here since we need parts of it for other de�nitions in

the rest of this paper.

De�nition 1 (Abstract witness) An abstract witness Ws;f for s j=M f , where

M = (S;R;L), s 2 S; f 2 L�, is a triple (V;E;m) where V � S, E � R and

5

m : V ! P(L�). For given s; f and M the components V;E and m of the abstract

witness are inductively de�ned as follows:

1. s 2 V , f 2 m(s)

2. (a) p ^ q 2 m(s) implies p 2 m(s) and q 2 m(s)

(b) p _ q 2 m(s) implies:

if s j= p and s j= q then p 2 m(s) or q 2 m(s)

if s j= p and s 6j= q then p 2 m(s)

if s 6j= p and s j= q then q 2 m(s)

(c) hip implies: for an arbitrary s0 2 fs00j(s; s00) 2 R ^ s00 j= pg : s0 2 V ,

p 2 m(s0), (s; s0) 2 E

(d) []p implies: for all s0 2 fs00j(s; s00) 2 Rg : s0 2 V , p 2 m(s0), (s; s0) 2

E

(e) �X:p(X) 2 m(s) implies p(X) 2 m(s)

(f) X 2 m(s) implies b(X) 2 m(s)

3. No other states, edges and formulae belong to V , E and m(s), s arbitrary,
respectively.

De�nition 1 is motivated by the premise that we need to demonstrate s j= p

for a formula p and a �xed state s just once.
De�nition 1 does not ensure that the �-paths - paths produced by subsequent

unwinding of �X:p (De�nition 3) - are dealt with properly. For this reason, we
de�ne `concrete witnesses' in De�nition 4.

In the following de�nition, we de�ne the intermediate paths between subse-
quent states which model �X:p on a �-path.

De�nition 2 (Xpath) For a witness W = (V;E;m) and model M , a �nite

sequence of states � is an Xpath for a subformula g of a formula f and a propo-

sitional variable X if Xp(�; g;X) where

Xp : S� � L� � PropV ar! ftrue; falseg

Xp(s�; p ^ q;X), (p ^ q) 2 m(s) ^ (Xp(s�; p;X) _Xp(s�; q;X))

Xp(s�; p_q;X), (p_q) 2 m(s)^(p 2 m(s)^Xp(s�; p;X)_q 2 m(s)^Xp(s�; q;X))

Xp(ss0�;�p;X), �p 2 m(s) ^ (s; s0) 2 E ^Xp(s0�; p;X)

Xp(s�; �Y:p;X), �Y:p 2 m(s) ^Xp(s�; p;X)

Xp(s�; Y;X), Y 2 m(s) ^Xp(s�; b(Y);X) ^ (b(Y) � �X:p)

Xp(s;X;X) , X 2 m(s)

where (Y 6� X).

6

De�nition 3 (�-path in a witness) A �-path � in a witness W = (V;E;m)

for a formula �X:p(X) is a �nite sequence of states s0s1 : : : sm with (80 � i �

m : si 2 V)^�X:p(X) 2 m(s0)^(80 � i < m : 9� = �0 : : : �n : Xp(�; �X:p(X);X)^

�0 = si ^ �n = si+1). �i shall denote the ith state in the �-path. The set of all

�-paths in a witness W for a formula �X:p(X) is denoted by Mp(�X:p(X)).

De�nition 4 (Concrete witness) A concrete witness for s j=M f ,M = (S;R;L),

s 2 S, f 2 L� is an abstract witness W = (V;E;m) for s j=M f with the addi-

tional constraint

8�X:p(X) � f : 8s 2 V : �X:p(X) 2 m(s)!

9� = �0 : : : �n 2Mp(�X:p(X)) : �0 = s ^ p(false) 2 m(�n) (1)

4 Reduced witnesses

4.1 Example

We use an example to give an intuition for the construction of a witness for a
formula in the �-calculus. What is the witness for

�X:�Y:(P _ ((�Z:(X _ hAiZ)) ^ hBiY)) (2)

Let Xn be the set of states ful�lling this formula. The set of states labeled with
this formula by the model checking algorithm (Algorithm 1) is then:

�Y:(P _ (K ^ hBiY)) where K = �Z:(Xn _ hAiZ) (3)

Figure 1 shows what kind of states ful�ll this formula. A state ful�lls
this formula �Y:(P _ (K ^ hBiY)) if there is a main path with only B-transitions
where at each state there is a side path according to K, i.e., a sidepath with only

A-transitions which ends in a state, e.g., � where again a structure similar to the
one starting at begins. The main path can either end at a state where P
holds or end up in a loop.

4.2 Main path witnesses

The main purpose of constructing witnesses when model checking is to allow the
user of a veri�cation tool to �nd errors in the model. Huge witnesses, however,

are di�cult to understand. The witnesses constructed by the algorithm given in

[Kic95] can still be huge although they were already de�ned as reduced tableaux.

In this subsection we therefore consider the reduction of witnesses.

It does not make sense to return the whole bushy tree in Figure 1 as a witness
for Formula 2. Since there are a vast amount of side paths (along hAi-arcs), we

should refrain from constructing these. Indeed, the user of a model checker only

7

B B B B B B B

A

A

A

A

A

A

A

A

A A

A

A

A

A

ψ
γ

δ

Figure 1: Witnesses: main path and side paths

wants to see the main path - the path along the B-arcs in Figure 1 - and not
all side conditions the states on the path have to ful�ll. We therefore suggest
returning just the main path as a witness, e.g., the witness for the much simpler
Formula 3, treating K as a propositional constant, as a witness for Formula 2.

De�nition 5 (Main paths) The main paths of a formula f (M(f)) are de�ned

as

M(�X:p(X)) =

8<
:
f�X:p(X)g I(�X:p(X)) = 1

M(p(X)) otherwise

M(p ^ q) =M(p) [M(q) M(p _ q) =M(p) [M(q)

M(hip) =M(p) M([]p) =M(p)

M(P) = ; M(Y) = ; M(:P) = ;

VM(f) = fXj�X:p(X) 2M(f)g

The motivation behind this de�nition is that the �xpoint iterations of �- and

�-expressions with iteration depth 1 are the last ones when model checking a

formula f .
Even if the side paths are not developed in the witness, the witness for the

main paths can still be huge. Therefore, within p(X) of a main path �X:p(X) we

develop only one conjunct q or r as a witness to demonstrate q^r, and the witness

for one successor to demonstrate []q. We also consider all other propositional
variables Y 62 VM(f) as propositional constants.

8

Consider, e.g., the CTL formula AFEFf . It makes sense to construct just a

linear path to a state where EFf holds instead of constructing a huge witness

for AF .

De�nition 6 (Reduced witness path for �Y:q(Y)) A reduced witness path for

�Y:q(Y) is de�ned in the same way as the abstract witness except that (a),(d),(e)

and (f) are replaced by

(a) p ^ q 2 m(s) implies p 2 m(s) or q 2 m(s)

(d) []p implies: for an arbitrary s0 2 fs00jsRs00g : s0 2 V , p 2 m(s0),

(s; s0) 2 E

(e) �Y:q(Y) 2 m(s) implies p(Y) 2 m(s)

(f) Y 2 m(s) implies �Y:q(Y) 2 m(s)

In (e) and (f) the Y is not an arbitrary propositional variable but the �xed Y in

�Y:q(Y).

De�nition 7 (Main path witness) A main path witness is de�ned in the same

way as the concrete witness except that 8�X:p(X) is replaced by 8�X:p(X) 2
M(f) in condition (1), (f) is deleted and (e) is replaced by

(e1) �X:p(x) 2 m(s) ^ �X:p(X) 2 M(f) implies: let (VX ; EX;mX) be a

reduced witness path for �X:p(X), then VX � V;EX � E;8s 2 S : mX(s) � m(s)
(e2) �X:p(x) 2 m(s) ^ �X:p(X) 62M(f) implies: p(X) 2 m(s)

Witnesses should also be as small as possible since small witnesses make it
easier to �nd an error in a design.

De�nition 8 (Minimal witness) A main path witness W = (V,E,m) for s j=M

f , M = (S;R;L), s 2 S, f 2 L� is minimal if there is no other main path witness

W' = (V',E',m') with jE0
j < jEj.

5 Constructing main path witnesses

The following three de�nitions help us in constructing minimal main path wit-

nesses.

De�nition 9 (Possible Xpath) � is a possible Xpath for a formula f and vari-

able X if pXp(�; f;X). pXp(�; f;X) is de�ned in the same way as Xp(�; f;X)
except that f 2 m(s) is always replaced by l(s; f).

De�nition 10 (Possible �-path) A sequence of states � = s0 : : : sm is called a

possible �-path for �X:p(X) if psp(�; �X:p(X)) where

psp(s0 : : : sm; �X:p(X)), 80 � i � m : l(si; �X:p(X)) ^ 80 � i < m :

9� = �0 : : : �n : pXp(�; p(X);X) ^ �0 = si ^ �n = si+1

9

It is straightforward to see that an appropriate labeling m of the states in one

of the possible �-paths for �X:p(X) is a reduced witness path for �X:p(X). To

�nd the shortest �-path for �X:p(X) we have to know the length of the possible

Xpaths.

De�nition 11 (Distance of a possible Xpath) TX : S�S ! N0 denotes the

distance of a possible Xpath for �X:p(X) and variable X.

TX(s; s
0) =

8<
:
d (s; d; s0) 2 U(p(X);X)

1 otherwise

where

U : L� � PropV ar ! S �N0 � S

U(Y;X) =

8<
:
f(s; 0; s)jl(s;X) = trueg Y � X

; otherwise

U(P;X) = ; U(:P;X) = ; U(�Y:p;X) = ;

U(p ^ q;X) = f(s; d; s0)jl(s; p ^ q) ^ (s; d; s0) 2 U(p;X) [U(q;X)g

U(p_ q;X) = f(s; d; s0)jl(s; p)^ (s; d; s0) 2 U(p;X)_ l(s; q)^ (s; d; s0) 2 U(q;X)g

U(�p;X) = f(s; d+ 1; s0)jl(s;�p) ^ 9s00 : sRs00 ^ (s00; d; s0) 2 U(p;X)g

This distance TX is used in the following algorithm to compute the shortest
reduced witness paths for �X:p(X) 2 M(f). These have the form of a linear
path ending up in p(false) in the case of � and ending up in p(false) or a loop
in the case of �. UX;1[s] is the minimal distance of the �-paths for �X:p(X) of
this form from a state s. The minimal main path witness can be constructed

by computing the minimal distance of a main path witness for all subformulae
and for all states s 2 S, using UX;1[s]. Information saved during this process and
UX;2[t], the �nal state t

0 (which is either the end state of the �-path or the state
from which a loop starts) of a shortest �-path from a state t, are later used for
the actual construction of the minimal main path witness for f .

De�nition 12 For an original formula f we de�ne for p � f :

ml(P) = 1 ml(:P) = 1 ml(X) = 1

ml(p ^ q) = ml(p) +ml(q) + 1 ml(p _ q) = ml(p) +ml(q) + 1

ml(�p) = ml(p) + 1

ml(�X:p) =

8<
:
1 �X:p 2M(f)

ml(p) + 1 otherwise

10

De�nition 13 For a formula �X:p we de�ne for q � �X:p (in the following

Y 6� X):

pl(P) = 1 pl(:P) = 1 pl(X) = 1

pl(Y) = 1 pl(�Y:r) = 1

pl(p ^ q) = pl(p) + pl(q) + 1 pl(p _ q) = pl(p) + pl(q) + 1

pl(�p) = pl(p) + 1

Algorithm 2

input: f, M(f), M = (S,R,L), from model checking: l(s,p) for all states s and

subformulae p of f

output: W = (V,E,m) minimal main path witness

/* computes a matrix TX with row and column elements in S where TX [s; s
0]

denotes the distance of a path according to p(X) between the states s; s0

with s j= �X:p(X) and s0 j= �X:p(X) */
procedure ctx(�X:p : L�)
begin

for i = 1 to pl(u) do

for all r � u ^ pl(r) = i do

for all s 2 S do

if l(s; r) then
case r of the form

X : eX(s; r) := f(s; 0; s)g

P;:P; �Y:q; Y (6� X) : eX(s; r) := ;

p ^ q; p _ q : eX(s; r) := eX(s; p) [eX(s; q)
�p : eX(s; r) := f(s; d+ 1; s0)jl(s;�p) ^ 9s00 : (s; s00) 2 R

^(s00; d; s0) 2 eX(s; p)g
esac

for all s; s0 2 S : TX(s; s
0) :=1;

for all s 2 S for all (s; d; s0) 2 eX(s; �X:p) : TX(s; s
0) := d;

end

/* �nds the shortest witness for a formula u

the following information for the later construction is saved:

d(s,r): the length of the shortest witness starting at s

n(s,r): the next state of s on the shortest witness starting at s

min(s,r): the subformula for which the witness is shortest */

procedure �nd-shortest-witness(u:L�)

begin

for i = 1 to ml(u) do

for all r � u ^ml(r) = i do

for all s 2 S do

11

if l(s; r) then

case r of the form

X : d(s,r) := 0;

P;:P : d(s,r) := 0;

p ^ q : d(s,r) := d(s,p) + d(s,q);

p _ q : if l(s; p) ^ l(s; q) then d(s,r) := minfd(s; p); d(s; q)g

else if l(s; p) then d(s; r) := d(s; p)

else d(s; r) := d(s; q);

if d(s; r) = d(s; p) then min(s; r) := p else min(s; r) := q;

hip : d(s; r) := minfd(s0; p)jsRs0 ^ l(s0; p)g + 1

n(s; r) := s0 where d(s0; p) = d(s; r)� 1

[]p : d(s; r) := �
(s;s0)2R

(d(s0; p) + 1)

�X:p(X) : if �X:p(X) 2M(f) then d(s; r) := UX;1[s]

else d(s; r) := d(p(X))

esac

end

procedure is(s:S,s':S,p:L�,X:PropVar)

begin

m(s) := m(s) [fpg;
(s; d; s0) := (s;minfd0j(s; d0; s0) 2 eX(s; p)g; s

0)

case p of the form

X : return;

p ^ q; p _ q : if (s; d; s0) 2 eX(s; p) then is(s,s',p,X) else is(s,s',q,X);

�p : choose s00 with (s; s00) 2 R ^ (s00; d� 1; s0) 2 eX(s
00; p);

V := V [fs00g;E := E [f(s; s00)g; is(s",s',p,X);

esac

end

procedure construct-�path(s:S,s':S,p:L�,X:PropVar)

begin

repeat

choose t 2 S such that TX[s; t] +AX[t; s
0] = AX[s; s

0];

is(s,t,p,X);

s := t;

until s = s0

end

procedure construct-�path(s:S,s':S,p:L�,X:PropVar)

begin

�path(s,s',p,X);

�path(s',s',p,X);

12

end

/* constructs the shortest path for �X:p(X) from s

along states s00 j= �X:p(X) */

procedure construct-mpath(s:S,�X:p : L�)

begin

if UX;1[s] 6= 0 then

if � = � then construct-�path(s,UX;2[s],p,X)

else construct-�path(s,UX;2[s],p,X);

end

procedure csw(s : S; f : L�)

begin

m(s) := m(s) [ffg;

case f of the form

X : return;

P;:P : return;

p ^ q : csw(s,p); csw(s,q);

p _ q : csw(s,min(f));

hip : V := V [fn(s)g;E := E [f(s; n(s))g; csw(n(s); p);
[]p : for all s0 2 sR do begin V := V [fs0g;E := E [f(s; s0)g; csw(s0; p); end;
�X:p(X) : if �X:p(X) 2M(f) then construct-mpath(s,�X:p(X)) else csw(s,p(X));

esac

end

for all �X:p(X) 2M(f) do begin

ctx(�X:p(X));
/* AX[s; s

0] is the distance of the shortest �-path for �X:p(X) between s and s' */

AX := all-pairs-shortest-path(TX);

if � = � then

for all t 2 S do

begin

UX;1[t] := minfAX[t; t
0]jt0 2 S ^ l(t0; p(false))g

UX;2[t] := t0 where U1[t] = AX[t; t
0] ^ l(t0; p(false))

end;

if � = � then

for all t 2 S do

begin

UX;1[t] := minffAX[t; t
0] +AX [t

0; t0]jt0 2 Sg [fAX[t; t
0]jt0 2 S ^ l(t0; p(false))gg

UX;2[t] := t0 where U1[t] = AX[t; t
0] ^ l(t0; p(false))

or UX;1[t] = AX[t; t
0] +AX[t

0; t0]

end;

13

end;

�nd-shortest-witness(f);

let s such that d(s; f) = minfd(s0; f)js0 2 Sg

V := fsg;E := ;; for all s 2 S do m(s) := ;

csw(s,f);

Theorem 2 Algorithm 2 constructs a minimal main path witness for s j= f .

Proof: The proof is straightforward but tedious. Some inductions on the length

of the subformulae of f have to be performed.

Theorem 3 Algorithm 2 has time complexity O(jM(f)j � (jSj3 + jSj � jM j � jf j)).

Proof: The following table shows the time complexity of the di�erent parts of

the algorithm:

ctx(�X:p(X)) O(jM j � jpj)

all-pairs-shortest-path(TX) O(jSj3)

computing UX;i O(jSj2)

�nd-shortest-witness(f) O(jM j � jf j)

is(s,s',p,X) O(jM j � jpj)

construct-mpath(s,�X:p(X)) O(jSj � (jSj+ jM j � jpj))

csw(s,f) O(jM j � jf j+ jM(f)j � (jSj � (jSj+ jM j � jf j)))

As a consequence, the total complexity of the algorithm is:

O(jM(f)j �(jM j � jf j+ jSj3+ jSj2)+ jSj+ jM j � jf j+jM(f)j �(jSj�(jSj+jM j �jf j))) =

O(jM(f)j � (jSj3 + jSj � jM j � jf j))

6 Conclusion and comparision

We have shown how to construct reduced counterexamples and reduced witnesses
for the whole �-calculus. This eliminates the most important disadvantage of

�-calculus model checkers and allows a much more general approach to model
checking than usual CTL model checkers.

The construction of minimal main path witnesses for �-calculus expressions is
polynomial in jf j and jM j in contrast to model checking f which is exponential

in the alternation depth of f . As a consequence, the construction of witnesses is

only a minor factor in the veri�cation of reactive systems.

FCTL is a subclass of L�2 . The counterexamples for FCTL in [CGMZ94] are
for the special type of L�2 formulae of the form �Z:[f^

V
k

hi[�X:Z^hk_(f^hiX)]].

14

The algorithm in [CGMZ94] would construct a single path with a cycle in which

all fairness constraints hk are contained in contrast to Algorithm 2 which would

construct a path for each separate conjunct hi[�X:Z ^ hk _ (f ^ hiX)]] where the

�nal state ful�lls Z. In the construction of the witness in [CGMZ94] the special

meaning of the FCTL formula is exploited. Therefore, their counterexample

construction does not extend to the whole �-calculus.

References

[CGL93] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-

state concurrent systems. In de Bakker, editor, A Decade of Con-

currency, REX School/Symposium, volume 803 of LNCS, pages 124

{ 175. Springer, 1993.

[CGMZ94] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. E�cient gen-
eration of counterexamples and witnesses in symbolic model check-
ing. Technical Report CMU-CS-94-204, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, October 1994.

[EL86] E. A. Emerson and C.-L. Lei. E�cient model checking in fragments
of the propositional mu-calculus. In IEEE Symposium on Logic in

Computer Science, pages 267{278, 1986.

[Kic95] A. Kick. Tableaux and witnesses for the �-calculus. Technical Report
44/95, Faculty of Computer Science, University of Karlsruhe, D-76128
Karlsruhe, Germany, October 1995.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical Com-

puter Science, 27:333{354, 1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Boston,USA, 1993.

15

