
A Second Look at Overloading

Technical Report 3/95,
University of Karlsruhe, Department of Computer Science

Martin Odersky� Philip Wadlery Martin Wehr�

Abstract

We study a minimal extension of the Hindley/Milner
system that supports overloading and polymorphic
records. We show that the type system is sound with
respect to a standard untyped compositional semantics.
We also show that every typable term in this system has
a principal type and give an algorithm to reconstruct
that type.

1 Introduction

Arithmetic, equality, showing a value as a string: three
operations guaranteed to give a language designer night-
mares. Usually they are dealt with by some form of
overloading; but which form is best?

To provide some hope of uniformity, let's limit our
attention to languages based on the highly successful
Hindley/Milner type system. Nonetheless, we �nd that
the same language may treat di�erent operators di�er-
ently; that di�erent languages may treat the same oper-
ator di�erently; and even that the same language may
treat the same operator di�erently, at di�erent times.
For instance, in Miranda arithmetic is de�ned only on
a single numeric type; equality is a polymorphic func-
tion de�ned at all types, including abstract types where

it breaks the abstraction barrier; and the show func-
tion may be de�ned by the user for new types. In the
�rst version of SML equality was simply overloaded at
all monomorphic types; while the second version intro-
duced special equality type variables.

Type classes were introduced into Haskell in order to
provide a uniform framework for solving all three prob-

�Institut f�ur Programmstrukturen, Universit�at Karlsruhe,
76128 Karlsruhe, Germany; e-mail:odersky,wehr@ira.uka.de

yDepartment of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland; e-mail: wadler@dcs.gla.ac.uk

lems [WB89]. It must have been an idea whose time
had come, as it was independently described by Kaes
[Kae88]. Since then type classes have attracted consid-
erable attention, with many re�nements and variants
being described [NS91, NP93, HHPW94, Aug93, PJ93,
Jon92, CHO92, Jon93]. They have also attracted some
criticism [App93].

In our view, one of the most serious criticisms of
type classes is that a program cannot be assigned a
meaning independent of its types. A consequence of
this is that two of the most celebrated properties of
the Hindley/Milner type system are not satis�ed in the
presence of type classes: there is no semantic soundness
result, and the principal types result holds only in a
weak form.

The semantic soundness result shows a correspon-
dence between the typed static semantics of program
and its untyped dynamic semantics. It is summarised
by Milner's catchphrase `well typed programs cannot
go wrong'. One cannot even formulate such a result for
type classes, as no untyped dynamic semantics exists.

The principal type result shows that every typable
program has a single most general type. This is also true
for type classes. However, much of the utility of this re-
sult arises from another property of the Hindley/Milner
system: every typeable program remains typeable if all
type declarations are removed from it, so type decla-
rations are never required. This fails for type classes:
some programs are inherently ambiguous, and require
type declarations for disambiguation. Put another way:
under Hindley/Milner, a program is untypeable only if
it may have no meaning; under type classes, a program
may be untypeable because it has too many meanings.

The absence of these properties is not merely the
lack of a technical nicety. Rather, they reect problems
in the ease with which a programmer can visualise the
meaning of a program.

The above problems can be solved by a simple re-
striction to type classes. Recall that a type class limits
a type variable, say a, to range over only those types on
which an overloaded operator is de�ned; the overloaded
operator may have any type involving a. Here are some

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197599067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

examples, representing in simpli�ed form parts of the
Haskell standard prelude.

class (Num a) where
(+) :: a -> a -> a
(*) :: a -> a -> a
neg :: a -> a
fromInteger :: Integer -> a

class (Eq a) where
(==) :: (Eq a) => a -> a -> Bool

class (Text a) where
show :: a -> String
showList :: [a] -> String
read :: String -> a

For instance, the �rst of these states that type a be-
longs to class Num only when there are operators (+),
(*), neg, and fromInteger of the speci�ed types de-
�ned for a. One speci�es that a type belongs to a class
with an instance declaration.

The restriction is as follows: for a type class over a
type variable a, each overloaded operator must have a
type of the form a -> t, where t may itself involve a.
In the above, (+), (*), neg, (==), and show satisfy this
restriction, while fromInteger, showList, and read do
not.

Remarkably, this simple restriction enables one to
construct an untyped dynamic semantics, and ensures
that no ambiguity can arise: hence type soundness and
the strong form of principal types do hold. The re-
sulting system is still powerful enough to handle the
overloading of arithmetic, equality, and showing a val-
ue as a string, but not powerful enough to handle the
overloading of numerical constants or reading a string
as a value. The latter are perhaps less essential than the
former: neither Miranda nor SML support overloading
of the latter sort.

The above problems arise because in a sense type
classes are too powerful: the power a�orded by allowing
the meaning of a program to depend on a type results
in the loss of type soundness and strong principal type
properties. We next turn our attention to a sense in
which type classes are not powerful enough.

Type classes restrict type variables to range over
types at which certain overloaded operators are de�ned.
This appears to be closely related to bounded polymor-
phism, which restricts type variables to range over types
that are subtypes of a given type [CW85, BTCGS91].
Indeed, one can use type classes to mimic bounded poly-
morphism for the usual subtyping relation on records.
But, annoyingly, this mimicry works only for monomor-
phic records; type classes are not quite powerful enough
to handle polymorphic records.

For instance, one would expect the operations
xcoord and ycoord to apply to any record type that
contains those �elds, for instance it should apply both

to a type Point containing just those two �elds, and
to a type CPoint that contains both those �elds plus
a colour. Here is how one can mimic such records in
Haskell.

class (Pointed a) where
xcoord :: a -> Float
ycoord :: a -> Float

data Point = MkPoint Float Float
data CPoint = MkCPoint Float Float Colour

instance Pointed Point where
xcoord (MkPoint x y) = x
ycoord (MkPoint x y) = y

instance Pointed CPoint where
xcoord (MkCPoint x y c) = x
ycoord (MkCPoint x y c) = y

dist :: (Pointed a) => a -> Float
dist p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Note, alas, that this trick depends on each �eld of
the record having a monomorphic type that can appear
in the class declaration. The polymorphic equivalent of
the above would be to have overloaded operations first
and second that return the corresponding components
of either a pair or a triple, where these may have any
type rather than being restricted to Float. But there
is no way to do this in Haskell.

We solve this problem by getting rid of class decla-
rations, instead allowing each instance to be declared
separately. Here is the previous example in our new
notation.

data Point = MkPoint Float Float
data CPoint = MkCPoint Float Float Colour

inst xcoord :: Point -> Float
xcoord (MkPoint x y) = x

inst ycoord :: Point -> Float
ycoord (MkPoint x y) = y

inst xcoord :: CPoint -> Float
xcoord (MkCPoint x y c) = x

inst ycoord :: CPoint -> Float
ycoord (MkCPoint x y c) = y

dist :: (xcoord,ycoord::a->Float) => a->Float
dist p = sqrt (sqr (xcoord p) + sqr (ycoord p))

Furthermore, it is now possible to overload first

and second on polymorphic pairs and triples.

inst first :: (a,b) -> a
first (x,y) = x

inst second :: (a,b) -> b
second (x,y) = x

inst first :: (a,b,c) -> a
first (x,y,z) = x

inst second :: (a,b,c) -> b

2

second (x,y,z) = y

inst third :: (a,b,c) -> c
third (x,y,z) = c

In short, eliminating class declarations makes type
classes powerful enough to model bounded polymor-
phism.

This paper presents System O, a type system for
overloading based on the above ideas, and with the fol-
lowing properties.

� System O possesses an untyped dynamic seman-
tics, and satis�es a corresponding type soundness
theorem.

� System O has a strong principal types property.
It is never necessary to add type declarations to
disambiguate a program.

� As with type classes, there is a standard dictio-
nary transform which takes well-typed programs
in System O into equivalent well-typed programs
in the Hindley/Milner system.

� System O is powerful enough to model a limited
form of F-bounded polymorphism over records, in-
cluding polymorphic records.

We believe that this makes System O an interesting
alternative to type classes.

Related work. Overloading in polymorphic pro-
gramming languages has �rst been studied by Kaes
[Kae88] and Wadler and Blott [WB89]. Similar con-
cepts can be found in earlier work in symbolic algebra
[JT81]. This paper is very much in the tradition of Kaes
in that overloading is restricted to functions. It can be
seen as a simpli�cation of his system that gets rid of all
syntactic declarations of predicates or type classes. We
extend his work by a study of type soundness and the
relationship to record typing.

Much of the later work on overloading is driven by
the design and implementation of Haskell's type classes,
e.g. Nipkow et al. [NS91, NP93] on type reconstruction,
Augustsson [Aug93] and Peterson and Jones [PJ93] on
implementations, and Hall, Hammond, Peyton Jones
and Wadler [HHPW94] on the formal de�nition of type
classes in Haskell. We have already compared our sys-
tem to this work.

Haskell's syntactic restrictions on type class dec-
larations motivated work to lift these restrictions to
some degree. For instance, Jones considers type class-
es with multiple type variables [Jon92]. Chen, Hudak
and Odersky's parametric type classes [CHO92] can al-
so have multiple type variables, but a functional de-
pendence is imposed between a primary class variable

and dependent parameters. Parametric type classes can
model container classes and records, but they retain
the syntactical heritage of plain type classes. Construc-
tor classes generalize type classes to type constructors
[Jon93]. Constructor classes are very good at modeling
containers with operations that mediate between sim-
ilar containers with di�erent element types. It is less
clear how they could be applied to model records. We
consider it an important problem to determine whether
our type system can be generalized to type constructors.

All systems discussed so far implement an open
world approach, where even empty classes, which do
not have any instances at all, are considered legal. This
approach works well in a system with separate compi-
lation, where the type checker does not have complete
knowledge of instance declarations. By contrast, the
closed world approach of e.g. [Rou90, Smi91, Kae92]
rules out empty type schemes. Duggan and Ophel
[DO94] support both approaches by distinguishing be-
tween open and closed kinds. Volpano [Vol93] has ar-
gued that many previously known open world systems
are unsound. By proving type soundness for System O,
we show that Volpano's critique does not apply to open
world systems in general.

Outline The rest of this paper is organized as fol-
lows. Section 2 presents syntax and typing rules of
System O. Section 3 develops a compositional seman-
tics and proves a type soundness theorem. Section 4
discusses the dictionary passing transform. Section 5
presents an encoding of a polymorphic record calculus.
Section 6 discusses type reconstruction and the princi-
pal type property. Section 7 concludes.

2 Type System

In this section we de�ne System O, a simple functional
language with overloaded identi�ers. Figure 1 gives the
syntax of terms and types. We split the variable alpha-
bet into subalphabets U for unique variables, ranged
over by u, O for overloaded variables, ranged over by
o, and K for data constructors, ranged over by k. The
letter x ranges over both unique and overloaded vari-
ables as well as constructors. We assume that every
non-overloaded variable u is bound at most once in a
program.

The syntax of terms is identical to the language Exp
in [Mil78]. A program consists of a sequence of in-
stance declarations and a term. An instance declaration
(inst o : �T = e in p) overloads the meaning of the iden-
ti�er o with the function given by e on all arguments
that are constructed from the type constructor T .

A type � is a type variable, a function type, or a
datatype. Datatypes are constructed from datatype

3

Unique variables u 2 U

Overloaded variables o 2 O

Constructors k 2 K =
S
fKD j D 2 Dg

Variables x = u j o j k

Terms e = x j �u:e j e e0 j let u = e in e
0

Programs p = e j inst o : �T = e in p

Type variables � 2 A

Datatype constructors D 2 D

Type constructors T 2 T = D [f!g

Types � = � j � ! �
0 j D �1 ::: �n where n = arity(D)

Type schemes � = � j 8�:��) �

Constraints on � �� = o1 : �! �1; : : : ; on : �! �n (n � 0, with o1; : : : ; on distinct)
Typotheses � = x1 : �1; : : : ; xn : �n (n � 0)

Figure 1: Abstract syntax of System O.

constructors D. For simplicity, we assume that all value
constructors and selectors of a datatype D �1 ::: �n are
prede�ned, with bindings in some �xed initial typoth-
esis �0. With user-de�ned type declarations, we would
simply collect in �0 all selectors and constructors actu-
ally declared in a given program. Let KD be the set of
all value constructors that yield a value in D �1; ::::; �n

for some types �1; ::::; �n. We assume that there exists a
bottom datatype ?? 2 D with K?? = ;. Note that this
type is present in Miranda, where it is written (), but
is absent in Haskell, where () has a value constructor.
We let T range over datatype constructors as well as
the function type constructor (!), writing (!) � � 0 as
a synonym for � ! �

0.
A type scheme � consists of a type � and quanti-

�ers for some of the type variables in � . Unlike with
Hindley/Milner polymorphism, a quanti�ed variable �
comes with a constraint ��, which is a (possibly empty)
set of bindings o : �! � . An overloaded variable o can
appear at most once in a constraint. Constraints re-
strict the instance types of a type scheme by requiring
that overloaded identi�ers are de�ned at given types.
The Hindley/Milner type scheme 8�:� is regarded as
syntactic sugar for 8�:()) �.

Figure 2 de�nes the typing rules of System O. The
type system is identical to the original Hindley/Milner
system, as presented in in [DM82], except for two mod-
i�cations.

� In rule (8I), the constraint �� on the introduced
bound variable � is traded between typothesis and
type scheme. Rule (8E) has as a premise an instan-
tiation of the eliminated constraint. Constraints
are derived using rule (SET). Note that this makes
rules (8I) and (8E) symmetric to rules (!I) and

(!E).

� There is an additional rule (INST) for instance
declarations. The rule is similar to (LET), except
that the overloaded variable o has an explicit type
scheme �T and it is required that the type con-
structor T is di�erent in each instantiation of a
variable o.

We let �T range over closed type schemes that have T
as outermost argument type constructor:

�T = T �1 ::: �n ! � (tv(�) � f�1; : : : ; �ng)
j 8�:��) �

0
T (tv(��) � tv(�0T)):

The explicit declaration of �T in rule (INST) is neces-
sary to ensure that principal types always exist. With-
out it, one might declare an instance declaration such
as

inst o = �x:x in p

where the type constructor on which o is overloaded
cannot be determined uniquely.

The syntactic restrictions on type schemes �T en-
force three properties: First, overloaded instances must
work uniformly for all arguments of a given type con-
structor. Second the argument type must determine the
result type uniquely. Finally, all constraints must apply
to component types of the argument. The restrictions
are necessary to ensure termination of the type recon-
struction algorithm. An example is given in Section 6.

The syntactic restrictions on type schemes �T also
explain why the overloaded variables of a constraint ��
must be pairwise di�erent. A monomorphic argument
to an overloaded function completely determines the in-
stance type of that function. Hence, for any argument

4

(TAUT) � ` x : � (x : � 2 �)
� ` x1 : �1 : : : � ` xn : �n

� ` x1 : �1; : : : ; xn : �n
(SET)

(8I)
�; �� ` e : � (� 62 tv(�))

� ` e : 8�:��) �

� ` e : 8�:��) � � ` [�=�]��

� ` e : [�=�]�
(8E)

(!I)
�; u : � ` e : � 0

� ` �u:e : � ! �
0

� ` e : � 0 ! � � ` e
0 : � 0

� ` e e
0 : �

(!E)

(LET)
� ` e : � �; u : � ` e

0 : �

� ` let u = e in e
0 : �

(o : �T 0 2 �) T 6= T
0)

� ` e : �T �; o : �T ` p : �0

� ` inst o : �T = e in p : �0
(INST)

Figure 2: Typing rules for System O.

type � and overloaded variable o, there can be only one
instance type of o on arguments of type � . By embody-
ing this rule in the form of type variable constraints we
enforce it at the earliest possible time.

Example 2.1 The following program fragment gives
instance declarations for the equality function (==). We
adapt our notation to Haskell's conventions, writing
:: instead of : in a typing; writing (o::a->t1)=>t2

instead of 8�:(o : a ! �1)) �2; and writing
inst o :: s; o = e instead of inst o : � = e.

inst (==) :: Int -> Int -> Bool
(==) = primEqInt

listEq :: ((==)::a->a->Bool) => [a]->[a]->Bool
listEq [] [] = True
listEq (x:xs) (y:ys) = x == y && listEq xs ys

inst (==) :: ((==):: a->a->Bool) => [a]->[a]->Bool
(==) = listEq

Note that using (==) directly in the second instance
declaration would not work, since instance declarations
are not recursive. An extension of System O to recursive
instance declaration would be worthwhile but is omitted
here for simplicity.

Example 2.2 The following example demonstrates an
object-oriented style of programming, and shows where
we are more expressive than Haskell's type classes. We
write instances of a polymorphic class Set, with a mem-
ber test and operations to compute the union, intersec-
tion, and di�erence of two sets. In Haskell, only sets of
a �xed element type could be expressed. The example
uses the record extension of Section 5; look there for an
explanation of record syntax.

type Set a sa
= {| union, inters, diff :: sa -> sa,

member :: a -> Bool |}

inst set :: ((==)::a->a->Bool) => [a] -> Set a [a]
set xs =
{| union = \ys -> xs ++ ys,

inters = \ys -> [y | y <- ys | y `elem` xs],
diff = \ys -> xs \\ ys,
member = \y -> y `elem` xs |}

inst set :: ((==),(<):: a->a->Bool)
=> Tree a -> Set a (Tree a)

set = ...

Here are some functions that works with sets.

union :: (set: sa -> Set a sa) => sa -> sa -> sa
union xs ys = #union (set xs) ys

diff :: (set: sa -> Set a sa) => sa -> sa -> sa
diff xs ys = #diff (set xs) ys

simdiff :: (set: sa -> Set a sa) => sa -> sa -> sa
simdiff xs ys = union (diff xs ys) (diff ys xs)

3 Semantics

We now give a compositional semantics of System O
and show that typings are sound with respect it. The
semantics speci�es lazy evaluation of functions, except
for overloaded functions, which are strict in their �rst
argument. Alternatively, we could have assumed strict
evaluation uniformly for all functions, with little change
in our de�nitions and no change in our results.

The meaning of a term is a value in the CPO V,
where V is the least solution of the equation

V = W? + V ! V +
X

k2K

(k V1 ::: Varity(k))?:

5

[[x]]� = �(x)

[[�u:e]]� = �v:[[e]]�[u := v]

[[k M1 ::: Mn]]� = k ([[M1]]�) ::: ([[Mn]]�);
where n = arity(k)

[[e e0]]� = if [[e]]� 2 V ! V then ([[e]]�) ([[e0]]�)
else W

[[let u = e in e
0]]� = [[e0]]�[u := [[e]]�]

[[inst o : �T = e in p]]� =
if [[e]]� 2 V ! V then

[[p]]�[o := extend(T; [[e]]�; �(o))]
else W

where

extend((!); f; g) =
�v:if v 2 V ! V then f(v) else g(v)

extend(D; f; g) =
�v:if 9k 2 KD:v 2 k V : : :V| {z }

arity(k)

then f(v) else g(v):

Figure 3: Semantics of terms.

Here, (+) and
P

denote coalesced sums1 and V ! V

is the continuous function space. The valueW denotes
a type error { it is often pronounced \wrong". We will
show that the meaning of a well-typed program is al-
ways di�erent from \wrong".

The meaning function [[�]] on terms is given in Fig-
ure 3. It takes as arguments a term and an environment
� and yields an element of V.The environment � maps
unique variables to arbitrary elements of V, and it maps
overloaded variables to strict functions:

� : U ! V [O ! (V 7! V):

The notation �[x := v] stands for extension of the envi-
ronment � by the binding of x to v.

Note that our semantics is more \lazy" in detect-
ing wrong terms than Milner's semantics [Mil78]. Mil-
ner's semantics always maps a function application fW
to W whereas in our semantics fW = W only if f
is strict. Our semantics correspond better to the dy-
namic type checking which would in practice be per-
formed when an argument is evaluated. We anticipate
no change in our results if Milner's stricter error check-
ing is adopted.

We now give a meaning to types. We start with
types that do not contain type variables, also called

1Injection and projection functions for sums will generally be
left implicit to avoid clutter.

monotypes. We use � to range over monotypes. Fol-
lowing [Mil78] and [MPS86], we let monotypes denote
ideals. For our purposes, an ideal I is a set of values in
V which does not containW, is downward-closed and is
limit-closed. That is, y 2 I whenever y � x and x 2 I,
and

F
X 2 I whenever x 2 I for all elements x of the

directed set X.
The meaning function [[�]] takes a monotype � to an

ideal. It is de�ned as follows.

[[D �1 ::: �m]] =
f?g [

S
fk [[�01]] : : : [[�

0
n]]

j �0 ` k : �01! : : :!�
0
n ! D �1 ::: �mg

[[�1 ! �2]] =
ff 2 V ! V j v 2 [[�1]]) f v 2 [[�2]]g:

Proposition 3.1 Let � be a monotype. Then [[�]] is an
ideal.

Proof: A straightforward induction on the structure of
�. 2

When trying to extend the meaning function to type
schemes we encounter the di�culty that instances of
a constrained type scheme 8�:��) � depend on the
overloaded instances in the environment. This is ac-
counted for by indexing the meaning function for type
schemes with an environment.

De�nition. A monotype � is a semantic instance of a
type scheme � in an environment �, written � j= � � �,
i� this can be derived from the two rules below.

(a) � j= � � �.

(b) � j= � � (8�:��) �)

if there is a monotype �
0 such that � j= � �

[�0=�]� and �(o) 2 [[[�0=�]�]], for all o : � 2 ��.

De�nition. The meaning [[�]]� of a closed type scheme
� is given by

[[�]]� =
\
f[[�]] j � j= � � �g:

De�nition. � j= e1 : �1; : : : ; en : �n i� [[ei]]� 2 [[�i]]�,
for i = 1; : : : ; n.

The meaning of type schemes is compatible with the
meaning of types:

Proposition 3.2 Let � be a monotype, and let � be
an environment. Then [[�]]� = [[�]]:

Proof: Direct from the de�nitions of [[�]]� and �. 2

We now show that type schemes denote ideals. The
proof needs two facts about the bottom type ??.

6

Lemma 3.3 Let � be an environment.
(a) � j= o : ??! �, for any variable o, monotype �.
(b) Let � = 8�1:��1) : : :8�n:��n) � be a type
scheme. Then � j= [??=�1; : : : ; ??=�n]� � �.

Proof: (a) Assume v 2 [[??]]. Since ?? does not have any
constructors, [[??]] = f?g, hence v = ?. Since �(o) is a
strict function, �(o)v = ?, which is an element of every
monotype.
(b) Follows from the de�nition of � and (a). 2

Proposition 3.4 Let � be a type scheme and let � be
an environment. Then [[�]]� is an ideal.

Proof: The closure properties are shown by straightfor-
ward inductions on the structure of �. It remains to
be shown that W 62 [[�]]. By Lemma 3.3(b) there is a
monotype � such that � j= � � �. Hence, [[�]]� � [[�]].
But [[�]] is an ideal and therefore does not contain W.
2

Proposition 3.4 expresses an important property of our
semantics: every type scheme is an ideal, even if it con-
tains a type variable constraint o : �! � , where o does
not have any explicitly declared instances at all. Conse-
quently, there is no need to rule out such a type scheme
statically. This corresponds to Haskell's \open world"
approach to type-checking, as opposed to the \closed
world" approach of e.g. [Smi91]. Interestingly, the on-
ly thing that distinguishes those two approaches in the
semantics of type schemes is the absence or presence of
the bottom type ??.

We now show that System O is sound, i.e. that syn-
tactic type judgements � ` p : � are reected by seman-
tic type judgements � j= p : �.

De�nition. Let e be a term, let � be a closed typoth-
esis, and let � be a closed type scheme. Then � j= e : �
i�, for all environments �, � j= � implies � j= e : �.

As a �rst step, we prove a soundness theorem for terms.
This needs an auxiliary lemma, whose proof is straight-
forward.

Lemma 3.5 If � j= e : � and � j= � � � then � j= e : �.

Theorem 3.6 (Type Soundness
for Terms) Let � ` e : � be a valid typing judgement
and let S be a substitution such that S� and S� are
closed. Then S� j= e : S�.

Proof: Assume � ` e : � and � j= S�. We do an in-
duction on the derivation of � ` e : �. We only show
cases (8I), (8E), whose corresponding inference rules
di�er from the Hindley/Milner system. The proofs of
the other rules are similar to the treatment in [Mil78].

Case (8I): Then the last step in the derivation is

�; �� ` e : �0 � 62 tv(�)

� ` e : 8�:��) �
0

for some �, ��, �
0 with � = 8�:��) �

0. We have
to show that e 2 [[�]], for all � such that � j= � �

8�:S��) S�
0. Pick an arbitrary such �. By de�nition

of (�), there exists a �
0 such that � j= [�0=�](S��)

and � j= � � [�0=�](S�0). Let S0 = [�0=�] � S. Then
� j= S

0
�� and � j= � � S

0
�
0. Since � 62 tv(�), � j= S

0�
and therefore � j= S

0(�; ��). Then by the induction
hypothesis, � j= e : S0�0. It follows with Lemma 3.5
that � j= e : �.

Case (8E): Then the last step in the derivation is

� ` e : 8�:��) �
0 � ` [�=�]��

� ` e : [�=�]�0

for some �, ��, �
0, � with � = [�=�]�0. We have to show

that e 2 [[�]], for all � such that � j= � � [S�=�]S�0.
Pick an arbitrary such �. By the induction hypothesis,
� j= e : 8�:S��) S�

0 and � j= [S�=�](S��). It follows
with the de�nition of � that � j= � � 8�:S��) S�

0.
Then by Lemma 3.5, � j= e : �. 2

We now extend the type soundness theorem to whole
programs that can contain instance declarations.

Theorem 3.7 (Type Soundness for Programs) Let
� ` p : � be a valid closed typing judgement. Then
� j= p : �.

Proof: By induction on the structure of p. If p is a term,
the result follows from Theorem 3.6. Otherwise p is an
instance declaration at top-level. Then the last step in
the derivation of � ` p : � is

o : �T 0 2 �) T 6= T
0

� ` e : �T �; o : �T ` p : �

� ` inst o : �T = e in p
0 : �

for some type scheme �T . We have to show that � j=
inst o : �T = e in p

0 : �. By Theorem 3.6, � j= e : �T ,
which implies that [[e]]� is a function. Therefore, [[p]]� =
[[p0]]�[o := f] where f = extend(T; [[e]]�; �(o)).

Our next step is to show that f 2 [[�T]]�. Let � be
such that � j= � � �T . Then � = T�1; : : : ; �n ! �

0,
for some monotypes �1; : : : ; �n; �

0. Now assume that
v 2 [[T�1; : : : ; �n]]. If v = ? then f v = ? 2 [[�0]].
Otherwise, by the de�nition of extend, f v = [[e]]�v,
and [[e]]�v 2 [[�0]]. In both cases f v 2 [[�0]]. Since v 2

[[T�1; : : : ; �n]] was arbitrary, we have f 2 [[�]]. Since �
was arbitrary, this implies f 2 [[�T]]�

7

It follows that �[o := f] j= o : �T . Furthermore,
since � j= �, and � contains by the premise of rule
(INST) no binding o : �T , we have that �[o := f] j=
�. Taken together, �[o := f] j= �; o : �T . By the
induction hypothesis, �[o := f] j= p

0 : �, which implies
the proposition. 2

A corollary of this theorem supports the slogan that
\well typed programs do not go wrong".

Corollary 3.8 Let � ` p : � be a valid closed typing
judgement and let � be an environment. If � j= � then
[[p]]� 6=W.

Proof: Immediate from Theorem 3.7 and Proposi-
tion 3.4. 2

4 Translation

This section studies the \dictionary passing" transform
from System O to the Hindley/Milner system. Its cen-
tral idea is to convert a term of type 8�:��) � to
a function that takes as arguments implementations of
the overloaded variables in ��. These arguments are
also called \dictionaries".

The target language of the translation is the Hind-
ley/Milner system, which is obtained from System O
by eliminating overloaded variables o, instance declara-
tions, and constraints �� in type schemes. The trans-
lation of terms is given in Figure 4. It is formulated
as a function of type derivations, where we augment
type judgements with an additional component e� that
de�nes the translation of a term or program p, e.g.
� ` p : � � p

�. To ensure the coherence of the transla-
tion, we assume that the overloaded identi�ers oi in a
type variable constraint fo1 : �! �1; : : : ; on : �! �ng

are always ordered lexicographically.
Types and type schemes are translated as follows.

�
� = �

(8�:�) �)� = 8�:��

(8�:o : �! �; ��) �)� = 8�:(�! �)! (8��) �)�

The last clause violates our type syntax in that a type
scheme can be generated as the result part of an arrow.
This is compensated by de�ning

� ! 8�:�
def
= 8�:� ! �:

Bindings and typotheses are translated as follows.

(u : �)� = u : ��

(o : �)� = uo;� : ��:
o1 : �1; : : : ; on : �n = (o1 : �1)

�
; : : : ; (on : �n)

�
:

This translates an overloaded variable o to a new unique
variable uo;�, whose identity depends on both the name
o and its type scheme, �.

Each derivation rule � ` p : � in System O corre-
sponds to a derivation of translated typotheses, terms
and type schemes in the Hindley/Milner system. One
therefore has:

Proposition 4.1 If � ` p : � � p
� is valid then �� `

p
� : �� is valid in the Hindley/Milner system

We believe that the translation preserves semantics
in the following sense.

Conjecture Let p be a program, � be a monotype, and
let � be an environment. Let � be a typothesis which
does not contain overloaded variables. If � ` p : � � p

�

and � j= � then [[p]]� = [[p�]]�.

Although the above claim seems clearly correct, its
formal proof is not trivial. Note that coherence of the
translation would follow immediately from the above
conjecture. Coherence, again, is a property that ap-
pears obvious but is notoriously tricky to demonstrate
[Blo91, Jon92b], so it is perhaps not surprising that the
above conjecture shares this property.

5 Relationship with Record Typing

In this section we study an extension of our type system
with a simple polymorphic record calculus similar to
Ohori's [Oho92]. Figure 5 details the extended calculus.
We add to System O

� record types fl1 : �1; : : : ; ln : �ng,

� record expressions fl1 = e1; :::; ln = eng, and

� selector functions #l.

It would be easy to add record updates, as in the work
of Ohori, but more di�cult to handle record extension,
as in the work of Wand [Wan87] or Remy [Rem89]. Up-
dates are however omitted here for simplicity.

Leaving open for the moment the type of selec-
tor functions, the system presented so far corresponds
roughly to the way records are de�ned in Standard ML.
Selectors are treated in Standard ML as overloaded
functions. As with all overloaded functions, the type
of the argument of a selector has to be known statical-
ly; if it isn't, an overloading resolution error results.

Our record extension also treats selectors as over-
loaded functions but uses the overloading concept of
System O. The most general type scheme of a selector
#l is

8�:8�:(� � fl : �g)) �! �:

This says that #l can be applied to records that have
a �eld l : � , in which case it will yield a value of type
� . The type scheme uses a subtype constraint � � �.
Subtype constraints are validated using the subtyping

8

(TAUT) � ` u : � � u (u : � 2 �) � ` k : � � u (k : � 2 �) � ` o : � � uo;� (o : � 2 �)

(8I)
�; o1 : �1; : : : ; on : �n ` e : � � e� � 62 tv(�)

� ` e : 8�:(o1 : �1; : : : ; on : �n)) �
� �uo1 ;�1 : : : : �uon ;�n :e

�

� ` e : 8�:(o1 : �1; : : : ; on : �n)) � � e�

� ` oi : [�=�]�i � e�i (i = 1; : : : ; n)
� ` e : [�=�]�
� e� e�1 : : : e�n

(8E)

(!I)
�; u : � ` e : � 0 � e�

� ` �u:e : � ! �
� �u:e�

� ` e1 : �
0 ! � � e�1 � ` e2 : �

0 � e�2
� ` e1 e2 : �
� e�1e

�
2

(!E)

(LET)
� ` e1 : � � e�1 �; u : � ` e2 : � � e�2

� ` let u = e1 in e2 : �
� let u = e�1 in e�2 : �

o : �T 0 2 �) T 6= T 0

� ` e : �T � e� �; o : �T ` p : �0 � p�

� ` inst o : �T = e in p : �0

� let uo;�T = e� in p�

(INST)

Figure 4: The dictionary passing transform

rules in Figure 5. In all other respects, they behave just
like overloading constraints o : �! � .

Example 5.1 The following program is typable in Sys-
tem O (where the typing of max is added for conve-
nience).

let max : 8�:((<) : � ! � ! bool))
8�:(� � fkey : �g)) �! �! �

= �x:�y:if #key x < #key y then x else y

in

max fkey = 1; data = ag fkey = 2; data = bg

In Standard ML, the same program would not be ty-
pable since neither the argument type of the selector
#key nor the argument type of the overloaded function
(<) are statically known.

Note that the bound variable in a subtype constraint
can also appear in the constraining record type, as in

8�:(� � fl : �! boolg)) [�]

Hence, we have a limited form of F-bounded polymor-
phism [CCH+89] | limited since our calculus lacks the
subsumption and contravariance rules often associated
with bounded polymorphism [CW85]. It remains to be
seen how suitable our system is for modeling object-
oriented programming. Some recent developments in
object-oriented programming languages seem to go in
the same direction, by restricting subtyping to abstract
classes [SOM93].

We now show that the record extension adds nothing
essentially new to our language. We do this by present-
ing an encoding from System O with records to plain
System O. The source of the encoding is a program with
records, where we assume that the labels l1; : : : ; ln of all
record expressions fl1 = e1; :::; ln = eng in the source

program are sorted lexicographically (if they are not,
just rearrange �elds). The details of the encoding are
as follows.

1. Every record-�eld label l in a program is represented
by an overloaded variable, which is also called l.

2. For every record expression fl1 = e1; :::; ln = eng in
a program, we add a fresh n-ary datatype Rl1:::ln with
a constructor of the same name and selectors as given
by the declaration

data Rl1:::ln �1 ::: �n = Rl1:::ln �1 ::: �n:

3. For every datatype Rl1:::ln created in Step 2 and ev-
ery label li (i = 1; :::; n), we add an instance declaration

inst li : 8�1:::�n:Rl1:::ln �1 ::: �n! �i

= �(Rl1:::ln x1 ::: xn):xi

(where the pattern notation in the formal parameter is
used for convenience).

4. A record expression fl1 = e1; :::; ln = eng now trans-
lates to Rl1:::ln e1 ::: en.

5. A selector function #l translates to l.

6. A record type fl1 : �1; :::; ln : �ng is translated to
Rl1:::ln �1 ::: �n.

7. A subtype constraint � � fl1 :�1; :::; ln :�ng becomes
an overloading constraint l1 : �! �1; : : : ; ln : �! �n:

Let ey, �y, or �y be the result of applying this trans-
lation to a term e, a type scheme �, or a typothesis �.
Then one has:

Proposition 5.2 � ` e : � i� �y ` e
y : � y.

9

Additional Syntax

Field labels l 2 L

Terms e = : : : j #l j fl1 = e1; : : : ; ln = eng (n � 0)
Record types � = fl1 : �1; : : : ; ln : �ng (n � 0, with l1; : : : ; ln distinct)
Types � = : : : j �

Constraints on � �� = : : : j � � �

Typotheses � = : : : j � � �

Subtyping Rules

(Taut) �; � � � ` � � � � ` fl1 : �1; : : : ; ln : �n; ln+1 : �n+1; : : : ; ln+k : �n+kg (Rec)
� fl1 : �1; : : : ; ln : �ng

Additional Typing Rules

(f gI)
� ` e1 : �1 : : : � ` en : �n

� ` fl1 = e1; : : : ; ln = eng : fl1 : �1; : : : ; ln : �ng
� ` #l : 8�:8� � fl : �g:�! � (f gE)

Figure 5: Extension with record types.

Proposition 5.2 enables us to extend the type soundness
and principal type properties of System O to its record
extension without having to validate them again. It also
points to an implementation scheme for records, given
an implementation scheme for overloaded identi�ers.

Example 5.3 The program of Example 5.1 translates
to

inst data : 8�8�:Rdata;key � � ! �

= �Rdata;key x y: x in

inst key : 8�8�:Rdata;key � � ! �

= �Rdata;key x y: y in

let max : 8�:((<) : � ! � ! bool))
8�:(key : �! �)) �! �! �

= �x:�y:if key x < key y then x else y

in

max (Rdata;key 1 a) (Rdata;key 2 b)

6 Type Reconstruction

Figures 6 and 7 present type reconstruction and uni�-
cation algorithm for System O. Compared to Milner's
algorithmW [Mil78] there are two extensions.

� In the uni�cation algorithm, before binding a type
variable � to a type � it must be ensured that the
constraints given by �� can be satis�ed by � . This
is accompished by function mkinst in Figure 6.

� The function tp is extended with a branch for in-
stance declarations inst o : �T = e in p. In this
case it must be checked that the inferred type �0T

for the overloading term e is at least as general as
the given type �T .

We now state soundness and completeness results for
the algorithmsunify and tp. The proofs of these results
are along the lines of [Che94]; they are omitted here.

We use the following abbreviations:

�� = fo : �! � j o : �! � 2 �g
�A = [�2A ��

where A is a set of type variables.

De�nition. A con�guration is a pair of a typothesis
� and a substitution S such that, for all � 2 dom(S),
�� = ;.

De�nition. The following de�nes a preorder � be-
tween substitutions and con�gurations and a preorder
�� on type schemes. If X � Y we say that Y is more
general than X.

� S
0 � S i� there is a substitution R such that S0 =

R � S.

� (�0; S0) � (�; S) i� S
0 � S, S0�0 ` S

0�dom(S0)

and �0 � � n �dom(S0).

� �
0 �� � i�, for all u 62 dom(�), � ` u : � implies

� ` u : �0.

De�nition. A constrained uni�cation problem is a pair
of tuples (�1; �2)(�; S) where �1; �2 are types and (�; S)
is a con�guration.

A con�guration (�0; S0) is a unifying con�guration
for (�1; �2)(�; S) i� (�0; S0) � (�; S) and S

0
�1 = S

0
�2.

10

unify : (�; �)! (�; S)! (�; S)
unify (�1; �2) (�; S) = case (S�1; S�2) of

(�; �))
(�; S)

(�; �); (�; �) where � 62 tv(�))
foldr mkinst (�n��; [�=�] � S) ��

(T �1; T �2))
foldr unify (�; S) (zip (�1; �2))

mkinst : (o : �! �)! (�; S)! (�; S)
mkinst (o : �! �) (�; S) = case S� of

�)

if 9o : � ! �
0 2 �

then unify (�; � 0) (�; S)
else (� [fo : � ! [�=�]�g; S)

T �1 ::: �n)

case fnewinst (�T ;�; S) j o : �T 2 �g of

f(�1;�1; S1)g) unify (�! �; �1) (�1; S1)

Figure 6: Algorithm for constrained uni�cation

The unifying con�guration (�0; S0) is most general
i� (�00; S00) � (�0; S0), for every other unifying con�gu-
ration (�00; S00).

De�nition. A typing problem is a triple (p;�; S) where
(�; S) is a con�guration and p is a term or program with
fv(p) � dom(�).

A typing solution of a typing problem (p;�; S) is a
triple (�;�0; S0) where (�0; S0) � (�; S) and S

0�0 ` p :
S
0
�.
The typing solution (�;�0; S0) is most general i�

for every other typing solution (�00;�00; S00) it holds
(�00; S00) � (�0; S0) and S

00
�
00 �S00�00 S

00
�.

Theorem 6.1 Let (�1; �2)(�; S) be a constrained uni-
�cation problem
(a) If unify(�1 ; �2)(�; S) = (�0; S0) then (�0; S0) is a
most general unifying con�guration for (�1; �2)(�; S).
(b) If unify(�1 ; �2)(�; S) fails then there exists no uni-
fying con�guration for (�1; �2)(�; S).

Theorem 6.2 Let (p;�; S) be a typing problem.
(a) If tp (p;�; S) = (�;�0; S0) then (�;�0; S0) is a most
general solution of (p;�; S).
(b) If tp (p;�; S) fails, then (p;�; S) has no solution.

As a corollary of Theorem 6.2, we get that every typable
program has a principal type, which is found by tp.

Corollary 6.3 (Principal Types) Let (p;�; id) be a
typing problem such that tv(�) = ;.
(a) Assume gen (tp (p;�; id)) = (�0;�0; S) and let
� = S�

0. Then

� ` p : � and
� ` p : �00) �

00 �� �; for all type schemes �00.

(b) If tp (p;�; id) fails then there is no type scheme �
such that � ` p : �.

The termination of unify andmkinst critically depends
on the form of overloaded type schemes �T :

�T = T �1 ::: �n ! � (tv(�) � f�1; : : : ; �ng)
j 8�:��) �

0
T (tv(��) � tv(�0T)):

We show with an example why �T needs to be para-
metric in the arguments of T . Consider the following
program, where k 2 KT .

p = let (;)x y = y in

inst o : 8�:o : �! �) T (T�)! �

= �k(k x):o x
in �x:�y:�f: o x ;o y ;f (k y) ; fx

Then computation of tp(p; ;; id) leads to a call
tp(f x;�; S) with x : �; f : T� ! � 2 �. This leads
in turn to a call unify(�; T�)(�; S) where the follow-
ing assumptions hold:

� �T = 8�:o : �! �) T (T�)! �

� � � fo : �! �; o : � ! �; o : �Tg,

� S is a substitution with �; � 62 dom(S).

Unfolding unify gives mkinst(o : � ! �)(� n ��; S
0)

where S0 = [T�=�] � S, which leads in turn to the fol-
lowing two calls:

1. newinst(�T ;� n ��; S
0) = (T (T) ! ;�0; S0)

where �0 � fo : � ! �; o : ! ; o : �Tg and

is a fresh type variable, and

2. unify(� ! �; T (T)!)(�0; S0).

Since S
0
� = T�, unfolding of (2) results in an at-

tempt to unify T� and T (T)), which leads to the call
unify(�; T)(�0 ; S0). This is equivalent to the origi-
nal call unify(�; T�)(�; S) modulo renaming of �; � to
�; . Hence, unify would loop in this situation.

The need for the other restrictions on �T are shown
by similar constructions. It remains to be seen whether
a more general system is feasible that lifts these re-
strictions, e.g. by extending uni�cation to regular trees
[Kae92].

11

newinst : (�;�; S)! (�;�; S)
newinst (8�:��) �;�; S)

= let � a new type variable
in newinst

([�=�]�;�[[�=�]��; S)
newinst (�;�; S)

= (�;�; S)

skolemize : (�;�; S)! (�;�; S)
skolemize (8�:��) �;�; S)

= let T a new 0-ary type constructor
in skolemize

([T=�]�;�[[T=�]��; S)
skolemize (�;�; S)

= (�;�; S)

gen : (�;�; S)! (�;�; S)
gen (�;�; S) = if 9�:� 2 tv(S�) n tv(S(�n��))

then gen (8�:��) �;�n��; S)
else (�;�; S)

tp : (p;�; S)! (�;�; S)

tp (u;�; S) = if u : � 2 �
then newinst (�;�; S)

tp (o;�; S) = newinst (8�8�:(o : �! �)) �! �;�; S)

tp (�u:e;�; S)
= let � a new type variable

(�;�1; S1) = tp (e;� [fu : �g; S)
in (�! �;�1; S1)

tp (e e0;�; S)
= let (�1;�1; S1) = tp (e;�; S)

(�2;�2; S2) = tp (e0;�1; S1)
� a new type variable
(�3; S3) = unify (�1; �2 ! �) (�2; S2)

in (�;�3; S3)

tp (let u = e in e
0
;�; S)

= let (�;�1; S1) = gen (tp (e;�; S))
in tp (e0;�1 [fu : �g; S1)

tp (inst o : �T = e in p;�; S)
= let (�0T ;�1; S1) = gen (tp (e;�; S))

(�2;�2; S2) = skolemize (�T ;�1; S1)
(�3;�3; S3) = newinst (�0T ;�2; S2)

in if 8o :�T 0 2 �: T 6= T
0 ^

unify(�2 ; �3)(�3; S3) de�ned then

tp (p;�1 [fo : �Tg; S1)

Figure 7: Type reconstruction algorithm for System O

7 Conclusion

We have shown that a rather modest extension to the
Hindley/Milner system is enough to support both over-
loading and polymorphic records with a limited form of
F-bounded polymorphism. The resulting system stays
�rmly in the tradition of ML typing, with type sound-
ness and principal type properties completely analogous
to the Hindley/Milner system.

The encoding of a polymorphic record calculus in
System O indicates that there might be some deep-
er relationships between F-bounded polymorphism and
overloading. This is also suggested by the similari-
ties between the dictionary transform for type classes
and the Penn translation for bounded polymorphism
[BTCGS91]. A study of these relationships remains a
topic for future work.

Acknowledgments We are grateful to Kung Chen
and John Maraist for valuable comments on previous

drafts of this paper. The section on records was mo-
tivated in part by a discussion led by Simon Peyton
Jones, Mark Jones and others on the Haskell mailing
list. Many other discussions with numerous participants
have also contributed to this work.

References

[App93] Andrew W. Appel. A critique of standard
ML. Journal of Functional Programming, 3(4),
1993.

[Aug93] Lennart Augustsson. Implementing Haskell
overloading. In Proc. ACM Conf. on Functional
Programming Languages and Computer Archi-
tecture, pages 65{73, June 1993.

[Blo91] Stephen Blott. An approach to overloading
with polymorphism. Ph.D. thesis, Glasgow
University, 1991.

[BTCGS91] Val Breazu-Tannen, Thierry Coquand, Carl A.
Gunter, and Andre Scedrov. Inheritance as im-
plicit coercion. Information and Computation,
93:172{221, 1991.

12

[CCH+89] Peter Canning, William Cook, Walter Hill,
Walter Oltho�, and John C. Mitchell. F-
bounded polymorphism for object-oriented pro-
gramming. In Functional Programming Lan-
guages and Computer Architecture, pages 273{
280, September 1989.

[Che94] Kung Chen. A Parametric Extension of
Haskell's Type Classes. PhD thesis, Depart-
ment of Computer Science, Yale University,
Dec. 1994.

[CHO92] Kung Chen, Paul Hudak, and Martin Odersky.
Parametric type classes. In Proc. ACM Conf.
on Lisp and Functional Programming, pages
170{181, June 1992.

[CW85] Luca Cardelli and Peter Wegner. On under-
standing types, data abstraction, and polymor-
phism. Computing Surveys, 17(4):471{522, De-
cember 1985.

[DM82] Luis Damas and Robin Milner. Principal type
schemes for functional programs. In Proc. 9th
ACM Symposium on Principles of Program-
ming Languages, January 1982.

[DO94] Dominic Duggan and John Ophel. Kinded
parametric overloading. Technical Report CS-
94-35, University of Waterloo, September 1994.

[HHPW94] Cordelia Hall, Kevin Hammond, Simon Pey-
ton Jones, and Philip Wadler. Type classes in
Haskell. In Proc. 5th European Symposium on
Programming, pages 241{256, 1994. Springer
LNCS 788.

[Jon92] Mark P. Jones. A theory of quali�ed types. In
Proc. 4th European Symposium on Program-
ming, pages 287{306, February 1992. Springer
LNCS 582.

[Jon92b] Mark P. Jones. Quali�ed types: theory and
practice. Ph.D. thesis, Oxford University, 1992.

[Jon93] Mark P. Jones. A system of constructor class-
es: Overloading and implicit higher-order poly-
morphism. In Proc. ACM Conf. on Functional
Programming Languages and Computer Archi-
tecture, pages 52{61, June 1993.

[JT81] R.D. Jenks and B.M. Trager. A language for
computational algebra. In Proc. ACM Sympo-
sium on Symbolic and Algebraic Manipulation,
pages 22{29, 1981.

[Kae88] Stefan Kaes. Parametric overloading. In Proc.
2nd European Symposium on Programming.
Springer-Verlag, 1988. Springer LNCS 300.

[Kae92] Stefan Kaes. Type inference in the presence
of overloading, subtyping, and recursive types.
In Proc. ACM Conf. on Lisp and Functional
Programming, pages 193{204, June 1992.

[Mil78] Robin Milner. A theory of type polymorphism
in programming. Journal of Computer and Sys-
tem Sciences, 17:348{375, Dec 1978.

[MPS86] D. MacQueen, G. Plotkin, and R. Sethi. An
ideal model for recursive polymorphic types. In-
formation and Control, 71:95{130, 1986.

[NP93] Tobias Nipkow and Christian Prehofer. Type
checking type classes. In Proc. 20th ACM
Symposium on Principles of Programming Lan-
guages, pages 409{418, 1993.

[NS91] Tobias Nipkow and Gregor Snelting. Type
classes and overloading resolution via order-
sorted uni�cation. In Proc. ACM Conf. on

Functional Programming Languages and Com-
puter Architecture, pages 1{14, August 1991.
Springer LNCS 523.

[Oho92] Atsushi Ohori. A compilation method for ML-
style polymorphic record calculi. In Proc. 19th
ACM Symposium on Principles of Program-
ming Languages, pages 154{165, January 1992.

[PJ93] John Peterson and Mark Jones. Implement-
ing type classes. In Proc. ACM Conf. on Pro-
gramming Language Design and Implementa-
tion, pages 227{236, June 1993. SIGPLAN No-
tices 28(6).

[Rem89] D. Remy. Typechecking records and variants in
a natural extension of ML. In Proc. 16th ACM
Symposium on Principles of Programming Lan-
guages, pages 77{88. ACM, January 1989.

[Rou90] Fran�cois Rouaix. Safe run-time overloading. In
Proc. 17th ACM Symposium on Principles of
Programming Languages, pages 355{366, Jan-
uary 1990.

[Smi91] Geo�rey S. Smith. Polymorphic type infer-
ence for languages with overloading and sub-
typing. PhD thesis, Cornell University, Ithaca,
NY, August 1991.

[SOM93] Clemens Szyperski, Stephen Omohundro, and
Stephan Murer. Engineering a programming
language: The type and class system of Sather.
In Programming Languages and System Archi-
tectures, pages 208{227. Springer Verlag, Lec-
ture Notes in Computer Science 782, November
1993.

[Vol93] Dennis Volpano. A critique of type systems for
global overloading. Computer Science Techni-
cal Report NPSCS-94-006, Naval Postgraduate
School, October 1993.

[Wan87] Mitchell Wand. Complete type inference for
simple objects. In Proc.IEEE Symposium on
Logic in Computer Science, pages 37{44, June
1987.

[WB89] Philip Wadler and Stephen Blott. How to make
ad-hoc polymorphism less ad-hoc. In Proc. 16th
ACM Symposium on Principles of Program-
ming Languages, pages 60{76, January 1989.

13

