
From tableaux to witnesses for the modal

�-calculus

November 3, 1995

Alexander Kick�

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler,

Universit�at Karlsruhe, Am Fasanengarten 5,D-76128 Karlsruhe, Germany

Email: kick@ira.uka.de

Abstract

Symbolic temporal logic model checking is an automatic veri�cation

method. One of its main features is that a counterexample can be con-

structed when a temporal formula does not hold for the model. Most model

checkers so far have restricted the type of formulae that can be checked and

for which counterexamples can be constructed to fair CTL formulae. This

paper shows how counterexamples and witnesses for the whole �-calculus

can be constructed. The witness construction is derived in a formal way

from the local model checking method. The witness construction presented

in this paper is polynomial in the model and the formula.

1 Introduction

Complex state-transition systems occur frequently in the design of sequential

circuits and protocols. Symbolic temporal logic model checking [CGL93] has

shown in practice to be an extremely useful automatic veri�cation method. In this
approach, the state-transition systems are checked with respect to a propositional

temporal logic speci�cation.
If the model satis�es the speci�cation the model checker returns true. Oth-

erwise, a counterexample can be constructed, which helps �nding the error in
the design. The latter facility is one of the most important advantages of model

checking over other veri�cation approaches.

�Supported by DFG Vo 287/5-2

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197599062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The symbolic model checker SMV developed at Carnegie Mellon University

([McM93]) based on OBDDs [Bry92] can check fair CTL (FCTL) ([CGL93]) for-

mulae and construct counterexamples for these formulae. Model checkers which

can check �-calculus formulae [Koz83] have greater expressive power, since arbi-

trary �-calculus formulae can be checked in contrast to the small subclass FCTL

of the �-calculus, and are more general since many problems can be translated

into the �-calculus.

In [CGMZ94], it is described how to construct counterexamples for FCTL

formulae. To our knowledge, noone has yet investigated how to construct coun-

terexamples for arbitrary �-calculus formulae. To be able to construct counterex-

amples for �-calculus formulae, however, is necessary to make a �-calculus model

checker as useful as a CTL model checker. In this paper, we therefore investigate

how counterexamples for �-calculus formulae can be computed.

The rest of the paper is structured as follows. Section 2 consists of prelim-

inaries where the �-calculus is repeated, some terminology is introduced and a
modi�ed model checking algorithm is given. In Section 3, we repeat tableau
based model checking. In Section 4, we show how to construct a tableau by using

information from prior model checking. In Section 5, we de�ne collapsed isomor-
phic pseudo tableaux where isomorphic subparts in a tableau are eliminated and
give a direct algorithm for constructing such collapsed tableaux. In Section 6,
we further reduce the size of a collapsed tableau. In Section 7, we draw some
conclusions. Note that we will not care about counterexamples for a formula f in

the rest of the paper since counterexamples are simply witnesses for the negation
of formula f .

2 The modal �-calculus

In this section we remind the reader of the syntax and semantics of the modal �-
calculus, we introduce some notation and give a slightly modi�ed model checking
algorithm which suits our purposes of witness construction. We mainly follow
[EL86].

2.1 Syntax and semantics

There are the following syntactic classes:

� PropCon, the class of propositional constants P;Q;R; : : :

� PropVar, the class of propositional variables X;Y;Z; : : :

� ProgAt, the class of program atoms or basic actions A;B;C; : : :

� Form, the class of formulae L� of the propositional �-calculus p; q : : : , de-

�ned by

2

p ::= P jXjp ^ qj:pj�X:pjhAip

where in �X:p, p is any formula syntactically monotone in the propositional

variable X, i.e., all free occurrences of X in p fall under an even number

of negations.

The other connectives are introduced as abbreviations in the usual way: p_ q

abbreviates :(:p ^ :q), [A] p abbreviates :hAi:p and �X:p(X) abbreviates

:�X::p(:X).

The semantics of the �-calculus is de�ned with respect to a model. A model

is a triple M = (S;R;L) where S is a set of states, R : ProgAt ! P(S � S) is

a mapping from program atoms A to a set of state transitions involving A, and

L : S ! P(PropCon) labels each state with a set of atomic propositions true in

that state.

In the rest of the paper, we rarely need the program atoms. Therefore, we
introduce the abbreviation R :=

S
f(s; t)j(s; t) 2 R(A) ^ A 2 ProgAtg. A path

in M is a sequence of states: � = s0s1 : : : such that 8i � 0 : (si; si+1) 2 R.
We assume that the models we deal with in the following are �nite (i.e., S and

ProgAt are �nite). The semantics for the modal �-calculus is given via least and
greatest �xpoints. For the details, the reader is referred to [EL86].

The meanings of formulae is de�ned relative to valuations � : PropV ar !
P(S). The variant valution �[T=X] is de�ned by

�[T=X](Y) =

8<
:
T Y � X

�(Y) otherwise

The set of states satisfying a formula f in a model M with valuation � is induc-
tively de�ned as

[[P]]� = fsjP 2 L(s)g

[[X]]� = �(X)

[[p ^ q]]� = [[p]]\ [[q]]

[[:p]]� = S n [[p]]�

[[hAip]]� = fsj9t 2 S : (s; t) 2 R(A) ^ t 2 [[p]]�g

[[�X:p]]� =
\
fS0 � Sj[[p]]�[S0=X] � S0g

We de�ne
s; � j= p, s 2 [[p]]�

3

2.2 Some terminology

hi shall stand for any hAi, [] for any [A]. The terms subformula, closed formula,

bound and free variables are used as usual. We write p � q if p is a subformula

of q. A �-, �-subformula is a subformula whose main connective is � and �,

respectively. A variable X is called a �-variable or �-variable if X occurs as �X:p

or �X:p in a formula, respectively. Alternation depth A(f) of a formula f is

de�ned in [EL86]. L�i shall denote the sublanguage of L� with alternation depth

i.

�X:p(X) shall stand for either �X:p(X) or �X:p(X), � shall stand for either

[] or hi. Let b0(X) = p(X) if �X:p(X) appears as a subformula of an original

formula f . We say thatX is in the scope of [], hi in formula f ifX is a subformula

of a subformula of f of the form []q and hiq, respectively.

A formula is said to be in propositional normal form (PNF) provided that no

variable is quanti�ed twice and all the negations are applied to atomic propo-
sitions only. Note that every formula can be put in PNF. It can be shown by
induction on the number of �xpoint iterations that each �X:p(X) can be trans-

formed into a formula without � or into �X:p(X), where X occurs in p(X) and
all occurrences of X in p(X) are in the scope of hi or []. In the rest of the paper
we suppose (without loss of generality) that all �-calculus formulae are in PNF

and closed and all subformulae �X:p(X) ful�ll the above constraint.

2.3 Model checking the modal �-calculus

The model checking problem is: given a model M , a formula f and a state s in
M , is s 2 [[f]]�? We do not need to care about �, since it can be arbitrary in the
case of closed formulae which we consider only. For this reason, we also write

s j= f instead of s; � j= f . We give here a modi�ed model checking algorithm
where information needed for the later witness construction is saved.

~x = (x1; : : : ; xm) 2 N
m
0

shall denote a vector of integers. The ordering on
these vectors is de�ned by: (x) < (y) , x < y, (x1; : : : ; xm) < (y1; : : : ; ym) ,
x1 < y1 _ x1 = y1 ^ (x2; : : : ; xm) < (y2; : : : ; ym).

For vectors with di�erent lengths we de�ne

(x1; : : : ; xm) < (y1; : : : ; yl),

8<
:
(x1; : : : ; xm) < (y1; : : : ; ym) m � l

(x1; : : : ; xl) < (y1; : : : ; yl) otherwise

(x1; : : : ; xm) = (y1; : : : ; yl),

8<
:
81 � i � m : xi = yi m � l

81 � i � l : xi = yi m > l

Note that this equality on vectors is not transitive.

~x � ~y , ~x < ~y _ ~x = ~y

4

We write ~x v ~y if ~x is a pre�x of ~y.

Vectors shall denote the iteration numbers of the �xpoint iterations of sub-

formulae of the form �X:p in the model checking algorithm below.

Algorithm 1

For a given modelM and a given formula f which contains propositional variables

X1; : : : ;Xn, whereX1; : : :Xm denote the �-variables andXm+1 : : :Xn denote the

�-variables in f , mc(f; ()) determines the set of states of the model which ful�ll

f .

function mc(f :Predicate, (x1; : : : ; xk):N
�
0
): Predicate

begin

case f of the form

Xj : S0 := Sj;

P : S0 := fsjP 2 L(s)g;
p ^ q : S0 := mc(p; (x1; : : : ; xk)) \mc(q; (x1; : : : ; xk));
p _ q : S0 := mc(p; (x1; : : : ; xk)) [mc(q; (x1; : : : ; xk));
:p : S0 := S nmc(p; (x1; : : : ; xk));
hip : S0 := fs 2 Sj9t 2 mc(p; (x1; : : : ; xk)) : (s; t) 2 Rg;

[]p : S� = mc(p; (x1; : : : ; xk)); S
0 := fs 2 Sj8t 2 S : (s; t) 2 R! t 2 S�g;

�Xj :pj(X) :
begin

Sj := ;;
i := 0;

repeat

S0 := Sj;

Sj := mc(pj ; (x1; : : : ; xk; i));
i := i+ 1;

until S0 = Sj;

end

�Xj :pj(X) :
begin

Sj := S;

repeat

for all g � �Xj :pj(X) for all ~y with (x1; : : : ; xk) v ~y : g~y := ;;
S0 := Sj;

Sj := mc(pj ; (x1; : : : ; xk));
until S0 = Sj;

end

v esac

f(x1;::: ;xk) := S0;

return S0

end

5

for all p � f for all (x1; : : : ; xk) : p(x1;::: ;xk) := ;;

mc(f; ());

Let f be the original formula to be model checked. Given �Y:q(Y) � �X:p(X)

we write Y < X. In the �xpoint iterations of subformulae �X:q, the values of

their subformulae are saved together with the vector of iterations. Let p be a

subformula of a maximal subterm of f of the form �X1: : : : �Xk:q with p � q,

i.e., no other �-variables appear before p. Then p(x1;::: ;xk) is the value of p during

the model checking procedure where X1 is in iteration x1; : : : ;X
k in iteration xk.

Lemma 1 If Y � Y 0 then �X:p(Y;X) � �X:p(Y 0;X) and pi(Y; false) �

pi(Y 0; false). This is also true for an arbitrary number of free variables Y .

Proof:

� The case for � was already explained in the article by Emerson. Since p is
monotonic in Y (because the formulae are in PNF) we have: pi(Y; false) �

pi(Y 0; false). Since �X:p(Y;X) =
S
i

pi(Y;X) the claim follows immediately.

� Let Xf be the greatest �xpoint of �X:p(Y;X). Since p is monotonic in
Y we have for Y 0 � Y : p(Y;Xf) � p(Y 0;Xf) and since Xf � p(Y;Xf) it
follows that Xf �

S
fS0jS0 � p(Y 0; S0)g = �X:p(Y 0;X), i.e. �X:p(Y;X) �

�X:p(Y 0;X).

Proposition 1 8(x1; : : : ; xk; : : : ; xl)8p � f : p(x1;::: ;xk;::: ;xl) � p(x1;::: ;xk+1;::: ;xl)

Proof: We �rst consider the case l = k, i.e., subsequent iterations of p(Xk).
Certainly, for all X i > Xk the values for X i are the same in the �xpoint iteration
of �Xk:p(Xk). However, the value for Xk itself has increased in iteration xk
(otherwise there would not be another iteration xk+1), i.e., X

k
(x1;::: ;xk�1;::: ;xj)

�

Xk
(x1;::: ;xk;::: ;xj)

.

For top-level subformulae �Z:q(Xk; Z) of �Xk:p(Xk) we have:

�Z:q(Xk
(x1;::: ;xk�1;::: ;xj)

; Z) � �Z:q(Xk
(x1;::: ;xk;::: ;xj)

; Z)

This follows from Lemma 1. Since all other variables remain the same, and of

course also P;:P , and the connectives ^;_; hi; [] are monotonic the claim follows

immediately for p 6� �Z:q(Xk; Z).

In the case p � �Z:q(Xk; Z) the value for Z is greater in the deeper iterations,
i.e., iterations of �W:r with W < Z, in iterations (x1; : : : ; xk+1; : : : ; xj) than in
iterations (x1; : : : ; xk; : : : ; xj). Therefore, for all subformulae of �Z:q of the form

p(x1;::: ;xk) it also holds that p(x1;::: ;xk) � p(x1;::: ;xk+1).

6

The proof for l > k goes in the same way as above for the case l = k except

that 8X i > X l : X i
(x1;::: ;xk�1;::: ;xj)

� X i
(x1;::: ;xk;::: ;xj)

.

This proposition allows us to conclude that if there is a vector ~x with s 2

p~x then after the model checking stops then s 2 p� where � substitutes the

propositional variables in p by their last �xpoints.

Note that X(x1;::: ;xk�1;xk;::: ;xl) = X(x1;::: ;xk�1;xk;::: ;xj) if �X:p(X) is labeled

(�X:p(X))(x1;::: ;xk�1) in the model checking algorithm and therefore we de�ne

X(x1;::: ;xk�1;xk) = X(x1;::: ;xk�1;xk;::: ;xl). Similarly, if (�X:p(X))(x1;::: ;xk) we have

X(x1;::: ;xk;::: ;xl) = X(x1;::: ;xk;::: ;xj) and we de�ne X(x1;::: ;xk) = X(x1;::: ;xk;::: ;xl). In

the rest of the paper we use these abbreviations.

De�nition 1

In the following, let p � f , p~x obtained by mc(f; ()) where the model is M =

(S;R;L), s 2 S and ~x 2 N�
0
.

� 8p8~x:
(p(x1;::: ;xj+1) = p(x1;::: ;xj+1) n p(x1;::: ;xj)) ^ (p

(x1;::: ;xj�1;0) = p(x1;::: ;xj�1;0))

� 8p � f : l(s; p) = (s 2
W
~x

p~x)

� min : S � L� ! L� � (N�
0
[f?g)

min(s; p) =

8<
:
pminf~yjs2p~yg l(s; p) = true

? otherwise

� v : L� � (N�
0
[f?g)! (N�

0
[f1g)

v(g) =

8<
:
~x g = p~x

1 g = ?

In the following, let 8~x 2 N�
0
: ~x <1.

During model checking, states s are marked with subformulae p of f which
are true in s together with the iteration depths during which s is added to the

set of states ful�lling p: p~x. s 2 p~x means that s is added to the states ful�lling

p in iteration ~x. This labeling is �rmly recorded only in the last iteration of
�-variables X for p � �X:q. Only the iterations of the �-variables are important

in the following, so the iteration depths of the �-variables are not recorded.

Lemma 2 Let p ^ q; p _ q; hip; []p; �X:p(X) be subformulae of formula f model

checked by the above algorithm and s 2 S arbitrary with l(s; p^ q) = true; l(s; p_
q) = true; : : : , respectively, in the items below. Then

� v(min(s; p)) � v(min(s; p ^ q)) ^ v(min(s; q)) � v(min(s; p ^ q))

� v(min(s; p)) � v(min(s; p _ q)) _ v(min(s; q)) � v(min(s; p _ q))

7

� 9s0 2 S : (s; s0) 2 R ^ v(min(s0; p)) � v(min(s; hip))

� 8s0 2 S : (s; s0) 2 R! v(min(s0; p)) � v(min(s; []p))

� v(min(s; �X:p(X))) = v(min(s;X)) = v(min(s; p(X)))

Proof: The model checking algorithm decides upon the truth of a formula in a

state s only after the truth of the subformulae in state s has been decided.

Fact 1 From Algorithm 1 it is clear that for �Xj :p(Xj):

(8i 2 N : (Xj)(x1;::: ;xk�1;i) = (p(Xj))(x1;::: ;xk�1;i�1)) ^ (Xj)(x1;::: ;xk�1;0) = false

and in particular

(p(Xj))(x1;::: ;xk�1;0) = (Xj)(x1;::: ;xk�1;1)) = p(false)

As a consequence, if l(s; �Xj :p(Xj)) = true, then

v(min(s; �Xj:p(Xj))) = v(min(s;Xj)) > v(min(s; p(Xj)))

Note that the saving of information does not change the space complexity of
the algorithm which is still O(jf j � jM j) (and also not the time complexity). Since
only min(s; p) for p � f is needed later for witness construction a state s with
l(s; p) = true needs to be labeled only with min(s; p) and with no other p~x.

In [EL86] an improved algorithm for model checking is presented on which

the following theorem is based.

Theorem 1 (Emerson,Lei) Model checking can be done in time O((jM j �
jf j)A(f)+1) where jM j = jSj+ jRj and jf j is the length of formula f.

3 Model checking by tableaux

Local model checking ([SW91], [Cle90]) was devised as a procedure to determine
the truth of a formula for a state in a model for the case that the property can be

determined in a small circumference of a state (locality condition). In this case,

local model checking should have advantages over model checking algorithms

which explore the whole state space to determine the truth of the formula.

A constructed successful tableau can at the same time be viewed as a witness
for the truth of a formula in a model. However, there are two problems which

prevent us from directly taking a tableau as a witness if the locality condition
does not hold. One problem with local model checking in its present form is that

OBDDs can not be used and thus it is slower than symbolic model checking.

Another problem is that the size of a successful tableau can be exponential in

8

the model. This would make error �nding even worse.

We present here the tableau construction described in [SW91].

The syntax of the �-calculus is extended to embrace a family of propositional

constant symbols. Associated with a constant U is a declaration of the form U =

A where A is a closed formula. A de�nition list is a sequence � of declarations

U1 = A1; : : : ; Un = An such that Ui 6= Uj whenever i 6= j and such that each

constant occurring in Ai is one of U1; : : : ; Ui�1. Let dom(�) = fU1; : : : ; Ung and

�(Ui) = Ai. �:(U = A) means appending U = A to the de�nition list �. A

de�nition list � is admissible for B if every constant occurring in B is declared

in �. In the following, thu vi shall stand for syntactic substitution of u by v

in t.

De�nition lists are used to keep track of the \dynamically changing" subfor-

mulae as �xpoints are unrolled.

De�nition 2

If � : U1 = A1; : : : ; Un = An is admissible for B then [[B�]]� =df [[B]]�n where

�0 = � and �i+1 = �i[[[Ai+1]]�i=Ui+1].

Lemma 3 [[B�:U=A]]� = [[(BhU Ai)�]]�

De�nition 3 (Tableau rules TR)

s `� p ^ q

s `� p s `� q

s `� p _ q

s `� p

s `� p _ q

s `� q

s `� hip

s0 `� p
(s; s0) 2 R

s `� []p

s1 `� p : : : sn `� p
fs1; : : : ; sng = fs

0j(s; s0) 2 Rg

s `� �Z:p

s `�0 U
B and �0 = �:U = �Z:p

s `� U

s `� phZ Ui
C and �(U) = �Z:p

9

The condition B is that the new U must be di�erent from any U 0 where there is a

t `�00 U 0 for some �00; t; appearing in the proof tree as a node above the current

premise s `� �Z:p. The condition C is that no node above the current premise,

s `� U , in the proof tree is labelled s `�0 U for some �0.

A tableau for s ` f is a maximal proof tree whose root is labelled with the

sequent s ` f . The sequents labelling the immediate successors of a node are

determined by application of one of the rules. Maximality means that no rule

applies to a sequent labelling a leaf of a tableau. We give here a more formal

de�nition of tableau which we need later to de�ne isomorphism in tableaux.

De�nition 4 (Tableau)

A tableau for s ` f is a triple (V;E; v) where V � N, E = V � V , and v labels

the vertices: v : V ! Seq where Seq = fs ` f js 2 S; f 2 L�g. V;E and v are

inductively de�ned:

1. 1 2 V , v(1) = s ` f

2. Vertices and edges can be added according to the tableau rules, i.e., if
s ` A

s1 ` A1 : : : sk ` Ak

a tableau rule then we can add new vertices fu1; : : : ; ukg

not already in V to V , with v(u1) = s1 ` A1; : : : ; v(uk) = sk ` Ak, and

edges (u0; u1); : : : ; (u0; uk) to E if v(u0) = s ` A.

A vertex is called a leaf if it does not have any outgoing edges. A tableau is

further required to be maximal, i.e., no rule applies to v(l) where l is an arbitrary

leaf.

Theorem 2 Every tableau for s ` f is �nite if M = (S;R;L) is �nite.

Proof: This was already proved in [SW91]. Here we give a much shorter and
more easily understandable proof.

All rules of TR decrease the length of the formula except the last one. Let

�X:p be a top-level subformula of f . Then the sequent s `� U with �(U) = �X:p

can occur at most jSj+1 times. This is because of the �niteness ofM and because
no other variables can cause another sequent t ` �X:p (since it is top-level). This

U can have spawned at most jSj similar tableaux for top-level �-subformulae of

�X:p.
We can repeat this argument for these �-subformulae of �X:p and their �-

subformulae until the smallest �-subformula has been reached.
As a consequence, there can be only �nitely many vertices in the tableau.

De�nition 5 (Successful tableau)

A successful tableau for s ` f is a �nite tableau in which every leaf is labelled by

a sequent t `� p ful�lling one of the following requirements:

10

1. p = P and P 2 L(t)

2. p = :P and P 62 L(t)

3. p = []q

4. p = U and �(U) = �Z:r

An unsuccessful tableau has at least one false leaf. An interesting failure is

when a leaf is labelled t `� U where �(U) = �Z:p and above it is a node labelled

t `�0 U .

The tableau rules work according to the semantic de�nition of the operators.

The only interesting case is �X:p(X). A variable is created which is di�erent

from all other variables created so far. This variable keeps track of the path

described by �X:p(X). In the case of �X:p(X), the tracking of the path can

successfully terminate when a state marked with s ` X is reached again. In the
case of �X:p(X) exactly this must not happen. Instead, the path must dissolve
by reaching p(false) when running along that path.

Theorem 3 (Stirling, Walker) s ` f has a successful tableau if and only if

s j= f .

The proof of this theorem consists of two parts. The authors, however, make
it themselves too easy when they prove the direction \If s j= f then s ` f has

a successful tableau.". It does not su�ce to know the iteration when a state is
added to �X:p. It is also important to make the right choices when at a state
s ` p_q or s ` hip. If making the wrong choice, the tableau can contain a loop in
the case of �X:p, i.e., the tableau can contain a leaf t `� U with �(U) = �X:p,
thus making it unsuccessful. This can be avoided by using the information saved

at prior model checking as in Algorithm 1. The de�nitions and proofs for the
pseudo tableau in the next section correct the proof for the mentioned direction.

4 Constructing a tableau from information from

prior symbolic model checking

De�nition 6 (Reverse substitution)

Let � = (U1 = : : :) : : : (Un = : : :). Then

� �(U) = Z if �(U) = �Z:p

� f = ((fhUn �(Un)i) : : : hU1 �(U1)i)

f is f where the declaration constants are substituted by the original vari-

ables in the formula.

� s ` f = s ` f

11

� f~x = f
~x

We extend the de�nition ofmin and s 2 p to formulae p containing declaration

constants:

min(s; p) =

8<
:
pv(min(s;p)) l(s; p) = true

? otherwise

s 2 p~x , s 2 p~x

De�nition 7 (Tableau rules PTR)

s `� (p ^ q)~x

s `� min(s; p) s `� min(s; q)

s `� (p _ q)~x

choose(s `� (p _ q)~x)

s `� (hip)~x

choose(s `� (hip)~x)

s `� ([]p)~x

s1 `� min(s1; p) : : : sn `� min(sn; p)
fs1; : : : ; sng = fs

0j(s; s0) 2 Rg

s `� (�Z:p)~x

s `�0 U~y
B and �0 = �:U = �Z:p ^ ~y = v(min(s; Z))

s `� U~x

s `� (phZ Ui)~y
C and �(U) = �Z:p ^ ~y = min(s; p)

The condition B is that the new U must be di�erent from any U 0 where there is

a t `�00 (U 0)~z for some �00; t; ~z; appearing in the proof tree as a node above the

current premise s `� (�Z:p)~x. The condition C is that no node above the current

premise, s `� U~x, in the proof tree is labelled s `�0 U~x for some �0.

choose(s `� (p _ q)~x) =

choose u 2 fs `� min(s; p)jv(min(s; p)) � ~xg [fs `� min(s; q)jv(min(s; q))� ~xg;

return u;

choose(s `� (hip)~x) =
choose s0 2 fs00j(s; s00) 2 R ^ s00 2 p~z ^ ~z � ~xg;

return s0 `� min(s0; p);

12

De�nition 8 (Pseudo tableau)

A pseudo tableau for s ` f is a tableau for s ` min(s; f) where the rules PTR

are used instead of TR.

Theorem 4 Every pseudo tableau for s ` f is �nite if M is �nite.

Proof: In the same way as the proof for the �niteness of a tableau.

De�nition 9 (Successful pseudo tableau)

A successful pseudo tableau for s ` f is a �nite pseudo tableau for s ` f in which

every leaf is labelled by a sequent t `� p~x ful�lling the same requirements as in

the successful tableau.

Theorem 5 If s 2 [[f]]� then s ` f has a successful pseudo tableau.

Proof: The tableau rules PTR guarantee that for the successors t ` g also
t 2 [[g]]�. Therefore, all nodes in the tableau are true since the tableau is started

with a true root. It is clear from the semantics and the model checking algorithm
that there are always such successors except for nodes which do not ful�ll the
side conditions fs1; : : : ; sng 6= ; or C of the fourth and sixth rule, respectively.

The leaves of the maximal pseudo tableau will therefore be of the types s ` p~x

where p = P; p = :P; p = []q; p = U . All that remains to be shown in order for

the pseudo tableau to be successful is that if p = U then �(U) = �Z:r. This is
done in the following argument.

All tableau rules PTR do not increase ~x. This follows from Lemma 2 and
Fact 1. Fact 1 implies that the last rule, actually decreases ~x if �(U) = �Z:p.
Furthermore, the last rule has to be applied before any new t `� U~y can be

reached. As a consequence, if �(U) = �Z:p then for s ` U~x and t ` U~y lying
on a path in the pseudo tableau where s appears before t it holds that ~y < ~x.
Therefore, s and t must be di�erent since there can be at most one ~x with
v(min(s; Z)) = ~x (The unique minimum is always chosen.). It follows that there
can not be a leaf u `� U with �(U) = (�Z:p)~x.

Theorem 6 If s 2 [[f]]� then s ` f has a successful tableau.

Proof: A successful tableau can be easily obtained from a successful pseudo

tableau by stripping o� the ~x from all formulae in the pseudo tableau.

13

5 Exploiting isomorphism in pseudo tableaux

5.1 Collapsed isomorphic pseudo tableaux

De�nition 10 (Isomorphic edges in a tableau)

Let (V;E; v) be a tableau. Then, two edges in the tableau (i; j) 2 E and (k; l) 2 E

are called isomorphic ((i; j) � (k; l)) i� v(i) = v(k) ^ v(j) = v(l).

Since isomorphic edges have the same structure it is enough to show just one

of them to the user who wants to �nd an error. In order to make the reduced

tableau as small as possible it is advantageous to have as many isomorphic edges

as possible. This leads to the following de�nition.

De�nition 11 (Isomorphic pseudo tableau (IPT))

An isomorphic pseudo tableau for s ` f is de�ned in the same way as the pseudo

tableau except that the construction has to proceed according to an additional

constraint: whenever at a state s ` f2 and there is a sequent s ` f1 already

reached with f1 = f2 then the same choices have to be made at s ` f2 as were

made at s ` f1. I.e., if s ` f2 and s ` f1 are not leaves and
s ` f1

s1 ` A1 : : : sk ` Ak

was applied to s ` f1 then
s ` f2

s1 ` B1 : : : sk ` Bk

where Ai = Bi is applied at s ` f2.

I.e., choose(s `� f~x2) = choose(s `�0 f~x1) for all such f1; f2.

De�nition 12 (Collapsed isomorphic pseudo tableau (CIPT))

Let T = (V;E; v) be a isomorphic pseudo tableau. We de�ne the following

equivalence relation on V :

8i; j 2 V : i � j , v(i) = v(j)

[i] = fjji � jg denotes the equivalence class induced by this equivalence relation.

The collapsed isomorphic pseudo tableau T� = (V�; E�; v�) is then de�ned as

V� = f[i]ji 2 V g

E� = f([i]; [j])j9k; l 2 V : k 2 [i]^ l 2 [j] ^ (k; l) 2 Eg = f([i]; [j])j(i; j) 2 Eg

v� : V� ! Seq

v�([i]) = v(i)

Note that a collapsed isomorphic pseudo tableau is no longer a tree.

Lemma 4 Let T� = (V�; E�; v�) be the collapsed isomorphic pseudo tableau for

s ` f in the model M = (S;R;L). Then jV�j � jf j � jSj.

14

5.2 Direct construction of collapsed isomorphic pseudo

tableaux

First constructing an isomorphic pseudo tableau and then collapsing it is time

consuming. The following algorithm constructs a collapsed isomorphic pseudo

tableau directly.

Algorithm 2 (Direct CIPT construction)

function choose(s ` f~x: Seq):Seq

begin

case f of the form

p _ q : if (v(min(s; p)) � ~x) ^ (v(min(s; q)) � ~x) then

begin

choose u := s ` min(s; p) or u := s ` min(s; q)

return u;

end

else if (v(min(s; p)) � ~x) then return s ` min(s; p)

else return s ` min(s; q)
hip : choose s0 such that s0 2 fs00j(s; s00) 2 R ^ s00 2 p~z ^ ~z � ~xg

return s0 ` min(s0; p)
end

procedure newnode(s ` f~x: Seq,k: node)
begin

if (s ` f~x) 2 v(V) then E := E [f(k; i)g where v(i) = s ` f~x

else

begin

create node j with j 62 V ;

V := V [fjg; v(j) := s ` f~x;E := E [f(k; j)g;
c(s ` f~x; j)

end

end

procedure c(s ` f~x: Seq, k: node)

begin

case f of the form

P;:P : return;

p ^ q : newnode(s ` min(s,p),k);

newnode(s ` min(s,q),k);

p _ q : u := choose(s ` (p _ q)~x);

newnode(u,k);

hip : u := choose(s ` (hip)~x);

newnode(u,k);

15

[]p : for all s0 with (s; s0) 2 R do

newnode(s0 ` min(s',p),k);

�X:p(X) : newnode(s ` min(s,X),k);

X : newnode(s ` min(s,b'(X)),k);

esac

end

V := f1g; v(1) := s ` min(s; f);E := ;; c(s ` min(s; f); 1);

for all k 2 V : strip o� ~x from v(k);

Theorem 7 The tableau W constructed for s ` f by Algorithm 2 is identical

to the collapsed isomorphic pseudo tableau CIPT for s ` f provided that choose

chooses in the same way.

Proof: We need to show that

s ` f1

t ` f2
2 CIPT ,

s ` f1

t ` f2
2 W

Let CIPT be obtained by collapsing the isomorphic pseudo tableau IPT .
Since

s ` f1

t ` f2
2 IPT ,

s ` f1

t ` f2
2 CIPT

it su�ces to show that

s ` f1
t ` f2

2 IPT ,
s ` f1

t ` f2
2 W

We use the following induction hypothesis: c(s ` f) constructs a proof tree
which contains all proof trees for s ` fi with fi = f as isomorphic subtrees.

The rules for constructing IPT and W are the same. Also the choices are
made in the same way. As a consequence, the only di�erence can occur when

c(s ` f) reaches a vertex with the label t ` g again. c would stop in this case

whereas the construction for some of the t ` gi with gi = g in IPT might go on.

However, t ` g could only have been added by c(t ` g) which already ensures by
the induction hypothesis that all proof trees for t ` gi are contained as isomorphic
subtrees in W.

Theorem 8 Algorithm 2 has time complexity O(jf j � jM j).

Proof: Obvious.

Note, however, that information from prior symbolic model checking is needed
for Algorithm 2 to work. Therefore, the total complexity of constructing a col-

lapsed IPT is the sum of these two complexities.

16

6 Super-collapsed isomorphic pseudo tableau

De�nition 13 (Super-collapsed isomorphic pseudo tableau (SCIPT))

Let T� = (V�; E�; v�) be a collapsed isomorphic pseudo tableau. We de�ne the

following equivalence relation on V�:

8[i]; [j] 2 V� : [i] P [j], (v([i]) = s ` f) ^ (v[j] = t ` g) ^ (s = t)

bic = f[j]j[i] P [j]g denotes the equivalence class induced by P. Then

T
P

= (V
P
; E

P
; v
P
) is the corresponding super-collapsed isomorphic pseudo

tableau where

V
P
= fbicj[i] 2 V�g

E
P
= f(bic; bjc)j9[k]; [l] 2 V� : [k] 2 bic ^ [l] 2 bjc ^ ([k]; [l]) 2 E�g

v
P
: V

P
! P(Seq)

v
P
(bic) = fv�([j])j[j] 2 bicg

Lemma 5 Let T
P

= (V
P
; E

P
; v
P
) be the super-collapsed isomorphic pseudo

tableau for s ` f in the model M = (S;R;L). Then jV
P
j � jSj.

We can easily adapt the direct algorithm to one which constructs a super-
collapsed IPT. In the following algorithm, we identify vertices with states.

Algorithm 3 (Direct SCIPT construction)

procedure c(s ` f~x)
begin

if s ` f~x 2 v(s) then return

else

begin

v(s) := v(s) [fs ` f~xg
case f of the form

P;:P : return;

p ^ q : c(s ` min(s; p)); c(s ` min(s; q));

p _ q : u := choose(s ` f~x); c(u);
hip : let s0 ` p~y =choose(s ` f~x);

if s 6= s0 then begin V := V [fs0g;E := E [f(s; s0)g end;

c(s0 ` p~y);

[]p : for all s0 with (s; s0) 2 R do

begin

if s 6= s0 then begin V := V [fs0g;E := E [f(s; s0)g end;
c(s0 ` min(s; p))

end;

�X:p(X) : c(s ` min(s;X));

17

X : c(s ` min(s; b0(X)));

esac

end

end

V := fsg;E := ;; for all s 2 S do v(s) := ;; c(s ` min(s; f));

for all s 2 V for all p~x 2 v(s) : strip o� ~x from p~x;

Theorem 9 The tableau W constructed for s ` f by Algorithm 3 is identical to

the super collapsed isomorphic pseudo tableau SCIPT for s ` f provided that

choose chooses in the same way.

Proof: Let SCIPT be obtained by super-collapsing the isomorphic pseudo

tableau IPT . It su�ces to show that

s ` f1

t ` f2
2 IPT ,

s ` f1

t ` f2
2 W

if s 6= t and
s ` f1

s ` f2
2 IPT , fs ` f1; s ` f2g 2 v(s)

We use the following induction hypothesis: c(s ` f) constructs a proof tree
which contains all proof trees for s ` fi with fi = f as subtrees isomorphic to
these except that subsequent vertices i, j with v(i) = s ` p and v(j) = s ` q are

collapsed into one vertex.
The rules for constructing IPT and W are the same except for the wanted

di�erence just described. Also the choices are made in the same way. As a
consequence, the only di�erence can occur when a call c(t ` g) reaches a vertex
t with (t ` g) 2 v(t) again. c would stop in this case whereas the construction

for some of the t ` gi with gi = g in IPT might go on. However, t ` g could only
have been added by c(t ` g) which already ensures by the induction hypothesis
that all proof trees for t ` gi are contained as super-collapsed subtrees in W.

Theorem 10 Algorithm 2 has time complexity O(jf j � jM j).

Proof: Obvious.

In fact, this algorithm is more or less equivalent to the algorithm presented
in [Kic95].

It also turns out that the de�nition of super-collapsed IPT is equivalent to

the direct de�nition of witness in [Kic95].

18

7 Conclusions

In this paper, we have derived in a formal way a de�nition of witness for the

truth of �-calculus formulae in a given model M = (S;R;L) from the de�nition

of tableaux. This paper also shows that the more ad hoc de�nition given in

[Kic95] is equivalent to the formally derived de�nition of witness in this paper.

References

[Bry92] R. E. Bryant. Symbolic boolean manipulation with ordered binary de-

cision diagrams. ACM Computing Surveys, 24(3):293 { 318, Septem-

ber 1992.

[CGL93] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-

state concurrent systems. In de Bakker, editor, A Decade of Con-

currency, REX School/Symposium, volume 803 of LNCS, pages 124
{ 175. Springer, 1993.

[CGMZ94] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. E�cient gen-
eration of counterexamples and witnesses in symbolic model check-
ing. Technical Report CMU-CS-94-204, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, October 1994.

[Cle90] Rance Cleaveland. Tableau-based model checking in the propositional
mu-calculus. Acta Inf., 27:725{747, 1990.

[EL86] E. A. Emerson and C.-L. Lei. E�cient model checking in fragments
of the propositional mu-calculus. In IEEE Symposium on Logic in

Computer Science, pages 267{278, 1986.

[Kic95] A. Kick. Tableaux and witnesses for the �-calculus. Technical Report
44/95, Faculty of Computer Science, University of Karlsruhe, D-76128
Karlsruhe, Germany, October 1995.

[Koz83] D. Kozen. Results on the propositional �-calculus. Theoretical Com-

puter Science, 27:333{354, 1983.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Boston,USA, 1993.

[SW91] Stirling and Walker. Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89, 1991.

19

