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Recent experiments on the proximity induced supercurrent in mesoscopic

normal wires revealed a surprising temperature dependence. They suggest

clean-limit behavior although the wires are strongly disordered. We demon-

strate that this unexpected scaling is actually contained in the conventional

description of di�usive superconductors and �nd excellent agreement with

the experimental results. In addition we propose a SQUID-like proximity

structure for further experimental investigations of the e�ects in question.
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1. Introduction

A normal metal in direct contact with a superconductor acquires su-

perconducting properties.1,2 Although this proximity e�ect has been dis-

cussed for a long time, it has recently attracted new attention because of

the dramatic progress in nanotechnology which allows the fabrication and

study of metallic structures in the mesoscopic regime. Due to the prox-

imity e�ect a supercurrent can 
ow through a normal metal between two

superconductors.3{5 Recently, this current has been detected by Courtois et

al.6 in a thin normal wire in the di�usive regime with superconducting strips

deposited on its top (see Fig. 1).

The supercurrent is determined by an overlap of Cooper-pair wave func-

tions penetrating into the normal wire from the superconducting strips.

Since in the di�usive limit the e�ective penetration length is of order1,2

�N =
p
D=2�T one should expect that the supercurrent in the system is

proportional to4,5 Ic(T ) / e�
p
T=T0 . In contrast, the experimental data of

Ref.6 showed a much better �t to the dependence Ic(T ) / e�T=T1 , which is

typical for ballistic systems.3 Furthermore, the �tting parameter T1 deviated
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Fig. 1. Experimental geometry

from standard clean-limit results by more than one order of magnitude. This

has raised the question, whether the usual criterion distinguishing between

ballistic and di�usive limits is correct when applied to proximity induced

superconductivity in the normal metal, or whether the above phenomenon

has to be attributed to quantum e�ects not contained in the quasiclassical

theory of superconductivity.

Below we will demonstrate that neither of these conjectures is true.

We employ a quasiclassical calculation of the supercurrent in the proxim-

ity structures of Fig. 1 and show the corresponding results agree well with

the experimental data.6 Furthermore, we will also propose a new, equiva-

lent experiment, where superconducting material is deposited onto a normal

ring. In this 'proximity SQUID' the magnetic 
ux through the ring is the

equivalent of the phase di�erence across the normal wire.

2. The Model and the Formalism

Since the critical current of the structure of Fig.1 is determined by the

longest SNS-cell which serves as a \bottleneck" it is su�cient to study a

single cell. We denote the distance between these two adjacent supercon-

ducting strips as d and consider the case where d is much larger than the

strips' thickness.

We will use the standard formalism of quasiclassical Green's functions7

in the di�usive limit8 For a thin normal wire with a thickness � �N (this

condition is well justi�ed in the experiment6) the Green functions in the

wire directly below superconducting strips are equal to those of a supercon-

ductor for all relevant energies.9 In what follows we further assume that

the superconductors have bulk properties, neglecting any suppression of the

superconducting gap � in the strips in the vicinity of SN boundaries.

3. Solution and Results

Details of the formalsim and the calculation will be published in a future

publication, so we will only present the key results here.

A characteristic energy scale is provided by the Thouless energy Ed =



Superconducting properties of thin proximity wires

D=d2, where D is the di�usion constant. For high temperatures, T � Ed

(equivalent to the geometrical condition d � �N ), the mutual in
uence be-

tween the superconductors can be neglected. In this approximation, we get

the current-phase relation I = Ic sin(') with critical current

Ic =
64�

3 + 2
p
2

T

eRN

d

�N
exp

�
�

d

�N

�
/ T q exp

 
�

s
T

T0

!
(1)

with 2�T0 = Ed, q = 3=2 and RN is the normal state resistance of the normal

part. For comparison, the expression following from the Ginzburg-Landau

analysis2 has the same T -dependence but with q = 1=2. On the other hand,

in the clean limit one expects a temperature dependence Ic / e�T=T1 .

At this stage we note a remarkable mathematical artefact caused by the

exponent q = 3=2. The logarithmical derivative of (1)

dIc(T )

Ic(T )dT
=

�
3

2T
�

1

2
p
TT0

�

has a minimum at T = 36T0 and varies very slowly at higher temperatures,

so log Ic is almost linear in T . As a good approximation for the slope in a

logplot, we can take the logarithmical derivative in the minimum and get

Ic / e�T=T
�

where T � = 24T0. This implies that within a considerable tem-

perature interval a \quasi-clean" scaling is found also in dirty SNS systems,

which explains the behavior found in the experiments of Courtois et al.6

In the low temperature limit T = 0 another simple estimate for the

critical current can be derived.

Ic =
�

RNe
arctan

�
Ed

2�

�
Ed���!

D

2RNed2
: (2)

This demonstrates the importance of the Thouless energy as a relevant en-

ergy scale in SNS-junctions at Ed � �. The Thouless energy also determines

the proximity induced e�ective gap in the quasiparticle spectrum of the N-

metal (see Ref.10 and further references therein). We further note that (2)

resembles the well-known Ambegaokar-Barato� formula for the critical cur-

rent of a Josephson tunnel junction at T = 0 if we substitute D=d2 by the

gap � �. Thus our results emphasize that the Thouless energy in a di�u-

sive proximity coupled normal wire plays the same role as the gap � in a

\strong" superconductor and does not only determine the density of states,

but also the critical current.

A solution of the full problem as obtained numerically is shown in �g

2. The result matches quantitatively to the experiments, if d is chosen

slightly larger than the average cell length of the experiment. This re
ects

the fact, that the critical current of the whole chain is determined by the
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Fig. 3. Current phase relation, parameters as in the experiment, see Fig. 2

ring. For this reason, at x = 0 the gauge-invariant phase drops by

� = '(0+) � '(0�) = 2e

I
dr A(r) =

2e�

�h
;

where � is the magnetic 
ux through the ring.

Taking into account the self-inductance, this system is completely equiv-

alent to a standard SQUID formed by a superconducting loop interrupted

by a weak link. The con�guration considered here is complementary: a nor-

mal loop is interrupted by a narrow superconducting strip, but due to the

proximity e�ect it shows the same properties as the standard SQUID.

At relatively high temperatures the supercurrent in the normal prox-

imity loop is exponentially small. However, as the temperature is lowered

below the corresponding Thouless energy the supercurrent becomes large

(cf. (2)) and can be easily detected experimentally. Also the current-phase

relation of a di�usive SNS structure can be easily studied.

5. Conclusions

Making use of a standard quasiclassical formalism of the superconduc-

tivity theory we evaluated the supercurrent in mesoscopic proximity wires.

Our results match quantitatively with the experimental data6 thus demon-

strating that the quasiclassical theory of superconductivity is su�cient for
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Fig. 4. Proximity SQUID

the description of these systems. The deviations of the current-phase rela-

tion from sinusodiality are found to be small even at very low temperatures.

Finally we argue that a normal-metall loop interrupted by a narrow super-

conducting strip has the same properties as a standard SQUID and can be

used for further experimental investigations of the proximity e�ect in meso-

scopic systems.
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