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Supercurrent in a mesoscopic proximity wire

Frank K. Wilhelm, Andrei D. Zaikin, and Gerd Schén

Institut fiir Theoretische Festkirperphysik, Universitit Karlsruhe (TH), D-76128
Karlsruhe, Germany

Recent experiments on the proximity induced supercurrent in mesoscopic
normal wires revealed a surprising temperature dependence. They suggest
clean-limit behavior although the wires are strongly disordered. We demon-
strate that this unexpected scaling is actually contained in the conventional
description of diffusive superconductors and find excellent agreement with
the experimental results. In addition we propose a SQUID-like prozimity
structure for further experimental investigations of the effects in question.
PACS: 73.23.Ps, 74.50.+r, 74.80.Fp

1. Introduction

A normal metal in direct contact with a superconductor acquires su-
perconducting properties.’»? Although this proximity effect has been dis-
cussed for a long time, it has recently attracted new attention because of
the dramatic progress in nanotechnology which allows the fabrication and
study of metallic structures in the mesoscopic regime. Due to the prox-
imity effect a supercurrent can flow through a normal metal between two
superconductors.®® Recently, this current has been detected by Courtois et
al.% in a thin normal wire in the diffusive regime with superconducting strips
deposited on its top (see Fig. 1).

The supercurrent is determined by an overlap of Cooper-pair wave func-
tions penetrating into the normal wire from the superconducting strips.
Since in the diffusive limit the effective penetration length is of order'?
En = /D/2nT one should expect that the supercurrent in the system is

proportional to*® I(T) o e VT/T0_ In contrast, the experimental data of
Ref.% showed a much better fit to the dependence I (T) o e /T, which is
typical for ballistic systems.? Furthermore, the fitting parameter T} deviated


https://core.ac.uk/display/197599041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Superconducting properties of thin proximity wires

N — = N$e”

Proximity-induced superconductivity

Fig. 1. Experimental geometry

from standard clean-limit results by more than one order of magnitude. This
has raised the question, whether the usual criterion distinguishing between
ballistic and diffusive limits is correct when applied to proximity induced
superconductivity in the normal metal, or whether the above phenomenon
has to be attributed to quantum effects not contained in the quasiclassical
theory of superconductivity.

Below we will demonstrate that neither of these conjectures is true.
We employ a quasiclassical calculation of the supercurrent in the proxim-
ity structures of Fig. 1 and show the corresponding results agree well with
the experimental data.® Furthermore, we will also propose a new, equiva-
lent experiment, where superconducting material is deposited onto a normal
ring. In this ’proximity SQUID’ the magnetic flux through the ring is the
equivalent of the phase difference across the normal wire.

2. The Model and the Formalism

Since the critical current of the structure of Fig.1 is determined by the
longest SNS-cell which serves as a “bottleneck” it is sufficient to study a
single cell. We denote the distance between these two adjacent supercon-
ducting strips as d and consider the case where d is much larger than the
strips’ thickness.

We will use the standard formalism of quasiclassical Green’s functions
in the diffusive limit® For a thin normal wire with a thickness < &y (this
condition is well justified in the experiment®) the Green functions in the
wire directly below superconducting strips are equal to those of a supercon-
ductor for all relevant energies.” In what follows we further assume that
the superconductors have bulk properties, neglecting any suppression of the
superconducting gap A in the strips in the vicinity of SN boundaries.
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3. Solution and Results

Details of the formalsim and the calculation will be published in a future
publication, so we will only present the key results here.
A characteristic energy scale is provided by the Thouless energy E4 =



Superconducting properties of thin proximity wires

D/d?, where D is the diffusion constant. For high temperatures, T > Ey4
(equivalent to the geometrical condition d > £y), the mutual influence be-
tween the superconductors can be neglected. In this approximation, we get
the current-phase relation I = I.sin(y) with critical current
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with 27Ty = E4, ¢ = 3/2 and Ry is the normal state resistance of the normal
part. For comparison, the expression following from the Ginzburg-Landau
analysis? has the same T-dependence but with ¢ = 1/2. On the other hand,
in the clean limit one expects a temperature dependence I, & e /1.

At this stage we note a remarkable mathematical artefact caused by the
exponent ¢ = 3/2. The logarithmical derivative of (1)

dI(T) (3 1
I(T)dT <ﬁ ~2JTT, )

has a minimum at 7' = 367y and varies very slowly at higher temperatures,
so log I, is almost linear in T'. As a good approximation for the slope in a
logplot, we can take the logarithmical derivative in the minimum and get
I, x e T/T" where T* = 24T},. This implies that within a considerable tem-
perature interval a “quasi-clean” scaling is found also in dirty SNS systems,
which explains the behavior found in the experiments of Courtois et al.%

In the low temperature limit T = 0 another simple estimate for the
critical current can be derived.
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This demonstrates the importance of the Thouless energy as a relevant en-
ergy scale in SNS-junctions at £y < A. The Thouless energy also determines
the proximity induced effective gap in the quasiparticle spectrum of the N-
metal (see Ref.!? and further references therein). We further note that (2)
resembles the well-known Ambegaokar-Baratoff formula for the critical cur-
rent of a Josephson tunnel junction at 7' = 0 if we substitute D/d? by the
gap ~ A. Thus our results emphasize that the Thouless energy in a diffu-
sive proximity coupled normal wire plays the same role as the gap A in a
“strong” superconductor and does not only determine the density of states,
but also the critical current.
A solution of the full problem as obtained numerically is shown in fig
2. The result matches quantitatively to the experiments, if d is chosen
slightly larger than the average cell length of the experiment. This reflects
the fact, that the critical current of the whole chain is determined by the
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Fig. 2. Critical current for the experimental parameters [6], experimental
data are supplied by H.Courtois

longest SNS-cell with the lowest I.. The adjustment lies within the range
of experimental accuracy. In general the current-phase relation I(p) may
deviate from sinusodiality.*> We investigated also this property, but found
in the SNS geometry nearly no deviation down to very low temperatures
(see Fig. 3).

4. The Proximity SQUID

The proximity induced supercurrent should lead to an interesting flux-
periodic behavior of the “proximity loop” structure shown in Fig. 4. A
normal ring is contacted over a range of lentgh dg by superconducting ma-
terial. If the ring is narrow it can be mapped onto the linear system dis-
cussed above by absorbing the vector potential in the gauge invariant phase
o(r) = po(r)+2e [y dr’ A(r"). Le. the anomalous Green’s function F' carries
the phase factor exp[ipy(r)], but a(r) and ¢(r) satisfy the Usadel equation
with appropriate boundary conditions and the substitution d = L—dg. Since
the Green’s functions must be single-valued at every point of the ring, the
“real” phase ¢ can change only by multiples of 27 when circling around the
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Fig. 3. Current phase relation, parameters as in the experiment, see Fig. 2

ring. For this reason, at x = 0 the gauge-invariant phase drops by

6= p(04)  p(0-) = 2e f ar a(r) = 22,
where @ is the magnetic flux through the ring.

Taking into account the self-inductance, this system is completely equiv-
alent to a standard SQUID formed by a superconducting loop interrupted
by a weak link. The configuration considered here is complementary: a nor-
mal loop is interrupted by a narrow superconducting strip, but due to the
proximity effect it shows the same properties as the standard SQUID.

At relatively high temperatures the supercurrent in the normal prox-
imity loop is exponentially small. However, as the temperature is lowered
below the corresponding Thouless energy the supercurrent becomes large
(cf. (2)) and can be easily detected experimentally. Also the current-phase
relation of a diffusive SNS structure can be easily studied.

5. Conclusions

Making use of a standard quasiclassical formalism of the superconduc-
tivity theory we evaluated the supercurrent in mesoscopic proximity wires.
Our results match quantitatively with the experimental data thus demon-
strating that the quasiclassical theory of superconductivity is sufficient for
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Fig. 4. Proximity SQUID

the description of these systems. The deviations of the current-phase rela-
tion from sinusodiality are found to be small even at very low temperatures.
Finally we argue that a normal-metall loop interrupted by a narrow super-
conducting strip has the same properties as a standard SQUID and can be
used for further experimental investigations of the proximity effect in meso-
scopic systems.
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