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Abstract. Knowledge Discovery in Databases (KDD) is currently a hot

topic in industry and academia. Although KDD is now widely accepted

as a complex process of many di�erent phases, the focus of research be-

hind most emerging products is on underlying algorithms and modelling

techniques. The main bottleneck for KDD applications is not the lack of

techniques. The challenge is to exploit and combine existing algorithms

e�ectively, and help the user during all phases of the KDD process. In

this paper, we describe the project Citrus which addresses these practi-
cally relevant issues. Starting from a commercially available system, we

develop a scaleable, extensible tool inherently based on the view of KDD

as an interactive and iterative process. We sketch the main components

of this system, namely an information manager for e�ective retrieval of

data and results, an execution server for e�cient execution, and a process

support interface for guiding the user through the process.

1 Introduction

Knowledge Discovery in Databases (KDD) is currently a hot topic in industry
and academia. Unfortunately, the focus of research behind most emerging prod-
ucts is on underlying algorithms and modelling techniques. From a practical
point of view, the main bottleneck for KDD applications is not the lack of tech-
niques. The challenge is to exploit and combine existing algorithms e�ectively.

Today, KDD projects are typically approached in an unstructured, ad hoc
manner. In many cases, the approach taken is heavily inuenced by tools already
available in the organisation, which may be many and disparate. The user will
often embark on an initial analysis or modelling task; the results of this may
cause him to try a new technique; that in turn may suggest restructuring the
data and running a new analysis; and so on. In the worst case, this is almost a
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blind search; the user stumbles from step to step, driven by results of previous
stages and gut feel as to what is an appropriate thing to do next. For small scale,
relatively simple projects, this approach may well bear fruit - the user stumbling
onto a good result. But the larger and more complex the application, the lower
the likelihood of success.

At Daimler-Benz we were (and still are) actively involved in many KDD ap-
plication projects. In almost all of them the lack of a methodology and proper
tool support lead to minor or even major problems. For instance, we spent a lot
of time shu�ing around data and transforming them for di�erent techniques, set-
ting up experiments, adjusting parameters, trying to keep track of the progress,
recomputing results somebody else computed before and so on. In the end, there
were typically wasted resources and unnecessarily long development times.

Additionally, the result of a KDD application depends to a large degree on
the persons doing the work. Everybody has his own area of expertise but also
weak points, and so we sometimes end up with sub-optimal solutions when the
person working on the project was not an expert in the method which would
have produced a better result.

Problems like the ones mentioned above are quite common in KDD. We
identi�ed the lack of a usable process model with proper tool support and a
sophisticated multi-paradigm toolkit as the main causes for these problems.

In this paper, we describe the ongoing projectCitrus addressing these prac-
tically relevant issues. The development of Citrus is driven by applications.
Therefore, we �rst describe one of the applications which is used to concretise
the requirements of Citrus. Then, we outline a process model which forms the
conceptual backbone of Citrus. In this paper, we focus on three major compo-
nents of the system, the information manager, the execution server, and the pro-
cess support interface and user guidance, which will be described subsequently.
Finally, we sketch further extensions and conclude.

2 An Application Example

InWirth & Reinartz (1996), we introduced a multi-strategy approach for the pre-
diction of various aspects of the fault pro�le of a set of cars in a large automotive
database. We addressed the following problem: Do there exist sub-populations
of cars which, in certain aspects, behave like the whole population of cars at a
later point in time? If yes, how can they be characterised by easily observable
attributes? In the following, we call such sub-populations early indicator cars
(EICs).

The EIC method consists of three major steps: In the �rst step, the fault
pro�le of the whole population of cars at a certain time Tg is characterised. A
fault pro�le is a vague term which could be de�ned in various ways. In any case,
it will be described in terms of fault relevant attributes.

In the second step, EICs need to be selected. For this purpose, we compute
the values for the fault attributes at an earlier time Teic. Those cars which �t
the fault pro�le of the whole population at Teic are considered to be EICs.



In order to generate a characterisation of the EICs in the third step, we
have to take into account that EICs need to be identi�ed at production time
or shortly after. Therefore, we cannot use attributes that relate directly to the
fault pro�le. EICs need to be characterised by easily observable attributes, like
type and con�guration of a car or areas where it was sold. This requires the use
of two separate sets of attributes. One set is related to the fault pro�le and the
other set contains attributes that can be observed at production time.

There are many degrees of freedom. For each of these steps, di�erent tech-
niques can be applied. Then there are many parameterswhich a�ect the outcome.
These parameters include the learning period, the attributes for the fault pro�le
and the con�guration, the times Tg and Teic, and the parameters of the learning
techniques.

While the feedback from the end users was very positive, the initial imple-
mentation was limited in various ways:

{ The prototype consisted of a multitude of database operations and algo-
rithms connected by additional data transformation steps. In particular,
most of the e�ort had to be spent on putting together operations for the
pre-processing phase. Thus, experimentation with di�erent data sets and
parameters was very costly.

{ The same or a similar results (e.g., data sets, distributions etc.) were com-
puted several times from the original large database. Since this involved
many joins over several tables, re-computing again was very time-consuming.
If the user wanted to avoid this re-computation, he had to store and manage
the results himself. But then it was hard to keep an overview of the various
data sets, the parameters used in constructing the data sets, and - most
importantly - the results which were derived from the data sets.

{ During the process of detecting EICs, documentation of the experiments
and results had been neglected because of the considerable overhead and the
lack of an adequate methodology. This made it very hard to remember which
experiments had been carried out, which features had been computed, and
which results or experience had been gained.

{ The process is very complex. An ordinary user who wants to perform exper-
iments with di�erent techniques, attributes, or data sets was quickly over-
whelmed with the decisions required from him. The user was not supported
in these decisions.

All of these limitations are addressed in Citrus. In fact, the requirements
from the EIC realisation are among the main driving factors forCitrus. Breitner
et al. (1997) and Engels et al. (1997) address information management and user
guidance issues, respectively, of Citrus in the context of the EIC method.

3 A Process Model of KDD

All components of Citrus are based on the view of KDD as a highly interac-
tive and iterative process which requires substantial human e�ort and skills (cf.



Brachman & Anand, 1994; Reinartz & Wirth, 1995; Adriaans & Zantinge, 1996).
Here, we outline a process model we are developing. A full description is beyond
the scope of this paper.

The life cycle of a KDD project consists of nine phases. Each phase can be
broken down into tasks with input, output, and activities. Moving back and forth
between di�erent phases and/or tasks is typically required. It depends on the
outcome of each phase which phase, or which task of a phase, must be performed
next.

The requirements and feasibility analysis phase aims at the precise de�nition
of the project objectives and the data mining goals. The �nal outcome of the
requirements and feasibility analysis is a set of recommendations for the further
proceeding and the preparation of subsequent phases as a skeleton process plan.

In the domain analysis phase the relevant knowledge on the application do-
main, on the data, on the features, and on the environment is analysed and
documented. At the end of this phase, the initial process plan is re�ned.

The data access phase is mainly technical and provides the data set and the
required knowledge which are used for subsequent phases.

The preparation phase contains all tasks that need to be performed before
the application of modelling and discovery techniques. This includes data and
feature selection as well as transformation and cleaning of data for exploration
and analysis tools. The preparation phase is typically iterative and usually the
most time-consuming part of a KDD project. In particular, the concrete activities
are highly dependent on the techniques that will be used for modelling and
discovery.

In the exploration phase, the main objective is to get familiar with the data,
discover �rst insights into the data, or to identify interesting subsets of data and
features to form hypotheses for hidden information.

Both the preparation and exploration phase involve the frequent generation of
data sets and information about these data sets. In practice, many data sets and
intermediate results are computed several times. For documentation purposes,
it is not easy to keep track of what had been done. Later, we show how proper
information management can help to avoid these di�culties.

In the application of modelling and discovery techniques phase, various data
mining algorithms are selected and applied, and their parameters are calibrated
to optimal values. Typically, there are several techniques for the same data min-
ing goal. Some techniques have speci�c requirements on the form of data. There-
fore, another data preparation and transformation step is often needed.

In the interpretation and evaluation phase, the data mining results are inter-
preted in business terms and evaluated according to the success and evaluation
criteria speci�ed in the requirements and feasibility analysis phase. Shortcomings
need to be identi�ed and, typically, new experiments will be set up.

When the project results meet the success criteria, the results must be de-
ployed. Depending on the requirements, the deployment phase can be as simple
as generating a report or as complex as realising and integrating a data mining
analysis environment. Frequently, the deployment consists of the integration of



a predictive model in an existing environment. Finally, the experience documen-

tation phase ensures that all experiences of the project and of the deployment
of the data mining results are reported.

For all phases of the process, we shall supply techniques. The process model
encourages the user to think about the tasks before techniques are applied. From
the computational point of view, the primary phases of the KDD-process are the
preparation, the exploration, the modelling and discovery, and the interpretation
phases. They consist of repetitive modelling of single data derivation processes
(i.e., streams, see below), execution of the processes and subsequent interpreta-
tion of the results and comparing them to former results and processes.

The iterative modelling and execution of streams leads to a huge number
of data sets and results which might be worth to be stored for later re-use for
documentation or e�ciency purposes, e.g., to avoid expensive re-derivation of
data sets.

In the following sections, we outline the main components of Citrus. The
information manager will provide comfortable means for accessing data and re-
sults. The execution server optimises the execution of the streams. The process
support interface and user guidance will support the user in planning, executing,
and documenting the process.

4 Citrus

4.1 Overview of Citrus

In Citrus, we have chosen to build on an existing commercial knowledge dis-
covery tool, Clementine. Developed by Integral Solutions Ltd. (ISL), it is an
environment which integrates multiple modelling and discovery algorithms with
tools for data access, data manipulation and pre-processing, visualisation and
reporting. All the facilities are accessed through a novel user interface based on
visual programming.

The user selects, from palettes, icons representing techniques for solving tasks
of the KDD process. The icons - also referred to as nodes - are connected to
de�ne data ows (streams in Clementine terminology); their attributes are
edited through pop-up dialogues to de�ne the details of the processing steps.
For a more comprehensive description of Clementine see Khabaza & Shearer
(1995) and Shearer (1996).

Figure 1 shows the architecture of Citrus. It extends Clementine by inte-
grating a broader range of algorithms and tools, by adding persistent manage-
ment of information relevant to the KDD process (metadata, approaches taken,
intermediate results obtained, etc.), by providing a high-performance execution
server to improve scalability to extremely large data sets, by extending the user
interface to o�er process-oriented support and user guidance, and by providing
interfaces to other specialised software packages, e.g., statistical packages.
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Fig. 1. The architecture of Citrus.

4.2 Information Manager

The information manager has two principal goals: to support the modelling of
the stream (especially the data selection and preparation tasks), and to o�er
means to retrieve and interpret data and results (cf. Breitner et al., 1997).

Support Modelling Today, the prevalent type of databases are relational
database management systems (RDBMS). While the relational model undoubt-
edly has advantages in answering the needs of short online-transactional pro-
cessing, handling of relational databases is painful when the relational schema
grows. As major parts of streams deal with data selection and preparation tasks,
the streams get very complex, causing the user to spend a long time sticking to-
gether nodes in an appropriate way. This will become even more di�cult, if we
assume the user is a domain expert rather than a database programmer.

The main reason is that the (relational) data model o�ers only little means
for structuring the database. In order to ease the data handling and to cut down
the time for modelling the streams, we propose to use an object-oriented data
model as the representation of data. According to Brachman & Anand (1993)
and Shoshani & Wong (1985) this is far more comprehensive and intuitive and
leads to signi�cantly simpler processes (Breitner et al., 1995). In contrast to the
IMACS system (Brachman & Anand, 1993), we do not store the data physically
in an object-oriented database system, since this causes considerable overhead
for migrating the mostly relational data to the object-oriented representation.
Instead, we only build an object-oriented schema.

The object-oriented schema is complemented by special operators, e.g., for
aggregation and for feature construction. At execution time, the streams are
mapped to their relational counterparts. This mapping from the object-oriented
to the relational model is completely automatic without user interaction. The



object-oriented schema itself is (mostly automatically) constructed based on the
relational schema during the domain analysis phase.

Retrieval of Results During a KDD process many streams are executed lead-
ing to a multitude of results. The retrieval of the data and results aims at sup-
porting the user to answer following questions: What is the meaning of a data
set? How has it been derived? How does it compare to other data sets? What
is its relationship to other data sets? How have certain knowledge pieces been
generated? What knowledge is available with respect to a certain data set?

In our approach, this is where the object-oriented schema comes in again.
We use the object- oriented schema as the central information directory, which
serves as an anchor for data, streams and results. The execution of each stream
causes a trace in the schema, i.e., leads to a well-speci�ed change. For instance,
the derivation of a new attribute or the selection of a speci�c data set is reected
in the schema as a new attribute and a new data subset at a well de�ned place.
Along with the new schema elements (here, attribute and subset) the derivation
history is recorded in order to be able to reconstruct the stream at a later time.
By using subsumption mechanisms repeatedly derived attributes and subsets are
detected and, thus, only stored once; knowledge discovered for the same data set
is, thus, connected to the same place (the data set) within the schema. Similarly,
the information whether certain intermediate results have been materialised can
be found at this well-de�ned location.

The object-oriented schemamakes retrieval easy and comfortable and enables
the automatic exploitation of intermediate results by the execution server and
the process support interface. Together with the project plan generated by the
process support interface, it provides a powerful mechanism to document the
process and its results.

4.3 Execution Server

From a database point of view, a stream can be interpreted as a query against
the database. With respect to the execution of such queries, most existing KDD-
systems implement a strategy where at the beginning of the execution the data
is entirely loaded into the system. This strategy is called data-shipping and is ad-
equate for small data sets. However, in real- world KDD-applications the system
is faced with huge data volumes and the streams consist of many data prepara-
tion and exploration operations. Since these operations are very data (memory)
extensive, the data-shipping strategy quickly reaches its limits.

Therefore, we implemented an execution strategy which is called query-

shipping. We assume the data is physically stored in a commercial RDBMS.
These systems became widespread and are optimised for the management of
giga and tera bytes of data. They also e�ciently execute SQL queries, e.g., by
using parallelism, sophisticated data organisation, and query optimisation. Since
the data which is analysed is usually stored in a RDBMS it is reasonable to use
a RDBMS for the management of data and e�cient stream execution as well.



After mapping the streams created according to the object-oriented schema
to their relational counterparts, this relational stream is partly exported to the
RDBMS server in form of SQL queries. These queries are then processed e�-
ciently and only a relatively small amount of data has to be sent back to the
KDD-system, where the rest of the stream is executed. A similar query-shipping
strategy is used by IDEA and INLEN (Kerschberg et al., 1992; Selfridge et al.,
1996) as a basis to achieve scalability.

Additionally, we use two further optimisation approaches in Citrus. First,
the system support intelligent materialisation of derived data. Due to the iter-
ative nature of the KDD process the same data sets are often produced several
times. Instead of re-deriving these sets each time, substantial e�ort is saved if
they are stored at the �rst time and reused afterwards. For this purpose, we use
the object-oriented schema in two ways. First, the schema provides a semantic
description of the data which can be used to decide if a materialisation can be
used later. Second, we estimate the relevance of a materialisation by analysing
the process history condensed in the schema. Further useful information about
the most likely next steps of the process can be gained from a collaboration with
the user guidance.

Second, we optimise streams. A potential drawback of the query-shipping
strategy is that the relational database model o�ers only a limited functionality
and streams rarely can be mapped to SQL statements completely. In such cases
part of the stream functionality must be ful�lled by the KDD system. However,
usually there exist multiple equivalent streams which can be mapped to SQL in
di�erent ways. In order to �nd the most e�cient mapping we re-order and/or
replace operations by di�erent operations, which is quite similar to the query
optimisation in database systems (e.g. Herzog & Schl�osser, 1995). Particularly,
when materialised intermediate results are taken into account, substantial per-
formance gains are achieved.

Ideally, e�ciency is a feature which should be provided automatically by the
resulting system. The user should not need to be aware of any e�ciency aspects
during the KDD process. Therefore, we make an e�ort in Citrus to let the
system deide on the most e�cient way to process required actions.

4.4 Process Support Interface and User Guidance

Since the KDD process contains many di�erent phases and hence a lot of inter-
acting tasks, the user of a process-orientedKDD tool needs guidance through the
various stages of a KDD project (Engels, 1996). In Citrus, the main purposes
of user guidance are to set up and re�ne the project plan and to support the
user in executing the plan. Since many techniques are available for the various
phases and tasks of the KDD process, a user requires assistance in the selection
and application of available techniques, in the interpretation and evaluation of
results, and in the collection and documentation of �nal results.

The focus of user guidance is on support not on automation. We do not
expect that executable streams are generated automatically from a problem
description, or that techniques are automatically chosen and their parameters are



automatically set. The user is always in control of the process and user guidance
is essentially a powerful help mechanism. However, the guidance module o�ers
default settings and rules of thumb as often as possible.

From a user's point of view, a KDD project can be set up and executed in
three ways. First, the user can link the available techniques in Citrus and set
up a stream from scratch. He selects Citrus nodes from the palette of available
techniques for each KDD task. Each node is accompanied by help descriptions
about the functionality of the node and the tasks it is useful for. Thereby, obvious
misapplications of single nodes can be prevented.

The input and output requirements of each node are automatically tested. If
input is missing, the user is warned to create this input before applying the node
and executing the entire stream. In addition, the tool also indicates when output
is created but never used. If the user forgets an important task entirely, the user
guidance module recommends to specify techniques for these tasks as well. For
each technique, Citrus suggests default settings depending on the inputs.

After an executable stream has been built and applied, the user guidance
supports retain facilities. The user speci�es descriptions of the problem solved
for his stream or parts of his stream and for single nodes. Templates for such
descriptions are automatically generated.

Second, the user can build on existing streams and adapt them to the cur-
rent problem. The user can type in an informal problem description, and the
user guidance module interactively retrieves the most similar projects and their
streams. These streams are either actual streams that have been successfully ap-
plied in the past or pre-de�ned templates of generic streams for typical sequences
of tasks. The guidance module then suggests the adaptation of a speci�c stream
or the re�nement of an abstract stream for the new project.

The third alternative is to iteratively decompose and re�ne a project plan
until executable techniques become available to solve each resulting low-level
task. This alternative is typically a combination of both building streams from
scratch and re-using existing streams.

In the requirements analysis phase, a skeleton plan is de�ned which will be
re�ned as more knowledge about the problem, the data, and the data mining
goals becomes available. At the beginning of a project, the plan is basically a
hierarchical decomposition of tasks. Plan re�nement and task decomposition at
lower levels are iterated until each task can be mapped to executable techniques.

For project plan decomposition and re�nement, we use a partial planner
that allows hierarchical problem decomposition and re�nement. This enables us
to represent abstract plans to a user, and guide him in specifying the remaining
details. Intermediate abstract and partial plans represent the state of the KDD
process and mirror the user's actions already performed and tasks to do in the
rest of the project.

Project plans also serve another purpose which is extremely important but
often neglected in KDD tools. The plans monitor what the user did for reports,
history, and protocols. In combination with the information manager, the plan
provides a context for the interpretation of results, helps to avoid repeated com-



putation of the same result, and helps to collect the interesting results at the end.
This facility is very important for the EIC application where many experiments
with di�erent data sets and techniques have to be performed.

Finally, a project plan is an important input for the execution server. If it is
known what the user is going to do next, the strategies for intelligent materiali-
sation of intermediate results can be adjusted accordingly.

5 Conclusion

Most KDD research and development focuses on algorithm improvement. We
believe this emphasis is wrong; to enable large-scale industrial KDD projects, it
is more important to:

{ integrate a comprehensive range of algorithms
{ make the application of KDD scaleable to very large databases
{ provide a process-based approach to KDD.

Citrus is a process-based comprehensive KDD environment designed to
meet these requirements. The development is well under way. The major com-
ponents have been prototyped and their usefulness has been demonstrated. Of
course, there remains a lot to be done. In particular, we need a still better un-
derstanding of the KDD process, how the various phases, tasks and techniques
interact, what support a user needs, and how the execution server and the process
support interface can interact most bene�cially. The Citrus prototype provides
an excellent environment to study these questions; its use on a variety of ongoing
projects within Daimler-Benz is producing valuable feedback on all these issues.

To date, most KDD developments have been driven by technology push rather
than by user pull. Our work is motivated by the demands of current and future
KDD applications in one of Europe's largest industrial organisations, and a per-
ception of the issues faced by others tackling equivalent problems. As a result,
unlike many technology-based KDD tools Citrus is driven by application needs
and places the user and his application problem in the centre of the KDD process.
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