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Abstract

A growing interest in real-world applications of inductive techniques signi�es the need for

methodologies for applying them. So far a number of methodologies for applying inductive

learning techniques are described. After reviewing several published approaches, a number
of unsolved problems are discussed, two major problems being the lack of attention to non-

technical issues and the focus of most approaches on speci�c, well de�ned problems with a

limited scope. We propose the MeDIA-model as a reference structure for the application
of inductive learning techniques that covers the issues mentioned in other approaches and

generalises from problem speci�c approaches. The model is part of a methodology that aims

at supporting the application of inductive learning techniques in various settings, and helps to
plan projects where such techniques are involved.

1 Introduction

Machine Learning techniques become popular tools for solving real world problems. Recently several
surveys in real world applications that exploit these techniques have been reported (Rudstr�om,
1995) (Verdenius, 1997a). With the transition of these techniques from a research environment to
the industry, the research focus shifts from technical issues towards the process of designing and
implementing applications. In literature, this development is reected in the growing number of

reports on process models and methods for Machine Learning (ML) application (Kodrato� et al.,
1994) (Brodley and Smyth, 1997) (Garner et al., 1995) and work on KDD application support
((Engels, 1996), (Craw et al., 1992), (Engels et al., 1997b)). The shift of focus is also reected in
a number of workshops on the process of ML application that were organised within recent ICML
conferences (Langley and Kodrato�, 1993), (Aha and Riddle, 1995), (Engels et al., 1997a).

Much of the existing work on methodological aspects of ML application focuses on the technical
details of applying the technique, thereby ignoring the higher level design aspects of ML application.
As a result, potential appliers of ML techniques are only supported in solving their problem when
they have already set major problem solving steps as solution design, data acquisition, data analysis
and technique selection.
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This paper presents a model that structures the total process of ML application. The presented
model starts at the level of problem statement, and structures all activities until the level of the
individual techniques. The �nal goal of our work is to provide support, i.e. guidance and required
tools, in the development of these applications.

The text is structured as follows. In the next section, we introduce the process of ML develop-
ment, and discuss the relevant literature. Then, in section 3 major problems in the process of ML
application are discussed, and potential solutions are evaluated. Section 4 discusses the Method
for Designing Inductive Applications. Then, we discuss the model, partly on the basis of realised
application projects. Section 6 concludes.

2 The Process of Applying Inductive Techniques

In recent years machine learning techniques have become mature. Techniques for standard tasks,
such as classi�cation and clustering, have been improved and re�ned. More complex tasks, such
as cost sensitive classi�cation, have been covered by newly developed techniques. As in many
technical disciplines in their initial phase of development, the machine learning (ML) society has
realised progress mainly by adding technical improvements and innovations to existing ML tech-
niques. Methodological approaches on problem analyses and technique selection have received less
attention. As a result, practitioners are nowadays equipped with a multitude of learning techniques,
many of them being very speci�c for a problem type, data set characteristics and type of applica-
tion. Moreover, for most tasks non-ML inductive techniques such as inductive statistics and neural
networks are available that have a similar functionality as the available ML technique.

The main questions for a methodological approach are:

� How to integrate, from the design phase on, an ML solution within an embedding system (i.e.
realising a learning function in a large complex software system, or integrating an adaptive
knowledge base in a non-automated process)?

� How to use the available techniques to solve a real world problem?

� How to recognise, in an early stage of problem solving, application potential for ML techniques,
and equipping the development process as adequate as possible?

� How to analyse tasks in order to optimally exploit this potential?

� How to select a good, if not the optimal, technique to solve a speci�c problem? And how to
con�gure this technique for optimal performance?

Various authors have attended the process of ML application. (Weiss and Kulikowski, 1991)
present for the classi�cation task an approach with the knowledge acquisition aim of extracting a
(knowledge) model from data. The application of the model, and integration in a system or solution
is not covered by their approach. The requirement for their approach is to provide a model to be
used for classi�cation. In their approach, the problem is seen as the problem of selecting a suitable
technique. The toolbox they present contains four (groups) of techniques which the authors �nd
useful for acquiring such knowledge. The technique(s) are processed in order, until a technique is
encountered that satis�es the requirements. Satisfaction is primarily assessed in terms of model
accuracy. The order is a combination of increasing expressive power and interpretability of the
resulting model, which serves as a secondary criteria for satisfaction: the best model performs
accurate enough, and is as expressive and interpretable as possible.

(Kodrato� et al., 1994) and (Craw et al., 1992) provide an approach to complement the Machine
Learning Toolbox that resulted from the ESPRIT MLT project. The toolbox contains about 40
inductive techniques for classi�cation. The approach, designed for implementation in the MLT
Consultant tool, was designed to support users in selecting the proper technique for their problem.
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The approach structures application process in decision-tree shaped taxonomies. Taxonomies exist
for items such asML application goals (learning for: similarity detection, acquire knowledge, classify
instances, . . . ), Nature of available data (examples availability: Incremental, Batch, . . . ), Nature
of available background knowledge (background knowledge: Usable, Obliged to use, . . . ). Every
decision structure is used to select a subset of potentially suitable techniques. Another workbench
speci�c approach is found in (Garner et al., 1995). Similar to MLT, WEKA contains a number of
classi�cation techniques, and the main aim is to come up with a speci�c model. In comparison with
the former approach, the WEKA approach is more process oriented and less knowledge oriented.
Moreover, the functional environment of application of the ML technique is not static, but actively
inuenced as part of the ML application process. This is speci�cally the case for pre- and post-
processing of data.

The approach of (Brodley and Smyth, 1997) is yet one step more general in that they extend
the scope of their method for applying ML techniques to the process of analysing the problem
environment, not only in terms of data, but also in terms of (what they call) domain speci�c factors
such as application speci�c and human factors. In their description of their approach, the authors
explicitly discuss the important aspects to be analysed. This method is, as the ones discussed
before, speci�c for classi�cation tasks.

Even more general is the approach for realising neural network applications as described by (DTI,
1994). In this approach the problem to solve is less speci�c then in the ones discussed before. Neural
networks are suitable for a broad range of tasks, amongst others classi�cation, optimisation, and
prediction of continuous values. Furthermore, the scope of this approach, as well as its formulation,
is much more detailed. The organisation of the total approach is similar to classical waterfall
approaches for software development, with clearly indicated phases and mile stone products. Some
of these phases are extremely detailed, others are more globally de�ned.

(Wirth et al., 1997) present a general approach for KDD process. In this approach, we can ob-
serve the same aspect of generality towards the task to perform and the independence of techniques
to be used, as was observed for (Brodley and Smyth, 1997).

There are a number of characteristics that can be used to organise all these approaches:

Technique orientation Process models can be oriented towards (a group of) techniques, or they
can be technique independent. An example of a technique group oriented approach is the one
used in MLT Consultant. The total approach focuses on selecting one technique from a set of
techniques. An example of an technique independent approach is that of (Brodley and Smyth,
1997). Here, a task is supported, without limitations on the specifying the techniques to be
used.

Task orientation Process models can be oriented towards a speci�c (expert) task, or they can be
unspeci�c towards the task to learn. Task speci�city leads to two characteristics: the lacking
of a task analysis phase, and the presence of task speci�c analysis tools. An example of a task
speci�c approach is that of (Brodley and Smyth, 1995), being completely con�gured around
the classi�cation task. Examples of task independent approaches are described in (Engels,
1996) and (Verdenius, 1997b). In these approaches derivation of a task decomposition is a
central notion in the process. It is noticed that in principle technique speci�city implies task
speci�city.

Application orientation Process models can be oriented towards a speci�c application mode,
or they can be mode independent. An example of mode speci�c approach can be found in
(Engels, 1996). Here the intended usage is that of Knowledge Discovery in Databases (KDD).
In KDD, the resulting knowledge model is more essential than the resulting system (if any).
The latter is even more true for a more data analysis oriented approach (e.g. (Garner et al.,
1995)). Examples of application mode independent process models are scarce. Later in this
paper we will present such a process model.
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3 Unsolved Problems

The existing approaches can be criticised on three main aspects:

Qualitative de�nition of development activities The approaches, at least in their published
form, exist of enumerations of activities. The contents of the activities are qualitatively
described, which also accounts for the inputs and outputs that connects these activities.
Neither the activities, nor the input/output ows are unambiguously de�ned. As such, there
is hardly any support for developers who are confronted with the need of applying inductive
techniques in their applications.

Limited scope Most approaches either tend to support application of a speci�c technique(group)
(e.g. MLT focusing to a set of ten (learning) algorithms (Consortium, 1993)), or to support
the realisation of a speci�c task (e.g. (Brodley and Smyth, 1997), (Brodley and Smyth, 1997)),
and often they combine these aspects (e.g. classi�cation with ML- techniques). This implies
that important aspects of an applications development cycle, being the design task and the
technique selection task, are taken for granted. This means that such approaches do not
support the initial stages of a project because of their bias to speci�c directions. However, the
real temptation in applying inductive techniques lies in the guidance of the functional design
in such a manner that inductive techniques, if appropriate, are applied for those tasks where
they are optimally suited, while also be able to propose other solutions when appropriate.
In other words, the developer needs to be supported in his design tasks in such a way that
purposeful deployment of inductive techniques is the result of the project. In our point of
view, none of the previously discussed approaches succeeds in ful�lling these goals.

Application speci�c Many approaches limit themselves towards a speci�c application type. An
speci�c approach (Reinartz and Wirth, 1995), is meant to cover the KDD task. However,
the KDD task is only a speci�c case of the much broader process of inductive technique
application.

The approach of (Brodley and Smyth, 1997) is limited in several ways. First, it concentrates
on classi�cation tasks. As explained above, this is only one of a large family of tasks inductive
techniques can be applied for. Second, it remains very general on important issues as identi�cation
of inductive technique application opportunities, technique selection and technique con�guration.

Another approach (Garner et al., 1995) is limited to data acquisition and technique training, is
limited to classi�cation tasks and avoids technique selection by brute force assessment of training
methods.

4 The MeDIA Model

The MEthod for the Development of Inductive Applications (the MeDIA model) represents a ref-
erence structure. That is, it is not meant for a speci�c type of application. Instead, it o�ers an
open framework to describe the design of inductive applications. As such, the model describes a
comprehensive overview of activities and the connecting information ows. The activities in the
MeDIA model are not necessarily performed exhaustively. Based on the requirements for a speci�c
application and the results of other project activities, certain activities may become obsolete. Thus
the precise list of actions has to be compiled on the basis of the speci�c functional and non-functional
requirements that the application/employer imposes on a project1. The MeDIA model is meant to
o�er support for the development of applications of inductive learning techniques. As such, it bears
the ambition to overcome the limitations mentioned in the previous sections. Figure 1 presents the
general structure of the method.

1In earlier versions of the model this aspect of dynamically de�ning the development path during the project, was
explicitly located in an overall project management activity (cf. Methodology engineering).
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Figure 1: An overview of the MeDIA model

From the �gure, several of the major properties of theMeDIA model can be learned. The �gure
consists of three sections. In the centre, the activity structure of the model is depicted. On the
left side the Inductive Learning Technique Knowledge Base (ILT-KB) is found, whereas the right
section represents the output subsystem, i.e. the system that in the end will represent and perform
the mapping function f(x) as found in the Embedding System structure (right top hand side).

4.1 The Heart of the Model: the Activity Structure

As mentioned above, the heart of the MeDIA model is formed by the activity structure as depicted
in the central section of �gure 1.

The main activities performed in the MeDIA model are ordered in layers in the activity model
(The central structure in �gure 1). The structure on top of the activity model forms the interface
between the ML application activities and the environment. The interface consists of functional
requirements, non-functional requirements and the domain ontology of the embedding application.
The functional requirements de�ne the operational task that has to be realised in the learning
application. In most cases, this operational task will be more complex as just a learning task. Mostly
an ILT project is started with the goal to employ certain knowledge which should be implicitly
present in the data. Making this knowledge explicit (e.g. in the form of a generated model) forms a
subtask in the overall task decomposition. Non-functional requirements de�ne the constraints the
application has to satisfy (e.g. response time, memory resources, interpretability of the resulting
model). The domain ontology de�nes the concepts as de�ned in the embedding application.

Next in hierarchy the Application level is found. On this level, several aspects of the applications
operational task are analysed. This operational task is then re�ned in a:

� task decomposition, breaking down the task in subtasks, until a set of simple, formally de-
scribed tasks is found. The model acquisition tasks are also part of this task decomposition,
as far as inductive techniques are available (see (Engels, 1996)). Additionally, the task de-
composition describes all steps that are necessary in order to perform the operational task.
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Therefore, these tasks may comprise ordinary data processing tasks, such as pre- and/or
post-processing.

� Model ontology that is a supplement to the domain ontology that adds tasks, relations and
functions to the concepts as de�ned at the system development project structure.

� knowledge source de�nition that describe the models that are introduced in the task decompo-
sition. On this level, models are described by function and content type. More formal aspects,
such as representation and contents are de�ned at lower levels.

� de�nition of acquirable data that, at last, is an inventory of meta data (or data characteristics)
describing the data that is available for induction.

On the Analysis level the link between the task decomposition and a set of techniques is estab-
lished. For this purpose, characteristics of the domain, the operational data and the functional as
well as the nonfunctional requirements are carefully analysed and interpreted (see also (Engels et al.,
1997b)). This interpretation combines heuristic and formalisable aspects of learning techniques and
their function. Output of this level includes:

� data de�nition de�ning the data items that are used for the inductive step,

� the accompanying data sets containing data for inducing models,

� the technique de�nition containing a high level description of technique design and lay out,

� and �nally the design constraints. The latter are a direct translation of some of the non-
functional requirements.

The last level is the Technique level. Here, technique speci�c aspects are de�ned. This includes
parameter settings, model derivation and model operationalisation. Activity order is based on
input/output relations between activities. For each activity the information that forms a necessary
precondition of the activity in order to make the activity applicable is given.

4.2 Results of a Development Cycle

As discussed previously, activities are linked by shared input/output sets. Moreover, several activi-
ties produce �nal results, i.e. information items or products that are applied in the output structures.
The output structures are found in the right section of �gure 1. Each development/design level of
the MeDIA model has a speci�c contribution to the �nal result: the application level de�nes the
task control (which tasks have to be performed in what order to obtain the best result), the analysis
level de�nes the techniques for pre- and post-processing, and at the technique level both model
learning and model deployment is de�ned.

On the application level, a control ow is de�ned. A control ow de�nes the order of execution
and de�nes iterations and their stop conditions in the subtasks that comprise the task decomposi-
tion. A good example is found in the preprocessing stage, where dimensionality reduction or value
transformation often is a process with more iterations.

4.3 Tools for Development

The MeDIA model presupposes tools on the three development levels (application, analysis and
technique level). Apart from standard software development tools and software methodology, learn-
ing systems require additional tools for de�ning inductive learning applications. On the application
level , a task decomposition knowledge base facilitates the de�nition of task decompositions (Angele
et al., 1996).
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On the Analysis level , support focuses on the task-technique mapping problem. Here a knowl-
edge base is used to link primitive tasks and techniques. The knowledge base is realized as a network
structure that links primitive tasks to techniques, incorporating amongst other functional and non-
functional information as de�ned at the application level (e.g. (van Someren et al., 1997) structures
techniques concerning cost sensitive generalisation).

It is important to realise that the goal to be achieved in this phase of the project is not to identify
the ultimate solution in terms of (for instance) accuracy. Instead, a complex (and in the current
practice often implicitly de�ned) objective has to be satis�ed. This objective combines functional
requirements (often expressed in formalised or technical terms), such as accuracy, response time,
training speed and memory usage, with non-functional requirements such as comprehensibility of
representation, hard- and software platform, availability of technical expertise, personal preference
of developers and clients, and availability of techniques. Satisfying these requirements will enable
deployment of the model in practice.

On the Technique Level, optimisation of the technique for the speci�c tasks takes place. This
means that parameter settings are adjusted where the context (de�ned by the non-functional re-
quirements as well as the task decomposition) is taken into consideration. All tools are open, in the
sense that new knowledge on inductive technique can easily be added to the system.

5 Discussion and further work

We can now compare the approaches of section 2 with the approach as expressed in the MeDIA
model. The existing approaches were mostly characterised as either technique or task driven. We
criticised this aspect because it ignored the needs and requirements as expressed by the client. An
approach that is either technique or task driven will never be su�cient to provide an open unbiased
methodology to an application developer. These approaches cannot ful�l the need for short (and
predictable or controllable) development e�ort, since the limited scope of the discussed approaches
only guarantees such a minimal development e�ort as long as one stays within this scope.

The MeDIA model is application oriented. It takes functional and non-functional requirements
as its input, and delivers a system with the required functional behaviour, and is meant to be
a general framework for the development of inductive learning applications. Induction in this
approach is a useful tool for obtaining and representing knowledge that full-�lls both the functional
and non-functional requirements of an application. The MeDIA model in its initial formulation
is an attempt to cover the needs from practice. It aims at �lling the gap between research in ML
and application of ML techniques, and facilitates practical application of ML in practice. Future
research e�ort will concentrate on the following topics:

Model veri�cation We are currently verifying the MeDIA model as presented here by analysing
the development process of several projects. We hope to be able to asses the MeDIA models
qualities as methodology for development of applications of inductive techniques. Our main
concerns are:

� Can we identify all activities/information ows/products and knowledge bases postulated
by the model in the several projects we analyse?

� Can we understand features/problems in the application process by identifying anomalies
in process con�guration as postulated in the MeDIA model?

Method development The current formulation of the MeDIA model is mainly descriptive. In
the current state, methodological guidelines for designing and realising applications are scarce.

Tool development In the activity outline as depicted in the �gure, knowledge bases are postulated
on three levels. Implementation of these knowledge bases as speci�c tools seems appropriate.
Especially the upper two levels, where the total process can be supported from one tool,
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is suitable for support within the MeDIA framework. On the technique level the central
de�nition of tools is not feasible; a meta description of the functionality of a tool is needed,
leaving technical details, as well as the development of the techniques as a research problem.

6 Conclusions

This paper provides an overview of the main approaches that tend towards a description of a method-
ology for the development of inductive applications. Nearly no general frameworks or methodologies
are found, and therefore the problem arise that no general guidelines exist. Each approach is ei-
ther biased to a certain task(group) or to a limited set of techniques, and therefore has a limited
scope. This underlines the necessity of our approach, where no biases are de�ned concerning task
groups and/or techniques that could be used. Our approach aims at the support from the early
level onwards, and provides guidelines for the development of applications of inductive techniques
in general. We are currently in the process of de�ning tools for that, as well as testing the approach
against recent projects where inductive applications are build.
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