
OPTIMIX Language Manual

(for OPTIMIX 2.5)

Uwe A�mann

Universit�at Karlsruhe

Institut f�ur Programmstrukturen und Datenorganisation

Postfach 6980

76128 Karlsruhe

Germany

assmann@ipd.info.uni-karlsruhe.de

http://i44www.info.uni-karlsruhe.de/�assmann/optimix.html

November 3, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197599004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This is the language manual for OPTIMIX, the optimizer generator. OPTIMIX can be used to generate program

analyses and transformations. Its input language is based on Datalog and graph rewriting. Especially two new

classes of graph rewrite systems are used: edge addition rewrite systems (EARS) and exhaustive graph rewrite

systems (XGRS).

The development of OPTIMIX has partially been supported by the Esprit project COMPARE (No. 5399).

The tool is not in the public domain; however, a free version can be ordered from the author.

Keywords: Program analysis, program transformation, optimizer generator, Datalog, graph rewriting.

... there clearly remains more work to be done in the following areas:

(1) discovery of other properties of transformations that appear to have relevance

to code optimization,

(2) development of simple tests of these properties, and

(3) the use of these properties to construct e�cient and e�ective optimization

algorithms that apply the transformations involved.

Aho, Sethi, Ullman in "`Code Optimization and Finite Church-Rosser Systems"' [ASU72]

22. Der Einsatz von Graph-Ersetzungssystemen auf Probleme der Datenu�-

Analyse, wie Bestimmung gemeinsamer Teilausdr�ucke, Parallelisierbarkeit,

Schleifenoptimierung, existiert bisher nur in Andeutungen. . . Auch das Prob-

lem der �Ubersetzung eines Zwischencodes (in Form eines Programmgraphen)

in Maschinencode mit Hilfe von Graph-Ersetzungssystemen wurde bisher kaum

untersucht.

M. Nagl in [Nag79], Kapitel O�ene Probleme

Contents

1 General Topics 6

1.1 Design procedure for an optimizer . 6

1.2 Principal modes . 6

1.3 A �rst example . 7

1.4 Running OPTIMIX from shell . 8

1.5 Option �le . 11

1.6 Where to put a standard OPTIMIX �le . 11

1.7 Running the preprocessor optimix2ast from shell . 11

2 An Optimix Speci�cation 12

2.1 Outline . 12

2.2 Lexical parts . 13

2.3 Global data declarations . 14

2.3.1 Predicates, object types and functors . 14

2.3.2 Data de�nitions with Java . 16

2.3.3 Data de�nitions with CoSy-fSDL . 16

2.3.4 Data de�nitions with AST . 17

3 Speci�cation of graph rewrite procedures 20

3.1 Graph rewrite speci�cations . 20

3.1.1 Rule groups . 20

3.1.2 Termination check . 21

3.1.3 Choice rule groups . 21

3.2 Parameters of routines in the generated code . 22

3.3 Group range declarations . 23

3.4 Group variable declarations . 24

3.5 Rules in a rule group . 24

3.6 Rule tests . 25

3.6.1 Options for rule groups and rules . 25

3.6.2 FIRST and LAST target predicates for rule groups and rules 25

3.6.3 Predicates in rules . 25

3.6.4 Nested rule groups . 31

3.7 Transformation rules . 31

3.8 Other kinds of rules . 32

3.8.1 Non-ground facts . 32

3.8.2 Verbose syntax for rules . 33

3.8.3 Single source path problems (SSPPs) . 34

3.8.4 View rules . 34

3.9 Fixpoint checks . 35

2

CONTENTS 3

4 Meta-Optimizations for XGRS code generation 36

4.1 Bitset optimization . 36

4.2 Bidirectional edge optimization . 36

4.3 Index edge optimization . 37

5 Examples and Miscellaneous 39

5.1 AST/standalone-mode examples . 39

5.2 CoSy-fSDL-mode examples . 39

5.2.1 Live Variables: MAY dataow analysis . 40

5.2.2 BusyVariables: MUST dataow analysis . 41

5.3 The generated code . 41

5.3.1 Outline of the generated code . 41

5.3.2 Manipulation and debugging of the generated code . 42

5.3.3 Miscellaneous . 43

6 Advanced issues 44

6.1 How OPTIMIX can generate code for foreign frontends and intermediate representations 44

6.2 How user-functors can be declared . 44

6.2.1 Java functors . 47

6.2.2 Where to put a user functor . 48

7 Practice 49

7.1 Implementation restrictions . 49

7.1.1 Bidirectional edge optimization . 49

7.1.2 Restrictions for modes . 49

7.2 Things to come . 50

7.3 Frequently asked questions . 50

License

Copyright (C) 1996-99 University of Karlsruhe, Uwe Assmann.
All rights reserved.

OPTIMIX is protected by copyright. It is not public-domain software,
it is not shareware, and it is not protected by a ``copyleft''
agreement, like the code from the Free Software Foundation.

OPTIMIX is available free for your personal research and instructional
use under the ``fair use'' provisions of the copyright law.
You have to inform the author that you use OPTIMIX (email is
sufficient). You may redistribute the package under the same conditions.
Any copy of the software and/or relevant documentation must comprise
reference to the ownership of University of Karlsruhe/Uwe Assmann and
these copyright rules.

You may not sell OPTIMIX or any product derived from it in which
OPTIMIX is a significant part of the value of the product. You may
use the output from OPTIMIX in products as long as you (1) charge for
only those components that are entirely your own, (2) you acknowledge
the use of OPTIMIX clearly in all product documentation and
distribution media, (3) do not remove the copyright comments from the
generated code. You must also request that bug reports on your product
be reported to you.

OPTIMIX IS PROVIDED "AS-IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY.
IN NO EVENT WILL THE AUTHOR OR UNIVERSITY OF KARLSRUHE BE HELD LIABLE FOR
ANY DAMAGES ARISING FROM THE USE OF THIS SOFTWARE.

4

Warning

This is a language reference manual, not a tutorial on the OPTIMIX-speci�cation language.

OPTIMIX is, although it provides quite advanced rule-based programming concepts for speci�cation of

optimizations, not a commercial software product, but a research prototype. Thus

1. OPTIMIXmay dump core in unexpected situations. Then send a mail with the speci�cation and the version

number of your binary to the author. To obtain the version number call optimix -v on the command

line. I do not promise to provide immediate support but I am glad if users help me to detect errors.

2. OPTIMIX may generate incorrect code. Test your generated code �rst before you trust it!!

3. The documentation may be hard to understand (because I have only limited time for it). Please try

OPTIMIX on di�erent variants of your speci�cation. Also read all papers on the subject of graph rewriting

for program optimization.

4. The speci�cation language is not stable, and may change in further versions. The syntax is sometimes

inconsistent and non-orthogonal. This is due to historic reasons and the experimental nature of the

language. Future versions will try to make the language more orthogonal and in its conventional pars

more similar to classical languages as C/C++/Java.

5. OPTIMIX is compiled with an enourmous amount of gcc warnings. This is due to the use of void pointer

classes and the AST tool types, which would need casting everywhere. If the system does not compile,

send a mail to the author and use the OPTIMIX-binary.

6. To construct OPTIMIX has cost me about 3 man years. Please be patient with me and the current status

of the tool.

7. If you are pleased with the tool and �nd it revolutionary, please send a plain mail postcard with a nice

picture to my address. This will motivate me to �ght for further development. The more encouraging

comments are found on the postcard, the better!

5

Chapter 1

General Topics

This is the language manual for OPTIMIX, the optimizer generator. OPTIMIX can be used to generate program

analyses and transformations in C language. Its input language is based on Datalog and graph rewriting [A�m94]

[A�m95] [A�m96b]. Especially two new classes of graph rewrite systems are used: edge addition rewrite systems

(EARS) and exhaustive graph rewrite systems (XGRS).

The development of OPTIMIX has partially been supported by the Esprit project COMPARE (No. 5399).

The tool is not in the public domain; however, a free version can be ordered from the author.

It is highly recommended that the user �rst reads the papers [A�m94] [A�m95] [A�m96b] [A�m96a] [A�m98].

[A�m94], [A�m96a], and [A�m98] are available with the OPTIMIX-package.

1.1 Design procedure for an optimizer

In order to generate optimizer parts with OPTIMIX we propose the following procedure [A�m96b].

1. Write down all preconditions for a transformation, perhaps in text.

2. De�ne the data model of your application, i.e. de�ne which parts of the knowledge you want to present

should be objects and which should be relations. This can be done either in Java, with the syntax of the

tool AST from the GMD toolbox Cocktail [GE90] [Gro89], or | within the context of the compiler model

CoSy | in CoSy-fSDL [Buh95].

3. Design of the data manipulation, i.e. formulate graph rewrite systems that compute and transform the

graphs that were de�ned in the data model. Build graphs with edge addition rewrite systems (EARS),

and transform them via general graph rewrite systems (GRS).

4. Think about the representations of the graphs. Which algorithms does OPTIMIX generate for a problem

and with which graph representations do these run fast? Exchange graph representations (functor calls)

accordingly.

1.2 Principal modes

OPTIMIX can be used Java mode, in AST/standalone-mode, and in CoSy-fSDL-mode.

Java mode OPTIMIX can read Java classes to �lter out type, graph, and set de�nitions. In this case the output

language is Java.

AST/standalone-mode OPTIMIX is able { with small restrictions { to read existing data model speci�cations

of AST [GE90] [Gro89]. Existing AST data speci�cations of compilers can be reused and extended for use

6

CHAPTER 1. GENERAL TOPICS 7

with OPTIMIX. AST data de�nitions are module-based and AST-modules may occur within OPTIMIX-

speci�cation �les. Thus AST data de�nition language can also be used as standalone data de�nition

language of OPTIMIX. In this case the output language is C.

CoSy-fSDL-mode This mode is only feasible in the CoSy compiler framework. The data model is speci�ed in

CoSy-fSDL, as common �les and views of engines, that collaborate in the compiler. For each compiler,

CoSy produces a atform-�le which contains all fSDL speci�cations in a at form. OPTIMIX must read

this �le to know about the data model (option -ff). In this case the output language is C.

The compiler construction toolbox Cocktail is available in two forms. There is a free version at

ftp://i44ftp.info.uni-karlsruhe.de/pub/cocktail/. After 1993, Josef Grosch, the developer of Cock-

tail, has become independent and maintains Cocktail within his own company. Currently there is an improved

version of the toolbox, e.g. containing a new LR(k) parser generator with visual debugging aid. A research

licence is available for this version.

Dr. Josef Grosch, CoCoLab

Hagsfelder Allee 16

D-76131 Karlsruhe, Germany

Tel.: +49-721-697061, Fax : +49-721-661966, mailto: grosch@cocolab.sub.com

1.3 A �rst example

First consider a small program analysis example, the transitive closure over basic blocks. Typically, basic blocks

are sequences of statements started by labels and ended by jumps (straight-line code). Each block is connected

to other blocks via the jumps and the labels. A block B1 is predecessor of another block B2 if it ends with a

jump to B2. Then B2 is a successor to B1, and this relation makes up the basic block graph.

If we want to know which blocks are reachable from a block, we have to construct the transitive closure

operation on the basic block graph. Assume our block looks like (in AST):1

MODULE TransitiveClosureDDL TREE MyTree RULES

Block =

/* the successors in the basic block graph as embedded neighbor sets */

(BlockGraph: consset(Block))

/* the successors in the reachable block graph as embedded neighbor sets */

(ReachableBlocks: consset(Block))

.

END TranstiveClosureDDL

A similar CoSy-fSDL de�nition would be:

domain Block f Block <

/* the successors in the basic block graph as SET functor application */

BlockGraph: SET(Block),

/* the successors in the reachable block graph as SET functor application */

ReachableBlocks: SET(Block)

>g;

A similar de�nition in Java syntax could be:

package TransitiveClosureDDL;

class Block f
/* the successors in the basic block graph as Vector of Block */

Vector BlockGraph;

/* the successors in the reachable block graph as embedded array of Blocks */

Block[] ReachableBlocks;

g

With this data model we may write a speci�cation that computes the transitive closure of the graph

BlockGraph into the graph ReachableBlocks. This speci�cation is in the style of Datalog.

1OPTIMIX uses an extension of AST syntax. See section 2.3.4 how OPTIMIX collaborates with AST.

CHAPTER 1. GENERAL TOPICS 8

MODULE TransitiveClosure

EARS ComputeReachableBlocks(BlockSet:consset(Block))

f
RANGE b <= BlockSet;

RULES

ReachableBlocks(b,b1) :- BlockGraph(b,b1);

ReachableBlocks(b,b1) :- BlockGraph(b,s), ReachableBlocks(s,b1);

g
END TranstiveClosure

This EARS (edge addition rewrite system) speci�es with two rules how a relation ReachableBlocks over

blocks may be constructed by querying another relation BlockGraph. The �rst rule means that a block b1 which

is a successor to a block b in relation BlockGraph should also be a successor in Relation ReachableBlocks.

The second rule describes the transitive closure: if there is a successor block s to b in relation BlockGraph

which has another reachable block b1, then b1 should also reachable from b.

We could also speci�y the rules in a way which is based on graph-rewrite rules:

MODULE TransitiveClosure

EARS ComputeReachableBlocks(BlockSet:consset(Block))

f
RANGE b <= BlockSet;

RULES

BlockGraph(b,b1) ==> ReachableBlocks(b,b1) ;

BlockGraph(b,s), ReachableBlocks(s,b1) ==> ReachableBlocks(b,b1) ;

g
END TranstiveClosure

Or we could specify it set-based, with path expressions:

MODULE TransitiveClosure

EARS ComputeReachableBlocks(BlockSet:consset(Block))

f
RANGE b <= BlockSet;

RULES

if b1 in b.BlockGraph then b1 in b.ReachableBlocks;

if s in b.BlockGraph and b1 in s.ReachableBlocks

then b1 in b.ReachableBlocks;

g
END TranstiveClosure

For the EARS a routine in the target language (C or Java) with name ComputeReachableBlocks is gener-

ated. This routine walks over all blocks from the parameter set BlockSet and applies the two rules. Because

the rules are recursive, the rule applications are embedded in a �xpoint evaluation loop. To see which code

OPTIMIX generates for this speci�cation, feed the �le example-reachable.ox from directory doc to OPTIMIX.

The generated C code may be found in Appendix 7.3.

1.4 Running OPTIMIX from shell

shell>> optimix [options] filenames

shell>> optimix - [options] < filename

shell>> optimix -typedefs [options] filenames

OPTIMIX can be run as standalone command (line 1), or as a �lter in a pipe (line 2). Thus a previous run

of cpp can be used to resolve any conditional #ifdef-commands in a speci�cation.

C mode only: If the special option -typedefs is set, only pointer type de�nitions for the used C types are

produced (line 3). end C mode.

If the user speci�es several OPTIMIX input �les, the generated �les are pre�xed by the �le name pre�x of

the �rst �le. For instance,

CHAPTER 1. GENERAL TOPICS 9

optimix optimizer.ox optimizer2.ox

will create two �les optimizer.c and optimizer.h2 which contain the generated code and its interface.

Also the option -o <file> overrides the name of the output �le to <file>.

File-su�xes need not be speci�ed. Then OPTIMIX looks for the �le in the current directory, trying the

following su�xes in order: .ox., .cg, .ast, .jox.

Java mode only: In Java mode, �les have to have the su�x .jox. These �les consist of ordinary Java classes

which contain methods in OPTIMIX-style. end Java mode.

OPTIMIX can be parametrized in di�erent ways. There are options, which are set in the speci�cation �le,

and command line options. Command line options fall in directly recognized options (e.g. -typedefs) or option

keywords after the generic pre�x option -x (e.g. -x PrintSuperClasses) The latter ones refer to options

which are not often used or development options. It is likely that in future version of OPTIMIX option keywords

become directly recognized options. The command line options of OPTIMIX are:

2In Java mode only a �le optimizer.java is produced.

CHAPTER 1. GENERAL TOPICS 10

| General Options: |

-help (-h) print this message and exit

-x name set option ag name

-x name=value set option keyword name to value

| Input Options: |

-� name use name for fSDL at form �le; CoSy-fSDL mode is turned on

-ast name use name as AST/CG data speci�cation �le

-classpath|-cp classpath use classpath as array of directories where to look for Optimix and Java imports

+classpath|+cp classpath add classpath to the array of directories where to look for Optimix and Java imports

| Output Options: |

-o name use name for output �les

-typedefs if AST data speci�cations are used, only print a �le oxtypes.h

with forward declarations for C types of at sol functor applications.

-x InternalTypedefs if AST data speci�cations are used, print all forward declarations

for C types of at sol functor applications in the .h-�le.

Otherwise they are printed in the external �le oxtypes.h

-comments value (currently has limited e�ect) emit generated code with comment

level value. The larger value, the more comment is

printed. 3 is current maximum.

-SimpleNestedLoopJoin use nested loop join code generation (default code generation mode)

-ETJoin use element-test-join code generation

-ETFilters use element-test path �lters during code generation

-nobitsetopt do not generate bitset operations in code

-noindex do not use index optimization

-view name (CoSy-fSDL mode) use name as view name of the engine

-helpfuns (CoSy-fSDL mode) produce help functions together with other functions

-helpfun name (CoSy-fSDL mode) produce help functions in �le name

| Verbosity: |

-v print version info, do nothing else

-VersionNumber print version number only, do nothing else

-v1 be a bit verbose (default)

-v2 be fully verbose

-silent be totally silent

-poem print a poem and exit

| Debug information: |

-x ShowSuperClasses print the super classes of all class or fSDL domains.

-x ShowClassAttributes print the classes and their attributes (only for AST classes)

-ShowOptions print all options which are set

-ShowBinding print bindings of types for variables during type inference

-ShowComparing print comparisons of types for variables during type inference

-ShowSignatures print signatures of all rules (types of rule test root nodes).

-ShowNodeTypes print all infered types of all variables.

-ShowRTG write all rule test graph in VCG format to �les

-ShowRTGPaths print all paths of path coverings in rule test graphs.

-ShowTermination print the termination labels of each rule and stratum

-prio int print test outputs that have priority less than int

-diag name (obsolet) use diagnostic output �le name

-ShowParseTree (obsolet) write internal data structures of ox in ASCII format

-parser run only the parser

CHAPTER 1. GENERAL TOPICS 11

1.5 Option �le

Instead of giving the command options on the command line, the user can pass them also via a customization

�le, .optimixrc, which must be located either in the current directory or in the home directory. Each option

(maybe also with a value) has to stand on an extra line in the �le. Empty lines and lines beginning with # are

ignored.

1.6 Where to put a standard OPTIMIX �le

If the environment variable OPTIMIXDIR is set, OPTIMIX will all �nd �les in $OPTIMIXDIR/lib/ automatically.

Hence standard �les which are reused frequently may be put into this directory and imported by a use clause

(section 2.3.4).

Java mode only: If the environment variable CLASSPATH is set, OPTIMIX will �nd imported Java classes there.

Currently classes in zip-�les are not supported, please unpack the �les. end Java mode.

1.7 Running the preprocessor optimix2ast from shell

shell>> optimix2ast [options] filenames

shell>> optimix2ast [options] < filename > filename

Options:

-h help

-v verbose; show substitutions

-q run quietly

-p print to stdout

-d <target-directory> target-directory for generated file(s).

-o <file> output file name (- for stdout)

optimix2ast is a preprocessor that transforms OPTIMIX data speci�cations in the extended AST syntax to

pure AST syntax. It transforms all functor �elds to AST scalar �elds with opaque pointer types. optimix2ast

can be used as standalone command (line 1). Then the standard output �les of optimix2ast are the �le names

appended with the su�x -AST. It may also read its input form a pipe (line 2). Then the output defaults to

stdout.

Chapter 2

An Optimix Speci�cation

2.1 Outline

The outline of an OPTIMIX-speci�cation �le is the following:1

OptimizerSpecification ::= 'MODULE' ModuleName ['OPT' OptimizerName] GlobalTargetCodeSections

[fSDLImportDeclaration] [InheritanceDeclarations] GraphRewriteProcedures 'END' ModuleName

[fSDLImportDeclaration] [InheritanceDeclarations] GraphRewriteProcedures .

GlobalTargetCodeSections ::= ['HFIRST' TargetCodeBlock] ['IMPORT' TargetCodeBlock]

['EXPORT' TargetCodeBlock] ['GLOBAL' TargetCodeBlock]

['BEGIN' TargetCodeBlock] ['CLOSE' TargetCodeBlock] .

GraphRewriteProcedures ::= (UseClause | GraphRewriteProcedure) * .

C mode only: OPTIMIX-speci�cations are module-based. OPTIMIX accepts OPTIMIX-modules and

AST-modules.2 As in AST, OPTIMIX-modules are bracketed by the pair MODULE <module-name> and

END <module-name>. The clause OPT OptimizerName, may be used to specify the name of the output �le.

Otherwise it is set by the �rst �le argument in the command line or the value of the -o option.

Speci�ed modules are combined in order to compose the output �le(s). The graph rewrite systems of all

OPTIMIX-modules are collected into one list. The code which is generated for them is put together into one

C output �le. In AST/standalone-mode, OPTIMIX also collects all data speci�cations from AST-modules,

coalesces them into a single data model, and type-checks the graph rewrite speci�cations against this model.

In CoSy-fSDL mode, the user must specify a atform-�le from which the at fSDL data speci�cation can be

read.

As AST, OPTIMIX accepts several global target code sections, containing code of the target language C.

The code is copied unchanged to certain parts of the generated �les:

HFIRST into <OptimizerName>.h �le; before any code line. Can be used to manipulate inclusions of �les

IMPORT into <OptimizerName>.h �le; after the inclusion of stdio.h

EXPORT into <OptimizerName>.h �le; after IMPORT

GLOBAL into <OptimizerName>.c �le; after the prologue

BEGIN into <OptimizerName>.c �le into the begin function <OptimizerName>_Begin()

CLOSE into OptimizerName.c �le into the close function <OptimizerName>_Close()

1Note that the grammar parts we give here are not the actual grammar of the parser; they only show the layout of an OPTIMIX
speci�cation.

2AST-modules are described in section 2.3.4.

12

CHAPTER 2. AN OPTIMIX SPECIFICATION 13

end C mode.

Java mode only: In Java, OPTIMIX works as a preprocessor to the standard Java compiler. Hence speci�cations

are embedded into Java �les; no separate modules are allowed, but instead graph rewrite procedures can replace

standard Java methods. As output for each Java-OPTIMIX speci�cation, a standard Java class is produced

which contains a generated method instead of the graph rewrite procedure. end Java mode.

2.2 Lexical parts

Lexical items of OPTIMIX speci�cations are the following:

String ::= ''' any ''' | '"' any '"'.

Digit ::= [0-9] .

Integer ::= Digit + .

Ident ::= A-z (A-z|Digit)+ .

TargetCodeBlock ::= 'f' any 'g'.
TargetPredicate ::= 'f*' any '*g'.

Keywords Special keywords are the following.3 Also their counterparts in lowercase letters are reserved,

denoting the same.

ADD AFTER ANY

BEGIN BEFORE

CHECK CLOSE CONSLIST CUT

DAG DECLARE DELAYEDREMOVE DELETE

EARS END ENDINPUT EXPORT EXPORTS

FAIL FALSE FINER FIRST FIRSTFIX FOR FORALL

FREE FUN FUNCTION FUNCTOR

GLOBAL GENERIC GRAPH GRS

HASH HFIRST HYPEREDGE

IMPORT IMPORTSDL INDEX INHERITED INITIAL INPUT ITERATE

LAST LASTFIX LEFT

MARK MODULE

NEW NEXT NIL NOT NULL

OPT OPTIONS

PATH PRED PREV PROC PROPERTY

RANGE REDUCIBLE REDEXREMOVE REFINE REUSE RULE RULES

STRATUM SUCC

TARGET THREADED TREE TRUE

USE

VIEW VIRTUAL

XGRS

Note that within AST-modules AST-syntax holds. Because for AST code the same parser is used, all keywords

of AST are reserved also within OPTIMIX-speci�cations. Also the following are special keywords of OPTIMIX.

They are names of functors (template classes, either from CoSy-fSDL or the sol-library, see section 2.3.1):

LIST SET SETF

EGRAPH SGRAPH HGRAPH SEQCLASS

BIPUNI BITUNI

bitset conslist consset hashset ptrarray

bipuni bituni hgraph seqclass

Delimiters Delimiter of identi�ers (besides white space (space, newline, tab)) are:

() { } { } . ; : :- <-> // /* */ (* *) {* *} {| |} {|| ||}

{# #} (| |) -> ~ !~ == < > ! ? :=

<= => ==>

3Some of them are not yet used

CHAPTER 2. AN OPTIMIX SPECIFICATION 14

Line comments are started by // and end at a newline. Non-nested comments start with /* and end with */

(same as in C++). There are also nested comments available as in Modula: (* nested comment *). It is not

allowed to use the string delimiter characters ' and " in comments. The keyword ENDINPUT ends the input in a

speci�cation �le, i.e. all text after it is regarded to be a comment. This is nice for testing; just move text after

[END <module-name>] ENDINPUT and OPTIMIX will not see it.

Basic syntactical de�nitions We will need some syntactical de�nitions in the following:

Type ::= Ident .

C-Type ::= FlatFormType | Ident .

Variable ::= Ident .

GraphName ::= Ident .

Name ::= Ident | String .

fSDLDomain ::= Ident .

fSDLOperator ::= Ident .

FieldName ::= Ident .

FlatFormType ::= Ident .

ActualParameter ::= Ident .

StringList ::= String // ' ' .

IdentKommaList ::= Ident // ' ' .

NodeType ::= fSDLDomain '@' fSDLOperator

| fSDLDomain | fSDLOperator | Type .

A C-Type is an identi�er of a type which can be understood by the C-Compiler (structured C types are not

allowed). A FlatFormType is a C-type which results from functor attening in fSDL, i.e. from expanding all

inheritance relations and functor calls.

2.3 Global data declarations

OPTIMIX requires that the user speci�es a data model of the graphs which are queried and rewritten (data

de�nition speci�cations). The data model is speci�ed in a data de�nition language (DDL), either Java, AST-

DDL or at-CoSy-fSDL.

2.3.1 Predicates, object types and functors

Graph representations by graph functors

In OPTIMIX analysis and transformation speci�cations use rules that are conjunctions of binary predicates

(sections 3.1 { 3.7). This is the style of Datalog [CGT89b]. Each predicate is binary and must correspond to

an edge of a graph of the data model. The data model speci�cation tells how these graphs, i.e. the predicates,

are represented. OPTIMIX provides graph representation transparency (functor transparency): it is transparent

from a predicate speci�cation how a corresponding graph is represented, this is only expressed by the type of

the object �eld in the data model.

Types of graphs and sets are expressed by functor calls on object types. Functors are template classes,

which are instantiated by one or several object types in order to specify a concrete graph or set. The given

predicate name of the speci�cation is used to �nd the object �eld in the data model, and with that the functor

call. The code to traverse the concrete graphs is generated according to the functor call. A change of the type

of a graph or set �eld, i.e. a change of a functor call changes the generated code, while the rewrite speci�cation

stays the same.

If graphs are implemented with these functors, you can test whether certain edges exist, and add or delete

edges from them. OPTIMIX also understands simple pointer �elds. You are allowed to navigate via them by

writing down their �eld name as predicate.

CHAPTER 2. AN OPTIMIX SPECIFICATION 15

Typechecking

A rewrite speci�cation in an EARS or GRS is checked against the data model in the following way (Figure 2.1).

Object Type 2

Object Type 0

predicate1: ObjectType2;

Object Type 1

predicate3:set(ObjectType2);

predicate4:graph(ObjectType1,ObjectType2);

predicate2:set(ObjectType1);

predicate1(Variable1, Variable2),

predicate4(Variable1,Variable4).

predicate2(Variable2,Variable3)

predicate3(Variable3,Variable4)

==>

Rewrite Rule
variable type

predicate type

Figure 2.1: Typechecking a rewrite rule against the data model. Predicates refer to �eld names (solid lines),

variables to object types (dashed lines).

1. for all predicates, lookup the predicate as a �eld in an object.

2. determine the type of the �eld.

object type (pointer type) (in the �gure predicate1) Then the relation is one-valued. The containing

object type of the predicate determines the type of the left variable of the predicate. The right type

is the type of the �eld.

set functor type (in the �gure predicate2) Then the relation is multi-valued, and represented by a call

to an embedded set functor. This means that the �eld consists of a set of neighbors of an object

type (the parameter of the functor call). This parameter determines the type of the right variable of

the predicate. The containing object type of the predicate determines the type of the left variable

of the predicate.

list functor type Same as previous case, except that the neighbor set is ordered.

graph functor type (in the �gure predicate4) Then the relation is a functor-created graph over two

types. The �rst parameter makes up the type of the left variable, the second that of the right

variable.

3. When all types of variables for predicates have been determined, check whether these are compatible

(equal or subtypes of each other).

OPTIMIX uses the type information on variables and predicates to generate correct navigation and manip-

ulation code. This code calls functions from the functor libraries (loop over neighbor sets, add edges, delete

CHAPTER 2. AN OPTIMIX SPECIFICATION 16

edges, delete nodes, add nodes, test existance of edges). The variable type information is also used to check

whether the user has speci�ed correct pattern matching.

Currently OPTIMIX only supports a �xed set of functors, either from the CoSy functor library or from the

sol-library which is shipped in the distribution.

2.3.2 Data de�nitions with Java

In Java mode, OPTIMIX reads ordinary Java classes to �nd out about types. The necessary classes are recognized

from standard Java import statements. It is important to provide OPTIMIX with a correct CLASSPATH

environment variable or with additional classpath option:

optimix -cp <dir> +cp <dir> optimizer.ox

-cp <dir> indicates a CLASSPATH to OPTIMIX, and other settings are forgotten. +cp <dir> adds a directory

to the current class path.

Available functors for Java

Currently, OPTIMIX understands Java Arrays and Vectors. Graph functors are not yet supported.

Users may declare own set functors with user-de�ned functors (section 6.2).

2.3.3 Data de�nitions with CoSy-fSDL

Within the CoSy compiler environment OPTIMIX can be used to produce engines which are put into CoSy

compilers.

Available functors for CoSy-fSDL

Set functors

Functor ::= fSDLFunctor | SolFunctor .

fSDLFunctor ::= fSDLHomogeneousGraphFunctor | fSDLBipartiteGraphFunctor | fSDLSetFunctor .

SetFunctor ::= 'SET' | 'LIST' | 'SETF'.

FunctorCall ::= Functor '(' NodeType // ',' ')'.

Types of set �elds may be instantiated via set functor calls. These consist of an application of a functor (a

template class) to one or several node type parameters. Please consider the CoSy framework documentation

for set functor parameters.

Graph functors OPTIMIX supports functor-created as well as hand-crafted graphs. Functor-created graphs

provide a set of nodes as well as the relation. Hand-crafted graphs always consist only of the relations, which

are represented as neighbor sets in objects. Thus hand-crafted graphs are always represented as sets of neighbor

sets, and their node set is not represented explicitly. In CoSy-fSDL-mode the supported functors are:

fSDLFunctor ::= fSDLHomogeneousGraphFunctor | fSDLBipartiteGraphFunctor | fSDLSetFunctor .

fSDLHomogeneousGraphFunctor ::= 'EGRAPH' | 'SGRAPH' | 'HGRAPH' | 'SEQCLASS'.

fSDLBipartiteGraphFunctor ::= 'BIPUNI' | 'BITUNI' | 'SETFUNI'.

Predicates in rules may also refer to �elds with object types (pointer types). Navigation is done also by

specifying their �eld name as predicate in a rule. OPTIMIX generates the corresponding �eld dereferencing.

CHAPTER 2. AN OPTIMIX SPECIFICATION 17

Import a at form �le

Every CoSy compiler relies on several CoSy-fSDL data speci�cations, and especially on an CoSy-fSDL atform-

�le <compiler>.fdl. This atform-�le must be imported to every OPTIMIX-speci�cation. The user can import

a atform-�le via command line option -ff (section 1.4). If the speci�cation is used only for one compiler, the

import can also be speci�ed in the OPTIMIX-speci�cation itself:

fSDLImportDeclaration ::= 'IMPORTSDL' String .

This declares that OPTIMIX should read an CoSy-fSDL at form �le with name String and turns on

CoSy-fSDL-mode.

Inheritance declarations for CoSy-fSDL

InheritanceDeclarations ::= 'FINER' FinerDecl * .

FinerDecl ::= Ident // '<' ';'.

The CoSy-fSDL atform does not contain inheritance information because domains are attened. Because

OPTIMIX checks the types of rule predicates against the data model, and performs some type inference, in-

heritance information is often lacking. To support the CoSy-fSDL atform information, the user may specify

inheritance declarations in the OPTIMIX-speci�cation himself. These declare atform types (domains and op-

erators) to be more speci�c (�ner) than others. In particular this is required, when the type inference algorithm

of OPTIMIX infers that two types are non-compatible which are di�erent in the atform but were compatible

in the original CoSy-fSDL speci�cation. E.g. consider two domains SimpleSTMT_Assign and STMT_Assign,

where SimpleSTMT is a sub-domain of STMT. In the atform the inheritance relation of SimpleSTMT and STMT is

lost. If the user speci�es FINER SimpleSTMT < STMT;, the type inference algorithm will know that both types

are compatible.

Note that �ner types stand to the left.

2.3.4 Data de�nitions with AST

OPTIMIX can collaborate with AST (or CG), the tools from the compiler toolbox Cocktail. OPTIMIX can read

one or more data speci�cation modules in AST-format and use them as de�nition of node and edge types. Note

that either AST- or CoSy-fSDL-mode can be used, mixed mode does not work. A user may tell OPTIMIX in

several ways whether/which AST-modules he wants to use.

� AST �les can be handed over as normal input �les, if they consist only of AST-modules. Then OPTIMIX

automatically recognizes them as AST code and parses them:

optimix optimizer.ox optimizer.ast optimizer2.cg

Note that the �rst input �le determines the name of the output �le; thus AST-�les should be given as

later arguments.

� Alternatively, the user may specify one or more command line ags -ast <file> then this/these �le(s)

are parsed to �nd the AST data de�nitions. Example:

optimix -ast optimizer.ast -ast optimizer2.cg optimizer.ox

� The user can write a use-clause for a �le in the OPTIMIX-speci�cation (on the same syntactic level as

GRS/EARS). This clause has the form

UseClause ::= 'use' StringList .

CHAPTER 2. AN OPTIMIX SPECIFICATION 18

StringList is a list of space-separated strings, which indicate �le names which OPTIMIX has to open

and to read. Thus, if an OPTIMIX speci�cation is dependent on some �les, the user may give these

dependencies in the OPTIMIX-�le. After reading the OPTIMIX-�le OPTIMIX will read the �les of the use

clause.

In AST-mode, code is generated in plain C (without access functions). The sol-library is used for the

available functors (graph and set template classes, �le sollib.ps).

Where to put a �le of a use clause

If the environment variable OPTIMIXDIR is set, OPTIMIX will all �nd �les in $OPTIMIXDIR/lib/ automatically.

Hence use clauses can refer to �les from such a directory. Also user functor should be de�ned in this directory

(section 6.2).

Available sol-library functors

In AST-mode OPTIMIX supports the following functors. Consider the documentation of the sol-library for more

information.

SolFunctor ::= SolGraphFunctor | SolSetFunctor .

SolGraphFunctor ::= 'hgraph' | 'bipuni' .

SolSetFunctor ::= 'conslist' | 'consset' | 'hashset' | 'ptrarray' | 'bitset'.

conslist provides a simple ordered list of objects (adress list). consset provides a linked-list based object

set. hashset provides a set module that enters elements using a hash function on the object's address.

ptrarray is a pointer-string set module. bitset is a bitset module.

hgraph is a simple unipartite graph with parametrizable neighbor sets. bipuni is a bipartite graph with

parametrizable neighbor sets. All graphs of a graph functor type must currently be created `by hand', i.e.

the user must create the graph by calling a C Function which is provided by the sol-library. Nodes must be

associated to the graph by calling addnode functions. Please consider the documentation of the sol-library for

more information on how to call allocation and association functions.

The functors hgraph and bipuni are generic functors. Their modules provide create-functions which can

be parametrized by the neighbor set types the graph functor should use. This may be an arbitrary set or list

type from the sol-library.

Re�ning of AST �eld types

Unfortunately AST does not know graph-, set-, and list-�elds. This means, that although existing AST-modules

of compilers may be read by OPTIMIX, OPTIMIX cannot �nd graph and set �elds in the data de�nition. However,

set and graph �elds can be introduced with two tricks:

1. The user declares the type of a scalar attribute to be of a at sol functor application. This is an identifer

consisting of the functor name and all parameters, concatenated by _, e.g.

Object =

[setfield?: consset_Object2]

.

Then OPTIMIX understands that setfield has a type functor call to the consset functor and infers

correctly that setfield may be used as predicate over Object and Object2. The disadvantage is that

AST does not know anymore which type this �eld has; it assumes that consset_Object2 is a scalar

attribute. Thus no AST functionality on this �eld is available.

CHAPTER 2. AN OPTIMIX SPECIFICATION 19

2. Set or graph �elds may be speci�ed in AST-modules (which only AST will read) as scalar attributes, and

the OPTIMIX-user has to give an additional re�ne speci�cation for the �eld in another module (which only

OPTIMIX will read). If a �eld (or a tree module) has the AST property REFINE then OPTIMIX assumes

that this �eld (resp. all �elds) provide �ner types for already de�ned �elds. OPTIMIX looks up the already

speci�ed �elds and changes their type to functor applications.

Assume an AST-module which contains the AST data speci�cation, which will only be read by AST:

MODULE x TREE Tree RULES /* only read by AST */

Object =

setfield?: Object2

.

END x

Then we can re�ne the type of setfield in another module, which will only be read by OPTIMIX, to a

functor call using the attribute property REFINE:

MODULE y1 TREE Tree RULES /* only read by OPTIMIX */

Object =

(setfield?: consset(Object2) REFINE)

.

END y1

Or we may give the property to the entire module:

MODULE y2 TREE Tree PROPERTY REFINE RULES /* only read by OPTIMIX */

Object =

(setfield?: consset(Object2))

.

END y2

Note that set �elds have to be bracketed by (). Thus OPTIMIX understands a slightly extended AST

language:

ASTObjectField ::= AstSetField .

ASTSetField ::= '(' Ident ':' FunctorCall ')'.

With this mechanism we can use module x for generation of AST code, and module y1 or module y2 for

OPTIMIX type re�nement. AST will not recognize the REFINE property. and will emit errors if feed by y1 or

y2.

Chapter 3

Speci�cation of graph rewrite procedures

This section describes how graphs can be constructed and manipulated by OPTIMIX. OPTIMIX provides two

kinds of graph rewrite systems for this: edge addition rewrite systems (EARS) and general terminating exhaustive

graph rewrite systems (XGRS, GRS).

EARS are equivalent to Datalog with binary predicates [CGT89b] [CGT89a] [A�m94] [A�m95], and their

rules may be written in this style (similar to Prolog clauses). In Datalog rule tests (rule bodies) are rule right

hand sides. In graph rewrite rules rule tests form left hand sides. In order to avoid confusion we will denote the

left hand side of GRS rules and the right hand side of Datalog rules with the term rule test. We will denote the

right hand side of GRS rules and the left hand sides of Datalog rules by rule transformation.

3.1 Graph rewrite speci�cations

C mode only: A OPTIMIX-module consists of one or several graph rewrite procedures, i.e. graph rewrite

speci�cations. For each GRS one C routine is generated, having the same name. We distinguish conceptually

EARS which consist of rules that only add edges (marked by the keyword EARS) and more general graph rewrite

systems with transforming rules (marked by keyword GRS).1 end C mode.

Java mode only: In Java mode, graph rewrite procedures substitute ordinary Java methods. In the generated

code, a speci�cation procedure is expanded to a method in standard Java. end Java mode.

Graph rewrite procedures consists of a parameter list, and one or several rule groups. The code for the rule

groups is generated in their speci�cation order, one module after the other.

GraphRewriteProcedure ::= ('EARS' | 'GRS') Ident '(' Parameters ')' 'f' Group + 'g'
| ('EARS' | 'GRS') Ident '(' Parameters ')' Group .

3.1.1 Rule groups

A rule group consists a range declaration and several graph rewrite rules.

Group ::= 'f' RangeDeclarations [Declarations] [Options] [FIRSTCode]

'RULES' Rules [LASTCode] 'g'.

For each rule group range declarations for variables (nodes) have to be made (section 3.3). These declara-

tions convey to which node domains the root nodes of the rule group refer [A�m94]. Also variable declarations

(node declarations, section 3.4), options (section 3.6.1), FIRST- and LAST-Code may be given (section 3.6.2).

An GRS or a rule group is recursive, if it de�nes a relation (an object type) which is also used (tested). Then

the generated code contains a �xpoint loop to detect the �xpoint. For non-recursive rule groups no �xpoint

loop is generated.

1This is only a syntactic distinction. Currently the keywords don't have a special meaning, but this may change in future.

20

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 21

Each rule of a rule group leads to the generation of several rule test loops over the nodes of the mentioned

graphs. How the rules are evaluated within a rule group, is decided by OPTIMIX according to the evaluation

strategy for GRS [A�m94].

A rule group that only adds edges (an edge-addition rule group) constructs graphs by building a relation

between one or two node domains, e.g. relating the node domain of a homogeneous graph or the two node

domains of a bipartite graph. Each successful rule application adds one or more edges to the graph. The

process can also be seen as inference of predicates between the nodes. Because an edge-addition rule group is

conuent and terminating, the process stops and yields the desired graph. You may also say that edge-addition

rule groups have a unique �xpoint. Rule syntax for edge-addition rules is given in section 3.6.

Rule groups that contain transforming rules need neither be terminating nor yielding unique normal forms

(unique results). The syntax of transformation rules is given in section 3.7.

3.1.2 Termination check

OPTIMIX detects whether a rule group is an edge-addition rule group, and emits a corresponding information.

These rule groups always terminate.

OPTIMIX can prove for certain other types of rule groups whether they terminate. This check is performed

according to the edge-additive termination criterion of XGRS [A�m96b]. The result for each rule group is

printed as information on the console. With option ShowTermination also the termination edges of each rule

are printed.2

3.1.3 Choice rule groups

A choice-rule-group consists of a number of rules that are tried in source order until the �rst redex is found.

Rules are not evaluated until �xpoint; the manipulated graph is only searched until the �rst redex is found.

Group ::= 'f|' RangeDeclarations [Declarations] [Options] [FIRSTCode]

Rules [LASTCode] '|g'.

Because rule groups can be nested, choice-rule-groups o�er a nice opportunity to specify alternative rule

conditions:

f // A normal rule group with nested sub-groups

DECLARE r:DatalogExpr;

RULES

// here a normal rule begins

DatalogRuleBlock(s,r), RTG(r,rtg2),

f| // Second level: an alternative group (two alternative conditions)

// Reuse range specification, reuses outer node rtg2

RANGE REUSE rtg2;

// Two alternative rules:

// The first rule tests something complex

(AddedNodes(rtg2,AN1), RTGNodeType(AN1,AEI3),

GlobalClass(AEI3 instanceof Instantiated,GC3),

GC3 matches GlobalClass (name => AN1Name),

AN1Name != AESuccname,

AN1Name != AEPredname

==>

)

(// A very simple rule that only tests something

rtg2 instanceof RTG,

* TEST(cglist_empty(rtg2->AddedNodes,kNoRTGNode))

==>

)

|g
==>

2The termination check is implemented with OPTIMIX itself. Please look at the speci�cation �le examples/termination.ox.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 22

// This is the rule action of the one rule of the outer group:

// add a new node and link it

NEW newlabel:OneIdent;,

EdgeTerminationLabels(r,newlabel)

;

g

3.2 Parameters of routines in the generated code

For each GRS one routine in the target language is generated. For these routines OPTIMIX generates parameter

lists which consist of three subsets of parameters:

� explicitly speci�ed parameters,

� parameters stemming from range declarations with automatic parameters,

� parameters which are graphs that are tested in rule tests or assigned in rule transformations.

If the user speci�es all used/modi�ed graphs as parameters explicitly, list (3) is empty. List (2) is only

generated if declarations with automatic set parameters were speci�ed.

Explicit parameter speci�cation

Parameters ::= Parameter // ',' .

Parameter ::= Variable ':' C-Type .

Parameter ::= C-Type Variable .

Explicit parameter speci�cations serve to hand help variables over to the generated routine. They can serve

to pass the engine state, or other variables that may be used in target predicates. Their type must be a C-Type

(which can also be a FlatFormType).

Parameters stemming from range declarations

Each automatic range declaration (section 3.3) delivers one or two parameter declarations for the generated

routine.

Parameters stemming from graph usage

Each graph tested or manipulated by a rule must be passed as parameter of the generated routine. However,

the user need not provide declarations for these; OPTIMIX automatically generates a correct parameter list.

The graph parameter list is ordered alphabetically.

The user has to take care that these parameter graphs are prepared correctly:

� all graphs must be created by a create-function of the functor library

� graphs must have nodes (and edges if they are not empty). The nodes must have been added to the

graph by calling addnode-functions of the graph functors, single edges may be added by addedge-functions.

Then more edges are calculated and inserted by the generated routine.

� if predicates are stated over the same variable, the universes of the corresponding graphs must be the

same (equality on graph node domains). Otherwise unexpected results can occur.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 23

3.3 Group range declarations

Code generation for GRS and rule groups relies on the concept of GRS order [A�m94]. The order of a rule group

is roughly the same as the maximal number of root nodes in rule tests which have di�erent types. These nodes

(these variables) are called order loop nodes. For each order loop node OPTIMIX needs a range decaration, i.e.

a speci�cation to which node set the node is instantiated.

The most simple case is if the range of an order loop node is just one parameter node. Then the range

declaration can be omitted, if the variable is speci�ed in the parameter list.

RangeDeclarations ::= 'RANGE' RangeDeclaration + | .

RangeDeclaration ::= ParameterRange | AutomaticParameterRange | ReuseRange .

If the range of the order loop node is a set or a graph node domain, a range declaration, i.e. a declaration

to which graph node domain or node set the order loop node is initialized. Ranges can refer to user speci�ed

parameters or to automatically generated parameters.

Other examples are found in the appendix 7.3.

Range declarations on user speci�ed parameters

ParameterRange ::= Variable '<=' ParameterSet

| Variable '<=' ParameterGraph ['.' 'TARGET'] .

ParameterSet ::= Variable .

ParameterGraph ::= Variable .

A range declaration on a user parameter consists of a speci�cation which parameter of the GRS makes up

the range of the node.

� single node parameter.

Then no range declaration is necessary.

� node sets of graphs.

Then the order loop range is initialized to the node domain of a parameter graph. If the modi�er .TARGET

is speci�ed, the target node domain (domain 2) of a bipartite graph functor is taken, otherwise the source

domain (domain 1).

� sets.

If the mentioned parameter name is a set the order loop node is instantiated from this set.

Range declarations on automatically generated parameters

AutomaticParameterRange ::= Variable '<=' UsedGraphName ['.' 'TARGET']

| Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain '<->' Variable '<=' SetFunctor '(' fSDLDomain ')'

| Variable ':' fSDLDomain .

UsedGraphName ::= Ident .

It is also possible to save the writing of parameters and let OPTIMIX infer them. Then a range declaration

must give a hint of which type the node must be taken. Currently there are the following possibilities:

� specify a graph name which is used in the rules as predicate.

Then the order loop range is initialized to the node domain of that (tested or modi�ed) graph. Also that

graph is inserted automatically in the parameter list of the generated routine.

If the modi�er .TARGET is speci�ed, the target node domain (domain 2) of a bipartite graph functor is

taken, otherwise the source domain (domain 1).

� sets.

If the range is declared to be an application of a set functor, a set parameter is inserted automatically in

the parameter list of the generated routine. This set is then taken to initialize the order loop node.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 24

� single source path problem (SSPP) initialization.

The range of an order loop node can also be only one single parameter object. Then the rule which

contains the order loop node is considered to be an SSPP rule with a single source node and a result

solution set which contains all nodes that ful�l the SSPP problem (section 3.8.3). The result set is

thus the second part of the declaration. Source node of the SSPP as well as the result set are inserted

automatically as parameters of the generated routine.

� single parameters.

Then the order loop domain is just a variable, which is included automatically in the parameter list of the

generated routine.

Range declarations on outer nodes

ReuseRange ::= 'REUSE' Ident

Within nested rule groups nodes from outer rule groups can be reused. Then it is assumed that the range

of the variable is only one node, a node of an outer rule group. An example can be found in section 3.1.3.

3.4 Group variable declarations

OPTIMIX infers types for variables by looking up the predicates as �elds in the data model. Sometimes it cannot

infer the class of a variable, it may infer di�erent types for variables, or it may �nd a type which is too general.3

Then the user can help OPTIMIX by giving additional declarations for variables. They hold for all rules of the

current rule group.

Declarations ::= 'DECLARE' Declaration * .

Declaration ::= IdentKommaList ':' NodeType ';'.

| NodeType Ident ';'

| ExternalFunctionDeclaration

| ViewDeclaration .

A node declaration is much like a variable declaration either as in Modula-2, or as in Java. In Java mode,

a Java class must be given as type. In AST-mode a class must be given as type, in CoSy-fSDL-mode domains

and/or operators have to be given. OPTIMIX then incooperates these declarations into his type inference.

Declarations of external functions are in section 3.6.3, view declarations in section 3.8.4.

3.5 Rules in a rule group

Rules in a rule group are speci�ed either in the style of Datalog (if they are edge-addition rules), or in the style

of graph rewrite rules. Each rule consists of a rule test part and a rule transformation part. Edge-addition rules

only allow predicates in their transformation part. Each rule may be accompanied by rule options, FIRST- and

LAST-code. Rules are either enclosed in '(' ')' brackets or they end with a ';'. Facts are explained in section

3.8.1, transformation rules in section 3.7.

Rules ::= (EARSRule | XGRSRule | EARSFact) + .

EARSRule ::= [Options] [FIRSTCode] EdgeAddition ':-' RuleTest [LASTCode] ';'

| '(' [Options] [FIRSTCode] EdgeAddition ':-' RuleTest [LASTCode] ')'.

| [Options] [FIRSTCode] EdgeAddition 'if' RuleTest [LASTCode] ';'.

| 'if' [Options] [FIRSTCode] EdgeAddition 'then' RuleTest [LASTCode] ';'.

RuleTest ::= Predicates .

EdgeAddition ::= Predicates .

Predicates ::= Predicate // (',' | 'and' | '&&') .

3This may happen especially in CoSy-fSDL-mode because here the code generation needs not only domains, but also operators

to generate access functions.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 25

3.6 Rule tests

3.6.1 Options for rule groups and rules

Options ::= 'OPTIONS' Name + ';'.

Options ::= '[' Name // ',' ']'.

Rule groups and rules may also be annotated with an option list (options). This is a list of strings, enclosed

in square brackets [] or appended after the keyword OPTIONS. If such an option is set, the semantical analysis,

optimization and code generation phases of OPTIMIX are performed in a rule group/rule speci�c way.

Current available rule group options are:

� CentralNeighborSetComparison, LocalNeighborSetComparison, DirectFixpointCheck

OPTIMIX knows three kinds of �xpoint detections for edge additive rules: central neighbor set comparison,

local neighbor set comparison, and direct �xpoint check (section 3.9). Normally central neighbor set

comparison is prefered over local neighbor set comparison. The ag can be used to override this default.

� NoFixpoint, Fixpoint Do not generate a �xpoint loop/generate a �xpoint loop for the rule group.

Current available rule options are:

� JOIN Use join code generation mode, even if on-the-y was analysed.

� ETJoin (alpha-tested) Use element-test join code generation mode. This mode uses element tests instead

of join equality conditions. It should for a lot of cases speedup the join, if element tests of the last functor

of a path are possible in constant time.

� ETFilters (alpha-tested) Use element-test path pre-�ltering. Paths are generated several times, the �rst

times for pre-selections.

� LocalTests Perform the pattern matching on a node always, if an instance of the node is traversed. This

option results in more pattern matching tests, but fewer traversals, because the join search space of path

problems is diminished.

3.6.2 FIRST and LAST target predicates for rule groups and rules

Rule groups as well as rules can be annotated by a FIRST and an LAST target predicates. The code of FIRST

predicates is printed in the generated code right after the variable declarations for a rule group (or a rule). Here

the user can de�ne his own variables for use in target predicates. The code of the LAST target predicate before

the rule group/rule end.

FIRSTCode ::= 'FIRST' TargetPredicate .

LASTCode ::= 'LAST' TargetPredicate .

FIRST f* /* here is FIRST */ *g
LinearBlocks(PBody,B), Stmts(B,Ass), Ass ~ mirAssign

==>

AllDefinitions(PBody,Ass)

LAST f* /* here is LAST */ *g
;

3.6.3 Predicates in rules

A rule test part contains a number of predicates, which are tested against the manipulated graph. They may

have the following forms:

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 26

Predicate ::= PredicateName '(' Pattern ',' Pattern ')'

| Variable 'IN' Variable '.' LinearPathExpression

| Variable Predicate Variable

| 'FORALL' Variable ':' Predicate

| 'NOT' Predicate

| '?' ProcedureCall

| TargetPredicate

| TargetCodeLine

| PatternMatchStatement

| EqualityTest

| FailStatement

| Cut

| Group .

PredicateName ::= Ident ['@' NodeType] ['.' RelationModifier] ['[' OrderIndicator ']'] .

LinearPathExpression ::= | PredicateName '.' LinearPathExpression .

Simple predicates

Simple predicates are always binary because they refer to graphs. Simple predicates contain patterns or variables

as arguments. Predicate names must exist as the name of a object �eld in the data model. Thus a predicate

in a rule test or rule transformation refers to

� a �eld which has the type of a graph functor call (graph �eld)

� a �eld which has the type of a set/list functor call (set �eld)

� a �eld which has the type of a simple domain (non-graph) (pointer �eld).

The predicate

p(X,Y)

is true if the object Y is contained in the set X.p. Also (in the generated code) the predicate p(X,Y) delivers

all objects Y which are linked under �eld (or graph) p to object X.

Alternative notations for the predicate are:

Y IN X.p // variable in neighbor set of node under relation p

Y p X // infix notation

Linear path expressions

Chains of predicates can be abbreviated to linear path expressions (Datalog chain predicates). The predicates

are notated as designators. Predicates in a linear path expressions are entered into the rule test graph as normal

predicates, with arti�cial variables connecting them. The following two lines are equivalent, except that for the

�rst OPTIMIX generates arti�cial variables:

Y IN X.p.q.r // designating X via relations p, q, and r

p(X,Z1), q(Z1,Z2), r(Z2,Y) // expanded version with user variables

Type inference for simple predicates

OPTIMIX looks up the �eld name in the data model and annotates with the predicate a set of types (in CoSy-

fSDL operator/domain pairs). This is a set of types because a �eld can turn up in several objects. In CoSy-fSDL

also operators may be contained in several domains. These sets of alternative types are then intersected and

uni�ed against each other during the type inference. OPTIMIX always tries to retain �ner types, i.e. more

speci�c types, which then provides better information for code generation. The rules according two types are

compared are the following:

� an AST type is �ner than its superclasses.

� an CoSy-fSDL operator is �ner than a containing domain.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 27

� an CoSy-fSDL operator/domain pair is �ner than the domain.

� a type is �ner than another if it has been declared so in a FINER inheritance declaration.

At the end of the type inference process there should be unique types for all variables in rules. If not,

OPTIMIX will prompt an error. Either this is a real typing error or the user can give more type information to

OPTIMIX by providing inheritance declarations (section 2.3.3) or variable declarations (section 3.4).

In CoSy-fSDL-mode however, this scheme currently has one restriction. If a �eld is contained in several

operators, and is not a shared �eld, then the user has to specify with the �eld a domain/operator speci�cation.

E.g. in the CCMIR the �eld Then occurs in operator mirIf as well as in mirTryAcquire. A predicate using it

in domain mirIf should look like:

Then@mirSimpleSTMT@mirIf(Stmt, ThenPart)

If the �eld is a shared �eld between all operators that use it, the �eld alone is su�cient as predicate name.

The Object/ANY class Java mode only: Users can specify nodes to be of class Object. This type is coarser

than all other types, and all types are compatible with it. end Java mode.

C mode only: Users can specify nodes to be of class ANY. This type is coarser than all other types, and all

types are compatible with it. If AST-mode is used, also the type tTree can be used, which is equivalent. end

C mode.

Relation modi�ers

RelationModifier ::= 'succ' | 'pred'.

Relation modi�ers serve to indicate which kind of functions should be called to navigate in the generated

code. From OPTIMIX's point of view a functor-created graph de�nes two default �elds for the parameter

domains of the functor application. These two default �elds can be used as predicates in clauses. For instance,

if we have the following CoSy-fSDL de�nition

domain Proc : f
Procedure < BlockGraph: SGRAPH(BasicBlock) >

> g
domain BasicBlock : f

BasicBlock < >

> g

then the functor call BlockGraph: SGRAPH(BasicBlock) creates for domain BasicBlock two default

�elds BlockGraph and BlockGraph.pred. These �eld names denote all successors resp. predecessors of a

BasicBlock concerning the functor-created graph BlockGraph. With p.succ or p the successor relation of

graph p is denoted, with p.pred the predecessor relation is denoted.

Order indicators

OrderIndicator ::= 'first' | 'last' | 'next' | 'prev' | 'before' | 'after' | 'any'.

If users specify predicates that refer to �elds of list-functor type, special order indicators can be used to �nd

out certain special elements of the list. The order indicators generate an access to speci�c list elements. There

are the following types, exempli�ed by a relation Stmts, the statements of a block:

� Stmts[first](Block,S1) generates an access to the �rst element S1 in the Stmts of Block.

� Stmts[last](Block,S1) generates an access to the last element S1 in the Stmts of Block.

� Stmts[any](Block,S1) generates an access to an arbitrary element S1 in the Stmts of Block. For lists

the head of the list is taken. This indicator can also be applied to set functors. Then it emits a call to

the choose-function of the set functor.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 28

� Stmts[after in Block](S1,S2) generates a loop over all successors S2 of S1 in the Stmts of Block.

� Stmts[before in Block](S1,S2) generates a loop over all predecessors S2 of S1 in the Stmts of Block.

� Stmts[next in Block](S1,S2) generates an access to the successor S2 of S1 in the Stmts of Block.

� Stmts[prev in Block](S1,S2) generates an access to the predecessor S2 of S1 in the Stmts of Block.

The variable Block must be de�ned earlier in the speci�cation.

The distribution contains a demo �le autotest/examples/test-list-add.ox for order indicators.

All-quanti�ed predicates

Normally all predicates are existentially quanti�ed in their variables. However, one predicate in a rule is allowed

to be preceeded by an all quanti�er, e.g. FORALL V: p(X, V). The all-quanti�ed variable must be the right

variable of the predicate. Predicates in the head of a rule cannot be all-quanti�ed. Currently the concept of

all-quanti�ers is rather restricted. It works only in two situations:

� The all-quanti�ed variable is the middle variable of a path with two predicates and the rule test is a single

path. This is the standard situation for MUST dataow analyses (section 5.2.2).

� The all-quanti�ed variable is the sink of an rule test graph. This rule test graph must also be either a

path or a dag (see example speci�cation copyprop.ox).

Negated predicates

If a predicate is preceeded by a NOT, it is negated. Then the generated code tests that no edge between the

two variables of the predicate exists, and skips all combinations of nodes which are linked by a corresponding

edge. Negation is allowed in the following contexts:

� In rule tests if predicates are used that are graph functor instantiations. Negation can only be performed

if a universe is known against the completion of a set of nodes is performed. This is the case only for

graph functors, in which the set of graph nodes represents this universe.

Negation is performed by a loop over the universe, skipping those nodes which are the neighbor set of the

predicate.

� In rule tests for bitset predicates. They also have a universe which consists of all nodes the bits refer to.

Negation is performed by a bitset complement.

� In rule transformations. Then in the code an edge of the denoted graph is deleted, not added.

Checked calls to external predicate functions

ProcedureCall ::= Ident '(' ActualParameter // ',' ['==>' ActualParameter // ','] ')'.

If a predicate starts with a ?, then OPTIMIX assumes that the rest is a call to a C function returning a

boolean. Thus it generates this call and checks its result with TRUE (integer constant 1). If the called predicate

fails, also the rule fails. Otherwise the rule test is continued.

The list of actual parameters to a call must consist of simple variables. There is an IN parameter list (before

the ==>) and an OUT parameter list (after the ==>). The IN parameters are considered to be pattern variables

which are handed over to the called routine. The OUT parameters are also handed over as reference parameters,

i.e. their addresses are handed over.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 29

Calls to external functions

Edges in graphs may be simulated by calling external C functions. The name of the functions must appear in a

DECLARE declaration:

ExternalFunctionDeclaration ::= IdentKommaList ':' 'fun' NodeType '->' SetOrNodeType

ExternalProcedureDeclaration ::= IdentKommaList ':' 'proc' NodeType '->' SetOrNodeType

The �rst alternative declares an external C function returning a node type or a set over a node type. The

second alternative declares a void C procedure with two parameters, the �rst an input parameter (pointer/object

type), the second one an output set parameter (set type). Examples of declarations:

DECLARE

f1: fun file -> file;

f2, f3: fun file -> conslist(file);

f4: fun file -> consset(file);

p1: proc file -> file;

p2,p3: proc file -> consset(file);

f1 { p3 may all be refered to as binary predicate names in rule tests:

(f1(O1,O2), p3(O2,O3) ==> a_normal_graph_edge(O1, O3))

The semantics of external C function calls in rule transformations is not de�ned.

Target code predicates

TargetPredicate ::= 'f*' any '*g'.
| 'java' 'f' any 'g'

It is possible to specify target code as predicate (a target predicate). This code is copied unchanged to the

generated �le. Target predicates always succeed.

Target predicates normally are attached to their preceeding predicates. They are copied after the code that

was generated for their preceeding predicate, i.e. normally in a loop which was caused by that predicate. There

are some special cases:

1. If a target predicate appears as �rst predicate of a rule test part, it is copied to the generated �le as last

action of the rule test part, but before join conditions are evaluated.4

2. If a target code predicate appears in the rule transformation of a rule it is printed after the addition/deletion

of the preceeding edge in the innermost rule test loop.

3. If it appears as �rst predicate in a rule transformation, it is printed before the addition of the edges and

the rule transformation.

4. If it appears as last predicate in a rule transformation, it is printed before the addition of the edges and

the rule transformation.

5. FIRST and LAST target predicates are copied to places before and after the execution of a rule (section

3.6.2)

Target code lines

If a target predicate consists of one line of C, there is a special syntactic alternative for it. Target code lines

consist of arbitrary C text, terminated by a newline character. If necessary, the newline also simulates a ','-token

to the parser, so no intermediate commas are necessary with target code lines.

TargetCodeLine ::= '*' any Newline .

4This semantics is weird and probably will change.

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 30

Target predicates may be used for test and set of node attributes or debugging generated code. E.g. the

following rule tests whether a node is marked as deleted and removes it from some graphs:

GRS DeleteFromStatementLists(Proc:ProcGlobal)

{

RULES

Body(Proc,PBody),

{* /* This target code is printed after the code for */

/* the preceeding predicate Body */ *},

LinearBlocks(PBody,Block),

* /* and this here is a single line of target code */

Stmts(Block,Ass),

Ass ~ Assign,

{* /* target predicate to test, whether a node was really deleted */

/* is copied to the rule test after the pattern match on Assign */

if (!SimpleSTMT_Assign_get_deleted(Ass))

continue;

*}

==>

DELETE Ass FREE;, // really deallocate Ass

* printf("deleting copy statement %s",STMT_provide_label(Ass));

NOT Stmts(Block,Ass),

NOT list_of_definitions(Proc,Ass)

* /* This here is really the end of the rule */

;

}

Pattern match predicates

PatternMatchStatement ::= Variable ('~' | 'matches' | 'instanceof' | '!~') Pattern .

As predicates, pattern match statements on rule test nodes (rule test variables) are allowed. A variable is

linked to a pattern with the tokens ~, matches, or instanceof. The pattern match statement succeeds if the

variable has the form of the pattern. If a variable is linked to a pattern with !~ the pattern match statement

succeeds if the variable has not the form of the pattern.

N ~ Block // node N matches type Block

N instanceof Block // node N matches type Block

N matches Block // node N matches type Block

N !~ Block // node N is not of type Block

In rule transformations pattern matching is not allowed.

Patterns In pattern match statements or in predicates of rule tests patterns may appear.

Pattern ::= NodeType

| NodeType 'f' InnerPattern // ',' 'g'.
InnerPattern ::= FieldName '=>' Pattern

| FieldName ('=>'|'==') [Variable (':=' | ':')] Pattern

| FieldName ('=>'|'==') Variable .

Variables in patterns are arbitrary identi�ers. There are two kinds of patterns: outer patterns are allowed in

pattern match statements, where they match already de�ned variables. They are also allowed in left or right

parameters of simple predicates, however, only at the outer level.

Inner patterns are allowed to occur only in an outer pattern or another inner pattern. They perform �eld

pattern matching and also variable assignment. Positional pattern matching is not possible, only matching with

a �eld name is allowed. Variable assignment assigns a variable to the �eld, if the pattern match was successful.

If no variable assignment is given, OPTIMIX assigns a temporary variable to the successfully matched subtree.

For instance, the pattern match

S ~ If(Then => A := Assign)

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 31

tests whether a variable S consists of a If where the �eld Then is a Assign. The variable A is assigned to

the assignment statement.

As outer patterns, inner patterns test features of nodes and scalars, resulting in testing edges in the rule

test graph. Inner patterns di�er from outer patterns in so far that the �eld names in inner patterns are always

pre�xed by the designation path of the enclosing patterns. This means that all designators are collected from

out to inside of the pattern and pre�x a �eld name. For instance, the nested pattern above can be resolved to

testing edges as follows, resolving the �eld pattern match on Then to a designator S.Then:

matches(S,If), matches(S.Then,Assign), A := S.Then

Restriction of the current implementation: It is not allowed to use constant patterns. Constant compar-

isons are only allowed in equality tests (section 3.6.3).

Equality tests

EqualityTest ::= PatternVarEqualityTest | RTGNodeEqualityTest .

PatternVarEqualityTest ::= Variable BoolOp Variable .

RTGNodeEqualityTest ::= Variable EqualOp Variable .

BoolOp ::= EqualOp | '<' | '>' | '<=' | '>=' .

EqualOp ::= '==' | '!=' .

On pattern variables or on rule test graph nodes equality tests may be performed. For pattern variables they

lead to the generation of equality/inequality functions of the opaque types of the attributes. For rule test graph

nodes, in AST-mode pointer equality is used. In CoSy-fSDL-mode DMCP_equal is used.

SpecialBlocks(b,b1) :-

BlockGraph(b,b1),

b != b1, // test pointer inequality of b and b1

b ~ Block (number => Number),

b1 ~ Block (number => Number2),

Number <= Number2 // compare attributes Number and Number2

;

3.6.4 Nested rule groups

In lieu of predicates rule groups may appear (nested rule groups). This can be used to test alternative conditions

for rules (with choice-rule-groups), or to do intermediate actions during the test of a rule.

3.7 Transformation rules

Transformation rules use the same syntax as edge-addition rules to specify preconditions, and have an additional

transformational part. This transformational part consists of node deletions, node additions, edge deletions and

edge additions, also to the newly created nodes.

XGRSRule ::= [Options] [FIRSTCode] RuleTest '==>'

[[NodesToBeDeleted] [NodesToBeAdded] ','] Predicates [LASTCode] ';'

| '(' [Options] [FIRSTCode] RuleTest '==>'

[[NodesToBeDeleted] [NodesToBeAdded] ','] Predicates [LASTCode] ';'.

| 'if' [Options] [FIRSTCode] RuleTest 'then'

[[NodesToBeDeleted] [NodesToBeAdded] ','] Predicates [LASTCode] ';'.

Rule groups options, rule options, FIRST- and LAST-Code behave in the same way as with EARS rules.

Note that currently the user himself has to guarantee the termination of a XGRS. There is no automatic

check for that, neither a test for conuence. See also the article on XGRS [A�m96a], whose method is currently

not implemented..

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 32

Node addition

NodesToBeAdded ::= 'ADD' VariableDeclarations .

Nodes which are added by the rule, have to be declared in a similar way as rule local variable declarations. In

CoSy-fSDL-mode it is necessary to specify both a domain and operator for new nodes. Otherwise the correct

node allocation function call cannot be generated.

Node deletion

NodesToBeDeleted ::= 'DELETE' IdentKommaList DeleteProperty * ';'.

DeleteProperty ::= 'MARK' | 'FREE' | 'REDEXREMOVE' | 'DELAYEDREMOVE'.

Nodes from the rule test which have to be deleted are speci�ed after the keyword DELETE. The deletion can

be done in four modes, which can be combined, e.g. it is possible to specify MARK REMOVE with some nodes.

The mark mode just markes the nodes, which are in a successfully matched redex, by setting the �eld

deleted. This is a �eld which the user has to add to all types of objects which have to be deleted. Once the

nodes are marked like this, they can be recognized as being invalid. Marking is necessary when a node belongs

to a lot of graphs, not only those that were tested in the rule. Then subsequent passes over these graphs can

remove all incident edges, and in the last pass also the node can be deallocated.

The redex-remove mode does not deallocate the nodes but removes the node from all the containing graphs

which are mentioned in the rule test. Thus it deletes all incident edges of graphs of the rule test. There still

might be other graphs the node belongs to.

The delayed-remove mode is special. It generates a second, arti�cial GRS. This GRS walks the graphs of

the rule test a second time, tests on deleted (marked) nodes and then performs removal of incident edges.5

In CoSy-fSDL-mode, the walking is done via ITERLIST-LOOPs, not with LIST-LOOPs. This is due to a

restriction of the fSDL-LIST functor which could not delete nodes from lists when walking the lists themselvs

via LIST-LOOP.6

The free mode really deallocates the nodes. In AST-mode a function Tree_delete is called.7 An appropriate

macro or function has to be provided by the user. In CoSy-fSDL-mode <domain>_delete. is called. This

function is always part of the DMCP interface.

Addition of edges to new nodes

The rule transformation part following the declarations consists again of a sequence of predicates. Here they

specify edge additions and deletions. Edge additions are performed by non-negated simple predicates and may

refer to new nodes as well as to old nodes. Edge deletions are performed by negated simple predicates and can

of course only refer to items from the rule test.

(LinearBlocks(PBody,Block),

Stmts(Block,Assign)

==>

ADD Assign2;, // allocate Assign2

Stmts(Block,Assign2), // enter Assign2 in statements

NOT Stmts(Proc,Assign) // remove Assign from statements

)

3.8 Other kinds of rules

3.8.1 Non-ground facts

EARSFact ::= [Options] [FIRSTCode] Predicates [LASTCode] ';' .

5The generated GRS should only containing the rule in question. Currently it contains all rules.
6It may be that in the current version this is obsolete; so also delayed-remove mode is obsolete.
7Currently the AST tree is assumed to have name Tree. This should change

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 33

In OXDML non-ground facts may be speci�ed analogously to Coral [RSS92]. Facts are edge-addition rules

without preconditions. Non-ground facts are facts that contain variables. Non-ground facts serve to initialize

a graph with certain values before other rules manipulate the graph. This can be used especially for data ow

analysis: the initialization statements there are non-ground facts. Non-ground facts in a rule group are always

evaluated before other rules of the it are evaluated.

As example consider the speci�cation of available expression dataow analysis, the �rst two rules are non-

ground facts:

// Find available expressions

EARS AvailableExpressions ()

{

RANGE b <= AVIN; e <= AVIN.TARGET;

// non-ground facts: initiallization to FULL set.

AVIN(b,e);

AVOUT(b,e);

// EARS rules.

AVIN(b,e) :- FORALL p: BlockGraph(b,p), AVOUT(p,e);

AVOUT(b,e) :- COMPOUT(b,e);

AVOUT(b,e) :- TRANSP(b,e), AVIN(b,e);

}

Also self-edge facts may be speci�ed which draw self edges on nodes:

EARS ComputeDominators(b: BasicBlock)

{

Dominators(b,b); // self-edge fact: each block is dominated by itself

}

Non-ground facts also may be negated. Then OPTIMIX generates loops over the graph nodes that delete

existing edges.

There are all in all several possibilities, how to initialize a graph:

� make a full graph with a non-ground fact.

� make a graph with self edges with a self-edge fact.

� delete all edges in a graph by a negated fact.

� delete all self edges by a negated self-edge fact.

Before and after facts target predicates can be written. If a target predicate is written before the fact, it is

copied directly before the edge addition. If it is written after the fact, it is copied direcly after the edge addition.

For further examples on facts consider example �le facts.ox.

3.8.2 Verbose syntax for rules

Rule preconditions may be written in a more verbose way than Datalog o�ers. Together with linear path

expressions this gives a clear way to specify preconditions and actions in certain situations. Consider the

speci�cation which is equivalent to the previous available expression dataow analysis:

// Find available expressions

ears AvailableExpressions ()

{ range b <= AVIN; e <= AVIN.TARGET;

e in b.AVIN;

e in b.AVOUT;

if FORALL p: BlockGraph(b,p), AVOUT(p,e) then AVIN(b,e);

if COMPOUT(b,e) then AVOUT(b,e);

if TRANSP(b,e), AVIN(b,e) then AVOUT(b,e);

}

Consider the following, equivalent version with path expressions which is even more concise:

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 34

// Find available expressions

ears AvailableExpressions ()

{ range b <= AVIN; e <= AVIN.target;

e in b.AVIN;

e in b.AVOUT;

if FORALL p: p in b.BlockGraph, e in p.AVOUT then e in b.AVIN;

if e in b.COMPOUT then e in b.AVOUT;

if e in b.TRANSP and e in b.AVIN then e in b.AVOUT;

}

3.8.3 Single source path problems (SSPPs)

There is a special variant of EARS which can solve single source path problems (SSPPs) [Tar81]. An SSPP is a

path problem in a graph which is described by a path expression (or a set of predicates, like in EARS) and which

is applied to one single source node of the graph. It delivers all nodes which are reachable from the source node

under the predicates (the path expression). These nodes are called result set.

A GRS may contain several SSPP rules. The the source node of the SSPP and the result set of such a

rule can be declared with a range declaration (section 3.3). The node is then initialized to the corresponding

parameter of the generated routine, and the parameter set of the range declaration is used as the result set.

SSPP rule tests are not generated among those rule tests which result from normal rules (in the order loops).

Instead they are extracted and printed after them.

The following example solves a SSPP for a procedure and all its statements. It collects all assignments that

are in the blocks' statement lists.

EARS PrepareReachingDefinitions()

{

RANGE Proc <= ProcGlobal <-> list_of_definitions: SET(STMT);

RULES

list_of_definitions(Proc,Ass) :-

Body(Proc,PBody),

LinearBlocks(PBody,Block),

Stmts(Block,Ass),

Ass ~ Assign

;

}

SSPP rules can also be used nicely to write down walking e.g. over statement lists and perform actions on

them. The following example collects all assignment statements in a parameter set list_of_definitions.

They also are entered into a global class of de�nitions for objects, with a target predicate side e�ect action.

This global class is attached to global state handle (e.g. of a CoSy engine), and must be passed as parameter

to the generated routine CollectAssigns.

EARS CollectAssigns(state: StateType)

{

RANGE Proc <= ProcGlobal <-> list_of_definitions: SET(STMT);

RULES

list_of_definitions(Proc,Ass),

{* EnterInDefinitionClasses(state,Ass); *}

:-

Body(Proc,PBody),

LinearBlocks(PBody,Block),

Stmts(Block,Ass),

Ass ~ Assign

;

}

3.8.4 View rules

(Only alpha tested)

CHAPTER 3. SPECIFICATION OF GRAPH REWRITE PROCEDURES 35

View rules are single source path problem rules which consist of a linear chain of predicates and one single

assigned predicate. In order to faciliate the writing of rule tests, these assigned predicates can be used as

abbreviation for the complete view rule. Thus, if the user uses in a rule test an assigned predicate of a view

rule, the rule test part of the rule is expanded in-line into the using rule. This works without problems because

the view rule is only allowed to have chain form.

In order to de�ne view rules the user must specify the assigned predicate in a DECLARE speci�cation as

follows:

ViewDeclaration ::= IdentKommaList ':' 'view' BinaryPredicateType ';'

BinaryPredicateType ::= NodeType '->' SetOrNodeType .

SetOrNodeType ::= FunctorCall | NodeType .

Rules which de�ne this assigned predicate are assumed to be view rules and are automatically inline-expanded

in other rules. Note that only one view rule per view assigned predicate may exist.

Global sets which assemble the assigned predicate elements can be choosen from any set or list functor.

DECLARE

// view rule declarations

viewedge1: view Block -> conslist(Block);

viewedge2: view Block -> conslist(Block);

RULES

// view rule definitions. They do not lead to code!

viewedge1(B1,B2) :- base(B1,B3),base(B3,B2);

viewedge2(B1,B2) :- base(B1,B3),base(B3,B4),viewedge1(B4,B2);

// rule with view edge call. View edges are expanded.

LinearBlocks(Proc,Block), viewedge2(Block,Block2), dep(Block2,Block3)

==>

base(Block,Block3)

;

3.9 Fixpoint checks

OPTIMIX knows three kinds of �xpoint detection for rule groups: direct �xpoint check, central neighbor set

comparison, and local neighbor set comparison. These detection methods have di�erent runtime costs. Not all

of them are apt for all XGRS.

The �rst method is probably the fastest. It can be used if the functor functions which are used to perform

graph manipulations, give back a change ag, if something has changed. Then functor functions for edge

addition are queried if they have changed something. Direct �xpoint checking is also chosen, if no rule of the

rule group is edge additive, i.e. if all rules manipulate nodes.

Central neighbor set comparison runs a bit slower. It compares the neighbor sets of order loop nodes before

and after a �xpoint loop. It memorizes the old values of neighbor sets of order loop nodes by copying or

assignment.

If an assigned edge of a rule group does not start at an order loop node, local neighbor set comparison is

performed. This is probably the slowest mode: It copies/memorizes old values of neighbor sets each time the

source node of the assigned edge is traversed.

Option ags can be used to override the default modes (section 3.6.1).

Chapter 4

Meta-Optimizations for XGRS code

generation

OPTIMIX knows how to optimize the evaluation of several kinds of speci�cations. In order to avoid confusion with

program optimization we call this meta-optimization. However, note that all this may be topic of implementation

restrictions, see section 7.1.

4.1 Bitset optimization

A rule is bitset optimizable, if all incoming edges to the target node of an assigned edge are implemented by

bitsets. If so, for the rule bitset operations are generated; otherwise normal object-based code generation is

used.

The following rule is bitset optimizable, if we suppose that EC_DSAVE_OUT, EC_DSAVE_IN, and EC_TRANSP

are implemented as SETF(Stmt). The rule test graphs is a directed acyclic graphs, all assigned edges are added

in forward direction, and all edges incoming to the target node of the assigned edge s are have bitset functors..

EC_DSAFE_IN(Block,Expr) :- EC_TRANSP(Block,Expr), EC_DSAFE_OUT(Block,Expr);

The generated code is

for (onceindex = 1; onceindex > 0; onceindex--)
{

/* path test [Block]-EC TRANSP->[Expr] */
Block = OLoopRawNode 0;
/* bitset predicate test EC TRANSP 32, 44 */
/* if result set not already created, create it */
if (Result Block EC TRANSP Expr == NULL)

Result Block EC TRANSP Expr = SETF mirEXPR EC create(mirBasicBlock mirBasicBlock get EC TRANSP(Block),
SETF init full);

else
SETF mirEXPR EC full(Result Block EC TRANSP Expr);

SETF mirEXPR EC inter2(Result Block EC TRANSP Expr,mirBasicBlock mirBasicBlock get EC TRANSP(Block));
SETF mirEXPR EC inter2(Result Block EC TRANSP Expr,mirBasicBlock mirBasicBlock get EC DSAFE OUT(Block));
SETF mirEXPR EC union2(mirBasicBlock mirBasicBlock get EC DSAFE IN(Block),Result Block EC TRANSP Expr);
/* end path test [Block]-EC TRANSP->[Expr] */

} /* end of rule fake for-loop */

4.2 Bidirectional edge optimization

If a functor provides bidirectional implementation (e.g. hgraph), OPTIMIX can use both directions for code

generation. During the computation of the edge-disjoing path cover of the rule test graphs, OPTIMIX selects

one of the directions. Thus bidirectional edge optimization completes bidirectional graph functor edges in order

to �nd better paths for code generation.

Thus the order of a rule test graph can be reduced to 1, if enough bidirectional functors are used.

36

CHAPTER 4. META-OPTIMIZATIONS FOR XGRS CODE GENERATION 37

4.3 Index edge optimization

(only tested in CoSy-fSDL-mode)

If an XGRS has order 2, and uses attribute equality tests on its rule test root nodes, it can be speed up by

the use of index structures.

IndexDeclaration ::= 'INDEX' Variable ':' IndexName ['FUNCTION' IdentList] ';'.

IndexName ::= 'HASHTABLE' | 'PLAINTABLE'.

If an index is speci�ed on a variable, the code generation changes as follows. First the order loop node

domain of the speci�ed variable is traversed to collect all objects into the index structure. Then the index is

used as virtual edge between the two root nodes of the rule. This virtual edge is traversed during rule test.

The rule (and may be the rule group) gets order 1 and will be generated with other rules that have the same

(single) range.

Currently there are hash tables (multi-valued index) and plain pointer tables (one-valued).1 OPTIMIX emits

calls to C modules which both can be found in the sol-library.

EARS EquivalenceOfExpressions()

f
RANGE i1 <= consset(Expression); i2 <= consset(Expression);

INDEX i2: HASHTABLE FUNCTIONS hash_Expression, compare_Expression;

RULES

simple_equal(i1, i2) :-

Type(i1,T1),Type(i2,T2), // two rule test root nodes: order 2

T1 == T2,

i1 ~ IntConst Value => V ,

i2 ~ IntConst Value => V1 ,

V == V1 // attribute equality test

;

g

transforms logically into

EARS EquivalenceOfExpressions()

f
RANGE i1 <= consset(Expression); RULES

simple_equal(i1, i2) :-

VirtualIndexEdge(i1,i2), // one rule test root node: order 1

Type(i1,T1),Type(i2,T2),

T1 == T2,

i1 ~ IntConst Value => V ,

i2 ~ IntConst Value => V1 ,

V == V1

;

g

The index function may be accompanied with the following functions in order:

1. hash function: Hashes an object into a int hash value. C signature:

int hash(<NodeType> n);

2. compare function: compares two objects on equality. Should behave like strcmp: give back 0 if object 1

is equal to object 2, -1 if smaller, 1 if greater. Example:

int compare_Expression(Expression e, Expression e2)

f
if (e->Kind == e2->Kind) return 0;

if (e->Kind > e2->Kind) return 1;

return -1;

g

1Only hash tables are tested yet.

CHAPTER 4. META-OPTIMIZATIONS FOR XGRS CODE GENERATION 38

If one of them is left out, OPTIMIX chooses a standard function (probably behaving ine�cient). Choosing

appropriate hash functions is quite important. Also note that the hash function has to be speci�ed anyway: if

it is left out, a dummy void function has to be speci�ed instead.

Chapter 5

Examples and Miscellaneous

5.1 AST/standalone-mode examples

Please refer to the example �les in the subdirectories $OPTIMIXDIR/autotest/examples and

$OPTIMIXDIR/autotest/ast. The �rst directory contains several examples of this manual. The second direc-

tory contains the following examples:

ccmir.ast A fragment of a real-life intermediate language: the CCMIR (Common COMPARE Medium Inter-

mediate Representation)

�les.ast A fragment of some speci�cation for �le of di�erent types.

reach.ox Reaching de�nitions for CCMIR.

example-reachable.ox Transtive closure.

exprtab.ox Expression equivalence for CCMIR.

dominators.ox Computing dominators on block graph.

facts.ox Example facts.

livecopies.ox Live copy information.

copyprop.ox Copy propagation transformation.

5.2 CoSy-fSDL-mode examples

Here we will present some short examples for CoSy-fSDL mode. We assume a basic block graph is de�ned in

a procedure as follows. In CoSy this can be done in a view speci�cation of an engine. We that the basic block

graph has already been constructed and entered into relation BlockGraph.

domain mirProcBody <

BlockGraph: SGRAPH(mirBasicBlock),

ReverseBlocks: SGRAPH(mirBasicBlock),

ReachableBlocks: SGRAPH(mirBasicBlock),

Dominators: SGRAPH(mirBasicBlock),

SelfDom: SGRAPH(mirBasicBlock),

USED: BIPUNI(mirBasicBlock,mirLocal),

Livein: BITUNI(mirBasicBlock,mirLocal,Livein),

Liveout: BITUNI(mirBasicBlock,mirLocal,Liveout)

>;

Then we may write the following speci�cations.

39

CHAPTER 5. EXAMPLES AND MISCELLANEOUS 40

/* Compute the inverse of the basic block */

EARS ComputeReverse()

{

RANGE b <= BlockGraph; // implicit parameter graph BlockGraph

RULES

ReverseBlocks(b,b1) :- BlockGraph(b1,b);

}

This EARS of order 1 just builds up the reverse basic block graph, a relation ReverseBlocks. The automatic-

parameter-range declaration tells that the order loop variable is to be initialized from the node domain of graph

BlockGraph. The following shows how the generated routine may be called from C code (CoSy):

BlockGraph = mirProcBody_get_BlockGraph(procbody);

// or:

// BlockGraph = SGRAPH_mirBasicBlock_create();

// add also some nodes with addnode functions..

mirProcBody_set_ReverseBlocks(SGRAPH_mirBasicBlock_create());

ReverseBlocks = mirProcBody_get_ReverseBlocks(procbody);

CopyNodes (BlockGraph, ReverseBlocks); // should copy the nodes of the SGRAPH

ComputeReverse (BlockGraph, ReverseBlocks);

The order of the parameter graphs to ComputeReverse is alphabetically.

The next example computes dominator analysis. The �rst rule group initializes. Initially all nodes dominate

all others except that the entry node does not dominate anyone.
EARS ComputeDominators()

{

{

RANGE b <= Dominators; b1 <= Dominators;

RULES

Dominators(b,b1) :- BlockGraph.pred(b,PredecessorBlock);

// initially a node dominates each other node.

// The dominators of the entry node, however, are left empty.

SelfDom(b,b); // this predicate is used for adding each node to a

// set Dominators during the processing in ComputeDominators

}

{

RANGE b <= BlockGraph;

RULES

// a node dominates another if all predecessors dominate the other

Dominators(b,b1) :- FORALL p: BlockGraph.pred(b,p), Dominators(p,b1);

Dominators(b,b1) :- SelfDom(b,b1);

}

}

BlockGraph.pred(b,p) denotes all predecessors of b in the graph BlockGraph. For these p also the dominator

relation to b1 must hold. Note that b and b1 are existentially quanti�ed variables while p is all-quanti�ed. The

rule with predicate SelfDom is necessary because currently additions of single nodes to sets (in clauses) is not

possible, everything has to be expressed in terms of edges (predicates).

OPTIMIX provides functor transparency , i.e. it is transparent which functors have been used to implement

the graphs. This is automatically infered from the data model. The code for the graph navigations (functor

method calls, access function calls) is generated accordingly.

The call sequence in a calling program could be:
ComputeDominators(BlockGraph, Dominators, SelfDom);

Note: The non-ground facts are computed �rst in each rule group.

5.2.1 Live Variables: MAY dataow analysis

It is also possible to specify MAY data ow analysis. For that we need a bipartite graph functor (e.g. in

CoSy-fSDL BIPUNI). It serves to represent the information which variables live at which basic block, here at

CHAPTER 5. EXAMPLES AND MISCELLANEOUS 41

which entry and exit of which block (LIVEIN, LIVEOUT). We also need the information per each basic block,

which local variables have been used in a basic block (USED).

EARS LiveVariables()

{

RANGE b <= LIVEOUT;

RULES

LIVEOUT(b,o) :- BlockGraph.succ(b,b1), LIVEIN(b1,o);

LIVEIN(b,o) :- USED(b,o);

LIVEIN(b,o) :- LIVEOUT(b,o);

}

A variable is live at the entry of a block, if it is used in the block, or if it is live at the exit of the block. A

variable is live a the exit of the block, if it lives at the entry of a successor block.

5.2.2 BusyVariables: MUST dataow analysis

If we want to solve a MUST data-ow analysis (intersection over all predecessors), we have to use an all

quanti�er. The following EARS computes busy local variables, e.g. variables that are used in all successor

blocks or ar used in the block itself. The change is minimal.

EARS BusyVariables()

{

RANGE b <= BUSYIN;

RULES

BUSYOUT(b,o) :- FORALL b1: BlockGraph.succ(b,b1), BUSYIN(b1,o);

BUSYIN(b,o) :- USED(b,o);

BUSYIN(b,o) :- BUSYOUT(b,o);

}

In similar fashion available expressions or busy expressions can be solved.

5.3 The generated code

5.3.1 Outline of the generated code

The outline of a generated �le is as follows. There may be di�erences how the code is generated for one rule,

whether a �xpoint evaluation is generated, etc.. Lines that are marked by a * appear as lists of items.

Macros for debugging and target code

Global target codes (BEGIN, IMPORT, ..)

Macro definitions for opaques (only CoSy-fSDL)

Routine *:

Group *:

Group variable definitions

- order loop nodes

- fixpoint check variables

Evaluation of range declarations (get order loop node sets) *

Fact evaluation *

Index creation

Fixpoint loop:

Order loops *:

Rule evaluations *:

Assigning of the source variables of each rule from order loop nodes

Rule code:

Rule variable definitions

FIRST code

CHAPTER 5. EXAMPLES AND MISCELLANEOUS 42

Rule test:

Nested-loop join of all paths of edge-disjoint

path cover of the left-hand-side

...

Evaluation of join conditions

Transformation:

node allocations

edge deletions

edge additions

node marking/deletions

LAST code

Begin/Close procedures.

5.3.2 Manipulation and debugging of the generated code

We have tried to make the generated code as readable as possible. We hope users are able to read it and also

make modi�cations. One can use OPTIMIX to get a skeleton for one's algorithm and then modify and re�ne it

by hand. A lot of typing can be avoided in this respect.

RCS and SCCS ids are already generated, so that �les directly can be imported under change control.

OPTIMIX generates some test code which is dependent on the ag OXDEBUG. If you set this manually in the

code or set the -DOXDEBUG ag during a make, the running code will produce some test output. Users also can

insert target predicates with print-statements and #ifdef-switches in order to print debug information.

However, the actual printing of the test output is dependent on the value of some option/variable of/in the

engine. This is

� -DUSE SEQPAR COSY If this compilation switch is set (in CoSy-fSDL-mode), then a query in the

option database of the engine is done for the string "oxdebug". Thus, if the engine has got the option

"oxdebug", then test output is printed.

In order to test the option, OPTIMIX generates a call to engineStateGet, which delivers the engine

state. It is assumed to have a �eld options, which contains the engine option database. Thus the query

is

if (engineStateGet->options != NULL)

/* test output */

Note that users must save the options into the engine state at engine initialization.

� -UUSE SEQPAR COSY If this compilation switch is un-set then the global variable int oxdebug; is

queried if output is to be printed. This is the normal case for AST-mode. In Cosy-fSDL-mode this is

useful only if everything is clustered into one process.

There is a second test print system which works in the same way. However, it prints less test output and

is dependent on the engine option "oxblip", or the global variable int oxblip;, respectively.

Output of graphs via VCG

All functors of the sol-library and all CoSy-fSDL-functors incooperate print routines which print a graph in VCG

format to a �le. You may call these routines in a target predicate to look at the current shape of a graph. You

have to supply a function which provides a text label for each node. This function takes a node and returns a

label string which is printed in the �le. E.g. for a hgraph this works as follows:

{* extern char* labelfunction(<NodeType>);
hgraph print vcgfile("example.grl",graph, labelfunction); *}

CHAPTER 5. EXAMPLES AND MISCELLANEOUS 43

5.3.3 Miscellaneous

Opaque attribute types

For opaques in CoSy-fSDL (scalar attributes) OPTIMIX generates a set of macros which it uses to compare,

assign and print. The user may rede�ne them.

Unknown types in the generated code

For navigations in the generated code OPTIMIX has to de�ne some variables. In CoSy-fSDL-mode, sometimes

their types are not known when the user compiles a generated �le. This is the case for SET_<NodeType>, if the

functor application SET(<NodeType>) does not appear in the CCMIR nor in view speci�cations. However, the

generated �le requires this type, because sets of NodeType are constructed during the navigations. The solution

is that the user has to instruct fsdc to generate the domain with a CoSy-fSDL use SET(<NodeType>)-clause.

Alternatively in some operator a dummy de�nition for SET(mirBasicBlock) can be introduced so that the fsdc

generates this type as a result of this functor call.

Chapter 6

Advanced issues

6.1 How OPTIMIX can generate code for foreign frontends and inter-

mediate representations

(only for C-mode)

If the nodes of the intermediate representation are not allocated by AST nor fSDL functions, but with

frontends that use their own node types, several function calls in the generated code have to be adapted to the

foreign representation.

If the user wants to use foreign node representations, has to do the following:

� call optimix with option -graphnode <GRAPHNODE> where GRAPHNODE is the name of the node type that

is used in the foreign representation. This inserts an include statement in the body of the generated �le

for the header <GRAPHNODE>.h. In this header the user has to map certain macros which are used in the

generated code, to its representation.

� The list of macros is found in the header pattern �le $OPTIMIXDIR/include/GRAPHNODE.h, and in ap-

pendix 7.3.

� In AST mode, the node type is tTree from AST intermediate representations. When the user generates

other tree names with AST, also apply this procedure.

6.2 How user-functors can be declared

OPTIMIX allows users to de�ne functors themselves. Existing set or graph modules can be reused, if an

appropriate functor declaration is given, and the module meets several requirements.

User-functors are declared on the level of XGRS in a DECLARE-statement:

Declaration ::= IdentKommaList ':' 'FUNCTOR' FeatureTerm ';'.

A feature term is a term, augmented with attribute names [AKPG97]. A functor may de�ne a new instance

of a SolGraphFunctor or SolSetFunctor, as already de�ned above. For a functor declaration, the following

attributes have to be supplied:

name: Ident This is the name of the functor.

SetName: Ident If it is a graph functor, this is name of the set of the nodes and target nodes. Otherwise not

used.

NeighborSetName: Ident If it is a graph functor, this is name of the neighbor sets. Otherwise not used.

44

CHAPTER 6. ADVANCED ISSUES 45

RepresentantName: Ident If it is a functor for explicit graphs, this is the name of the representant node

(HGRAPH: NODE, SGRAPH: SNODE, BIPUNI: BIPNODE) Default is none. For other functors, this may be

left out.

TargetType: Ident In Java does not support functors (generic templates). Hence all functors are de�ned over

Object. This identi�er speci�es for OPTIMIX a more �ner type to which the functor should refer, i.e. the

type-checking of OPTIMIX is improved.

IsHomogeneous: boolean Is a graph homogeneous or bipartite?

IsBidirectional: boolean Is the graph unidirectional or bidirectional?

HasExplicitEdges: boolean Does the graph provide explicit edge objects? Otherwise it is probably imple-

mented by pointers or indices.

IsExplicitGraph: boolean Is the graph explicitly represented, i.e. are neighbors reachable only via a central

graph structure? Otherwise it is embedded, i.e. neighbors are directly reachable via a neigbor set embedded

into a graph node.

IsPolySet: boolean Is a neighbor set parametrizable with a set functor or not?

IsOrdered: boolean For a graph functor this means whether neighbor sets are ordered or not; for a set functor

this means whether it is a list functor.

IsUnionOptimizable: boolean Indicates whether the neighbor sets have linear time for the union/intersection

operation (e.g. bitset implementations).

IsElementTestOptimizable: boolean Indicates whether the neighbor sets have better than linear element test

cost.

CheapCopyingPossible: boolean This ag tells whether it is possible to copy an instance of the functor

without allocating a new one, but overwriting an old one with new values. E.g. the BIT SET functor

provides that. Otherwise the copy function is used which allocates a new set.

NeighborSetUsesEmbeddedFields: boolean Tells whether a set functor or a neighbor set functor of a graph

functor is embedded.

ProvidesNOTLoop: boolean Tells whether the functor has a NOT LOOP macro which traverses over all

objects in the graph which are NOT in the neighbor set.

ProvidesDirectFixpointCheck: boolean Tells whether the functor insert/delete/addedge/deledge functions

return a boolean value if they changed something. If that is the case, OPTIMIX can apply direct �xpoint

checking.

UsesEndMarker: boolean AST/CG lists require an end marker given to loops and access functions. Thus

OPTIMIX must generate appropriate parameters for the calls.

LoopKind Supported loop iteration method. There are IntegerLoop and MacroLoop. MacroLoop requires a

macro for a loop, usually in the form

functor_LOOP(neighborset, element) f
...

g functor_ENDLOOP;

All standard sollib functors and the fSDL functors provide macro loops.

IntegerLoop which enumerates a neighbor set with an integer loop. For each such loop an iterator

integer is generated.

CHAPTER 6. ADVANCED ISSUES 46

For booleans specify one of the identi�ers TRUE, true or FALSE, false.
Consider the following example which speci�es a set functor, implemented as bitsets:

/* An example set functor. */

declare bitsetfunctor: FUNCTOR OxSetFunctor(

name => bitsetfunctor, // name

SetName => bitsetfunctor, // useless in case of set functor

NeighborSetName => bitsetfunctor, // also useless

RepresentantName => none, // no name for node representants

TargetType => none, // no name for default target type

IsHomogeneous => TRUE, // yes, homogeneous

IsBidirectional => FALSE, // no, simple set

HasExplicitEdges => FALSE, // bits, no explicit edge objects

IsExplicitGraph => TRUE, // yes, there is a set object

IsPolySet => FALSE, // no, not parametrizable

IsOrdered => FALSE, // no ordering on bits

IsUnionOptimizable => TRUE, // bitsets have linear union

IsElementTestOptimizable => TRUE, // bitsets have constant

// element test

CheapCopyingPossible => TRUE, // bits can be copied cheaply

NeighborSetUsesEmbeddedFields => FALSE, // no embedding

ProvidesNOTLoop => TRUE, // no NOT loop

ProvidesDirectFixpointCheck => TRUE, // functions return change flag

UsesEndMarker => FALSE // no end marker necessary

CodeGenerationMode => Java, // supported code generation

LoopKind => IntegerLoop,

// supported loop iteration method

/* here come the names of the functor functions/methods */

AllocFunc => TypeDeclarationList,// alloc function without parameters

CreateFunc => TypeDeclarationList,// create function with parameters

FreeFunc => null, // free function

AddEdgeFunc => addElement, // add element to set

DelEdgeFunc => removeElementAt, // add edge from set

AddNodeFunc => addElement, // add element to first node set

AddNode2Func => addElement, // add element to second node set

DelNodeFunc => removeElementAt, // remove element from first node set

DelNode2Func => removeElementAt, // remove element from second node set

GetNodesFunc => getRest, // get first node set

ClearFunc => removeAllElements, // clear a neighbor set

EqualFunc => equal, // equality of two neighbor sets

PrependFunc => prepend, // prepend an element to an ordered neighbor set

AppendFunc => append, // append an element to an ordered neighbor set

GetIndexFunc => getPos, // get position of an element in a neighbor set

GetElementAtFunc => elementAt,// get an element in a neighbor set

AddElementAtFunc => insertElementAt,// insert an element at position in a neighbor set

MemberFunc => contains, // test membership

AssignFunc => makeCopy, // assign (shallow copy) of a neighbor set

CopyFunc => makeCopy, // deep copy

ReadFunc => null, // read a set from file

WriteFunc => writeCode, // write a set to file

LengthFunc => getLength, // get length

UnionFunc => null, // union two neighbor sets

IntersectionFunc => null, // intersect two neighbor sets

LoopMacro => null, // name of the loop macro

FirstElemFunc => getFirst, // get first element

NextElemFunc => getRest, // get next element

StopElemFunc => getLast // test on last element in iteration

);

Such a functor declaration has to be accompanied with an implementation for the graph, set, or list module.

Depending on certain attributes, this module must provide di�erent interface functions. If a user wants to reuse

an existing implementation, he may write a macro mapping header which maps the required interface functions

to his own implementation.

Section 7.3 documents the core functions which must exist for all user-functor modules. Compare also the

CHAPTER 6. ADVANCED ISSUES 47

documentation on the sollib-library.

6.2.1 Java functors

Java does not support genericity, i.e. functor calls. Hence all Java functors contain Object. In order to give

OPTIMIX better type information, standard target types for user functors can be declared. These state that

instead of Object a �ner type is used. The following de�nes a Java set functor which contains the standard tar-

get type MemberDeclaration. This is indicated by setting the �eld name TargetType to MemberDeclaration.

Also a number of function names of the functor are given (AllocFunc .. StopElemFunc).

/* The MemberDeclarationList functor. */

declare MemberDeclarationList: FUNCTOR OxSetFunctor(

name => MemberDeclarationList,

SetName => MemberDeclarationList,

NeighborSetName => MemberDeclarationList,

RepresentantName => none,

TargetType => MemberDeclaration, // standard target type of functor

IsHomogeneous => true,

IsBidirectional => false,

HasExplicitEdges => false,

IsExplicitGraph => false,

IsPolySet => false,

IsOrdered => true,

IsUnionOptimizable => false,

IsElementTestOptimizable => false,

CheapCopyingPossible => false,

NeighborSetUsesEmbeddedFields => false,

ProvidesNOTLoop => false,

ProvidesDirectFixpointCheck => false,

UsesEndMarker => false,

CodeGenerationMode => Java,

LoopKind => IntegerLoop,

AllocFunc => MemberDeclarationList, /* alloc */

CreateFunc => MemberDeclarationList, /* create */

FreeFunc => none, /* free does not exist */

AddEdgeFunc => addElement, /* addElement */

DelEdgeFunc => removeElementAt,

AddNodeFunc => addElement,

AddNode2Func => addElement,

DelNodeFunc => removeElementAt,

DelNode2Func => removeElementAt,

GetNodesFunc => getRest,

ClearFunc => removeAllElements,

EqualFunc => equal,

PrependFunc => prepend,

AppendFunc => append,

GetIndexFunc => getPos,

GetElementAtFunc => elementAt,

AddElementAtFunc => insertElementAt,

MemberFunc => contains,

AssignFunc => makeCopy,

CopyFunc => makeCopy,

ReadFunc => none,

WriteFunc => writeCode,

LengthFunc => getLength,

UnionFunc => none,

IntersectionFunc => none,

LoopMacro => none,

FirstElemFunc => getFirst,

NextElemFunc => getRest,

StopElemFunc => getLast

);

CHAPTER 6. ADVANCED ISSUES 48

6.2.2 Where to put a user functor

If the environment variable OPTIMIXDIR is set, OPTIMIX will all �nd �les in $OPTIMIXDIR/lib/ automatically.

Hence use clauses can refer to �les from such a directory. A user functor should also be de�ned in this directory

then OPTIMIX �nds it automatically. As an example, look at the functors for the Java package OpenJava in

the lib directory of the distribution.

Chapter 7

Practice

7.1 Implementation restrictions

The names of predicates (and corresponding object �elds) must be globally unique within one GRS. This means

that a predicate can be used only with one single type in a GRS. Field names may occur in di�erent objects,

however, then only one of them may be refered to in a GRS. Otherwise the typecheck-algorithm of OPTIMIX

may deliver unexpected results.

It is currently not possible to de�ne target code global variables for entire GRS, nor for a OPTIMIX-module.

It is only possible for a single rule group. Thus passing variables around between rule groups is not easy. One

trick is to include additional variables in the parameter list of the GRS. Then they are known globally.

Note that currently it is very simple to add multiple edges between the same nodes in EGRAPHs. Then the

result of the generated routine may be unexpected.

Currently for non-recursive EARS no �xpoint evaluation is generated. This is only correct, if the computed

predicates do not rely on each other. The rules are currently not sorted along their rule dependency graph. Be

careful!

Note that the variables which are de�ned in patterns are not allowed to be used for further navigation, only

for the use in target predicates, e.g. to test attributes. Also it is not allowed to use constant patterns. Constant

comparisons are only allowed in equality tests (section 3.6.3).

Currently there is no automatic strati�cation of rules in rule groups.

The code generated for order loops may be buggy, because the implementation of the order algorithm is

tricky.

7.1.1 Bidirectional edge optimization

Bidirectional edge optimization does only work for one-component rule test graphs, because currently we dont

have a notion of an rule test graph with several components. For each of these a root must be found, if the

component is cyclic!! Currently this is done only for the rule test graph completely. This results in a incorrect

reduction of order because roots are forgotten.

7.1.2 Restrictions for modes

Several parts of the implementation have only been tested in AST- or CoSy-fSDL-mode. Thus inconsistencies

are likely to appear. Please report them to the author.

Java does not support debugging prints.

49

CHAPTER 7. PRACTICE 50

7.2 Things to come

We plan to support and maintain OPTIMIX in the next years. The following things are probable for one of the

next versions of OPTIMIX. Mail me if you need some di�erent things.

1. Strati�cation of XGRS.

2. The designator operators for attributes of objects: V->attr.

7.3 Frequently asked questions

Question: For a certain variable OPTIMIX infers 'type mismatched', i.e. multiple types. What can I do?

Answer: There are several reasons for this. Reason 1: OPTIMIX infers two domains that are compatible

in CoSy-fSDL, but not in the at form anymore, because in there the inheritance information of CoSy-fSDL is

lost. Then state a FINER assertion that one domain is �ner than the other and it should work.

Reason 2: There are really two di�erent domains/types. Then help OPTIMIX by stating a type for that

variable. You can do this either by a DECLARE variable declaration, which holds for all rules of a rule group.

Or you can introduce pattern matching statements, whose type informations are then exploited for the type

check. Or you qualify a predicate name by a domain/operator speci�cation.

Reason 3: It really was a aw in your speci�cation. Look into the atform-�le, which types occur for your

�elds.

Question: For a certain variable OPTIMIX infers type <NonIdentifiedClass>

Answer: Probably in the speci�cation there is a �eld whose type is not known, e.g. mis-typed. If the �eld

has a functor call type, one of the parameters may be unknown. Look at the �eld name of the predicate in the

line where the error occurs and look up its type in the data speci�cation.

Question: My speci�cation results in a larger order for my GRS than expected.

Answer: Maybe OPTIMIX has infered domains for the types of the root nodes of the rules which are

di�erent, however are compatible according to the domain calculus. Then insert a FINER statement at the

beginning of the speci�cation to tell OPTIMIX that two domains are compatible. OPTIMIX will then choose the

coarser domain as type of the root node.

Answer: Maybe your FINER speci�cation must be more detailed. Currently there is no union over di�erent

FINER speci�cations which contain the same tails. Be sure that you really specify all �ner domains of a domain

in one line.

Question: I try to compile the generated engine with -DOXDEBUG. However, it does not compile,

because the �eld/variable oxdebug is unknown.

Answer (CoSy-fSDL): In order to use OXDEBUG you have to annotate the engine's state struct with a �eld

int state->oxdebug. OPTIMIX-generated code then compares engineStateGet->oxdebug with the value

of the given command-line option option. If the state does not have such a �eld, the engine does not compile.

Also do not forget to save the value of the command-line option oxdebug in the state.

Answer (AST/standalone): Please supply in your main program two variables

int oxdebug;

int oxblip;

which are ags to guide the printing of the debugging output macros.

Question: I would like to specify an empty rule test in order to perform the rule's transformation

always. However, OPTIMIX does not accept empty rule tests.

Answer 1: Try a non-ground fact. You may combine the with a target code, if you want. Currently facts

consisting only of target code do not work. The disadvantage is that facts are always moved to the top of the

generated code of a rule group.

Answer 2: Specify standalone matches on variables. The matches are generated, even if the variable's type

is clear. Thus the rule test is not empty and the transformation will be generated also:

CHAPTER 7. PRACTICE 51

EARS ComputeTrafo(loop:Loop,MaxInstruction:Instruction)

f RULES

(

MaxInstruction ~ STMT,

loop ~ Loop

==>

new_instructions.last(loop,MaxInstruction)

)

g

How can I avoid to write AST and OPTIMIX data speci�cations twice?

Answer: Use the script optimix2ast from the bin-directory. It transforms an OPTIMIX data speci�cation

to AST syntax, transforming all functor �elds to AST scalar �elds with opaque pointer types. You may use

optimix2ast as a preprocessor before you give the �le to AST.

Question: I'm totally worried about this tool. How can I understand the weird documentation?

Answer: Just relax and try optimix -poem. You are not the only one who is perplexed by graph rewriting.

Glossary

edge-disjoint path cover A covering of a graph with a set of paths, which intersect each other only at their

end points.

exhaustive graph rewrite system (XGRS) A variant of graph rewrite systems on relational graphs, i.e. on

graphs with one edge of a certain label between two nodes. Each rule adds an edge but no node to a

termination subgraph, thus the systems terminate

order A characteristic feature of a rule group or a GRS: the maximal number of root nodes of left hand sides.

order loop A loop in the generated code which traverses a domain of a root node of some left hand sides.

order loop node A node instantiated in an order loop.

nested-loop join A code generation method from Datalog and relational algebra to evaluate relational queries.

node A variable which denotes a node of the rule test graph

pattern variable A variable set in a pattern. May be a node or a scalar variable.

rule test A left hand side of a graph rewrite system and a rule body of a Datalog-query.

rule test graph, RTG A left hand side of a graph rewrite system consists of a graph, the rule test graph.

rule transformation A right hand side of a graph rewrite system.

scalar variable A variable with scalar value. No rule test graph node.

52

Other examples of range declarations

//
//
// Range declarations
//
//

//
// Explicit parameter ranges
//

MODULE RangeDeclDemo use "files.ast"
grs RangeDeclDemo1(g:State,gen lalr:file)
{

RULES // g is taken from the single node parameter
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
grs RangeDeclDemo2(s:consset(State),gen lalr:file)
{

RANGE g <= s; // g is taken from the parameter set s
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
grs RangeDeclDemo3(h:hgraph(State),gen lalr:file)
{

RANGE g <= h; // g is taken from the parameter graph h
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
//
// Automatic parameter ranges
//
grs RangeDeclAutoDemo1(gen lalr:file)
{

RANGE g : State; // automatic single node parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
grs RangeDeclAutoDemo2(gen lalr:file)
{

RANGE g <= dep2; h <= dep2.TARGET;
// g from source domain, h from target domain of graph dep2.
// In this case this is the same domain, because dep2 is a hgraph.

RULES
sat(g,File), File ~ sun4 ==> dep2(g,gen lalr) ;
dep2(h,g), h ~ sun4 ==> dep2(g,h) ;

}
grs RangeDeclAutoDemo3(gen lalr:file)
{

RANGE g <= consset(State); // automatic set parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
grs RangeDeclAutoDemo4(gen lalr:file)
{

RANGE g <= hgraph(State); // automatic graph parameter
RULES
Files(g,File), File ~ sun4 ==> Files(g,gen lalr) ;

}
END RangeDeclDemo

53

Graph node macros for foreign

intermediate representations

/* == */
/* */
/* */
/* \ \ | | \ | |\ \ / */
/* | | | | | | |\/ | | \ / */
/* | | / | | | | | \ */
/* \ / | | | | | | /\ \ */
/* */
/* */
/* */
/* */
/* / / \ \ | | | | / \ */
/* | |/ | | | | | | / \ / / | ' ` \ / ` | ' \| ' \ */
/* | | (| | | | | | / \\ \ \ | | | | | (| | | | | | | | */
/* | |\ | | \ () / / \ \ / / | | | | |\ , | | | | | | | */
/* \ \ / / */
/* */
/* */
/* == */
/* SYNOPSIS: */
/* Macro definitions for using nodes allocated by external tools */
/* Has to be expanded by the user for each foreign frontend or intermediate */
/* representation. */
/* */
/* This file has to be included into a file generated by Optimix, if the */
/* user works with nodes that are allocated by an external tool (e.g. an */
/* arbitrary frontend). */
/* It provides necessary macro mapping for certain type features */
/* of memory (graph) nodes. */
/* == */

#define /* BOOLEAN */ GRAPHNODE HAS TYPE(Node,Type)
#define /* Node */ GRAPHNODE ALLOC(Type)
#define /* char* */ GRAPHNODE GET LABEL(Node)
#define /* void */ GRAPHNODE PRINT LABEL(Node)
#define GRAPHNODE TYPENAME

54

Interface de�nition for modules of

user-speci�ed functors

A pix is a reference to an object (node). Both should be made adresses, in order to hand over objects of arbitrary type:

typedef void *pix;

typedef void *OBJECT;

Functions for set or list functors

FUNCTOR FUNCTOR alloc()

Create an empty uninitialized set.

FUNCTOR FUNCTOR create(int MaxSize, void* Info)

Create a set and initialize.

void FUNCTOR free(FUNCTOR set)

Free a set.

int FUNCTOR empty (FUNCTOR set)

Test emptiness.

FUNCTOR FUNCTOR copy(FUNCTOR set1)

Return a full copy of set1.

int FUNCTOR insert(FUNCTOR head, void *obj)

Add an object to a set.

int FUNCTOR exclude(FUNCTOR l1, void *obj)

Remove an element from a list.

int FUNCTOR member(FUNCTOR l1, OBJECT obj)

Looks for an object in the set.

void FUNCTOR write (FILE *File, FUNCTOR cl, void (*writefunc)(FILE*,void*))

Write FUNCTOR to �le

The following is a loop macro:

FUNCTOR LOOP(/* FUNCTOR */ set, /* OBJECT */ elem) ... FUNCTOR ENDLOOP

The loop macro enumerates all elements in the set and instantiates the variable elem. The loop must be reentrant,

i.e. nestable. Please look up the documentation for sol.c how to implement such a loop.

Optional functions

int FUNCTOR is equal(FUNCTOR set1, FUNCTOR set2)

Tests whether set1 == set2.

55

CHAPTER 7. PRACTICE 56

Additional functions for lists

int FUNCTOR prepend(FUNCTOR head, void *obj)

Prepend an object to a list.

int FUNCTOR append(FUNCTOR s, OBJECT obj)

Append an element to a list. Return the newly created pix.

pix FUNCTOR first (FUNCTOR FUNCTOR)

Get �rst pix (for sets an arbitrary one).

FUNCTOR FUNCTOR last(FUNCTOR s)

Walk over set and deliver last pix (for sets an arbitrary one).

OBJECT FUNCTOR deref(FUNCTOR set, pix elem)

Dereference a reference to the object.

pix FUNCTOR next(FUNCTOR set, pix elem)

Get next reference.

OBJECT FUNCTOR rightbrother(FUNCTOR set, OBJECT elem)

Get right brother element.

OBJECT FUNCTOR leftbrother(FUNCTOR s, OBJECT obj)

Get left brother element.

void FUNCTOR pop(FUNCTOR l1)

Pop an element from a list. Do not change the address of the list.

Additional functions for bitset-optimizable set functors

void FUNCTOR union(FUNCTOR l1, FUNCTOR l2)

Sweeps over l2 and adds its elements uniquely in l1. So: l1 [= l2;

FUNCTOR FUNCTOR intersection(FUNCTOR l1, FUNCTOR l2)

Sweeps over l1 and looks for the object in l2. If found, prepend it to the returned set. Do not preserve order of

elements. not yet correct.

Functors that provide NOT-loops

The following is a loop macro:

FUNCTOR LOOP(/* FUNCTOR */ set, /* OBJECT */ elem) ... FUNCTOR ENDLOOP

The loop macro enumerates all elements of the set universe that are currently not in the set, and instantiates

the variable elem. E.g. if the set functor is a bitset refering to a universe set, all elements of this universe must be

enumerated, that are not in the bitset.

Functors that provide cheap copying

void FUNCTOR assign(FUNCTOR set1, FUNCTOR set2)

Return a cheap copy (reference assignment) of set2 in set1.

Functions for graph functors

The following are the required functions for all types of graph functors.

void FUNCTOR addnode(FUNCTOR graph, OBJECT elem)

Adds a node to the node set. Checks for existing embedded neighbor sets.

int FUNCTOR addedge(FUNCTOR graph, OBJECT x, OBJECT y)

Add edge.

CHAPTER 7. PRACTICE 57

int FUNCTOR deledge(FUNCTOR graph, OBJECT x, OBJECT y)

Delete edge.

void FUNCTOR delete successors(FUNCTOR graph, OBJECT x)

Delete successor edges.

void FUNCTOR print vcgfile(char filename[],FUNCTOR graph,char *(*getlabelfunc)(void*))

Print a FUNCTOR to a �le in VCG tool format.

void FUNCTOR print(FILE *f, FUNCTOR graph, int printlevel)

Print a FUNCTOR to a �le in a text format.

Homogeneous graphs

FUNCTOR FUNCTOR create(void *nodes, int offset succ neighborset, int offset prev neighborset)

Allocate a homogeneous graph (one node set). Supply node set. If the graph is embedded, supply o�set of forward

neighbor set in the nodes and o�set of backward neighbor set (e.g. compare conslist.c).

Bipartite graphs

FUNCTOR FUNCTOR create(void *source nodes, int offset succ neighborset, void *target nodes, int

offset prev neighborset)

Create a bipartite embedded graph with source and target nodes. If the graph is embedded, supply o�set of forward

neighbor set in the nodes and o�set of backward neighbor set (e.g. compare conslist.c).

Optional functions

These functions are necessary for a set functor, but are normally not called by OPTIMIX.

FUNCTOR FUNCTOR alloc()

Allocate an uninitialized graph.

void FUNCTOR free (FUNCTOR graph)

Free a graph.

Bibliography

[AKPG97] Hassan A��t-Kaci, Andreas Podelski, and Seth Copen Goldstein. Order sorted feature theory uni�ca-

tion. Journal of Logic Programming, 30(2):99{124, February 1997.

[A�m94] Uwe A�mann. On Edge Addition Rewrite Systems and Their Relevance to Program Analysis. In

J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, 5th Int. Workshop on Graph Grammars and

Their Application To Computer Science, Williamsburg, volume 1073 of Lecture Notes in Computer

Science, pages 321{335, Heidelberg, November 1994. Springer.

[A�m95] Uwe A�mann. Generierung von Programmoptimierungen mit Graphersetzungssystemen. PhD thesis,

Universit�at Karlsruhe, Oldenbourg-Verlag, M�unchen, July 1995. GMD-Bericht 262.

[A�m96a] Uwe A�mann. Graph Rewrite Systems For Program Optimization. Technical Report RR-2955,

INRIA Rocquencourt, 1996.

[A�m96b] Uwe A�mann. How To Uniformly Specify Program Analysis and Transformation. In P. A. Fritzson,

editor, Compiler Construction (CC), volume 1060 of Lecture Notes in Computer Science, pages

121{135, Heidelberg, 1996. Springer.

[A�m98] Uwe A�mann. A Tutorial for OPTIMIX. Technical Report 14, Universit�at Karlsruhe, 1998. Available

at http://i44www.info.uni-karlsruhe.de/~assmann/optimix.html.

[ASU72] A. V. Aho, R. Sethi, and J. D. Ullman. Code Optimization And Finite Church-Rosser Systems. In

R. Rustin, editor, Design and Optimization of Compilers, pages 89{105. Prentice-Hall, Englewood

Cli�s, NJ, 1972.

[Buh95] Claus-Thomas Buhl. fSDL Language Report. Technical report, COMPARE Consortium, 1995.

Contact info@ace.nl.

[CGT89a] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer, Heidelberg, 1989.

[CGT89b] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About Datalog (And Never

Dared to Ask). IEEE Transactions on Knowledge And Data Engineering, 1(1):146{166, March

1989.

[GE90] Josef Grosch and Helmut Emmelmann. A tool box for compiler construction. In LNCS 477: Compiler

Compilers; Third International Workshop, CC'90; Schwerin, FRG; Proceedings. Springer, October

1990.

[Gro89] Josef Grosch. Ast - A Generator for Abstract Syntax Trees. Technical report, Gesellschaft fuer

Mathematik und Datenverarbeitung, Forschungstelle Karlsruhe, August 1989. Language manual.

[Nag79] M. Nagl. Graph-Grammatiken, Theorie, Implementierung, Anwendungen. Vieweg, Braunschweig,

1979.

[RSS92] R. Ramakrishnan, D Srivastava, and S. Sudarshan. CORAL - Control, Relations and Logic. In

Proceedings of the 18th VLDB Conference, 1992.

58

BIBLIOGRAPHY 59

[Tar81] R. E. Tarjan. A uni�ed approach to path problems. Journal of the ACM, 28(3):577{593, July 1981.

Generated Example

///
// Transitive closure over basic block graph.
///

MODULE TransitiveClosureDDL
TREE MyTree RULE
Block =

/* other attributes left out */
/* the basic block graph as embedded neighbor sets (type set Block) */
(BlockGraph: consset(Block))
/* the reachable block graph as embedded neighbor sets (type set Block) */
(ReachableBlocks: consset(Block))

.
END TranstiveClosureDDL

MODULE TransitiveClosure
EARS ComputeReachableBlocks(BlockSet:consset(Block))
{

RANGE b <= BlockSet;
RULES

ReachableBlocks(b,b1) :- BlockGraph(b,b1);
ReachableBlocks(b,b1) :- BlockGraph(b,s), ReachableBlocks(s,b1);

}
END TranstiveClosure

/* @(#)reachable-blocks.c 1.2 98/08/14 */
/* === */
/* */
/* GENERATED CODE. MODIFICATIONS WILL BE LOST */
/* */
/* === */
/*** generated by optimix at Wed May 6 07:51:18 1998
release 2.4 source version: 2.39 linked at Date: Tue Apr 21 22:03:05 MET DST 1998
source : reachable-blocks.ox
view : reachable-blocks
LocalTests : ON
OptimizerOutputFileTrunc : reachable-blocks
output : reachable-blocks

***/

/* Module TransitiveClosure */
/* Debug macro. Switch on if you want test output. */
/* #define OXDEBUG */
/* for the next macro the engine state has to include an option component!! */
#ifdef OXDEBUG
#ifndef USE SEQPAR COSY
#define OXDEBUGBEGIN(number) {{ extern int oxdebug; if (oxdebug>number) {
#define OXDEBUGEND }}}
#else
#define OXDEBUGBEGIN(number) { if (engineStateGet->options != NULL) { if (engineStateGet->oxdebug > (number)) {
#define OXDEBUGEND }}}
#endif
#endif
#ifdef OXDEBUG
#ifndef USE SEQPAR COSY
#define OXBLIPBEGIN(number) {{ extern int oxblip; if (oxblip>number) {
#define OXBLIPEND }}}
#else
#define OXBLIPBEGIN(number) { if (engineStateGet->options != NULL) { if (engineStateGet->oxdebug > (number)) {
#define OXBLIPEND }}}
#endif
#endif
#ifdef OXDEBUG
#ifndef USE SEQPAR COSY
#define OXOPTBEGIN(Option) { if (options IsSet(Option)) {
#define OXOPTEND }}
#else
#define OXOPTBEGIN(Option) { if (optionIsSet(engineStateGet->options,Option)) {
#define OXOPTEND }}
#endif
#endif
#define WRITENL fprintf(stderr,"\n");
/* includes --- */
include "reachable-blocks.h"
include <stdio.h>
/* Basic node macro interface for use with AST */
#define GRAPHNODE HAS TYPE(Node,Type) Tree IsType(Node,k##Type##)
#define GRAPHNODE TYPE(Node) (Node->yyHead.yyKind)
#define GRAPHNODE ALLOC(Node) n##Node##()
#define GRAPHNODE GET LABEL(Node) Tree get Label(Node)
#define GRAPHNODE PRINT LABEL(Node) Tree print Label(Node)
#define GRAPHNODE TYPENAME tTree
#define GRAPHNODE FREE yyFREE

#define TEST(x) if(!(x)) continue;
#define ABSENT(x) if((x)) continue;

static void oxAbort (char *yyFunction)
{

60

BIBLIOGRAPHY 61

extern void exit ();
(void) fprintf (stderr, "Error: module reachable-blocks, function %s failed", yyFunction);
exit (1);
}

static char rcsid[] = "$Id: reachable-blocks.c,v 1.1 1998/08/14 10:25:49 assmann Exp assmann $";

/* include functor header files (also user-specified ones) -------- */
#include "bitset.h"
#include "ptrarray.h"
#include "hashset.h"
#include "consset.h"
#include "conslist.h"
#include "sol.h"
#include "bipuni.h"
#include "hgraph.h"

/* line 0 */

/* macro definitions for opaques ------------------------------- */

/* help and debug routines ------------------------------------- */

/* Implementation of GRS ------------------------------------ */
/* --- */
/* It is assumed that several parameter graphs are given (in */
/* ascending alphabetical order). */
/* Some of them are assigned, others are only used for test. */
/* Note that the universes of the graphs concerning their node types */
/* MUST be the same. */
/* Nodes in the assigned graphs must be already in the graphs; */
/* this routine only computes the edges. */
/* TEST THIS CODE BEFORE YOU TRUST IT! */
/* ComputeReachableBlocks is a EARS(0). */
/* --- */
void ComputeReachableBlocks (consset BlockSet)
{
int change, fixcount;

#ifdef OXDEBUG
OXDEBUGBEGIN(0)
fprintf(stderr,"ComputeReachableBlocks"); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */
/* stratum code generation === */
/* --- */
/* stratum-17:6 is a recursive stratum with order 1. */
{

int OLoopCounters[1];
short order onceindex;
unsigned char AllquantorFailFlag = (unsigned char)0;
/* order loop 0: set or graph range */
Block OLoopNodeRepr 0;
Block OLoopRawNode 0;
consset OLoopNodeSet 0;
/* Indices */
/* Global: result sets */

#ifdef OXDEBUG
OXDEBUGBEGIN(0)
fprintf(stderr,"stratum-17:6"); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */

/* Get the order loop nodes from some tested graphs */
OLoopNodeSet 0 = BlockSet;

/* Non-ground fact evaluation ========================= */

/* Index creation ==================================== */
/* Rule evaluation ==================================== */
change = TRUE;
fixcount = 0;
while (change)
{
change = FALSE;

#ifdef OXDEBUG
OXDEBUGBEGIN(0)
fprintf(stderr,"enter fixpoint loop %d", fixcount);WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */
#ifdef OXDEBUG
OXBLIPBEGIN(4)
fprintf(stderr,"enter fixpoint loop %d", fixcount);WRITENL;
OXBLIPEND
#endif /* OXDEBUG */

fixcount++;
/* rules with order loops ============================= */
OLoopCounters[0] = 0;
consset LOOP(OLoopNodeSet 0,OLoopNodeRepr 0)
{

#ifdef OXDEBUG
OXBLIPBEGIN(4)
fprintf(stderr,"order loop 0 run %d ", OLoopCounters[0]++);WRITENL;
OXBLIPEND
#endif /* OXDEBUG */

OLoopRawNode 0 = OLoopNodeRepr 0;

/* ready rule tests ========================= */
/* edge addition rule test 22, 4 ------------------------------ */

#ifdef OXDEBUG
OXDEBUGBEGIN(0)

fprintf(stderr,"rule test 22, 4 "); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */

{
short onceindex;
/* raw nodes */
Block b;
Block b1;

/* for edge with source node */
/* Nothing to be done for edge source of set edge */

/* for tested edge BlockGraph */
consset RuleNodeCursor BlockGraph b1;
consset RuleNodeSet BlockGraph b1;

/* pattern variables */
/* Local: result sets */

/* rule fake for-loop, executed only once.. */
for (onceindex = 1; onceindex > 0; onceindex--)
{

/* path test [b]-BlockGraph->[b1] */
b = OLoopRawNode 0;

BIBLIOGRAPHY 62

/* predicate test (set edge) BlockGraph 22, 29 */
#ifdef OXDEBUG
OXDEBUGBEGIN(0)
fprintf(stderr,"predicate 22, 29 order loop node %s ", GRAPHNODE GET LABEL(b)); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */

RuleNodeSet BlockGraph b1 = b->BlockGraph;
consset LOOP(RuleNodeSet BlockGraph b1, b1)
{

/* evaluate first target predicates */
/* global attribute tests (join mode) */
/* evaluate join conditions */
/* assign all edges between tested nodes */
/* assign edge ReachableBlocks 22, 4 */
change |= consset insert(b->ReachableBlocks,b1);

}
consset ENDLOOP;
/* end path test [b]-BlockGraph->[b1] */
/* Rule finish */

} /* end of rule fake for-loop */
FAILRULE22:

} /* end of rule test 22, 4 */
/* edge addition rule test 23, 4 ------------------------------ */

#ifdef OXDEBUG
OXDEBUGBEGIN(0)

fprintf(stderr,"rule test 23, 4 "); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */

{
short onceindex;
/* raw nodes */
Block b;
Block b1;
Block s;

/* for edge with source node */
/* Nothing to be done for edge source of set edge */

/* for tested edge BlockGraph */
consset RuleNodeCursor BlockGraph s;
consset RuleNodeSet BlockGraph s;

/* for tested edge ReachableBlocks */
consset RuleNodeCursor ReachableBlocks b1;
consset RuleNodeSet ReachableBlocks b1;

/* pattern variables */
/* Local: result sets */

/* rule fake for-loop, executed only once.. */
for (onceindex = 1; onceindex > 0; onceindex--)
{

/* path test [b]-BlockGraph->[s]-ReachableBlocks->[b1] */
b = OLoopRawNode 0;
/* predicate test (set edge) BlockGraph 23, 29 */

#ifdef OXDEBUG
OXDEBUGBEGIN(0)
fprintf(stderr,"predicate 23, 29 order loop node %s ", GRAPHNODE GET LABEL(b)); WRITENL;
OXDEBUGEND
#endif /* OXDEBUG */

RuleNodeSet BlockGraph s = b->BlockGraph;
consset LOOP(RuleNodeSet BlockGraph s, s)
{

/* predicate test (set edge) ReachableBlocks 23, 46 */
RuleNodeSet ReachableBlocks b1 = s->ReachableBlocks;
consset LOOP(RuleNodeSet ReachableBlocks b1, b1)
{

/* evaluate first target predicates */
/* global attribute tests (join mode) */
/* evaluate join conditions */
/* assign all edges between tested nodes */
/* assign edge ReachableBlocks 23, 4 */
change |= consset insert(b->ReachableBlocks,b1);

}
consset ENDLOOP;

}
consset ENDLOOP;
/* end path test [b]-BlockGraph->[s]-ReachableBlocks->[b1] */
/* Rule finish */

} /* end of rule fake for-loop */
FAILRULE23:

} /* end of rule test 23, 4 */

} /* end of order loop 0 */
consset ENDLOOP;
/* single source path problems ======================== */
} /* end of fix point loop */

ENDSTRATUM 17 6:
} /* end of stratum stratum-17:6 */

} /* end of ComputeReachableBlocks */

/* Initialising and finishing ------------------------------------ */
/* line 0 */
void reachable-blocks Begin ()
{
}

/* line 0 */
void reachable-blocks Close ()
{
}
/*********************

Was bin ich unter diese
Unendlichkeit gelegt,
duftend wie eine Wiese
hin und her bewegt,

rufend zugleich und bange,
dass einer den Ruf vernimmt,
und zum Untergange
in einem andern bestimmt.

R.M.Rilke: Die Liebende

*********************/

