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Abstract
This paper classifies hybrid dataflow techniques due to the instruction issuing technique. A

software simulation is conducted to compare fine-grain dataflow to several hybrid dataflow
techniques: multithreaded dataflow with direct token recycling as used in Monsoon,
multithreaded dataflow with consecutive execution of the instructions within a thread as used in
the Epsilon processors and in EM-4, dataflow with complex machine operations as proposed
for the SIGMA-1, and large-grain dataflow presuming a RISC processor respectively a
superscalar processor in the execution stage.

All dataflow techniques show good scalability and effectively compensate delays caused by
the network and by structure access, provided that load is sufficient. The achieved performance
accelerations differ as follows: Large-grain dataflow proved superior to all other techniques
provided that a superscalar processor is used, and performs at least equal to the other techniques
with a RISC processor. Multithreaded dataflow is an improvement over fine-grain dataflow but
suffers from a large overhead and thus does not achieve a considerable speedup. This is even
worse for the cycle-by-cycle interleaving technique of Monsoon. Complex machine operations
perform slightly better than large-grain dataflow with a RISC processor. It can be an useful
enhancement to other techniques.

1. Introduction
Multiprocessors are well suited for exploiting task level parallelism provided that commu-

nication is sparse and granularity of tasks coarse. However, an architectural design based on
extensive exploitation of parallelism should not neglect the potential fine-grain parallelism that
might be available in an algorithm but cannot be efficiently exploited by coarse-grain techniques.
Utilizing fine-grain parallelism, i.e., instruction level parallelism or sequential threads with about
20 instructions, can bridge remote memory access or synchronization delays by switching the
PE of a multiprocessor to a different thread. The main problem for the exploitation of fine-grain
parallelism is that most conventional processors incur a very large overhead during a context
switch. Multithreaded von Neumann architectures [1, 2, 3] and dataflow architectures [4, 5, 6, 7,
8, 9] are two approaches to exploit fine-grain parallelism.

In a multithreaded von Neumann architecture each processing element is equipped with a von
Neumann processor that can perform a very fast context switch between several threads already
loaded. Creation of threads is not too costly. Instruction level parallelism is not supported.
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When using the dataflow scheme, programs are compiled into dataflow graphs that represent
the data dependencies among instructions. Scheduling is data-driven: an instruction is ready to
execute as soon as all required operands are available. The availability of operands is signaled by
tokens that conceptually are propagated on the arcs of the dataflow graph. Dataflow architectures
use token matching prior to instruction execution. This synchronization scheme is able to exploit
all possible parallelism at instruction level but, unfortunately, leads to superfluous control
overhead when executing sequences of instructions.

To reduce the number of synchronization events in dataflow architectures three techniques
have been proposed:
• threaded dataflow techniques [7, 8, 9] statically schedule instructions for efficient sequential

execution;
• complex machine operations [10, 11, 12, 13, 14], for instance vector operations [10] or

relational data bank operations [11], are used as dataflow macro actors that are processed in
SIMD mode but activated by the dataflow scheme;

• large-grain dataflow joins the von Neumann and the dataflow model of computation by
processing sequences of instructions in von Neumann style, but activating them as dataflow
macro actors [15, 16].
A study of these hybrid dataflow techniques with respect to performance acceleration and

scalability seems worthwhile. Our main goal is an assessment of the possible reduction of the
overhead caused by the instruction level synchronization in fine-grain dataflow that can be
reached by these instruction issuing techniques. Consequently, this contribution does not cover
the latency caused by access to non-strict data structures [5, 9] and by synchronization loads
[17]. Multithreaded von Neumann architectures are not included in the analysis because they do
not use dataflow techniques; in particular they do not apply matching as an instruction issuing
technique, and their processor pipeline stages differ from those of dataflow architectures.

Section 2 of this paper classifies hybrid dataflow architectures due to the three techniques:
multithreaded dataflow, dataflow with complex machine operations, and large-grain dataflow.
These techniques are contrasted to fine-grain dataflow.

We have evaluated these hybrid dataflow techniques by a software simulation. Section 3
presents the common architectural model used as a basis of our simulator and deviations of the
model to implement the different techniques. The matrix multiplication algorithm used as
sample program for the simulations is described, succeeded by alterations for the
implementations of the regarded instruction issuing techniques.

Section 4 shows the results of the software simulation with varying number of PEs, network
delays and structure access delays. The simulation results are summarized and assessed in
Section 5.

2. Classification Scheme
This section classifies dataflow architectures according to their instruction issuing technique

as fine-grain dataflow, multithreaded dataflow, dataflow with complex machine instructions, or
large-grain dataflow. A typical dataflow architecture using one of these techniques consists of a
number of identical PEs connected through a communication network to a globally addressed
structure store, designed to cope with large data structures. Each PE is organized as a cyclic
pipeline composed of a firing stage and an execution stage, and buffered by a token queue. This
pipeline is synchronous for fine-grain and multithreaded dataflow, and usually FIFO-buffered
between firing and execution stages for the other two techniques. The token queue contains
tagged tokens produced by previously executed instructions.

The firing stage contains a matching unit and an instruction fetch unit. For tokens, destined
for dyadic operations, a search for a matching partner token is performed by the matching unit.
If no match is found, the token is stored to await the arrival of its partner. Otherwise the token
pair is forwarded to the execution stage, together with an opcode retrieved by the instruction
fetch unit. If a token is destined for a unary operator the matching phase is bypassed. Depending



on the specific architecture, the matching unit precedes the instruction fetch unit [4, 5], succeeds
it [9], or both work simultaneously on the same token [6].

The execution stage contains an ALU and a destination unit. The destination unit combines
new tags for the result tokens with a value computed by the ALU. Each result token is
forwarded to the local token queue, to another PE if the destination address is non-local, or to a
structure store if the operation is an access to a structure.



2.1 Fine-Grain Dataflow

In fine-grain dataflow architectures [4, 5, 6] each instruction denotes an operation of low
complexity. The issuing of a monadic instruction consumes one token from the token queue, the
issuing of a dyadic instruction demands two tokens. In the latter case two matching operations
have to be performed by the firing stage to issue a single instruction to the execution stage. The
following problems arise with fine-grain dataflow:
• For a dyadic instruction the first matching operation does not trigger the issuing of the

instruction, leaving a bubble in the execution stage of the synchronous pipeline.
• A dataflow graph can be degenerate to a sequence of instructions, or may exhibit only a low

degree of instruction level parallelism. In this case passing tokens through the circular pipeline
induces a high delay since the successive instruction is activated after a token has been passed
through the whole cycle. Therefore fine-grain dataflow performs poorely with sequential
code, especially when load is low.

• A context switch occurs after each instruction execution, thus no use of registers is possible.
Use of registers could optimize the access time to data values, avoid pipeline bubbles caused
by dyadic instructions, and reduce the total number of tokens during program execution.

2.2 Multithreaded Dataflow

To solve the problems of fine-grain dataflow, each subgraph that exhibits a low degree of
parallelism can be identified within a dataflow graph and transformed into a sequential thread.
By multithreaded dataflow we understand a technique where a thread of instructions is issued
consecutively by the matching unit without matching further tokens except for the first
instruction of the thread. Multithreaded dataflow covers the repeat-on-input technique in the
Epsilon-1 and Epsilon-2 processors [7], the strongly connected arc model of EM-4 [8, 18], and
the direct recycling of tokens in Monsoon [9]. Data passed between instructions from the same
thread is stored in registers instead of writing them back to memory. These registers may be
referenced by any succeeding instruction in the thread. Thereby single-thread performance is
improved. The total number of tokens needed to schedule the instructions of a program is
reduced thus saving hardware resources. Pipeline bubbles are avoided for dyadic instructions
within a thread.

Two multithreaded dataflow execution techniques can be distinguished: the direct token
recycling, or consecutive execution of the instructions of a single thread. The first technique,
used by the Monsoon dataflow computer, allows a particular thread to occupy only a single slot
in the 8-stage pipeline, which implies that at least 8 threads must be active for a full pipeline
utilization to be achieved. This cycle-by-cycle instruction interleaving of threads is also used by
some multithreaded von Neumann computers like HEP [1].

To optimize single-thread performance the Epsilon-processors and the EM-4 execute
instructions from a thread consecutively. The circular pipeline of fine-grain dataflow is retained.
However, the matching unit has to be enhanced with a mechanism that, after firing the first
instruction of a thread, delays the matching of further tokens in favor of issuing all instructions
of the thread consecutively. By this mechanism cycling of tokens through the pipeline for the
activation of the next instruction is suppressed.

2.3 Dataflow with Complex Machine Operations

Another technique to reduce the instruction level synchronization overhead is the use of
complex machine instructions, for instance vector instructions. These instructions can be
implemented by pipeline techniques as in vector computers. Structured data is referenced in
block rather than element-wise, and can be supplied in a burst mode. This deviates from the I-
structure scheme [5, 9] where each data element within a complex data structure is fetched
individually from a structure store. A further advantage of complex machine operations is the



ability to exploit parallelism at the subinstruction level. Therefore the machine has to partition the
complex machine operation into suboperations that can be executed in parallel. The use of a
complex machine operation may spare several nested loops.

The use of a FIFO-buffer allows to decouple firing stage and execution stage to bridge the
different execution times within a mixed stream of simple and complex instructions issued to the
execution stage. As a major difference to conventional dataflow architectures tokens do not carry
data (except for the values "true" or "false"). Data is only moved and transformed within the
execution stage. This technique is used in the Decoupled Graph / Computation Architecture [10],
the Stollmann Dataflow Machine [11], the LGDG Machine [12], and the ASTOR architecture
[19]. These four architectures combine complex machine instructions with large-grain dataflow,
described in the next subsection.

The structure-flow technique [14] proposed for the SIGMA-1 enhances an otherwise fine-
grain dataflow computer by structure load and structure store instructions, that move for instance
whole vectors from or to the structure store. The arithmetic operations are executed by the cyclic
pipeline within a single PE.

2.4 Large-Grain Dataflow

As with multithreaded dataflow, sequences of instructions can be compounded to a thread.
The thread is represented as a macro dataflow actor in the dataflow graph. Large-grain dataflow
computers [10, 12, 15, 16] activate macro dataflow actors by the dataflow principle but execute
the represented sequences of instructions following the von Neumann principle. Off-the-shelf
microprocessors can be used as implementations of the execution stage, that is capable of
functioning as a conventional processor running a single thread in von Neumann style.

3. Simulation Model
A software simulation has been conducted to reveal a performance comparison of the hybrid

dataflow techniques to fine-grain dataflow. We emphasize that we did not intend to compare
specific architectures, but to derive some insight into the differences between the four instruction
issuing techniques described above.

Our simulation determines the elapsed time for the execution of the complete program,
measured in simulation time steps. This reflects our view that performance gain should be
measured by the achieved reduction of the execution time, and distinguishes our approach from
other surveys where performance is measured as utilization of the PEs.

The simulator emulates dataflow multiprocessors with PEs characterized by an 8 stage cyclic
dataflow pipeline, an explicit token store, and an instruction set as implemented in Monsoon [9].
Due to the abstract level of the architectural features, we disclaimed precise timing
characteristics. Nearly all organizational or scalar arithmetic instructions are supposed to persist
for a single time step in each pipeline stage. However, the memory allocation instruction "get-
frame", as well as all instructions accessing a structure store or traversing the network have to be
weighted differently. For each "get-frame" instruction that allocates an activation frame of fixed
size in the explicitly addressed token store of the matching unit [9] we account for 10 time steps.

When distributing function calls over the various PEs of the multiprocessor we have to
consider network delays. The delay of a single token transmission over the network depends on
the network bandwidth, network bottlenecks, and the appearance of network contention.

The delay of structure access is even more difficult to assess. Memory access conflicts, non-
strict data structures, synchronization loads, and the distinction between local and remote
structure storage have to be modeled in excess to the network delays.

The delays caused by the network and the structure access usually are non-deterministic. We
simplify the simulation model by using fixed network and structure access delays within a single
run of the simulator, but varying these parameters over several runs. Network delays are
assumed to be orders of magnitudes higher than the execution time of a single instruction; we



chose to vary it between 10 and 10000 time steps. Structure access delays are varied from 1 time
step, simulating local access to on-chip structure storage, up to 10000 time steps for a remote
memory access.

The simulation model is adapted to the various instruction issuing techniques as follows:
Fine-grain dataflow uses no threads and no registers. When simulating multithreaded dataflow
we distinguish two different approaches: the 8 stage cycle-by-cycle interleaving of threads and
use of 8 sets of 3 registers each in the Monsoon processor, versus the consecutive execution of
the instructions within a thread as in the Epsilon-processors and in the EM-4.

When simulating dataflow with complex machine operations we adopt the structure-flow
processing scheme of the SIGMA-1 [14]. When a structure-flow generation instruction is
executed in the PE, a single trigger token is passed to the structure store, and a structure-flow
consisting of all demanded data values is returned to the matching unit of the PE.

Large-grain dataflow architectures use conventional von Neumann processors as execution
stages. Large-grain dataflow simulation deviates from the principal simulation model with
respect to the pipeline organization and the memory access. We assume that data is already
loaded in the local memories of the PEs and in consequence we do not cover remote structure
access. Due to the varying execution times of instruction sequences we further assume an elastic
pipelining of the units in the firing stage, i.e., when the execution stage is busy executing a
sequential code block, the units of the firing stage are supposed to idle. FIFO-buffering of
executable instruction packets between firing stage and execution stage may be a slightly better
technique. The instruction set and the execution time model of the execution stage is highly
processor-dependent. We consider both an instruction set that is designed according to the RISC
philosophy and a superscalar instruction set and execution model according to the IBM/R6000
[20].

As a sample program we use an algorithm whose implementations are capable of duly
reflecting the peculiarities of the different instruction issuing techniques. Multiplication of two
square (n × n)-matrices using the inner product technique seems to be an adequate choice since
the code contains nested loops and structure accesses, and the algorithm has a single size
parameter n. Moreover, the algorithm is deterministic and its control flow does not depend on
the input data.

In all cases we use concurrent dataflow loops for the two outer loops. A uniform distribution
over the PEs is done at compile-time for the iterations of the outermost loop only. The
innermost loop is adapted to the different instruction issuing techniques as follows:
• In fine-grain dataflow the innermost loop is a concurrent dataflow loop, executed by a single

PE.
• For multithreaded dataflow we distinguish two approaches:

For the direct token recycling model of Monsoon we follow the matrix multiplication
algorithm of Traub [21], replacing fan-out of tokens by threads in the outer loops and a
sequential ordering of the iterations of the inner loop due to a 1-bounded loop approach. All
iterations of the inner loop execute sequentially within a single frame, thus saving the
execution of get-frame instructions. Each time two tokens are produced by an instruction in
the dataflow graph of the inner loop, a fork instruction is introduced and a thread is initiated.
By this strategy many very small threads are created with the goal to hold the pipeline within
a single PE busy by executing threads (at least 8 threads are needed).
The second approach simulates the repeat-on-input model of the Epsilon processors, where
the instructions of a thread are executed consecutively. Therefore threads should be as long as
possible. So we use the same algorithm as in the Monsoon model with the exception that the
inner loop iterations are divided into two threads only.

• For dataflow with complex machine operations the whole innermost loop is replaced by two
vector-load instructions, an inner-product operation and a scalar-store instruction. The
execution times of the load and inner product instructions grow linearly in the size parameter
n.

• In large-grain dataflow the innermost loop is mapped to a sequential loop code that can be
executed on a von Neumann (RISC or superscalar) processor, accessing only local memory.



The code is processor-dependent. We assume 8*n+6 time steps for the execution of an inner
loop iteration in case of the RISC-model, and 2*n+11 time steps for the superscalar model as
proposed in [20].

4. Simulation Results and Analysis
In the sequel we discuss the simulation results with regard to the following questions:

• What degree of runtime acceleration is achieved by the various hybrid dataflow techniques
relative to fine-grain dataflow? How does the acceleration depend on the number of PEs
used?

• How does the network delay influence the results?
• How does the structure access delay influence the results?

We visualize the simulation results for a fixed matrix size parameter n=16. The number of
PEs has been varied between 1 and 16. Figure 1 shows the elapsed time versus the number of
the PEs used with fixed structure access delays of 1 time step and network delays of 100 time
steps; figure 2 shows the achieved efficiency relative to large-grain dataflow with a superscalar
processor and 1 PE. For a small number of PEs (up to 4) all techniques show a nearly linear
speedup that degrades for a larger number of PEs; this degradation is due to the reduced load on
the individual PEs. Thus we expect good scalability for all techniques provided the problem size
is large enough.

However, for any fixed number of PEs the degree of runtime acceleration depends heavily on
the used instruction issuing technique, for large-grain dataflow also on the type of processor
used as execution stage.

In particular, the Monsoon-type of multithreaded dataflow does not achieve a speed
improvement compared to fine-grain dataflow. This phenomenon can be explained viewing the
Monsoon-type multithreaded dataflow code that contains a large overhead due to the use of short
threads. This overhead is caused by load and store instructions, because each thread has to load
operands from the frame memory into registers of the execution stage and store results back to
the frame memory before activating a new thread. The load and store instructions are not
necessary in fine-grain dataflow.

Multithreaded dataflow following the Epsilon-2 approach performs better than the Monsoon
technique due to its more powerful instruction set that leads to more efficient machine code. In
particular the efficiency is nearly insensible to changes in the number of PEs.

Performance results for the large-grain dataflow techniques depend heavily on the type of
processor used as execution stage. The speed can be nearly doubled by a powerful superscalar
processor that is able to exploit fine-grain parallelism by its internal hardware structure in
combination with an optimizing compiler.

Complex machine operations perform slightly better than large-grain dataflow with a RISC
processor. It can be an useful enhancement to other techniques.

Figure 3 shows the elapsed time versus the network delay for a fixed number of 8 PEs and a
structure access delay of 1 time step. Network delay shows to be of minor influence except for
very high delay values (10000 time steps). This proves that dataflow with any instruction issuing
technique effectively compensates network delays by its rapid context switching capabilities.
However, if network delay is assumed to be very high, idle times cannot be avoided because
load is too low.

Figure 4 shows the elapsed time versus the structure access delay where the number of PEs
is 8 and network delay is fixed to 100 time steps. Large-grain dataflow is not considered in this
investigation because all data is kept local in the large-grain dataflow model. The results show
that structure access delays of up to 1000 time steps per delay are fully compensated by the
various dataflow models.



5. Conclusions
We evaluated fine-grain dataflow against different hybrid dataflow techniques with respect to

a matrix multiplication program. We measure performance by the elapsed time for the execution
of the complete program and not as utilization of the PEs. Performance gains of different
architectural approaches are assessed using a single algorithm that is slightly adapted to the
specific techniques. This distinguishes our approach from other surveys where several problems
are simulated for a single architecture. Results of these surveys cannot be compared to each
other.

As results of our simulations we would like to emphasize the following points:
• Split-phase memory access combined with rapid context switching as used in fine-grain

dataflow or in hybrid dataflow prove as adequate methods to bridge delays caused by the
network or by structure access. This is a strong argument for the use of dataflow techniques
because the performance of conventional von Neumann processors either suffers from a high
context switching overhead or from idling.

• Large-grain dataflow proved superior to all other techniques provided that a superscalar
processor is used, and performs at least equal to the other techniques with a RISC processor.
This makes large-grain dataflow a very promising approach since its execution stage can be
implemented with off-the-shelf microprocessors and therefore will automatically profit from
advances in microprocessor technology.

• Multithreaded dataflow is an improvement over fine-grain dataflow but suffers from a large
overhead and thus does not achieve a considerable speedup. This is even worse for the cycle-
by-cycle interleaving technique of Monsoon.

• Complex machine operations can be an useful enhancement to other techniques.
• All techniques show good scalability provided that load is sufficient; the Epsilon model of

multithreaded dataflow scales best among all regarded techniques when load is low.
Our sample program avoids several problems that may emerge in other classes of

algorithms. Therefore it is inevitable to use further algorithms as simulation load that address in
particular problems as for instance computing intensive versus I/O bound computations, storage
access conflicts, read-before-write-races when implementing non-strict data structures,
synchronization loads, load balancing, or network contention.
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