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Abstract. Interval-branch-and-bound methods for global optimization very often incorporate
interval Newton Gauss-Seidel steps to reduce the widths of the boxes resulting from the basic
branch-and-bound method. These steps try to determine the roots of the gradient of the objective
function, whereas various other techniques eliminate the regions containing roots which do not
correspond to global optimizers.

The interval Newton Gauss-Seidel step uses so-called extended interval arithmetic which allows
the division by intervals containing zero. The latter may produce gaps in the resulting coordinate
intervals, which can be used to split the resulting box of the interval Gauss-Seidel step.

We investigate the impact of gap-treating and box-splitting techniques which make use of
branching rules, i.e. rules for selecting the subdivision direction in the underlying branch-and-
bound method. Supplementing earlier studies ([3], [12]), the investigated model algorithm (sim-
ilar to that in [5]) now uses the enclosure of the Hessian matrix to incorporate a second-order
branching rule. We propose a strategy, a sorted interval Gauss-Seidel step, which improves the
overall efficiency of the interval Newton Gauss-Seidel step and therefore of our global optimiza-
tion method. We present results of computational experiments with standard global optimization
problems.

Keywords: Global optimization, interval arithmetic, branch-and-bound, interval Newton Gauss-
Seidel step

1. Introduction

Let f: D — IR be a twice continuously differentiable function, and let D D [«] € TIR".
We address the problem of finding all points #* in the interval vector [#] such that

f(z™) = min f(z).

z€[z]

We are interested in both the global minimizers * and the minimum value f* =
We use the branch-and-bound approach described in [5] and [11] with several
modifications. Our method starts from an initial box [#] € TIR", subdivides [z],
stores the subboxes in a list L, and discards subintervals which are guaranteed not
to contain a global minimizer, until the desired accuracy (width) of the interval
vectors in the list is achieved. The tests we use to discard or to prune pending
subboxes are cut-off test, monotonicity test, concavity test, and interval Newton
Gauss-Seidel step. For details on these tests and on the method itself, see [5].
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The global minimum value of f on [#] is denoted by f*, and the set of global
minimizer points of f on [¢] by X*. That is,

freminfl) e X7 =7 (@) = f).

We denote real numbers by z,y, ... and real bounded and closed interval vectors by
[2] = [2,7Z],[y] = [v, 7], . . ., where min[z] = 2, max[2] = T, min[y] = y, max[y] = ¥,
etc. - -

The set of compact intervals is denoted by IR := {[a,q] | a < @, a,a € R}
and the set of n-dimensional interval vectors (also called boxes) by IIR". For real
vectors and interval vectors the notations

r=(x;), = €R, and [#] = ([z]s), [x]i € IR

are used.

The diameter (or width) of the interval [x] is defined by d([#]) = Toz if [z] € TIR.
The midpoint of the interval [x] is defined by m([x]) = (z + T)/2 if [¢] € IR, and
m([e]) = (m([e})), if [+] € LIR™.

We call a function F' : I IR® — [IR an wnclusion function of f : R” — IR in
[#] € TIR", if x € [z] implies f(x) € F([z]). In other words, fiz([z]) C F([x]),
where fig([2]) is the range of the function f on [2]. The inclusion function of the
gradient of f and the Hessian of f are denoted by VF and V2F'. It is assumed in
the following that the inclusion functions have the isotonicity property, i.e. [z] C [y]
implies F([z]) C F([y]).

Moreover, we use the following notations for [a] € IIR and [x] € [IR™:

[a] = {a€fa|a<a<a} (Interior of [a]),
[;‘] = {relz] |z <z <T; forall i} (Tnterior of [z]),
Ia]) = {a,a} (Boundary of [a]),
Ix]) = {z€x]]|x €0(x];) forany i} (Boundary of [z]),
[] C [y & [z]C [;/] (Tnner inclusion).

Throughout the whole paper, we assume that there exists a stationary point
z* € [z] for which f(z*) = f*, since we do not do anything special to handle
boundary points in these studies.

2. Main Global Optimization Algorithm

In the following, we give a simplified algorithmic description and an overview of
our global optimization method. We use the notations from [5].
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ALGORITHM 1. GlobalOptimize (F, [z], &, Lyes, [f*])
L f=Fima)): =[] L={} Leso={}
2. repeat
(A) FindComponents ([y], k1, k2); Branch ([y], k1, k2, [U]1, [U]2, [U]s, [U]a);
(B) fori:=1to 4 do
i. if f < F([U];) then next;;
ii. if MonotonicityTest (VF([U];)) then next;;
iii. if ConcavityTest (V*F([U];)) then next;;
iv. IntervalNewtonGaussSeidelStep (F, [U];, V> F([U):), [V], p);
v. for j:=1to pdoif f > F([V];) then L := Lw ([V];, Fv);
(C) while (L #{1}) do
1. ([y],&) := PopHead (L);
il. f:: min{f, F(m([y]))}; CutOffTest (L, f),
iii. if Accept (F,[y], ) then Lies := Lres W ([y], Fy) else goto 2(a);

until (L = {});
3. ([y],&) = Head (Lyes);  [f7] = [&aﬂ? return L., [f*];

Algorithm 1 first computes an upper bound ffor the global minimum value and
initializes the working list L and the result list L. The main iteration (Step 2)
starts with a multisection of [y]. Then we apply a range check, the monotonicity
test, the concavity test, and the interval Newton step to the multisected boxes [U;],
[Us], [Us], and [Ua]. The interval Newton step results in p boxes, to which we apply
a range check. If the current box [V]; is still a candidate for a minimizer, we store
it in L in Step 2(B)v. Note that the boxes are stored as pairs ([y], F) in list L

sorted in nondecreasing order with respect to the lower bounds Fy, = F([y]) and in

decreasing order with respect to the ages of the boxes in L (cf. [11]).

In Step 2(C), we remove the first element from the list L, i.e. the element of L
with the smallest Fy value, and we perform the cut-off test. Then, if the desired
accuracy is achieved for [y], we store [y] in the result list L. Otherwise, we go to
the branching step. When the iteration stops because the pending list L is empty,
we compute a final enclosure [f*] for the global minimum value and return L,es and
L]

The method can be improved by incorporating an approximate local search pro-
cedure to try to decrease the value f. See [7] for the description of such local search
procedures. For our studies in this paper, we do not apply any local method. We
also do not apply any boundary treating, so we assume that all * lie in the interior

of [z].
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3. Use of Branching Rules

As demonstrated in [3] and [12], the determination of “optimal” components for
subdividing the current box [y] in Step 2(A) of Algorithm 1 plays an important
role. Moreover, the corresponding rules for selecting the subdivision direction can
also be helpful in connection with the interval Newton Gauss-Seidel step, as we
shall see later.

In Algorithm 1, a multisection is used, so each of these branching rules selects
directions ki and kg with D(k1) > D(k2) > D(d) foralli=1,... nandi & {kq, k2},
where D(i) is fixed by the given rule. For the current study, we investigate four
rules (we leave out Rule D from [3] and [12]):

Rule A: D(i) := d([y]:)
Rule B: D(i) = digs([y])) - d([s}s) (ef. [7])

Rule C: D(i) :=d (gz([y]) ([yl: <:>Cz))) (cf. [10])
Rule E: D(i) :=d (([y]Z Se) (Gi(c) + = Z(Hz]([y]) ([yli <:>Cz)))) .

Here, G =VF, H =V*F,and ¢ = m([y]).
Similar to Rule C (cf. [10]), the underlying idea of the new Rule E is to minimize

AF () = dF () &)
~d (e (v f<c>+§v2F<[y]>~<[y]@c>))
- dZ( i i) (gz %Z:: 31‘31‘] . ch)))'

i=1

The proofs of convergence of the underlying branch-and-bound (subdivision) algo-
rithm with Rules A, B, and C can be found in [12], the proof for Rule E (recently
proposed in [13]) can be found in [2].

4. Interval Newton Gauss-Seidel Step (INGSS)

In Algorithm 1, we apply one step of the extended interval Newton Gauss-Seidel
method (cf. [1]) to the nonlinear system V f(y) = 0 with y € [y]. The subbox [y] is
a candidate box for enclosing a minimizer *, which we have assumed must satisfy
Vf(xz*) = 0. One step of the extended interval Newton Gauss-Seidel method shall
improve (prune) the enclosure [y] by formally solving the system g = [H] - (¢ ),
where ¢ = m([y]), g = Vf(c), and [H] = V2F([]).

Usually, this method works better if we first apply a preconditioning, by using
a special matrix R € IR™*" for computing b := R-g and [A] := R-[H]. Then
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we consider the system b = [A] - (¢ <y), and we compute the new box N(ig([y])
according to

2] = (ci@(bﬁim]ij.([z]j @cj)) /[A]“») A, i=1,....n,

Nes(ly)) = [2].

The interval Newton Gauss-Seidel step (abbreviated by INGSS) in this form (as-
suming that 0 & [A];;) has the following properties (see [7] or [9] for proofs):

THEOREM 3.1 Let f: D C IR" — IR be a twice continuously differentiable function,
and let [z] € IR be an interval vector with [x] C D. Then Nig([#]) has the

following properties:

1. Every zero x* € [z] of V f satisfies ©* € Niq([2]).

2. If Nig([x]) = B, then there exists no zero of V [ in [z].

3. If Nis([#]) c [], then there exists a unique zero of V[ in [x].

In the one-dimensional case with f : IR — IR and [y] € IR, the interval Newton
Gauss-Seidel step reduces to the interval Newton step

f(e)
F([y])

Using standard interval arithmetic, the interval Newton step assumes 0 ¢ F''([y]).
Like in classical Newton’s method, the interval Newton step can be geometrically

N'([y]) = Nos (1) = (e &g ) N1l

interpreted as drawing two lines from the midpoint (¢, f/(¢)) and intersecting them
with the z-axis. These lines have the slope g (a lower bound of the slopes of " in [y])
and g (an upper bound of the slopes of f' in [y]), respectively, where [g] = F"'([y]).

f'(z)

Figure 1. Interval Newton step with 0 & F''([y])
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The points of intersection with the z-axis, i.e. A and p, form the new interval
[A, p]. Figure 1 demonstrates this interval Newton step resulting in

N'([y]) = [\ el N [yl = [y, o]

If the intersection is empty, we know that there is no root of f’ in [y].

5. Box-Splitting and Gap-Treating

Using extended interval arithmetic (see [5] or [7] for details), we are able to treat
the case 0 € F”'([y]) that occurs, for example, if there are several zeros of f” in the
interval [y]. In this case, N'([y]) is given by one or two intervals resulting from the
interval division.

In Figure 2, we illustrate one extended interval Newton step geometrically. Again
we draw lines through the point (¢, f'(¢)). The first line with the smallest (negative
lower bound) slope of f’ in [y] intersects the z-axis in point p. The line with the
largest (positive upper bound) slope intersects the z-axis in point A. Therefore, we
get

N'([y]) = ([&20, plU A, o2]) N [yl = [y, Pl U AT,

and we “punched” out a gap in the original interval [y] which is now split.

In the multi-dimensional case, we must apply extended interval arithmetic if
0 € [A];; for some i. In this case, a gap can be produced in the corresponding
components [z]; of [z]. Therefore, the interval Gauss-Seidel step may result in
the union of several boxes [V]; € TIR", i = 1,...,p, and we have N/¢([y]) =
Vi U...U[V]p, so [V] € IIRP*". Since it is not necessary to compute the [y];
in fixed order ¢ = 1,...,n in a practical realization of the interval Newton Gauss-
Seidel method, very often the Hansen/Greenberg realization [6] is used. That is,
we first perform the single component steps of the Gauss-Seidel step for all ¢ with
0 ¢ [A];; and then for the remaining indices with 0 € [A]; by using extended
interval arithmetic.

Nevertheless, if 0 € [A];; for several components 4, then the extended interval
divisions in the interval Newton Gauss-Seidel method possibly produce several gaps

7@)
f/
\ NE© o

Figure 2. Extended interval Newton step with 0 € F"'([y])

@+
&
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in the current box [y]. So we must split the result N/, q([y]) into two or more boxes.
In this case, different splitting techniques may be applied resulting in different
values for [V] and p. We give two examples, which are used in the current study:

p<2 Compute all possible gaps in [y], and finally use only the largest gap to
split [y]. This technique is known from Hansen/Greenberg [6], and the
Newton step results in at most 2 boxes, thus Nig([2]) = [V]1 U [V]s.

p<n+1 Compute every gap, and use it immediately to split [y] in a special way.
For this special splitting technique introduced in [10] the Newton step
results in at most n 4 1 boxes, thus Nig([z]) = [VI1 U ... U [V]ny1.

In our special technique with p < n + 1, we use each gap to store one part of the
current box [y] by using one part of the component [y]; and to update [y] with the
other part of [y];, before continuing with the next component step of the interval
Gauss-Seidel method. That is, we perform one component step according to the
scheme:

1. Compute [y]; = [w] U [v].
2. If [w] = [v] = 0, then stop {no solution in [y]}.
3. If [v] # 0, then set [y]; := [v] and store [y].

4. Set [y]; := [w] and continue with next i.

In some bad cases, we only get (bi + Z[A]Z»j ([yl; <:>cj)) /[A]“ = (&00,00) and
=

no gap occurs, so [y]; := [y]; N (<00, 00) remains unchanged. In these cases, we

introduce “gaps” of width zero by splitting [y]; = [w] U [v] with [w] := [y,, m([y]:)]

and [v] := [m([y]s),T;], that is we do a bisection.

6. Sorted Interval Newton Gauss-Seidel Step (SINGSS)

We investigate the branching rules applied in the main Algorithm 1 in connection
with the interval Gauss-Seidel step. We use these rules to compute a sorting vec-
tor s = (s1,892,...,8,) with 5; € {1,...,n} and s; # s; for ¢ # j, which satisfies
D(s;) > D(sit1), ¢ = 1,...,n <1 for the corresponding direction selection rule
D(...). Then, we perform the sorted interval Newton Gauss-Seidel step (SINGSS)
according to

[2] = [4]
(1o, = (e, & (b + i[A]s,j.([z]j @) /Al ) Oy i=1,m

5#s;

NéGs([y]) = [z]
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incorporating the Hansen/Greenberg realization and different splitting techniques.
Note that Niag([y]) is the union of several boxes in the general case. This SINGSS
aims at splitting the box [y] in those components first, which would be chosen for
multisection by the specified branching rule.

We now give an algorithmic description of the SINGSS.

ALGORITHM 2. SlintervalNewtonGaussSeidelStep (F, [y], [H],[V], p)

1. Compute preconditioner R and sorting vector s;

2. c:=m(ly]); [Al:=R-[H]; b:=R-Vf(c); p:=0;

3. for!:=1tondo {Component steps for 0 & [A];;}
(A) i:=s;; if (0 € [A];;) then nexty;

(8) Wl = (e & (b + D11 - (W ) ) /A1) Nl
(C) if [yli = 0 then return ;

4. forl:=1tondo {Component steps for 0 € [A];; }
(A) i:=s;; if (0 & [A];;) then nexty;

B) fw]U o] = (e e (bt DAL - (Wl <)) [ 141) 0ol
[w] = [v] = 0) then return ;
[v] # @) then {Store part of [y] in [V],}
W=Dl p=p+1 [V =y
(E) [yl == [w];
5. pr=p+ 1 [V] = [yh;
return [V], p; {Result: Négs([v]) = Ui [V}

- j=1

() if
(D) if

The following theorem summarizes the properties of our sorted interval Newton
Gauss-Seidel step with special splitting.

THEOREM 4.1 Let f: D C IR" — IR be a twice continuously differentiable function,
and let [x] € TIR" be an interval vector with [x] C D. Then N{qs([z]) computed
by Algorithm 2 (including sorting and special splitting technique) has the following
properties:

1. Fuvery zero z* € [z] of V[ satisfies 2™ € N{qs([#])-

2. If Niqs([#]) = 0, then there exists no zero of Vf in [x].

3. If Nias([z]) ¢ [], then there exists a unique zero of V f in [x].
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Proof:
1. Let, ([y]) = (ci <:>(bi + Z[A]” (lyl; <:>Cj)) /[A]”) N [y]; be the new value

i=1

for [y]; computed in one component step of the SINGSS applied to [y] € TIR"
for i € {1,...,n}, and let [y](?) be the updated value of [y] after the complete
Step 3 of Algorithm 2. Moreover, let & = {si,,s1,,...5, } with m < n be
the set of those components of the sorting vector s for which extended interval
division must be applied when computing , ;, that is, 0 € [A;] for all i € S and
, i([y]) = [w]U [v] with [w], [v] € TIR. For simplicity of the proof, we use [v] = §
if in fact no splitting occurs in , ;([y]), although denoting this a splitting.

According to Algorithm 2, the result of the k-th extended component step of
the SINGSS (i.e. Step 4) is given by

N80 ([~ i= [V U )™,
where
VI UL =, (% ~Y) and i=s,,

and where [y]*) is the current value of [y] after the k-th update in Step 4(E) of
Algorithm 2, i.e. after & splittings. Then

[2]%) = [V];U[V]oU...U[V]e U[y]®

is the current enclosure of the true solution set after £ splittings, and with
[V]ma1 = [4]"™) according to Step 5 of our algorithm we have

m+1

[0 = [ V]; = Néas ([2])-

j=1

Now let 2* € [¢] be a zero of V f.

a) * € [y = [2]® according to Theorem 3.1.
b) Given an arbitrary k € {0,...,m <1}, we have two cases for «* € [2]*):

i) 2* €[V]1U...U[V]g: In this case, it follows immediately that

2 €[VIU. UV U[V]egr C [2]*FD.

ii) z* € [y)*): In this case, with i = s;,,, there exists an A* € [A] with
A (e ™) =b.
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For A}, # 0 we get

i = ao(he YAy o) /4
=
€ o (b —|—Z <:>c])) /[A]n,

J#l
](k)

and, since z} € [y];"’,

vi e (ao(b+ YAy @ o)) /14) 0
= i([™)
= [V]egri UL,
and thus * € [V]p4 U [y]E+D = N/(slz}-l—sl)([y](k)~

For A7, =0, a necessary consequence is that

O_b—i—ZA (z3 &cj)

J#l

€ b+Z M o)),

J#l
and the definition of extended interval division implies that

(b _|_Z <:>c])) /[A]n'z (€00, 20)

and thus
v € %) = (e0,00) N [1®) = s((0)") = [VIegr,s U .
Again we have 2* € [V]gy U [y] 51 = N/EED ([0,
So, with z* € [2]%)| we have that 2* € [2]**V) for k =0,...,m <1,
Combining a) and b), #* € [2] implies that z* € [2]7) = N4qq([2]).
Assuming z* € [z], Nigs([#]) = 0 contradicts Proposition 1 of the theorem.

According to the definition of extended interval operations (c.f. [5] or [7] for
details), we know that d([y];) N, ;([y]) # @. That is, whenever extended interval
division is applied N{aq([z]) N d([z]) # @. Since Niag([z]) ¢ [x], we know
that no extended interval operation occurred in the SINGSS, and therefore
Proposition 3 of Theorem 3.1 completes the proof.
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7. Numerical Experiences

For our tests, we used the group of test functions given in [12]. We carried out the
numerical tests on an HP 9000/730 equipped with PASCAL-XSC [8] using the basic
toolbox modules for automatic differentiation and extended interval arithmetic [5].
Our test suite compared the methods with branching rules A, B, C, and E combined
with the usual splitting technique (p < 2) and with the special splitting technique
(p <n+1, “0O-width-gaps”).

In the following, we list the complete results for 10 test problems. Important
columns of the corresponding tables are the runtime (in STUs), the storage space
or maximum list length (LL) and the Eeff; and Eeff; values. The latter combine
the three values for the number of function (FE), gradient (GE), and Hessian (HE)
evaluation to single values approximating the total evaluation effort in terms of
objective function evaluations by

n-(n+1)

Eeffi = FE+n - GE + 7

-HE
and
Eeffs = FE + min{4,n} - GE +n - HE

(with respect to forward (Eeff;) and backward (Eeffz) mode of automatic differen-
tiation, see [4] for details).

Results for problem Shekell0 (n = 4)
p< | Rule | STUs | FE | GE | HE | Eeff; | Eeff | LL

A 2.09 | 132 | 106 42 976 724 | 17

2 B 2.12 | 133 | 108 43 995 737 | 17
C 1.68 | 112 86 32 776 584 | 15

E 1.68 | 112 86 32 776 584 | 15

A 1.45 | 144 62 22 612 480 | 33

n+1 B 1.71 | 169 70 26 709 553 | 39
C 1.31 | 129 56 19 543 429 | 31

E 1.33 | 129 56 19 543 429 | 31

Results for problem Hartman3 (n = 3)
p< | Rule | STUs | FE | GE | HE | E_eff; | Eeff, | LL

A 3.25 | 266 | 152 51 1028 875 18

2 B 1.96 | 145 99 33 640 541 12
C 1.73 | 131 85 29 560 473 | 10

E 1.78 | 131 83 30 575 485 10

A 3.46 | 300 | 163 45 1059 924 | 26

n+1 B 2.32 | 200 | 109 30 707 617 | 24
C 1.78 | 154 79 24 535 463 | 24

E 1.80 | 154 79 24 535 463 | 24
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Results for problem Hartman6 (n = 6)

p < | Rule || STUs FE | GE | HE | Eeft; | Eeffo | LL
A 40.11 | 1762 | 959 | 366 | 15202 | 7794 | 115
2 B 26.61 | 1141 | 668 | 239 | 10168 | 5247 78
C 22.32 963 | 574 | 195 8502 | 4429 62
E 24.14 | 1014 | 611 | 212 9132 | 4730 70
A 37.94 | 2357 | 697 | 205 | 10844 | 6375 | 360
n+1 B 24.93 | 1542 | 510 | 143 7605 | 4440 | 143
C 24.25 | 1496 | 491 | 129 7151 | 4234 | 235
E 21.90 | 1377 | 439 | 118 6489 | 3841 | 139
Results for problem Rosenbrock (n = 2)

p< | Rule | STUs | FE | GE | HE | E_eff; | Eeff, | LL
A 0.22 | 217 | 143 71 716 645 15

2 B 0.16 | 144 | 106 52 512 460 12
C 0.16 | 144 | 106 52 512 460 12

E 0.17 | 144 | 106 52 512 460 12

A 0.12 | 133 69 33 370 337 17

n+1 B 0.10 | 106 53 25 287 262 11
C 0.10 | 106 53 25 287 262 11

E 0.10 | 106 53 25 287 262 11

Results for problem Levy8 (n = 3)

p< | Rule || STUs | FE | GE | HE | E_eff; | Eeff | LL
A 1.49 76 59 21 379 316 11

2 B 1.47 76 58 21 376 313 11
C 1.47 76 58 21 376 313 11

E 1.48 76 58 21 376 313 11

A 1.17 77 41 13 278 239 18

n+1 B 0.98 68 32 12 236 200 21
C 0.98 68 32 12 236 200 21

E 0.98 68 32 12 236 200 21

Results for problem Levy12 (rn = 10)

p< | Rule || STUs | FE | GE | HE | Eeff; | Eeff, | LL
A 24.71 | 246 | 205 76 | 6476 | 1826 43

2 B 23.90 | 239 | 200 74 | 6309 | 1779 39
C 23.90 | 239 | 200 74 | 6309 | 1779 39

E 23.90 | 239 | 200 74 | 6309 | 1779 40

A 19.19 | 401 | 106 36 | 3441 | 1185 | 238

n+1 B 17.39 | 376 97 33 | 3161 | 1094 | 231
C 18.19 | 391 | 101 34 | 3271 | 1135 | 231

E 16.76 | 367 89 32 | 3017 | 1043 | 228
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Results for problem Schwefel3.2 (n = 3)
p< | Rule | STUs | FE | GE | HE | E_eff; | Eeff, | LL
A 0.33 | 171 | 109 45 768 633 9
2 B 0.25 | 110 84 36 578 470 9
C 0.26 | 110 86 36 584 476 9
E 0.26 | 110 84 36 578 470 9
A 0.22 | 122 70 29 506 419 13
n+1 B 0.17 78 54 23 378 309 13
C 0.17 82 52 22 370 304 12
E 0.18 78 54 23 378 309 12

Results for problem Griewank5 (n = 5)
p< | Rule | STUs | FE | GE | HE | E_eff; | Eeff, | LL
A 7.04 | 220 | 181 80 2325 1344 | 34
2 B 6.82 | 218 | 176 78 2268 1312 34
C 6.84 | 218 | 177 78 2273 1316 | 34
E 7.01 | 219 | 179 79 2299 1330 | 34
A 5.12 | 305 | 100 41 1420 910 | 86
n+1 B 5.05 | 301 | 100 41 1416 906 | 86
C 4.84 | 295 95 40 1370 875 86
E 4.96 | 294 95 40 1369 874 | 87

Results for problem Griewank7 (n =7)
p< | Rule | STUs | FE | GE | HE | Eeft; | Eeff, | LL
A 15.57 | 304 | 255 | 114 | 5281 | 2122 60
2 B 15.12 | 301 | 249 | 111 | 5152 | 2074 61
C 15.23 | 302 | 251 | 112 | 5195 | 2090 61
E 15.36 | 301 | 249 | 111 | 5152 | 2074 61
A 11.04 | 483 | 125 52 | 2814 | 1347 | 216
n+1 B 11.24 | 493 | 129 54 | 2908 | 1387 | 212
C 10.96 | 477 | 125 52 | 2808 | 1341 | 211
E 10.94 | 472 | 123 51 | 2761 | 1321 | 202

Results for problem Ratz4 (n = 2)

p < | Rule || STUs FE | GE | HE | Eeff; | Eeff; | LL
A 6.83 850 | 540 | 242 | 2656 | 2414 68
2 B 6.81 838 | 544 | 230 | 2616 | 2386 60
C 6.37 802 | 508 | 214 | 2460 | 2246 56
E 6.31 802 | 496 | 210 | 2424 | 2214 56
A 6.97 | 1031 | 449 | 176 | 2457 | 2281 | 102
n+1 B 5.13 733 | 358 | 140 | 1869 | 1729 68
C 5.12 726 | 359 | 142 | 1870 | 1728 73
E 5.15 726 | 359 | 142 | 1870 | 1728 73

67
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As an example, we take the last problem (Ratz4) to demonstrate the behavior of
the splitting an the influence of the rules. This problem considers the function

f(z)= sin(a:% + 21‘%) eXp(@éL‘% <:>x§)

in the starting region [z]; = [&3,3], i = 1,...,2. The following pictures are snap-
shots of the boxes in the working list L after 125 iterations of the main algorithm.
The first four pictures in Figure 3 correspond to the method with the usual splitting
technique and the different sorting rules, the pictures in Figure 4 correspond to the
method with the special splitting technique.

3 Rule A, Usual Splitting 3 Rule B. Usual Splittin
D]md] |:F|-- ~
0 0
[P e E‘l' '=EE
-3 -3
-3 0 3 -3 0 3
3 Rule C, Usual Splitting 3 Rule E, Usual Splittin
= =N = =N
H H H H
0 0 |

Figure 3. Boxes in the working list after 125 iterations with usual splitting
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Rule C, Special Splitting
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3

3
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Rule B. Special Splittin

3 0
Rule E, Special Splittin
3 0

Figure 4. Boxes in the working list after 125 iterations with special splitting

Finally, we give an overview on the results for the complete test set by listing the

necessary resources (execution time, evaluation efforts, and maximum list length)
for the different variants of our method (Table 1). The values given are relative
values (in percent) with respect to the method with Rule A and usual splitting
(which is used as reference value corresponding to 100%). The table gives the best
values the worst values, and the average values (for all test problems) achieved in
the whole test set.
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Table 1. Results for the complete test set (relative values)

p < | Rule | Values STUs Eeff; Eeff, LL
best 60.3% 62.3% 61.8% 66.7%

B | average | 95.0% | 94.8% | 94.8% | 102.4%

worst 131.3% | 129.9% | 129.4% | 178.3%

best 53.2% 54.5% 54.1% 53.9%

2 C | average | 93.9% | 95.0% | 95.0% | 98.5%
worst 137.1% | 136.1% | 136.8% | 169.6%

best 54.8% 55.9% 55.4% 55.6%

E | average | 95.3% | 95.1% | 95.1% | 99.1%

worst 141.7% | 134.9% | 134.5% | 157.9%

best 54.5% 51.7% 52.2% | 100.0%

A | average | 82.0% | 75.0% | 78.6% | 221.2%

worst 113.6% | 111.2% | 111.5% | 553.5%

best 45.5% | 40.1% | 40.6% 66.7%

B | average | 76.5% | 69.6% | 72.9% | 206.4%

n+1 worst 108.3% | 104.7% | 105.3% | 537.2%
best 45.5% | 40.1% | 40.6% 66.7%

C | average | 73.1% | 67.5% | 70.7% | 207.4%

worst 101.5% | 104.0% | 104.7% | 537.2%

best 45.5% | 40.1% | 40.6% 71.4%

E | average | 75.8% | 67.8% | 71.1% | 202.7%

worst 100.0% | 100.0% | 100.0% | 530.2%

8. Conclusion

D. RATZ

Studying the numerical results for the four branching rules combined with different
splitting techniques, we recognize that there are test problems for which Rule B,
Rule C, and Rule E are much more efficient than Rule A. On the other hand, there
are also some problems where the new rules are worse. On average, the branching
rules alone lead to an improvement of about 10%.

The special splitting technique improves the performance of the global optimiza-
tion method significantly, by drastically decreasing the evaluation effort. The price
to pay for this improvement is an increasing storage space. Further improvement is
due to the branching rules B, C, and E, used as sorting rules in the interval Newton
Gauss-Seidel step. This holds for the best cases, the average, and for the worst

cases.
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Summarizing the consequences of the numerical tests, we can conclude that for

Rules B, C, and E combined with the special splitting technique we can expect an

average improvement of about 25% in the efficiency of the method, keeping in mind
that on average there is approximately a doubling in the necessary storage space.
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