
New Results on Gap-Treating Techniques in

Extended Interval Newton Gauss-Seidel Steps for

Global Optimization

DIETMAR RATZ dietmar.ratz@math.uni-karlsruhe.de

Institut f�ur Angewandte Mathematik, Universit�at Karlsruhe, D-76128 Karlsruhe, Germany

Developments in Global Optimization c1997 Kluwer Academic Publishers
Bomze, Csendes, Horst, Pardalos (Eds.) All rights of reproduction in any form reserved
pp. 55{72

Abstract. Interval-branch-and-bound methods for global optimization very often incorporate
interval Newton Gauss-Seidel steps to reduce the widths of the boxes resulting from the basic
branch-and-boundmethod. These steps try to determine the roots of the gradient of the objective

function, whereas various other techniques eliminate the regions containing roots which do not
correspond to global optimizers.

The interval Newton Gauss-Seidel step uses so-called extended interval arithmetic which allows
the division by intervals containing zero. The latter may produce gaps in the resulting coordinate
intervals, which can be used to split the resulting box of the interval Gauss-Seidel step.

We investigate the impact of gap-treating and box-splitting techniques which make use of
branching rules, i.e. rules for selecting the subdivision direction in the underlying branch-and-

bound method. Supplementing earlier studies ([3], [12]), the investigated model algorithm (sim-
ilar to that in [5]) now uses the enclosure of the Hessian matrix to incorporate a second-order

branching rule. We propose a strategy, a sorted interval Gauss-Seidel step, which improves the
overall e�ciency of the interval Newton Gauss-Seidel step and therefore of our global optimiza-

tion method. We present results of computational experiments with standard global optimization
problems.

Keywords: Global optimization, interval arithmetic, branch-and-bound, intervalNewton Gauss-

Seidel step

1. Introduction

Let f : D ! IR be a twice continuously di�erentiable function, and letD � [x] 2 IIRn.
We address the problem of �nding all points x� in the interval vector [x] such that

f(x�) = min
x2[x]

f(x):

We are interested in both the global minimizers x� and the minimum value f� =
f(x�).
We use the branch-and-bound approach described in [5] and [11] with several

modi�cations. Our method starts from an initial box [x] 2 I IRn, subdivides [x],
stores the subboxes in a list L, and discards subintervals which are guaranteed not
to contain a global minimizer, until the desired accuracy (width) of the interval
vectors in the list is achieved. The tests we use to discard or to prune pending
subboxes are cut-o� test, monotonicity test, concavity test, and interval Newton
Gauss-Seidel step. For details on these tests and on the method itself, see [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197598967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

56 D. RATZ

The global minimum value of f on [x] is denoted by f�, and the set of global
minimizer points of f on [x] by X�. That is,

f� = min
x2[x]

f(x) and X� = fx� j f(x�) = f�g:

We denote real numbers by x; y; : : : and real bounded and closed interval vectors by
[x] = [x; x]; [y] = [y; y]; : : :, where min[x] = x, max[x] = x, min[y] = y, max[y] = y,
etc.

The set of compact intervals is denoted by I IR := f[a; a] j a � a; a; a 2 IRg

and the set of n-dimensional interval vectors (also called boxes) by IIRn. For real
vectors and interval vectors the notations

x = (xi); xi 2 IR; and [x] = ([x]i); [x]i 2 IIR

are used.

The diameter (or width) of the interval [x] is de�ned by d([x]) = x�x if [x] 2 IIR.
The midpoint of the interval [x] is de�ned by m([x]) = (x+ x)=2 if [x] 2 IIR, and
m([x]) = (m([x]i)), if [x] 2 IIRn.

We call a function F : I IRn ! I IR an inclusion function of f : IRn ! IR in
[x] 2 I IRn, if x 2 [x] implies f(x) 2 F ([x]). In other words, frg([x]) � F ([x]),
where frg([x]) is the range of the function f on [x]. The inclusion function of the
gradient of f and the Hessian of f are denoted by rF and r2F . It is assumed in
the following that the inclusion functions have the isotonicity property, i.e. [x] � [y]
implies F ([x]) � F ([y]).

Moreover, we use the following notations for [a] 2 IIR and [x] 2 IIRn:

�

[a] := fa 2 [a] j a < a < ag (Interior of [a]);
�

[x] := fx 2 [x] j xi < xi < xi for all ig (Interior of [x]);

@([a]) := fa; ag (Boundary of [a]);

@([x]) := fx 2 [x] j xi 2 @([x]i) for any ig (Boundary of [x]);

[x]
�

� [y] , [x] �
�

[y] (Inner inclusion):

Throughout the whole paper, we assume that there exists a stationary point
x� 2 [x] for which f(x�) = f�, since we do not do anything special to handle
boundary points in these studies.

2. Main Global Optimization Algorithm

In the following, we give a simpli�ed algorithmic description and an overview of
our global optimization method. We use the notations from [5].

NEW RESULTS ON GAP-TREATING TECHNIQUES 57

ALGORITHM 1. GlobalOptimize (F; [x]; "; Lres; [f
�])

1. ef := F (m([x])); [y] := [x]; L := f g; Lres := f g;

2. repeat

(A) FindComponents ([y]; k1; k2); Branch ([y]; k1; k2; [U]1; [U]2; [U]3; [U]4);

(B) for i := 1 to 4 do

i. if ef < F ([U]i) then nexti;

ii. if MonotonicityTest (rF ([U]i)) then nexti;

iii. if ConcavityTest (r2F ([U]i)) then nexti;

iv. IntervalNewtonGaussSeidelStep (F; [U]i;r
2F ([U]i); [V]; p);

v. for j := 1 to p do if ef � F ([V]j) then L := L] ([V]j; FV);

(C) while (L 6= f g) do

i. ([y]; Fy) := PopHead (L);

ii. ef := minf ef; F (m([y]))g; CutO�Test (L; ef);
iii. if Accept (F; [y]; ") then Lres := Lres] ([y]; Fy) else goto 2(a);

until (L = f g);

3. ([y]; Fy) := Head (Lres); [f�] := [Fy; ef]; return Lres; [f
�];

Algorithm 1 �rst computes an upper bound ef for the global minimum value and
initializes the working list L and the result list Lres. The main iteration (Step 2)
starts with a multisection of [y]. Then we apply a range check, the monotonicity
test, the concavity test, and the interval Newton step to the multisected boxes [U1],
[U2], [U3], and [U4]. The interval Newton step results in p boxes, to which we apply
a range check. If the current box [V]j is still a candidate for a minimizer, we store
it in L in Step 2(B)v. Note that the boxes are stored as pairs ([y]; Fy) in list L

sorted in nondecreasing order with respect to the lower bounds Fy = F ([y]) and in

decreasing order with respect to the ages of the boxes in L (cf. [11]).

In Step 2(C), we remove the �rst element from the list L, i.e. the element of L
with the smallest Fy value, and we perform the cut-o� test. Then, if the desired

accuracy is achieved for [y], we store [y] in the result list Lres. Otherwise, we go to
the branching step. When the iteration stops because the pending list L is empty,
we compute a �nal enclosure [f�] for the global minimumvalue and return Lres and
[f�].

The method can be improved by incorporating an approximate local search pro-
cedure to try to decrease the value ef . See [7] for the description of such local search
procedures. For our studies in this paper, we do not apply any local method. We
also do not apply any boundary treating, so we assume that all x� lie in the interior
of [x].

58 D. RATZ

3. Use of Branching Rules

As demonstrated in [3] and [12], the determination of \optimal" components for
subdividing the current box [y] in Step 2(A) of Algorithm 1 plays an important
role. Moreover, the corresponding rules for selecting the subdivision direction can
also be helpful in connection with the interval Newton Gauss-Seidel step, as we
shall see later.
In Algorithm 1, a multisection is used, so each of these branching rules selects

directions k1 and k2 withD(k1) � D(k2) � D(i) for all i = 1; : : : ; n and i 62 fk1; k2g,
where D(i) is �xed by the given rule. For the current study, we investigate four
rules (we leave out Rule D from [3] and [12]):

Rule A: D(i) := d([y]i)

Rule B: D(i) := d(gi([y])) � d([y]i) (cf. [7])

Rule C: D(i) := d
�
gi([y]) � ([y]i � ci))

�
(cf. [10])

Rule E: D(i) := d
�
([y]i � ci) �

�
Gi(c) +

1

2

nX
j=1

(Hij([y]) � ([y]i � ci))
��

:

Here, G =rF , H =r2F , and c = m([y]).
Similar to Rule C (cf. [10]), the underlying idea of the new Rule E is to minimize

d(F ([y])) = d(F ([y])� f(c))

� d
�
([y]� c)T �

�
rf(c) +

1

2
r

2F ([y]) � ([y]� c)
��

= d

nX
i=1

�
([y]i � ci) �

� @F
@xi

([y]) +
1

2

nX
j=1

@2F ([y])

@xi@xj
� ([y]j � cj)

��
:

The proofs of convergence of the underlying branch-and-bound (subdivision) algo-
rithm with Rules A, B, and C can be found in [12], the proof for Rule E (recently
proposed in [13]) can be found in [2].

4. Interval Newton Gauss-Seidel Step (INGSS)

In Algorithm 1, we apply one step of the extended interval Newton Gauss-Seidel
method (cf. [1]) to the nonlinear system rf(y) = 0 with y 2 [y]. The subbox [y] is
a candidate box for enclosing a minimizer x�, which we have assumed must satisfy
rf(x�) = 0. One step of the extended interval Newton Gauss-Seidel method shall
improve (prune) the enclosure [y] by formally solving the system g = [H] � (c� y),
where c = m([y]), g =rf(c), and [H] =r2F ([y]).
Usually, this method works better if we �rst apply a preconditioning , by using

a special matrix R 2 IRn�n for computing b := R � g and [A] := R � [H]. Then

NEW RESULTS ON GAP-TREATING TECHNIQUES 59

we consider the system b = [A] � (c � y), and we compute the new box N 0

GS([y])
according to

[z] := [y];

[z]i :=
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([z]j � cj)
� .

[A]ii

�
\ [z]i; i = 1; : : : ; n;

N 0

GS([y]) := [z]:

The interval Newton Gauss-Seidel step (abbreviated by INGSS) in this form (as-
suming that 0 62 [A]ii) has the following properties (see [7] or [9] for proofs):

Theorem 3.1 Let f : D � IRn ! IR be a twice continuously di�erentiable function,

and let [x] 2 I IRn be an interval vector with [x] � D. Then N 0

GS([x]) has the

following properties:

1. Every zero x� 2 [x] of rf satis�es x� 2 N 0

GS([x]).

2. If N 0

GS([x]) = ;, then there exists no zero of rf in [x].

3. If N 0

GS([x])
�

� [x], then there exists a unique zero of rf in [x].

In the one-dimensional case with f : IR ! IR and [y] 2 IIR, the interval Newton
Gauss-Seidel step reduces to the interval Newton step

N 0([y]) := N 0

GS([y]) =
�
c�

f 0(c)

F 00([y])

�
\ [y]

Using standard interval arithmetic, the interval Newton step assumes 0 62 F 00([y]).
Like in classical Newton's method, the interval Newton step can be geometrically
interpreted as drawing two lines from the midpoint (c; f 0(c)) and intersecting them
with the x-axis. These lines have the slope g (a lower bound of the slopes of f 0 in [y])
and g (an upper bound of the slopes of f 0 in [y]), respectively, where [g] = F 00([y]).

-

6
f 0

�
�

�
�
�
�
�
�
�
�

��������������������

f 0(x)

x� y � c y
ppp
pppppp

ppp
ppppp
ppppp
pppp
pppp
ppppp
ppp
pppp
ppppp
ppp
pppp
pppp
ppp
pppp
pppp
pp
pppp
pppp
ppp
ppp
pppp
ppp
ppp
pppp
pp
pppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp
pppp
ppp
pp
ppp
ppp
ppp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
ppp
ppp
pp
pppp
ppp
pp
ppp
ppp
pp
pppp
ppp
pp
ppp
pppp
pp
pppp
ppp
pp
pppp
pppp
pp
pppp
pppp
pp
pppp
ppppp
pp
ppppp
pppp
ppp
pppp
ppppp
ppp
ppppp
ppppp
pppp
ppppp

pppppp
pppp
pppppp

pppppp
ppppppp

ppppppp
ppppppp

pppppppp
pppppppp

pppppppp
ppppppppp

pppppppppp
ppppppppp

pppppppppp
pppppppppp

pppppppppppp
ppppppppppp

ppppppppppp
pppppppppppp

ppppppppppp
ppppppppppp

ppppppppppp
ppppppppppp

pppppppppp
pppppppppp

pppppppppp
ppppppppp

ppppppppp
ppppppppp

pppppppp
pppppppp

p

Figure 1. Interval Newton step with 0 62 F 00([y])

60 D. RATZ

The points of intersection with the x-axis, i.e. � and �, form the new interval
[�; �]. Figure 1 demonstrates this interval Newton step resulting in

N 0([y]) = [�; �]\ [y] = [y; �]:

If the intersection is empty, we know that there is no root of f 0 in [y].

5. Box-Splitting and Gap-Treating

Using extended interval arithmetic (see [5] or [7] for details), we are able to treat
the case 0 2 F 00([y]) that occurs, for example, if there are several zeros of f 00 in the
interval [y]. In this case, N 0([y]) is given by one or two intervals resulting from the
interval division.
In Figure 2, we illustrate one extended interval Newton step geometrically. Again

we draw lines through the point (c; f 0(c)). The �rst line with the smallest (negative
lower bound) slope of f 0 in [y] intersects the x-axis in point �. The line with the
largest (positive upper bound) slope intersects the x-axis in point �. Therefore, we
get

N 0([y]) = ([�1; �][[�;1])\ [y] = [y; �] [[�; y];

and we \punched" out a gap in the original interval [y] which is now split.
In the multi-dimensional case, we must apply extended interval arithmetic if

0 2 [A]ii for some i. In this case, a gap can be produced in the corresponding
components [z]i of [z]. Therefore, the interval Gauss-Seidel step may result in
the union of several boxes [V]i 2 I IRn, i = 1; : : : ; p, and we have N 0

GS([y]) =
[V]1 [: : : [[V]p, so [V] 2 I IRp�n. Since it is not necessary to compute the [y]i
in �xed order i = 1; : : : ; n in a practical realization of the interval Newton Gauss-
Seidel method, very often the Hansen/Greenberg realization [6] is used. That is,
we �rst perform the single component steps of the Gauss-Seidel step for all i with
0 62 [A]ii and then for the remaining indices with 0 2 [A]ii by using extended
interval arithmetic.
Nevertheless, if 0 2 [A]ii for several components i, then the extended interval

divisions in the interval Newton Gauss-Seidel method possibly produce several gaps

-

6

f 0

�
�
�
�
��

�� ZZ
Z
Z
Z
ZZ

f 0(x)

xy

� c �

y

pp
ppppppppppppp

ppppppppppp
pp

pppppppppppppppppppppp
ppppppppppppppppp

ppppppppp
pppppppppppp

pppppppppp
ppppppp

ppppppppp
pppppppp

ppppp
pppppppp

ppppppp
ppppp

pppppp
pppppp

pppp
pppppp

pppppp
ppp
pppppp

ppppp
ppp
ppppp

ppppp
ppp
ppppp

pppp
pp
pppp
pppp
pp
pppp
ppp
pp
pppp
ppp
ppp
ppp
pppp
pp
ppp
pppp
pp
pppp
ppp
pp
pppp
ppp
ppp
ppp
pppp
pp
pppp
pppp
pp
pppp
pppp
ppp
pppp
pppp
ppp
pppp
ppppp

ppp
ppppp

ppppp
ppp
pppppp

pppppp
ppppp

ppppppp

Figure 2. Extended interval Newton step with 0 2 F 00([y])

NEW RESULTS ON GAP-TREATING TECHNIQUES 61

in the current box [y]. So we must split the result N 0

GS([y]) into two or more boxes.
In this case, di�erent splitting techniques may be applied resulting in di�erent
values for [V] and p. We give two examples, which are used in the current study:

p � 2 Compute all possible gaps in [y], and �nally use only the largest gap to

split [y]. This technique is known from Hansen/Greenberg [6], and the
Newton step results in at most 2 boxes, thus N 0

GS([x]) = [V]1 [[V]2.

p � n+ 1 Compute every gap, and use it immediately to split [y] in a special way.
For this special splitting technique introduced in [10] the Newton step
results in at most n+ 1 boxes, thus N 0

GS([x]) = [V]1 [: : :[[V]n+1.

In our special technique with p � n + 1, we use each gap to store one part of the
current box [y] by using one part of the component [y]i and to update [y] with the
other part of [y]i, before continuing with the next component step of the interval
Gauss-Seidel method. That is, we perform one component step according to the
scheme:

1. Compute [y]i = [w][[v].

2. If [w] = [v] = ;, then stop fno solution in [y]g.

3. If [v] 6= ;, then set [y]i := [v] and store [y].

4. Set [y]i := [w] and continue with next i.

In some bad cases, we only get
�
bi +

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii = (�1;1) and

no gap occurs, so [y]i := [y]i \ (�1;1) remains unchanged. In these cases, we
introduce \gaps" of width zero by splitting [y]i = [w][[v] with [w] := [y

i
;m([y]i)]

and [v] := [m([y]i); yi], that is we do a bisection.

6. Sorted Interval Newton Gauss-Seidel Step (SINGSS)

We investigate the branching rules applied in the main Algorithm 1 in connection
with the interval Gauss-Seidel step. We use these rules to compute a sorting vec-
tor s = (s1; s2; : : : ; sn) with si 2 f1; : : : ; ng and si 6= sj for i 6= j, which satis�es
D(si) � D(si+1), i = 1; : : : ; n � 1 for the corresponding direction selection rule
D(: : :). Then, we perform the sorted interval Newton Gauss-Seidel step (SINGSS)
according to

[z] := [y]

[z]si :=
�
csi �

�
bsi +

nX
j=1

j 6=si

[A]sij � ([z]j � cj)
� .

[A]sisi

�
\ [z]si; i = 1; : : : ; n

N 0

SGS([y]) := [z]

62 D. RATZ

incorporating the Hansen/Greenberg realization and di�erent splitting techniques.
Note that N 0

SGS([y]) is the union of several boxes in the general case. This SINGSS
aims at splitting the box [y] in those components �rst, which would be chosen for
multisection by the speci�ed branching rule.
We now give an algorithmic description of the SINGSS.

ALGORITHM 2. SIntervalNewtonGaussSeidelStep (F; [y]; [H]; [V]; p)

1. Compute preconditioner R and sorting vector s;

2. c := m([y]); [A] := R � [H]; b := R �rf(c); p := 0;

3. for l := 1 to n do fComponent steps for 0 62 [A]iig

(A) i := sl; if (0 2 [A]ii) then nextl;

(B) [y]i :=
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii

�
\ [y]i;

(C) if [y]i = ; then return ;

4. for l := 1 to n do fComponent steps for 0 2 [A]iig

(A) i := sl; if (0 62 [A]ii) then nextl;

(B) [w][[v] :=
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii

�
\ [y]i;

(C) if ([w] = [v] = ;) then return ;

(D) if ([v] 6= ;) then fStore part of [y] in [V]pg

[y]i := [v]; p := p+ 1; [V]p := [y];

(E) [y]i := [w];

5. p := p+ 1; [V]p := [y];

6. return [V]; p; fResult: N 0

SGS([y]) =
S
p

j=1[V]jg

The following theorem summarizes the properties of our sorted interval Newton
Gauss-Seidel step with special splitting.

Theorem 4.1 Let f : D � IRn ! IR be a twice continuously di�erentiable function,

and let [x] 2 IIRn be an interval vector with [x] � D. Then N 0

SGS([x]) computed

by Algorithm 2 (including sorting and special splitting technique) has the following

properties:

1. Every zero x� 2 [x] of rf satis�es x� 2 N 0

SGS([x]).

2. If N 0

SGS([x]) = ;, then there exists no zero of rf in [x].

3. If N 0

SGS([x])
�

� [x], then there exists a unique zero of rf in [x].

NEW RESULTS ON GAP-TREATING TECHNIQUES 63

Proof:

1. Let �i([y]) =
�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([y]j � cj)
� .

[A]ii

�
\ [y]i be the new value

for [y]i computed in one component step of the SINGSS applied to [y] 2 IIRn

for i 2 f1; : : : ; ng, and let [y](0) be the updated value of [y] after the complete
Step 3 of Algorithm 2. Moreover, let S = fsl1 ; sl2 ; : : : slmg with m � n be
the set of those components of the sorting vector s for which extended interval
division must be applied when computing �i, that is, 0 2 [Aii] for all i 2 S and
�i([y]) = [w][[v] with [w]; [v] 2 IIR. For simplicity of the proof, we use [v] = ;

if in fact no splitting occurs in �i([y]), although denoting this a splitting.

According to Algorithm 2, the result of the k-th extended component step of
the SINGSS (i.e. Step 4) is given by

N 0
(k)

SGS([y]
(k�1) := [V]k [[y](k);

where

[V]ki [[y]
(k)

i
= �i([y]

(k�1)) and i = slk ;

and where [y](k) is the current value of [y] after the k-th update in Step 4(E) of
Algorithm 2, i.e. after k splittings. Then

[z](k) = [V]1 [[V]2 [: : :[[V]k [[y](k)

is the current enclosure of the true solution set after k splittings, and with
[V]m+1 = [y](m) according to Step 5 of our algorithm we have

[z](m) =

m+1[
j=1

[V]j = N 0

SGS([x]):

Now let x� 2 [x] be a zero of rf .

a) x� 2 [y](0) = [z](0) according to Theorem 3.1.

b) Given an arbitrary k 2 f0; : : : ;m� 1g, we have two cases for x� 2 [z](k):

i) x� 2 [V]1 [: : :[[V]k: In this case, it follows immediately that

x� 2 [V]1 [: : :[[V]k [[V]k+1 � [z](k+1):

ii) x� 2 [y](k): In this case, with i = slk+1 there exists an A� 2 [A] with
A�(c� x�) = b.

64 D. RATZ

For A�

ii
6= 0 we get

x�
i
= ci �

�
bi +

nX
j=1

j 6=i

A�

ij
� (x�

j
� cj)

� .
A�

ii

2 ci �
�
bi +

nX
j=1

j 6=i

[A]ij � ([y]
(k)

j
� cj)

� .
[A]ii;

and, since x�
i
2 [y]

(k)

i
,

x�
i
2

�
ci �

�
bi +

nX
j=1

j 6=i

[A]ij � ([y]
(k)

j
� cj)

� .
[A]ii

�
\ [y]

(k)

i

= �i([y]
(k))

= [V]k+1;i [[y]
(k+1)

i
;

and thus x� 2 [V]k+1 [[y](k+1) = N 0
(k+1)

SGS ([y](k).

For A�

ii
= 0, a necessary consequence is that

0 = bi +

nX
j=1

j 6=i

A�

ij
� (x�

j
� cj)

2 bi +

nX
j=1

j 6=i

[A]ij � ([y]
(k)

j
� cj);

and the de�nition of extended interval division implies that

ci �
�
bi +

nX
j=1

j 6=i

[A]ij � ([y]
(k)

j
� cj)

� .
[A]ii = (�1;1)

and thus

x�
i
2 [y](k) = (�1;1)\ [y](k) = �i([y]

(k)) = [V]k+1;i [[y]
(k+1)

i
:

Again we have x� 2 [V]k+1 [[y](k+1) = N 0
(k+1)

SGS ([y](k).

So, with x� 2 [z](k), we have that x� 2 [z](k+1) for k = 0; : : : ;m � 1.

Combining a) and b), x� 2 [x] implies that x� 2 [z](m) = N 0

SGS([x]).

2. Assuming x� 2 [x], N 0

SGS([x]) = ; contradicts Proposition 1 of the theorem.

3. According to the de�nition of extended interval operations (c.f. [5] or [7] for
details), we know that @([y]i)\�i([y]) 6= ;. That is, whenever extended interval

division is applied N 0

SGS([x]) \ @([x]) 6= ;. Since N 0

SGS([x])
�

� [x], we know
that no extended interval operation occurred in the SINGSS, and therefore
Proposition 3 of Theorem 3.1 completes the proof.

NEW RESULTS ON GAP-TREATING TECHNIQUES 65

7. Numerical Experiences

For our tests, we used the group of test functions given in [12]. We carried out the
numerical tests on an HP 9000/730 equipped with PASCAL{XSC [8] using the basic
toolbox modules for automatic di�erentiation and extended interval arithmetic [5].
Our test suite compared the methods with branching rules A, B, C, and E combined
with the usual splitting technique (p � 2) and with the special splitting technique
(p � n + 1, \0-width-gaps").
In the following, we list the complete results for 10 test problems. Important

columns of the corresponding tables are the runtime (in STUs), the storage space
or maximum list length (LL) and the Ee�1 and Ee�2 values. The latter combine
the three values for the number of function (FE), gradient (GE), and Hessian (HE)
evaluation to single values approximating the total evaluation e�ort in terms of
objective function evaluations by

Ee�1 = FE+ n �GE+
n � (n+ 1)

2
�HE

and

Ee�2 = FE+ minf4; ng �GE+ n �HE

(with respect to forward (Ee�1) and backward (Ee�2) mode of automatic di�eren-
tiation, see [4] for details).

Results for problem Shekel10 (n = 4)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 2.09 132 106 42 976 724 17

2 B 2.12 133 108 43 995 737 17

C 1.68 112 86 32 776 584 15

E 1.68 112 86 32 776 584 15

A 1.45 144 62 22 612 480 33

n+1 B 1.71 169 70 26 709 553 39

C 1.31 129 56 19 543 429 31

E 1.33 129 56 19 543 429 31

Results for problem Hartman3 (n = 3)

p � Rule STUs FE GE HE E e�1 E e�2 LL

A 3.25 266 152 51 1028 875 18

2 B 1.96 145 99 33 640 541 12

C 1.73 131 85 29 560 473 10

E 1.78 131 88 30 575 485 10

A 3.46 300 163 45 1059 924 26

n+1 B 2.32 200 109 30 707 617 24

C 1.78 154 79 24 535 463 24

E 1.80 154 79 24 535 463 24

66 D. RATZ

Results for problem Hartman6 (n = 6)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 40.11 1762 959 366 15202 7794 115

2 B 26.61 1141 668 239 10168 5247 78

C 22.32 963 574 195 8502 4429 62

E 24.14 1014 611 212 9132 4730 70

A 37.94 2357 697 205 10844 6375 360

n+1 B 24.93 1542 510 143 7605 4440 143

C 24.25 1496 491 129 7151 4234 235

E 21.90 1377 439 118 6489 3841 139

Results for problem Rosenbrock (n = 2)

p � Rule STUs FE GE HE E e�1 E e�2 LL

A 0.22 217 143 71 716 645 15

2 B 0.16 144 106 52 512 460 12

C 0.16 144 106 52 512 460 12

E 0.17 144 106 52 512 460 12

A 0.12 133 69 33 370 337 17

n+1 B 0.10 106 53 25 287 262 11

C 0.10 106 53 25 287 262 11

E 0.10 106 53 25 287 262 11

Results for problem Levy8 (n = 3)

p � Rule STUs FE GE HE E e�1 E e�2 LL

A 1.49 76 59 21 379 316 11

2 B 1.47 76 58 21 376 313 11

C 1.47 76 58 21 376 313 11

E 1.48 76 58 21 376 313 11

A 1.17 77 41 13 278 239 18

n+1 B 0.98 68 32 12 236 200 21

C 0.98 68 32 12 236 200 21

E 0.98 68 32 12 236 200 21

Results for problem Levy12 (n = 10)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 24.71 246 205 76 6476 1826 43

2 B 23.90 239 200 74 6309 1779 39

C 23.90 239 200 74 6309 1779 39

E 23.90 239 200 74 6309 1779 40

A 19.19 401 106 36 3441 1185 238

n+1 B 17.39 376 97 33 3161 1094 231

C 18.19 391 101 34 3271 1135 231

E 16.76 367 89 32 3017 1043 228

NEW RESULTS ON GAP-TREATING TECHNIQUES 67

Results for problem Schwefel3.2 (n = 3)

p � Rule STUs FE GE HE E e�1 E e�2 LL

A 0.33 171 109 45 768 633 9

2 B 0.25 110 84 36 578 470 9

C 0.26 110 86 36 584 476 9

E 0.26 110 84 36 578 470 9

A 0.22 122 70 29 506 419 13

n+1 B 0.17 78 54 23 378 309 13

C 0.17 82 52 22 370 304 12

E 0.18 78 54 23 378 309 12

Results for problem Griewank5 (n = 5)

p � Rule STUs FE GE HE E e�1 E e�2 LL

A 7.04 220 181 80 2325 1344 34

2 B 6.82 218 176 78 2268 1312 34

C 6.84 218 177 78 2273 1316 34

E 7.01 219 179 79 2299 1330 34

A 5.12 305 100 41 1420 910 86

n+1 B 5.05 301 100 41 1416 906 86

C 4.84 295 95 40 1370 875 86

E 4.96 294 95 40 1369 874 87

Results for problem Griewank7 (n = 7)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 15.57 304 255 114 5281 2122 60

2 B 15.12 301 249 111 5152 2074 61

C 15.23 302 251 112 5195 2090 61

E 15.36 301 249 111 5152 2074 61

A 11.04 483 125 52 2814 1347 216

n+1 B 11.24 493 129 54 2908 1387 212

C 10.96 477 125 52 2808 1341 211

E 10.94 472 123 51 2761 1321 202

Results for problem Ratz4 (n = 2)

p � Rule STUs FE GE HE Ee�1 Ee�2 LL

A 6.83 850 540 242 2656 2414 68

2 B 6.81 838 544 230 2616 2386 60

C 6.37 802 508 214 2460 2246 56

E 6.31 802 496 210 2424 2214 56

A 6.97 1031 449 176 2457 2281 102

n+1 B 5.13 733 358 140 1869 1729 68

C 5.12 726 359 142 1870 1728 73

E 5.15 726 359 142 1870 1728 73

68 D. RATZ

As an example, we take the last problem (Ratz4) to demonstrate the behavior of
the splitting an the inuence of the rules. This problem considers the function

f(x) = sin(x21 + 2x22) exp(�x
2
1 � x22)

in the starting region [x]i = [�3; 3], i = 1; : : : ; 2. The following pictures are snap-
shots of the boxes in the working list L after 125 iterations of the main algorithm.
The �rst four pictures in Figure 3 correspond to the method with the usual splitting
technique and the di�erent sorting rules, the pictures in Figure 4 correspond to the
method with the special splitting technique.

Rule A, Usual Splitting Rule B, Usual Splitting

-3

0

3

-3 0 3
-3

0

3

-3 0 3

Rule C, Usual Splitting Rule E, Usual Splitting

-3

0

3

-3 0 3
-3

0

3

-3 0 3

Figure 3. Boxes in the working list after 125 iterations with usual splitting

NEW RESULTS ON GAP-TREATING TECHNIQUES 69

Rule A, Special Splitting Rule B, Special Splitting

-3

0

3

-3 0 3
-3

0

3

-3 0 3

Rule C, Special Splitting Rule E, Special Splitting

-3

0

3

-3 0 3
-3

0

3

-3 0 3

Figure 4. Boxes in the working list after 125 iterations with special splitting

Finally, we give an overview on the results for the complete test set by listing the
necessary resources (execution time, evaluation e�orts, and maximum list length)
for the di�erent variants of our method (Table 1). The values given are relative
values (in percent) with respect to the method with Rule A and usual splitting
(which is used as reference value corresponding to 100%). The table gives the best
values the worst values, and the average values (for all test problems) achieved in
the whole test set.

70 D. RATZ

Table 1. Results for the complete test set (relative values)

p � Rule Values STUs Ee�1 Ee�2 LL

best 60.3% 62.3% 61.8% 66.7%
B average 95.0% 94.8% 94.8% 102.4%

worst 131.3% 129.9% 129.4% 178.3%

best 53.2% 54.5% 54.1% 53.9%
2 C average 93.9% 95.0% 95.0% 98.5%

worst 137.1% 136.1% 136.8% 169.6%

best 54.8% 55.9% 55.4% 55.6%
E average 95.3% 95.1% 95.1% 99.1%

worst 141.7% 134.9% 134.5% 157.9%

best 54.5% 51.7% 52.2% 100.0%
A average 82.0% 75.0% 78.6% 221.2%

worst 113.6% 111.2% 111.5% 553.5%

best 45.5% 40.1% 40.6% 66.7%
B average 76.5% 69.6% 72.9% 206.4%

n+1 worst 108.3% 104.7% 105.3% 537.2%

best 45.5% 40.1% 40.6% 66.7%
C average 73.1% 67.5% 70.7% 207.4%

worst 101.5% 104.0% 104.7% 537.2%

best 45.5% 40.1% 40.6% 71.4%
E average 75.8% 67.8% 71.1% 202.7%

worst 100.0% 100.0% 100.0% 530.2%

8. Conclusion

Studying the numerical results for the four branching rules combined with di�erent
splitting techniques, we recognize that there are test problems for which Rule B,
Rule C, and Rule E are much more e�cient than Rule A. On the other hand, there
are also some problems where the new rules are worse. On average, the branching
rules alone lead to an improvement of about 10%.

The special splitting technique improves the performance of the global optimiza-
tion method signi�cantly, by drastically decreasing the evaluation e�ort. The price
to pay for this improvement is an increasing storage space. Further improvement is
due to the branching rules B, C, and E, used as sorting rules in the interval Newton
Gauss-Seidel step. This holds for the best cases, the average, and for the worst
cases.

NEW RESULTS ON GAP-TREATING TECHNIQUES 71

Summarizing the consequences of the numerical tests, we can conclude that for
Rules B, C, and E combined with the special splitting technique we can expect an
average improvement of about 25% in the e�ciency of the method, keeping in mind
that on average there is approximately a doubling in the necessary storage space.

References

1. Alefeld, G., Herzberger, J. (1983), Introduction to Interval Computations. Academic Press,
New York.

2. Berner, S. (1996), New Results on Veri�ed Global Optimization. Submitted for publication
in Computing, Springer-Verlag, Wien.

3. Csendes, T., Ratz, D. (1995), Subdivision Direction Selection in Interval Methods for Global

Optimization. SIAM Journal of Numerical Analysis, accepted for publication.

4. Fischer, H.-C. (1990), Schnelle automatische Di�erentiation, Einschlie�ungsmethoden und

Anwendungen . Dissertation, Universit�at Karlsruhe.

5. Hammer, R., Hocks, M., Kulisch, U., Ratz, D. (1993), Numerical Toolbox for Veri�ed Com-

puting I { Basic Numerical Problems. Springer-Verlag, Heidelberg, New York.

6. Hansen, E., Greenberg, R. (1983), An Interval Newton Method. Applied Mathematics and

Computations 12, 89{98.

7. Hansen, E. (1992), Global Optimization Using Interval Analysis. Marcel Dekker, New York.

8. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch. (1992), PASCAL{XSC { Language

Reference with Examples . Springer-Verlag, New York.

9. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University
Press, Cambridge.

10. Ratz, D. (1992), Automatische Ergebnisveri�kation bei globalen Optimierungsproblemen .
Dissertation, Karlsruhe.

11. Ratz, D. (1994), Box-Splitting Strategies for the Interval Gauss-Seidel Step in a Global

Optimization Method. Computing 53, 337{353, Springer-Verlag, Wien.

12. Ratz, D., Csendes, T. (1995) On the Selection of Subdivision Directions in Interval Branch-

and-Bound Methods for Global Optimization. Journal of Global Optimization, 7, 183{207.

13. Ratz, D. (1996), On Branching Rules in Second-Order Branch-and-Bound Methods for

Global Optimization. In: Alefeld, G., Frommer, A. und Lang, Bruno. (Eds.), Scienti�c Com-
puting and Validated Numerics, 221{227, Akademie-Verlag, Berlin.

