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We present an informal overview of approaches to di�erential equations

popular in computer algebra. We also give a brief outlook on a MuPAD

environment for di�erential equations currently under construction.

Introduction

Di�erential equations represent one of the largest �elds within mathematics. Besides being an interesting

subject of their own right one can hardly overestimate their importance for applications. They appear

in natural and engineering sciences and increasingly often in economics and social sciences. Whenever a

continuous process is modeled mathematically, chances are high that di�erential equations are used.

Thus it is not surprising that di�erential equations also play an important role in computer algebra and

most general purpose computer algebra systems provide some kind of solve command. Many casual

users believe that designing and improving such procedures is a central problem in computer algebra.

But the real situation is somewhat di�erent. Many computer algebra applications to di�erential equations

work indirectly; they help to study and understand properties of the solution space.

The purpose of this article is to sketch in an informal way some of the main research directions in this

�eld. This will be done without any mathematical details. For readers who want to know more many

references are given. We have chosen them mainly so that they can serve as a good starting point for

deeper study; thus often introductory articles or books have been chosen and not the historically �rst or

the most \ground breaking" work.

As a further source of references one should also mention the excellent survey [78] by Singer. It gives

much more details, especially on the more algebraic approaches, and contains a large bibliography. The

same holds for the more specialized surveys of Hereman [37, 38] covering symmetry theory and related

�elds and the one of MacCallum [50] on the integration of ordinary di�erential equations.

Almost any constructive method for di�erential equations has meanwhile been implemented in some

computer algebra system. One can, however, distinguish certain approaches which have found most

attention (at least measured in the number of articles devoted to them). We will discuss later the

following �ve �elds: (i) symmetry analysis, (ii) singularity analysis, (iii) completion, (iv) di�erential ideal

theory, and (v) di�erential Galois theory.

A comparison of the impact made by symmetry analysis and by di�erential Galois theory, respectively,

demonstrates the importance of computer algebra tools. The latter one is a hardly known theory studied

by a few pure mathematicians. The former one remained in the same state for many decades following

Lie's original work. One reason was de�nitely the tedious determination of the symmetry algebra. As

soon as computer algebra systems emerged, the �rst packages to set up at least the determining equations

were developed. Since then Lie methods belong to the standard tools for treating di�erential equations

and are used by many applied mathematicians and by physicists.
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Solving Di�erential Equations

The solve commands provided by most computer algebra systems for di�erential equations mainly

apply some standard techniques like those listed in Zwillinger's handbook [94] or they may even try

some \pattern matching" in a collection of solved equations like Kamke [44]. Thus they can treat only

certain classes of di�erential equations, but heuristics often extend their applicability. A typical task for

heuristics is to �nd a transformation of the given di�erential equation such that it can be handled by the

implemented methods.

Although this approach solves more di�erential equations than one might expect (see e. g. the recent

review by Postel and Zimmermann [63]), it has some drawbacks. A major one is that no information

is obtained, if the solve command does not return a solution. It could be that the given di�erential

equation has indeed no solution (or at last none in closed form) or that simply the heuristics were not

able to determine a suitable transformation.

For that reason researchers in computer algebra are more interested in decision algorithms. These either

yield a solution in a speci�c class of functions or decide that no such solution exists. However, so far only

for linear ordinary di�erential equations such algorithms are known. There it is possible to decide with

the help of di�erential Galois theory whether or not Liouvillian solutions exist (see below).

There exists a number of reasons for this perhaps disappointing situation. First of all, computability

theory yields principal limits to what can be solved [19], i. e. there exist di�erential equations where one

can prove that it is not possible to construct algorithmically the solution. Then, ideally the algorithm

should return the general solution. But for nonlinear equations it is surprisingly di�cult even just to

de�ne this term. A resolution of this problem based on di�erential ideal theory (see below) was only

recently presented [41].

Intuitively one would expect that the general solution depends on some arbitrary parameters (constants

or functions) and every solution of the di�erential equation can be obtained by a suitable specialization

of these. This works �ne for linear equations where the solution space has the structure of a vector space.

But many nonlinear equations possess in addition singular integrals not contained in the general solution.

They are either envelopes or asymptotics of elements in the general solution.

Similarly, de�ning the term closed form solution is notoriously di�cult. Is a solution in terms of, say,

Bessel functions in closed form or not? Up to now no generally accepted de�nition has emerged. Loosely

spoken the basic idea behind \closed form" is that of �nite constructibility out of a set of \elementary

functions". One large class that comprises most of the expressions one would usually consider as closed

form is the class of Liouvillian functions which will be discussed below.

On the practical side one must see that even if a solution in closed form can be computed it may take very

long and the result may be completely useless, as it is too large. Especially, if the main goal is to obtain an

impression of the behavior of the solution, it is usually much more e�cient to resort to numerical methods.

For that reason many computer algebra systems provide at least for ordinary di�erential equations some

standard numerical integrators like Runge-Kutta methods etc.

In any case one can state that a notable solution theory exists only for ordinary di�erential equations

(see e. g. the survey [50]). As we will see later in the section on di�erential Galois theory, algorithms to

compute the general solution su�er from a very high complexity and are in practice often rather useless,

especially for higher order equations. One way out is to incorporate heuristics as mentioned above.

Another possibility that also addresses the problem of useless output is to aim from the very beginning

only for \simple" solutions [5, 9]. Popular variants are polynomial, rational or exponential solutions.

Because of their simple structure it is often possible to determine such solutions, if they exist, rather

e�ciently. Obviously, this yields only in special cases the general solution.
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For partial di�erential equations we are still far away from any general solution theory. If a computer

algebra system claims that it can solve partial di�erential equations, this is usually in some sense a \cheat".

Almost always it means nothing else than that the system knows a bit of the theory of characteristics

which reduces quasi-linear �rst order equations to systems of ordinary di�erential equations. As the latter

ones are in general non-linear it is still a formidable task to solve them, but for some classical partial

di�erential equations like the wave equation it is fairly simple.

At the end of the last century mathematicians designed some solution methods for partial di�erential

equations [88]. However, most of them are meanwhile almost forgotten; at least they are no longer found

in textbooks on di�erential equations. It could be quite interesting to revive some of them for use in

computer algebra systems.

Symmetry Analysis

Symmetry analysis has made the strongest impact on computer algebra applications to di�erential equa-

tions. The most general de�nition of a symmetry is that of a transformation that maps solutions into

solutions. Depending on the kind of transformations considered one obtains di�erent kinds of symme-

tries. One possible application of symmetries is the construction of (special) solutions. Other goals are

classi�cations, a proof of complete integrability, separation ans�atze, conservation laws and much more.

Meanwhile several excellent textbooks on this subject are available, e. g. [7, 56, 83].

Symmetry analysis goes back to the seminal work of Lie. He developed the concept of Lie groups in his

quest for a Galois theory for di�erential equations. As we will see later, not much has remained of this

original motivation. Symmetry and Galois theory have developed in very di�erent directions. Even the

relation between the Lie symmetry and the Galois group of a di�erential equation is rather unclear.

The most popular variant of symmetry analysis deals with Lie point symmetries. They are generated by

vector �elds acting on the space of independent and dependent variables. These vector �elds span the

Lie algebra of the Lie group of symmetries. The decisive observation of Lie was that for most purposes it

su�ces to work with the vector �elds (or in�nitesimal symmetries) instead of the symmetries themselves.

This leads e�ectively to a linearization of the problem.

The symmetry generators arise as the solutions of a linear system of partial di�erential equations, the

determining system. For ordinary di�erential equations it is unfortunately often as di�cult to solve this

system as to solve the original one. This holds especially for �rst order equations where the original equa-

tion is just the characteristic equation of the determining equation. For partial di�erential equations the

determining system is typically very over-determined and contains often some trivial equations allowing

in many cases a rather straightforward solution.

For ordinary di�erential equations the existence of a su�ciently large, solvable symmetry algebra implies

that its general solution can be constructed by quadratures only, as each symmetry allows us to reduce

the order of the equation by one. In the case of partial di�erential equations symmetry reductions yield

only special solutions, namely those being invariant under the symmetry group. Here each symmetry

allows us to reduce the number of independent variables by one.

However, at intermediate steps of the reduction again linear partial di�erential equations must be solved.

For in order to obtain the reduction, one must either perform a coordinate transformation such that

the symmetry generator is recti�ed (so-called canonical coordinates) or the di�erential invariants of the

symmetry must be determined. These are functions annihilated by the generator.

Thus the usefulness of Lie symmetries depends crucially on the ability to solve e�ectively all the arising

linear partial di�erential equations. At �rst sight it might look, as if, especially for ordinary di�erential
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equations, we made the problem only worse. But in many cases of practical interest it turns out that is

much simpler to solve these linear partial di�erential equations instead of the original equation.

There exist so many implementations of symmetry methods that it is rather di�cult to keep an overview;

we refer again to the surveys by Hereman [37, 38]. In almost any computer algebra system one can �nd

a package for setting up the determining system. A few of the packages (e. g. [36, 72]) try furthermore

some heuristics to solve it automatically. Again it is rather surprising how often this su�ces to obtain

the complete symmetry algebra. The symmetry package of Maple [13] is somewhat unusual, as it uses

the exterior systems approach of Harrison and Estabrook [33].

Although Lie point symmetries proved to be very useful in many applications, many di�erential equations

of practical interest have no such symmetries. There are two basic methods to generalize the approach.

One can consider more general transformations; this leads to generalized or Lie-B�acklund symmetries [2].

Alternatively, one weakens the requirement that every solution is mapped into a solution; this yields

the so-called non-classical methods. In both cases the explicit construction of the symmetries becomes

considerably more di�cult.

Generalized symmetries are especially of interest for completely integrable systems [25, 91]. The exis-

tence of a recursion operator or a master symmetry generating an in�nite hierarchy of symmetries is a

strong indication that the considered system is completely integrable. Reduction with respect to gen-

eralized symmetries is an important tool for the construction of soliton solutions. It is also possible to

classify nonlinear partial di�erential equations using these symmetries [54]. Some MuPAD packages for

symmetries of integrable systems are described in [26].

Non-classical reductions can be understood best within the general scheme of augmenting a given di�er-

ential equation with di�erential constraints [57]. This corresponds to requiring that only some solutions

are mapped into solutions, therefore one hopes to �nd more symmetries (these are sometimes called weak

symmetries). In this approach the emphasis lies less on group theory but on the theory of over-determined

systems of partial di�erential equations and thus on questions of completion (see below and [76]).

The �rst non-classical method was developed by Bluman and Cole [6]. They added the invariant surface

condition as constraint. Although this leads for many di�erential equations to new reductions, the draw-

back is that the determining system becomes nonlinear. The direct method of Clarkson and Kruskal [15]

tries to reduce a given partial di�erential equation to a system of ordinary di�erential equations by

constructing a good ansatz; it corresponds to a special case of the method of Bluman and Cole.

The main problem in the method of di�erential constraints is to �nd compatible constraints leading

to non-trivial reductions. Besides using the invariant surface condition no systematic way has been

discovered so far and thus it remains essentially a game of \try and error". For this reason di�erential

constraints have not yet found much attention in applications.

Singularity Analysis

This �eld splits into several directions depending on what kind of singularities one is interested in. One

important direction is the Painlev�e theory [42]. It is based on complex analysis and was introduced by

Painlev�e while searching for new special functions. There still exists a strong connection between the

Painlev�e theory of ordinary di�erential equations and special function theory.

Painlev�e tried to classify all second order ordinary di�erential equations where the solutions have at most

poles as movable singularities. Movable means here that the location of the singularity depends on the

initial data. A generalization of this idea to partial di�erential equations was later given by Weiss et

al. [90]. Here a whole singularity manifold must be considered.
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If all singularities are poles, no branch points appear in the (general) solution and it is single valued.

A di�erential equation without movable branch points is said to possess the Painlev�e property or to be

integrable in the sense of Painlev�e. In general, it is not possible to check algorithmically whether or not

a given di�erential equation has the Painlev�e property. But there exist methods to check at least some

necessary conditions; such methods are usually call Painlev�e test [16].

In these methods one usually tries to construct a Laurent series around the singularity. Essentially, the

test is passed, if this expansion has su�ciently many resonances or Fuchsian indices (free coe�cients)

to represent the general solution and if these are non-negative. In the case of negative resonances a

peturbation approach [17] yields further information. The tests are only conclusive, if they fail, as the

checked conditions are not su�cient for the Painlev�e property.

The Painlev�e approach is very popular in the theory of completely integrable systems, as the Painlev�e test

represents an important indicator for complete integrability and can be checked comparatively easily. The

Painlev�e conjecture states that every ordinary di�erential equation obtained as a symmetry reduction

of a completely integrable system is of Painlev�e type. So far only weakened versions of it have been

proved [1, 53]. Truncated Painlev�e expansions are useful for the construction of B�acklund transformations,

Lax pairs and much more [89]. There exist also relations to non-classical symmetry reductions [23].

A very general Reduce implementation of various forms of the Painlev�e test for ordinary di�erential

equations was recently presented by Scheen [70] (together with a brief review of other implementations).

AMacsyma implementation for partial di�erential equations is due to Hereman and Van den Bulck [39].

Another form of singularity analysis deals with linear di�erential operators with polynomial coe�cients.

Here one is interested in �xed singularities of the solutions. They can be located only at the zeros of

the leading coe�cient of the operator. Using the Newton polygon of the operator they are classi�ed into

regular and irregular ones. A brief introduction into the theory can be found in [18] (see also [20]).

The goal of the theory is to construct formal power series solutions in the neighborhood of a singularity.

Depending on the character of the singularity di�erent ans�atze must be used. In the case of an irregular

singularity the most di�cult part is to determine the exponential part of the solution and its rami�cation

index. All this can be done by analyzing the Newton polygon.

There exist various algorithms for the construction of the series, partly dating back to Frobenius. Some

of them have been implemented in the Maple package Desir [59]. A main problem in the concrete

application is that one cannot use an approximation of the location of the singularities. Thus one must

not only solve polynomial equations but in general work with algebraic numbers which is quite expensive

in any computer algebra system.

Recent work concerns an extension of the theory to �rst order systems [4]. In principle, one can transform

any system into a single equation of higher order; traditionally this is done using cyclic vectors. However,

this approach is rather ine�cient, as many arti�cial singularities may appear. Therefore one is interested

in dealing directly with the system. Moser's algorithm classi�es the singularities into regular and irregular

ones. There exists a rational version of it avoiding the use of algebraic extensions [3].

Completion

Most textbooks on di�erential equations treat only normal systems (or systems in Cauchy-Kowalevsky

form). For ordinary di�erential equations this implies that one always assumes that the equations can be

solved for the highest order derivatives. For partial di�erential equations one must furthermore assume

the existence of a distinguished independent variable such that one can solve for its derivatives to obtain

the Cauchy-Kowalevsky form. However, in many �elds one encounters systems of di�erential equations
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which are not normal. A simple example are the determining systems appearing in symmetry analysis

(see above) which are usually over-determined. Non-normal systems also occur naturally in di�erential

geometry and in theoretical physics (gauge theories).

For a non-normal system it is a priori not clear whether it has any solutions. It may happen that the

system is inconsistent. This can only be decided after the construction of all integrability conditions. These

are di�erential equations satis�ed by any solution of the system but which are nevertheless algebraically

independent of it. While it makes no problem to construct an integrability condition (typically this

requires only taking cross-derivatives), it is not so easy to decide when all have been found, as in principle

an in�nite number of conditions must be checked.

The process of �nding all integrability conditions is called completion of the di�erential equation. It

results in a formally integrable system, as for a system containing all its integrability conditions it is

straightforward to construct order by order a formal power series solution. Under some assumptions it is

sometimes possible to show the convergence of the series. This leads for analytic equations to existence

and uniqueness theorems like the Cartan-K�ahler theorem (the well-known Cauchy-Kowalevsky theorem

is a special case of it). For non-analytic equations solvability is a much more complicated question due

to Lewy type e�ects [48].

The �rst systematic approach to the problem of completion was probably provided by the Janet-Riquier

theory [43] with the introduction of passive systems. Their de�nition is based on a ranking of the

derivatives which decides in what order the integrability conditions are constructed. Implementations

have been undertaken by several authors, see e. g. [65, 84]. The so-called di�erential Gr�obner bases of

Mans�eld (see below) may be considered as an extension of this approach.

In geometric theories the notion of a passive system is replaced by involution. It combines a geometric

de�nition of formal integrability with an algebraic criterion for the termination of the completion. As

an intrinsic concept involution requires no coordinate dependent ingredients like a ranking. Hartley and

Tucker [35, 34] implemented in Reduce the Cartan-K�ahler theory [10] for exterior systems. An Axiom

implementation of a completion algorithm in the jet bundle formalism based on the formal theory of

Pommaret [61] was presented in [71, 74].

Such completion algorithms can be very useful in the symmetry analysis of di�erential equations (see

above). Once a system is either passive or involutive, one can make statements about the size of the

solution space [65, 73]. Thus it is possible to compute the size of the symmetry group without explicitly

solving the determining system or to determine the loss of generality in a symmetry reduction [75].

Recently it was shown that it is even possible to algorithmically determine the structure of the symmetry

algebra without solving the determining system [49, 66].

There is a close relationship between the concepts discussed here and Gr�obner bases in commutative

algebra. This holds especially for the Janet-Riquier theory where rankings play a similar role as for the

de�nition of a Gr�obner basis. Therefore one sometimes �nd the term di�erential Gr�obner basis for an

involutive or passive system. Integrability conditions arising from cross-derivatives may be considered as

\di�erential S-polynomials".

These analogies acquire a precise meaning only in the context of di�erential algebra (discussed in the

next section). One should, however, mention that there is a one-to-one correspondence between linear

systems of partial di�erential equations in one dependent variable and polynomial ideals. This has lead

in commutative algebra to the new concept of an involutive basis of an ideal [31]. These bases are

computed using algorithms coming from the completion theory of di�erential equations, but they are

ordinary (though not reduced) Gr�obner bases. It has been shown that in some cases these algorithms are

considerably faster than the classical Buchberger algorithm.
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Di�erential Ideal Theory

Like the di�erential Galois theory discussed in the next section, di�erential ideal theory belongs to the

�eld of di�erential algebra. It can be informally described as an attempt \to write di�erential in front

of everything in algebra". Thus it deals with di�erential rings, di�erential �elds etc. Of course, this

requires an algebraic de�nition of di�erentiation. In di�erential algebra any mapping that is linear with

respect to addition and satis�es the Leibniz or product rule is called a derivation. A di�erential ring is

a commutative ring together with one (or more) derivation.

Di�erential polynomials arise by adjunction of di�erential indeterminates to a di�erential ring. But the

ring of di�erential polynomials is not Noetherian. Adjoining a di�erential indeterminate corresponds to

adjoining in�nitely many algebraic indeterminates, as one must introduce all its derivatives as additional,

algebraically independent variables. Thus Hilbert's Basis Theorem does not apply.

A di�erential ideal is an ideal which is in addition closed under the derivation of the di�erential ring.

Many of the basic ideas in di�erential ideal theory can be traced back to Ritt [67]; the most advanced

book is still the one by Kolchin [46]. Like in the purely algebraic theory Gr�obner bases or characteristic

sets are the most important tools. As the ring of di�erential polynomials is not Noetherian, algorithms

along the lines of the Buchberger algorithm do not terminate in general [14]. This is related to the fact

that the ideal membership problem is undecidable for arbitrary di�erential ideals [28]. However, this

result is more of theoretical interest, as for �nitely generated ideals (and that is what one encounters in

applications) the decidability is still an open question.

There exist basically two strategies to circumvent this principal problem. One can either restrict the

class of ideals the algorithm is supposed to handle or one weakens the properties expected of a di�erential

Gr�obner basis. Many of the completion algorithms based on Janet-Riquier theory (see above) can be

considered as simple examples for the �rst strategy. An example for the second one is given by the

di�erential Gr�obner bases of Mans�eld [52]. They use only pseudo-reductions and have thus weaker

properties than their algebraic counterpart.

Recently, Boulier et al. [8] presented a so-called Rosenfeld-Gr�obner algorithm which computes a repre-

sentation for the radical ideal of a �nitely generated di�erential ideal in the following form. The radical

is written as a �nite intersection of saturations ideals; these are radical di�erential ideals de�ned by

a system of di�erential polynomial equations and inequalities. This representation allows for an easy

algorithmic test of radical ideal membership and for computing formal power series solutions.

Open problems are to obtain a minimal decomposition, i. e. to use only a minimal number of saturation

ideals, and to �nd bases for these ideals (avoiding the inequalities). These questions are closely related to

the inclusion problem for di�erential ideals which in turn can be seen as the problem of determining the

relation between the singular and the general solutions of a di�erential equation. The principal obstacle

in the construction of the bases is a very typical one in di�erential algebra. A theorem of Ritt asserts

that by taking su�ciently many derivatives of the equations one can always get a basis but no bound for

the number of derivatives needed is known.

Di�erential ideal theory is applied in automatic theorem proving in di�erential geometry [93]. This is

similar to the use of algebraic ideal theory in theorem proving in elementary geometry. For this kind

of applications characteristic sets seem to be more useful than Gr�obner bases. A nice example for the

possibilities here is the automatic derivation of Newton's law of gravity from the three Kepler laws [92].

Besides ideals of di�erential polynomials there has also been some work on ideals of linear di�erential

operators or ideals of the Weil algebra [27]. However, here one is dealing with non-commutative rings.

In some sense one can also consider the Cartan-K�ahler theory mentioned above as a kind of di�erential

ideal theory, as it represents di�erential equations by closed ideals of di�erential forms.
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Di�erential Galois Theory

Already Lie was looking for a di�erential analog of the (algebraic) Galois theory, when he introduced Lie

groups. What is nowadays usually called di�erential Galois theory [79] resembles, however, only faintly

his ideas. It considers exclusively linear ordinary di�erential equations and culminates in the Singer

algorithm for computing Liouvillian solutions of equations with Liouvillian coe�cients [77, 80].

Determining the solutions of linear di�erential equations is a very classical topic and many famous

mathematicians like Liouville, Fuchs, Klein or Jordan studied it in the last century and their results are

still very important for the design of algorithms. Di�erential Galois theory was essentially founded by

Picard and Vessiot. It was given its modern form by Kolchin [46]. Pommaret [62] developed an alternative

theory following more closely Lie's ideas and using the formal theory.

Liouvillian functions comprise essentially all expressions one can \easily write down". Allowed operations

are the usual arithmetic operations, roots, exponentials, logarithms, integrals and algebraic functions. A

more formal de�nition can be given via a tower of simple extensions of the �eld of rational functions. An

important point is that for any Liouvillian function one needs only a �nite number of extensions, thus it

is algorithmically constructible. Most expressions one would call \closed-form" are in fact Liouvillian.

An implementation of the Singer algorithm has not been achieved so far. Only the simpler Kova�cic

algorithm for second order equations has been implemented [69]. The main problem lies in the high

complexity. The algorithm is based on the construction of a minimal polynomial for the logarithmic

derivative of the solution. For this purpose �rst a bound on the degree of the polynomial is derived.

Unfortunately this bound grows rapidly with the order of the equations.

Using some deep results from the representation theory of �nite groups Ulmer [85] could improve the

bounds given by Singer, so that at least the treatment of third order equations seems feasible. An

alternative approach based on invariants was presented by Fakler [24]. For second order equations it

leads in most cases to explicit solution formulae and thus to rather e�cient algorithms. Some of them

have meanwhile been implemented in MuPAD.1

The determination of the di�erential Galois group for a given equation is rather di�cult. Some progress

has been made for second and third order equations [81]. Solution algorithms like the one of Singer

yield information about the group and in some cases actually determine it. If there was an easy way to

compute the group directly, one could design more e�cient algorithms.

In some sense related to the di�erential Galois theory is the problem of (e�ciently) factoring linear

di�erential operators [86]. All the theory mentioned here works only for irreducible equations. Thus

before one can apply it, the equation must be factorized. The Newton polygon (see above) is here again

quite useful. Factorization (although only of polynomials) is also an issue in di�erential ideal theory.

Numerical Analysis

It was already mentioned above that the capabilities of computer algebra systems to explicitly solve

di�erential equations are limited. This holds especially for partial di�erential equations. Therefore

numerical methods have lost nothing of their importance. Symbolic and numerical computations can

interact in many ways and most computer algebra systems provide some numerical facilities, also for

di�erential equations.

1Together with some related packages for linear di�erential operators they can be obtained from Fakler's WWW page

with the URL http://iaks-www.ira.uka.de/home/fakler/index.html.
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The oldest and simplest approach consists of interfacing a computer algebra system and a numerical

library. Typically the interaction is one-way: the computer algebra system is used to derive the di�erential

equations (e. g. the equations of motion of a complicated physical system); the interface generates code in

the language of the numerical library (perhaps including some optimization steps); �nally, the di�erential

equations are solved with some methods from the numerical library.

To some extend this can be done with most of the common computer algebra systems, as they all

provide commands to convert an expression into C or Fortran. However, it is rather cumbersome to

automatically generate whole procedures or programs that way. The Reduce packageGentran [30] can

be used for such purposes. Another problem is the optimization of the generated code which is usually

necessary. But again there exist already packages like Scope [87] for such tasks.

Computer algebra systems may further help to select an appropriate method from the library. Modern

numerical libraries have reached such a level of sophistication that for many users it is increasingly

di�cult to fully exploit their potential. These libraries provide di�erent routines for the same task and

the working of these routines can be further tuned by many input parameters whose meaning remains

a secret for non-experts. A computer algebra system can try to analyze the given di�erential equation

(e. g. estimate its sti�ness) and then choose an appropriate method and determine reasonable values for

its parameters. An example for this approach is the Axiom package Anna developed by Dup�ee [22].

Goldman et al. [32] go considerably further in their application of computer algebra in numerical analysis

by using it as a software engineering tool. They automatically generate the full code for numerically

solving the Navier-Stokes equations. Their argument is that such programs are so long and complicated

that their maintainance and adaption (new boundary conditions, di�erent discretizations etc) is rather

di�cult and error-prone. They use instead a number of input �les that contain all the relevant information

about the problem in a format that is comparatively easy to read and let the computer algebra system

then generate the source code.

Another approach consists of the use of computer algebra to derive new numerical schemes. The Butcher

theory of Runge-Kutta methods provides here a typical example. For higher order methods the order

conditions become rather large and complicated. Computer algebra packages are used to derive and

solve them (using Gr�obner bases) [82]. In the case of partial di�erential equations the construction of

higher-order discretizations or �nite elements can also be rather involved and is sometimes only feasible

with the help of a computer algebra system [55]. Another application of computer algebra concerns the

proof of the stability of a newly constructed scheme [29].

Another topic where computer algebra plays a certain role in numerical analysis are di�erential algebraic

equations. The index of such a system comprising di�erential and algebraic equations measures in a

certain sense, how far it is away from a pure di�erential equation [11]. This gives an indication of the

di�culties one must expect in a numerical integration. The determination of the index is essentially

equivalent to the completion procedures described above [47, 60], as it can be de�ned as the number of

steps needed for the completion. However, in practice numerical analysts often prefer the use of automatic

di�erentiation to computer algebra [12].

Somewhere in between numerical and symbolic methods are approximation techniques. Traditionally they

are applied in a purely numerical fashion: some ansatz is made and then its coe�cients are determined

numerically. The use of computer algebra not only allows for much more complicated ans�atze, but one

can often computed the coe�cients symbolically. This is especially valuable for parameter dependent

problems. A numerical computation can be done only for �xed values of the parameters. A symbolic

computation allows us to analyze the e�ect of changes in the parameters.
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Most computer algebra applications to di�erential equations published so far consist of a special purpose

package devoted to one speci�c algorithm. Communication between di�erent packages, e. g. further

processing of the output of one algorithm by another one, is often rather awkward, as every package uses

its own data structures and thus complicated conversion procedures must be implemented.

This problem could be avoided by providing an environment for computations with di�erential equations.

Such an environment should comprise basic data structures and procedures for the representation of

derivatives and di�erential equations. Ideally the user should have a choice, as di�erent representations

or notations are optimal in di�erent problems.

Within this environment it would then be possible to implement packages for di�erent purposes like

completion, construction of the symmetry algebra, Painlev�e analysis etc. Since all of them would be based

on the same underlying data structures, they could easily communicate which each others. Furthermore

this would considerably facilitate the implementation of further algorithms, as a large part of the work

to develop, say, a new symmetry package consists just of writing these basic structures and procedures.

Such an environment can be reasonably developed only in an object-oriented system allowing for the

simple implementation of abstract data types. In the language of computer algebra one often speaks of

domains and categories. The latter ones are especially important, as they o�er the possibility of generic

programming. In MuPAD they are provided by the domains library [21].

We started with the development of an environment for di�erential equations, called JET, within Ax-

iom [71, 74]. Currently it is ported to MuPAD.2 As JET was originally designed for geometric approaches

based on the jet bundle formalism, we will use a geometric language for its description. But JET is equally

well suited for di�erential algebra, as the basic representation problems are exactly the same.

JET consists essentially of a three level hierarchy.3 The properties of the two lower levels are each

de�ned by a category; the third level contains the application packages. Besides there exist some utility

domains, e. g. for sparse matrices, vector �elds and di�erential forms, or for coordinate transformations

in di�erential equations.

The lowest level is in some sense of a purely \cosmetic" nature. It de�nes only the notation used for jet

variables (or di�erential unknowns) and provides procedures for their in- and output. It also introduces a

ranking. One could argue whether this level is really necessary, but it allows for much more comfortable

user interaction. Each user can implement a domain with his favorite notation and still make use of the

full environment.

The second level concerns functions depending on the jet variables. Many operations like total derivatives

or Jacobians are implemented categorically, i. e. if one implements a new domain for functions, there is

no need to write routines for these tasks, as they are inherited from the category. But if it is possible

to design a more e�cient algorithm for some special class of functions, one may override the default

implementation.

At this level one can see best the advantages of such an object-oriented approach. In many applications

one encounters the same subproblems like for example the simpli�cation of a system. Although the main

algorithm (e. g. a completion procedure) runs the same way for any class of di�erential equations, these

subproblems may be solved in very di�erent ways: for linear systems with Gaussian elimination, for

polynomial systems with Gr�obner bases, for general systems with some sort of heuristics.

2Those parts of it that are already ported can be obtained from our MuPAD archive on the WWW under the URL

http://iaks-www.ira.uka.de/iaks-calmet/werner/mupad.html.
3For e�ciency reasons one sometimes includes a fourth level, but this will be ignored here.
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In a classical programming language any special class of functions would need its own completion proce-

dure. In an object-oriented language where domains can be passed as parameters to other domains the

main algorithm is implemented only once. It takes a domain of functions as argument and uses for the

subproblems the procedures provided by this domain.

The third level of JET contains applications. Currently it consists only of a package for a completion

procedure based on the Cartan-Kuranishi Theorem and a symmetry package of classical and non-classical

Lie point symmetries. Especially the latter one demonstrates nicely how fast packages can be developed

within such an environment. The basic procedure setting up the determining system consists of about

15 lines of code! Admittingly it is not a very sophisticated procedure, but everything else needed in a

symmetry package was already part of the environment.

Conclusions and Outlook

The application of computer algebra to di�erential equations is a vast �eld. We could only briey indicate

some of the main research directions. An important topic ignored here are e. g. �rst integrals [64, 51].

The idea of transforming di�erential equations can be extended far beyond simple heuristics leading to

the equivalence problem of Cartan [45, 58]. There exist also much more applications of series methods

than we could cover here.

The �elds we have touched on are in rather di�erent states. Some of them like symmetry theory are

meanwhile fairly mature with the fundamentals well understood and they provide standard techniques

for tackling di�erential equations implemented in many computer algebra systems. Others are still in an

early stage of their development and essential questions are open. Such �elds are usually known only to

some experts and only prototypical implementations of algorithms exist.

One common feature shared by most of the �elds mentioned is the complexity of the algorithms. If we take

the various completion methods mentioned above as example, then it is obvious from their close relation

to Gr�obner bases that their complexity is at least as bad as that of the Buchberger algorithm. Although

Gr�obner bases solve in principle many problems in commutative algebra, it is well-known that one often

fails to get a basis in reasonable time. One possible way out is the stronger use of heuristics and techniques

from Arti�cial Intelligence, although this is an unpleasant thought for many pure mathematicians.

Some readers might be surprised that we discussed applications in numerical analysis as broadly as more

traditional topics like symmetry theory. But we believe that in the future this direction will be among

the most important ones. Despite all the successes of Lie symmetries, di�erential Galois theory etc. one

must clearly see that these theories are of hardly any value for real world problems like for example the

ones an engineer typically face.

A popular benchmark for the numerical integration of di�erential algebraic equations comes from vehicle

dynamics and models with �ve links a wheel suspension [40]. Its equations of motion must be generated

by computer and consist of 7000 lines of Fortran code. It seems hardly realistic to solve such a system

with Lie symmetries (if it possesses any!) or any other analytic technique.

This does not imply that there is no point in further studying symbolic methods, not at all! Toy

models that can be solved analytically are important for obtaining a deeper understanding of underlying

structures. One may hope that such understanding may lead to more e�cient numerical algorithms for

the real world problems.

Most of the current numerical methods for ordinary di�erential equations do not take any special proper-

ties of the equation into account (with the possible exception of its sti�ness). It is a rather new trend in

numerical analysis to try to identify such properties and to use them to design more e�cient algorithms.
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One prominent example of this trend are symplectic integrators [68] which are superior to most conven-

tional method in the long term integration of Hamiltonian systems, as they preserve many qualitative

features of such systems.

The combination of symbolic and numerical computation will play in the future a much bigger role

than currently. In the form of simple interfaces it happens already now in many places. For most

users of computer algebra systems (this is a very di�erent community than the participants of computer

algebra conferences!) such possibilities are of much greater importance than many of the fancy algorithms

developed by theorists.
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