
Any two countable, densely ordered sets

without endpoints are isomorphic

| a formal proof with KIV

Martin Giese Arno Sch�onegge

Technical Report No. 50/95

December 1995

Universit�at Karlsruhe

Fakult�at f�ur Informatik

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197598879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Any two countable, densely ordered sets

without endpoints are isomorphic

| a formal proof with KIV�

Martin Giese Arno Sch�onegge

Institut f�ur Logik, Komplexit�at und Deduktionssysteme

Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

email: schoenegge@ira.uka.de

WWW: http://i11www.ira.uka.de/�schoeneg/

Abstract

Georg Cantor in 1895 gave the �rst (informal) proof for the fact

that any two countable, densely ordered sets without endpoints are

isomorphic [1]. Here we report on a fully formal proof of this fact

constructed interactively with the KIV system [5].

�The presented work was supported under grants no. Me 672/6-2,3 by the Deutsche
Forschungsgemeinschaft as part of the focus program \Deduktion".

1



1 Introduction

This paper reports on a formal proof | completely carried out within the

KIV system (Karlsruhe Interactive Veri�er) [5] | of a model-theoretic theo-

rem, �rst shown by Georg Cantor about one hundred years ago [1]. We have

done this work for three reasons:

� Firstly, in our opinion mechanically checkable proofs provide a strong

argument in the social process that determines ones con�dence in a the-

orem. The use of deduction systems permits to construct substantially

more accurate proofs than can be done with current hand methods.

This increase in accuracy means an increase in reliability.

� Secondly, our work gives once more an example illustrating the power

of current reasoning systems and their range of application.

� Thirdly, the presented case-study demonstrates that software veri�ca-

tion techniques can be successfully applied in (some areas of) math-

ematics, too. As we will argue, the proof task tackled here can be

reduced to a problem of proving certain properties of programs. Thus,

it can be dealt with in the KIV system which was originally designed

for development of veri�ed software.

The paper is organized as follows. The next section presents the theorem

we are going to prove. In section 3 several approaches for doing this proof

are discussed (with respect to their tractability). The formalization of the

problem (section 4) prepares the way to the formal proof we have carried out

within the KIV system. Outline and statistics of it are given in section 5.

Finally, in the last section, we draw some conclusions.

2 The Theorem to Prove

In [1] Georg Cantor shows that

\Hat man eine einfach geordnete Menge M , welche die drei Bedingungen

erf�ullt:

1) M = @0,

2) M hat kein dem Range nach niedrigstes und kein h�ochstes Element,

3) M ist �uberalldicht,

so ist der Ordnungstypus von M gleich �:

M = �:"

2



A translation is

\Any totaly ordered set M with

1) M is countable and in�nite,

2) M has no endpoints, and

3) M is dense

is of order type �."

In modern nomenclature, \is of order type �" means, that there is an iso-

morphism (with respect to the order relation) from M to the interval (0; 1)

of rational numbers.1 This result is obviously equivalent to the statement,

that

any two countable, densely ordered sets
without endpoints are isomorphic

which is a basic fact appearing in textbooks on model theory (e.g. [2],Propo-

sition 1.4.2).

For the following it is convenient to put it in algebraic terms.

Theorem (Cantor)

Let A = (A;<A) and B = (B;<B) two structures (algebras) with A and B

non-empty2, countable sets and <A and <B total orderings such that

no endpoints:
for all a 2 A there are some a0; a00 2 A with a0 <A a <A a00

for all b 2 B there are some b0; b00 2 B with b0 <B b <B b00

density:

for all a0; a00 2 A with a0 <A a00 exists some a 2 A with a0 <A a <A a00

for all b0; b00 2 B with b0 <B b00 exists some b 2 B with b0 <B b <B b00.

Then there is a total, bijective function I : A! B with

a1 <A a2 i� I(a1) <B I(a2) for all a1; a2 2 A:

Countability and non-emptiness of A and B may equivalently be ex-

pressed by the existence of surjective functions a : IN ! A and b : IN ! B

enumerating A and B, respectively.

1By a slight extension one obtains that any countable, densely ordered set is isomorphic
to one of the intervals (0; 1), [0; 1), (0; 1], or [0; 1] of rational numbers.

2An ordered set with no endpoints is in�nite i� it is non-empty

3



3 How to Do the Proof

In this section we discuss three approaches for proving the theorem above.

The proof given by Cantor [1] is elegant and short | at least at the level of

abstraction chosen. It is based on a stepwise construction of an isomorphism

I : A! B following the enumeration a(0); a(1); a(2); : : : as follows:

I(a(k)) := b(k0) where k0 is minimal such that for all i < k

I(a(i)) < b(k0) i� a(i) < a(k) and

I(a(i)) > b(k0) i� a(i) > a(k)

In the order of the enumeration of A, each a(k) is mapped to the the �rst

b(k0) in the enumeration of B, which satis�es the isomorphism property with

respect to the already �xed part of the mapping. This process starts with

mapping a(0) to b(0).

For a human reader, with an intuitive access to the concepts of linear

ordering and density, the existence of such a k0 seems obvious. (The absence

of endpoints is needed here, too!). Based on this it is quite easy to show, that

I is an injective homomorphism. Surjectivity is harder to see and requires

induction. Cantor's proof of the surjectivity of I also strongly relies on some

familiarity with the notion of linear order.3

Our �rst approach was to formalize Cantor's proof, i.e. to break down the

quite intuitive arguments into (a lot of) small, mechanically checkable proof

steps. However | especially in the proof of the existence of the k0 mentioned

above and in the proof of the surjectivity of I | this turned out to be more

complex than we had expected.

These di�culties made us look for other proofs. One alternative, which

at least avoids a complicated surjectivity argument appears in [4]. Instead

of de�ning an isomorphism following the enumeration of A, as in Cantor's

proof, the �rst unmapped elements in the enumerations of A and B are taken

alternately and are mapped to an acceptable element of the other set in a

way similar to that in Cantor's proof. This process of switching from one

enumeration to the other assures that the mapping is surjective as well as

total.

However, we have not adopted this approach for two reasons. Firstly, the

process of alternating assignment would have resulted in a rather complicated

formal description. And secondly, we thought of an even more appealing

approach. The idea is to reduce the problem to a more concrete one by

3Ernst Zermelo comments on a step in the proof given by Cantor as follows ([1], An-
merkung 13): \: : : wo es hei�t \wie man sich leicht �uberzeugt", �ndet der Leser eine
gewisse Schwierigkeit. : : :". This might give an impression about the level of abstraction
chosen in Cantor's proof.

4



adding further information. To show, that any two of a certain class of

algebras are isomorphic, it is su�cient to show that all algebras of this class

are isomorphic to one �xed algebra.

Theorem (Cantor, version 2)

There is an algebra A0 = (A0; <A0
) such that for all algebras A = (A;<A)

with A a non-empty, countable set and <A a total ordering such that

no endpoints:

for all a 2 A there are some a0; a00 2 A with a0 <A a <A a00

density:

for all a0; a00 2 A with a0 <A a00 exists some a 2 A with a0 <A a <A a00.

there exists a total, bijective function IA : A! A0 with

a1 <A a2 i� I(a1) <A0
I(a2) for all a1; a2 2 A:

Thus, proving Cantor's theorem can be done in three steps:

(1) providing an appropriate algebra A0,

(2) constructing a function IA : A! A0 for each A, and

(3) proving that IA is an isomorphism.

The information added in step (1) can help to make the problems to be solved

in steps (2) and (3) more concrete and therefore more tractable.

The most obvious choice for A0 is the set of all rational numbers in the

interval (0; 1), i.e. f n
m
jn;m 2 IN;m > n > 0g with their usual order on it.

It turns out, that the rationals in their usual representation as fractions

are not very well suited to our purpose, as we are not intersted in arithmetic

properties, but rather in properties of the ordering. We shall nevertheless

use them to motivate our �nal choice for A0.

The property of rationals in (0; 1) we will use for the construction of the

isomorphism is that they can be sorted into an in�nite binary tree such that

� each node has exactly two children,

� all nodes in the left subtree of a node labeled with r are marked with

rationals smaller than r,

� all nodes in the right subtree of a node labeled with r are marked with

rationals larger than r, and

� all rationals from the interval (0; 1) occur in the tree.

5



       
``````̀











J
J
J
JJ











J
J
J
JJ

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

1

2

1

3

2

3

1

4

2

5

3

5

4

3

1

5

4

5
. . . . . . . . . . .

Figure 1: Sorting rationals from (0; 1) into a binary tree.

       
``````̀











J
J
J
JJ











J
J
J
JJ

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

<>

<lft> <rgt>

<lft,lft> <lft,rgt> <rgt,lft> <rgt,rgt>

<lft,lft,lft> <rgt,rgt,rgt>. . . . . . . . . . .

Figure 2: Correspondence between lists over flft; rgtg and tree nodes.

6



Figure 1 shows an example.

For the purpose of reasoning about the ordering, the rational numbers in

(0; 1) can be identi�ed with their (uniquely determined!) position (path) in

the tree. We encode these paths from the root to the nodes by lists over the

alphabet flft; rgtg, as illustrated in �gure 2. The ordering � on the nodes

is de�ned like that in a usual binary search tree, e.g. is4

<lft,lft>

� <lft>

� <lft,rgt>

� <>

� <rgt,lft>

� <rgt>

� <rgt,rgt>:

Since the formalization of the ordering� on (lft; rgt)� is muchmore straight-

forward than it would be for the rationals, we decided to choose

A0 :=
�
(lft; rgt)�;�

�
:

Notice that from a theoretical point of view the choice of A0 does not matter

(as long as it is a countable, densely ordered set without endpoints), however

from a practical point of view there are important di�erences. We believe

that our choice is a good one because it enables quite natural formalizations

of the ordering and the isomorphism.

The idea for constructing an isomorphism IA : A ! A0 is to sort the

elements of A into a binary search tree following the enumeration a : IN! A

of A, and to map each element a(k) onto the corresponding path in A0. Thus,

a(0) is mapped to the empty path <>, the �rst a(k) in the enumeration with

a(k) <A a(0) to <lft>, etc. Figure 3 shows an example. Intuitively, it is

obvious that this construction yields an isomorphism. An outline of a formal

proof is given in section 5.

4 Formalization of the Problem

To prove Cantor's theorem formally, we have to describe the non-empty

countable sets with a dense linear order without endpoints within a formal

language. We use algebraic �rst-order speci�cations in the style of [6]; see the

speci�cations A-SPEC in �gure 4 which uses the speci�cation NAT-SPEC in

�gure 5.

4Notice, that � is not a lexical ordering.

7



       
``````̀











J
J
J
JJ











J
J
J
JJ

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

a(0)

a(1) a(3)

a(4)

a(5)

a(6)

a(7)

a(8)a(2)

. . . . . . . . . . . . . .

Figure 3: Correspondence between elements of A and tree nodes on the

example a(5) <A a(4) <A a(1) <A a(2) <A a(0) <A a(8) <A a(3) <A

a(6) <A a(7).

speci�cation A-SPEC

using NAT-SPEC

sort s

function a : nat! s

predicate � < � : (s; s)

axioms

9n: a(n) = x (surjectivity)

x < y ^ y < z ! x < z (transitivity)

: x < x (irre
exivity)

x 6= y ! x < y _ y < x (totality)

x < y ! 9z: (x < z ^ z < y) (density)

9y: x < y (no right endpoint)

9y: y < x (no left endpoint)

end speci�cation

Figure 4: Algebraic speci�cation of countable, densely ordered sets without

endpoints.

8



speci�cation NAT-SPEC

sort nat

functions 0 :! nat

�+ 1 : nat! nat

axioms

nat freely generated by 0;+1

end speci�cation

Figure 5: Algebraic speci�cation of natural numbers. (+1 denotes the suc-

cessor function, written post�x.)

Here, \nat freely generated by 0;+1" is a kind of higher-order axiom

which restricts the class of models of the speci�cation to those in which each

object of the domain can be uniquely denoted by a constructor term, i.e.

by a ground term built from the constructors a; 0;+1. In particular, this

ensures countability of the model for nat, which is transferred to s via the

surjectivity axiom. The restrictions5 of models of the speci�cation A-SPEC

to the signature � = (fsg; f<g) are exactly the algebras A = (A;<A) with

A a non-empty, countable set and <A a total ordering such that A is dense

and without endpoints.

5 The Formal Proof

This section explains the formal proof of Cantor's theorem which we have

carried out in the KIV system. As argued above it works in three steps: (1)

providing an appropriate algebra A0, (2) constructing a function IA : A! A0

for each A, and (3) proving that IA is an isomorphism.

5.1 Step 1: providing an appropriate algebra A0

We provide the algebra A0 :=
�
(lft; rgt)�;�

�
in terms of an implementa-

tion. Without further mentioning we assume an implementation of paths,

i.e. lists over flft; rgtg, with the constructors <> for the empty path, and

cons for adding either lft or rgt to a path, and usual selectors head and tail.

Thus, it remains to de�ne the ordering � on these paths, which is given in

�gure 6. Notice that termination of the procedure less is obvious (and easy

to prove by structural induction over any of the inputs). In what follows we

5For a de�nition of restriction see ([6], p. 683).

9



proc less(p1; p2 : path) : bool is

begin

if p1 = nil then return p2 6= nil and then head(p2) = rgt

else if head(p1) = lft then return p2 = nil

or else head(p2) = rgt

or else less(tail(p1); tail(p2))

else if head(p1) = rgt then return p2 6= nil

and then head(p2) = rgt

and then less(tail(p1); tail(p2))

end;

Figure 6: Implementation of � on (lft; rgt)�.

will use the procedure less like a predicate and write p1 � p2 if less(p1; p2)

yields true.

5.2 Step 2: constructing a function IA : A! A0

In this step of the proof an isomorphism IA : A ! A0 is constructed, i.e.

a procedure is given which computes an isomorphism. As already indicated

above our procedure works as follows:

An enumeration of A is performed via the enumeration function a. At

the same time the procedure follows a path in the imagined binary tree. In

particular, at every step in this computation, a kind of interval is maintained,

such that all elements of A positioned in the subtree rooted at the current

node lie in this interval. For instance, when considering a(8) in �gure 3, this

would be the open interval (a(0); a(3)). Now, for nodes on the leftmost and

rightmost branch, we can give only half-intervals as restrictions, and nodes

below and including the root, a(0), obviously include all of A.

The implementation of the isomorphism in pseudo-code notation is shown

in �gure 7. Here we have used a relaxed but convenient notation. The pa-

rameters l; r of iso-rec which represent the (left and right border of the)

maintained interval are allowed to take values from A [ f�1;+1g.6 Fur-

6In the actual implementation within the KIV system, we did not add in�nite elements
to A. Instead, we maintained a boolean variable together with each interval border, which
indicated whether the border was to be interpreted as such, or taken as in�nite.

10



proc iso(a : A) : path is

proc iso-rec(a : A; l; r : A; k : nat) : path is

begin

if not a(k) 2 (l; r) then

return iso-rec(a; l; r; k+ 1) (�)

else if a = a(k) then

return <> (�)

else if a < a(k) then

return cons(lft; iso-rec(a; l; a(k); k+ 1)) (
)

else if a(k) < a then

return cons(rgt; iso-rec(a; a(k); r; k+ 1)) (�)

end;

begin

return iso-rec(a;�1;+1; 0)

end;

Figure 7: Implementation of the isomorphism.

thermore, we de�ne for all l; r 2 A:

a 2 (l; r) i� l < a and a < r

a 2 (�1; r) i� a < r

a 2 (l;+1) i� l < a

a 2 (�1;+1) holds for all a 2 A:

The procedure basically does a recursion in which A is enumerated via

the parameter k. For each value of k, one of four cases can occur. The

corresponding code fragments are marked (�) through (�) in �gure 7. Applied

to the notion of stepping through a path in a binary tree, (�) means, that

a(k) is not in the subtree of the current node (remember, that (l; r) is the

interval of A containing all elements of A associated with the subtree rooted

at the current node). (�) is the termination case, that is we have reached

the node we were looking for. Cases (
) and (�) correspond to advancing to

the left and right descendant of the current node, respectively.

5.3 Step 3: Proving the Properties

It remains to show that the function computed by the procedure iso is in

fact an isomorphism: we have to prove totality, homomorphism property

and bijectivity. All the proofs sketched here have been carried out within the

KIV system.

11



5.3.1 Totality

For totality we have to prove the following theorem.

Theorem (termination of iso)

The procedure iso terminates for all possible inputs.

Proof. It is su�cient to notice, that a 2 (l; r) for any of the recursive calls

(induction hypothesis). Since all elements of A are enumerated, there is a

k 2 IN such that a = a(k). In the corresponding call to iso-rec, case (�) will

be reached and the recursion terminates.

5.3.2 Homomorphism Property

For the homomorphism property we have to prove the following theorem.7

Theorem (homomorphism property of iso)

iso(a1) � iso(a2) i� a1 < a2 for all a1; a2 2 A.

Proof. The proof is done by reduction to a statement about iso-rec: if

� a1; a2 2 (l; r)

� a(k0) 62 (l; r) for all k0 < k

� a1 < a2

then

iso-rec(a1; l; r; k) � iso-rec(a2; l; r; k)

The other direction of the equivalence can be shown using this lemma

with a1 and a2 exchanged.

The proof for iso-rec works by induction over the depth of recursion in one

of the two calls, say iso-rec(a1; l; r; k). As the parameters l,r and k are equal

in the two calls, they can only reach case (�) together, where the induction

hypothesis can be applied to the recursive calls. If iso-rec(a1; l; r; k) runs into

(�), a1 = a(k) and <> is returned. Since a(k) = a1 < a2, iso-rec(a2; l; r; k) will

come to case (�) and return a path with head rgt, which is thus greater than

the empty path. For case (
) in iso-rec(a1; l; r; k), we must have a1 < a(k)

and a path with head lft is returned. Calling iso-rec(a2; l; r; k) will yield

the empty path resp. a path with head rgt in cases (�) resp. (�). These

paths are greater than any path with head lft. For case (
), the induction

hypothesis can be applied, as the values of l,r and k passed to the recursive

calls are equal. The case, that iso-rec(a1; l; r; k) runs into (�) is symmetric to

the (
) case.

7We denote the total function computed by iso again by iso.

12



5.3.3 Bijectivity

It remains to prove bijectivity of the function computed by iso.

Theorem (injectivity of iso)

For all a1; a2 2 A, if iso(a1) = iso(a2) then a1 = a2.

Proof. The theorem is a consequence of homomorphism property theorem

above, since iso(a1) = iso(a2) i� iso(a1) 6� iso(a2) and iso(a2) 6� iso(a1) i�

(homomorphism property) a1 6< a2 and a2 6< a1 i� a1 = a2.

Theorem (surjectivity of iso)

For all p 2 (lft; rgt)� there is some a 2 A such that iso(a) = p.

A particularly hard part of Cantor's proof concerned the surjectivity. In

our approach, we decided to solve this by implementing a further procedure

inv and showing, that it computes the right-inverse8 of the function computed

by iso, that is iso � inv = id. Figure 8 shows the implementation. The

procedure inv computes an element of A given a path in (lft; rgt)�: The

parameter p always contains the rest of the path to be considered. The node

is thus reached, when p is empty. The above theorem (surjectivity of iso) is

a consequence of the following two lemmas.

Lemma 5.1 (termination of inv)

The procedure inv terminates for all possible inputs.

Proof. For the termination of inv, a di�erent argument as for the termi-

nation of iso is needed. Note, that for each triple (l; r; k) of parameters in

a recursive call to inv-rec, all previously enumerated a(j) with j < k are

not in the interval (l; r) (induction hypothesis). Density, together with the

enumeration function, guarantees the existence of a k0 with a(k0) 2 (l; r),

which must obviously be greater than k. This means, that there cannot be

an in�nite chain of recursions all leading to case (�0). Therefore, p gradually

becomes shorter, until it is empty, and �nally case (�0) is reached. The for-

mal proof works by an induction over the length of p, and then over k0 � k.

Lemma 5.2 (iso � inv = id)

If inv(p) returns a, then a call of iso(a) yields p.

Proof. For the proof it is important to see, that for corresponding a 2 A

and l 2 L, calls to iso(a) resp. inv(p) lead to the same sequence of triples

(l; r; k) in the sequence of recursive calls. Again, this is reduced to a statement

about iso-rec and inv-rec. We show, that under the conditions, that

8This is also the inverse, because of the injectivivty already shown. We do not need
this for the surjectivity, though

13



proc inv(p : path) : A is

proc inv-rec(p : path; l; r : A; k : nat) : A is

begin

if not a(k) 2 (l; r) then

return inv-rec(p; l; r; k + 1) (�0)

else if p = <> then

return a(k) (�0)

else if head(p) = lft then

return inv-rec(tail(p); l; a(k); k+ 1) (
0)

else if head(p) = rgt then

return inv-rec(tail(p); a(k); r; k+ 1) (�0)

end;

begin

return inv-rec(p;�1;+1; 0)

end;

Figure 8: Implementation of the inverse of the isomorphism.

� a 2 (l; r)

� a(k0) 62 (l; r) for all k0 < k

iso-rec(a; l; r; k) returns p, if inv-rec(p; l; r; k) returns a.9 For the induction,

it is important, that the above conditions are propagated to recursive calls.

The proof makes extensive use of the fact, that a call to inv-rec(p; l; r; k)

always returns a value a 2 (l; r). The proof of this fact works by induction

over recursion depth and is rather straightforward.

The parameter / return-value a has an index, a = a(k0) with k0 < k, and

induction is done over k0 � k. Thus, let inv-rec(p; l; r; k) return a(k0). We

show, that iso-rec(a(k0); l; r; k) returns p.

The proof splits into four main branches, one for each case that might be

reached in inv-rec. We show that in each case possible in inv-rec, the call

of iso-rec on the return value leads to the corresponding case in iso-rec, so

the induction hypothesis can be applied. As reaching case (�0) is determined

only by l,r and k, the call to iso-rec must lead to (�). In the remaining

cases, (�) can thus not be reached in iso-rec. If (�0) is executed in inv-rec,

a(k) is returned, so iso-rec reaches (�). In cases (
0) and (�0), we use the

fact mentioned above, that a(k0) 2 (l; r) to establish that a(k0) < a(k),

9Termination has already been proved, so it is no longer an issue here. All procedures
are guaranteed to actually return some value.

14



resp. a(k) < a(k0). From this, we conclude, that iso-rec must reach the

corresponding case and apply the induction hypothesis for the recursive call.

5.4 Statistics

Most of the time used to complete this work was spent on the search for an

appropriate way to do the proof. When the idea of using paths as standard

models was there, speci�cation, implementation and proving took about 13

hours of work done within one week.

Of course, to do the proof, a number of lemmas about lists and natural

numbers was required. The proofs concerning the 46 lines of code of the

isomorphism, its inverse and one further help procedure (which computes

k0 in the proof of lemma 5.1) totalled 391 proof steps, 108 of which were

interactions. Two auxiliary lemmas were needed, namely one for the proof

of lemma 5.110 and one for the fact that inv-rec(p; l; r; k) 2 (l; r), used in the

proof of lemma 5.2.

6 Conclusion

We have presented a formal proof of the fact that any two countable, densely
ordered sets without endpoints are isomorphic. Instead of (directly) formal-

izing the informal proofs given in [1] or [4], we took another approach for

doing this proof. The central technique is to explicitly provide as much as

possible by procedures, following the paradigm \programming is easier than
proving".11 This technique comes to fruition at three spots in the proof:

� a representative of the class of countable, densely ordered sets without

endpoints is explicitly provided in terms of an implementation,

� the existence of an isomorphism is proved constructively, i.e. by pro-

gramming it,

� the surjectivity of the isomorphism is proved by implementing its in-

verse

Thus, the original problem is reduced to a more concrete and more tractable

one. Furthermore, one is enabled to employ well-established tools and tech-

niques, known from software-veri�cation.

10This proof took 26 interactions and the actual termination proof another 24, which
seems to re
ect the di�culty of the surjectivity argument.

11\Proofs as programs" (c.f. e.g. [3]) is a fairly nice concept from a theoretical point of
view. However, we believe that for practical reasons \programs as proofs" is the better
choice.

15



References

[1] G. Cantor. Gesammelte Abhandlungen, chapter 9, page 303 �. Springer, 1932.

[2] C.C. Chang and H.J. Keisler. Model Theory, volume 73 of Studies in Logic and

the Foundations of Mathematics. Elsevier Science Publishers B. V., 1990.

[3] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer,

R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T.

Sasaki, and S.F. Smith. Implementing Mathematics with the Nuprl Proof De-

velopment System. Prentice Hall, 1986.

[4] E. Kamke. Mengenlehre, volume 999/999a of Sammlung G�oschen, page 100 �.

de Gruyter, 1962.

[5] W. Reif. The KIV-system: Systematic construction of veri�ed software. In Pro-

ceedings of the 11th International Conference on Automated Deduction, volume

607 of Lecture Notes in Computer Science. Springer Verlag, 1992.

[6] M.Wirsing. Algebraic Speci�cation, volume B of Handbook of Theoretical Com-

puter Science, chapter 13, pages 675{788. Elsevier Science Publishers B. V.,

1990.

16


