View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by KITopen

A Functional Theory of Local Names

Martin Odersky

Universitat Karlsruhe*
76128 Karlsruhe, Germany
odersky@ira.uka.de

Revised from a paper presented at the 21st ACM Symposium on Principles of Programming Languages, January 1994

Abstract

Av is an extension of the A-calculus with a binding con-
struct for local names. The extension has properties
analogous to classical A-calculus and preserves all ob-
servational equivalences of A. It is useful as a basis for
modeling wide-spectrum languages that build on a func-
tional core.

1 Introduction

Recent years have given us a good deal of theoreti-
cal research on the interaction of imperative program-
ming (exemplified by variable assignment) and function-
al programming (exemplified by higher order functions)
[3,6, 19,21, 24]. The common method of all these works
is to propose a A-calculus extended with imperative fea-
tures and to carry out an exploration of the operational
semantics of the new calculus.

Based on our own experience in devising such an ex-
tended A- calculus [13], the present work singles out the
name, whose only observational property is its identity,
as an essential component of any such extension. We
present a simple extension of the pure A-calculus with
names; we show by examples how much of the flavor
of imperative programming is captured by this simple
extension, and we prove compatibility of the extended
calculus with the pure calculus in terms of both opera-
tional and denotational semantics.

*Most of this work was done while at Yale University

Permission to copy without fee all or part of this material is grant-
ed provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copy-
ing is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1993 ACM

We are in good company; for instance Milner’s Turing
Award Lecture emphasizes naming as the key idea of
the m-calculus [9]. However, Milner relies on names and
processes alone, and requires an implementation map-
ping to recapture functional programming [8]. This im-
plementation is not fully abstract in that it invalidates
observational equivalences that hold in a purely func-
tional programming language.

By contrast, this paper presents a syntactic theory for
names that builds directly on (call-by-name) A-calculus.
The basic idea is to generalize the notion of constant
symbol already present in applied A-calculus, by intro-
ducing an abstraction vn.M that binds a name n. Con-
stant symbols in classical applied A-calculus then be-
come a special case of names that are not bound any-
where. The new calculus, Av, is pleasingly symmetric:
Names can be bound just like placeholder identifiers in
A-abstractions, and both names and identifiers are sub-
ject to a-renaming. The difference between the two lies
in the operations that can be applied to them. One can
substitute a term for an identifier, and one can compare
two names for equality, but not vice versa.

In a sense, names are the greatest common denomina-
tor of all programming languages that are not purely
functional. Hence, one expects a theory that combines
names with A-abstractions to help in understanding de-
sign issues of wide-spectrum languages that build on a
functional core. So far, the main results of this work
are:

e Names can be added to the A calculus in a refer-
entially transparent way. Full 8 remains a valid
reduction rule.

e The resulting calculus, Av, is confluent and admits
a standard evaluation function.

e The addition of names is fully compatible with
functional programming: Every observational
equivalence in A carries over to Av. This has im-

https://core.ac.uk/display/197598876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

portant practical consequences. We are guaranteed
that every equational technique for verifying, trans-
forming, or compiling functional programs is also
applicable to programs with local names.

e The extension property also applies to denotational
semantics. There is a model of (simply typed) Av
that is a conservative extension of the continuous
function model of PCF.

Related work. A theory with a scope close to Av has
also been developed independently by Pitts and Stark
[17]. The term languages of both theories are strikingly
similar, but their operational semantics are quite differ-
ent. The nu-calculus of Pitts and Stark is intended to
model names as they arise in ML-style references, for
instance. It is not intended to be a referentially trans-
parent extension of a functional core (this is discussed
further in Section 2).

Recent work on monads [10, 22, 23, 16, 5] shares with Av
the motivation to extend functional programming lan-
guages to new application domains. Monads solve the
problem of making sequencing explicit, which is needed
if state is to be updated destructively. Av solves the or-
thogonal problem of expressing and encapsulating refer-
ences. The two techniques complement each other well,
as 1s shown in Example 3.2.

Some of the more syntactic themes of this paper have
also been addressed in the context of Ayqr [13]. The
present work extends the scope of [13] with an inves-
tigation of models for Av. It also achieves considerable
simplifications by isolating the treatment of names from
all other issues of imperative programming. This sep-
aration of concerns helped simplify the (rather hard)
proofs on the observational equivalence theories of the
imperative language. For this reason, we have based an
extended version of the A, --report on Av [12].

The rest of this paper is organized as follows. Sec-
tion 2 describes term syntax and reduction rules of Av.
Section 3 presents two applications of local names, a
type reconstruction algorithm and an implementation
of state. Section 4 shows properties of Av, in particular
its confluence and its standard evaluation order. Sec-
tion b discusses the observational equivalence theory of
Av and shows that it is a conservative extension of the
corresponding theory of A. Section 6 gives a denotation-
al semantics for Av. Section 7 concludes.

2 The \v Calculus

Terms. The term-forming productions of Av are giv-
en in Figure 1. The three productions on the first line
are those of classical, pure A-calculus. The three pro-
ductions on the next line are particular to Av. Besides
A-bound identifiers there 1s a new, countably infinite al-
phabet of names. Names fall into two classes, global
and local. A global name n° is an atomic constant. We
assume that there are two such constants denoting the
Boolean values true and false. A local name n” is a
name that is bound in a name abstraction vn”. M. In
contrast to the case of A-bound identifiers, nothing is ev-
er substituted for a name. Rather, names can be tested
for equality, as in ny == ny. Both constants and local
names can be operands of (==).

We study here an applied variant of Av. Accordingly, we
have on the last line productions for pairs (M7, M3) and
applied primitive operators p M. Primitive operators
are always unary, but operators of greater arity can be
simulated by currying. We assume that at least the
following operators are defined:

pair? (My, Ms) = true
pair? _ = false
name? n = true
name? _ = false
fSt (Ml, Mz) = M1
snd (My, Ms) = Ms

Notational conventions. We use BV(M) and
FV(M) to denote the bound and free identifiers in
a term M, respectively. Analogously, BN (M) and
FN(M) denote bound and free local names in a term
M. A term is closed if FV(M) = FN(M) = 0. Closed
terms are also called programs. Note that programs do
not contain free local names n”, but they may contain
constants.

We use M = N for syntactic equality of terms (modulo
a-renaming) and reserve M = N for convertibility. If R
1s a notion of reduction, we use — to express that M
reduces in one R reduction step to N, and M — N to
express that M reduces in zero or more R-steps to N.
We also use M 2+ N to express that M reduces to N
by contracting redex A in M.

The syntactic category of values V comprises constants,
names, pairs, and A abstractions. An observable value
(or answer) A is an element of some nonempty subset

x ¢ Idents A-bound identifiers
n € Names = Names® U Names” names
n® € Names® constants
n” € Names” v-bound local names
P € Primops primitive operators
M e Av terms
M == =z | XM | M M,
| n|vnM| M == M,
| (My, M) | p M
Figure 1: Syntax of Av
Jé; (M. M) N — [N/a] M
8 pV — 4(p,V)
eq n==mn — true
n==m — false (n #m)
vV vn.ix.M — Az.wvn.M
Vp vn.(My, Ms) — (vn.My, vn.Ms)
Vn vn.m — m (n #m)
Figure 2: Reduction rules for Av

of the alphabet of constants.

v
A ¢

n | (Ml,Mz) | Ax. M

Answers C Names®

A context C'[]is a term with a single hole [] init. C[M]
denotes the term that results from replacing the hole in

C[] with M.

Following Barendregt [1], we take terms that differ only
in the representatives of bound identifiers and names to
be equal. That is, all terms we write are representa-
tives of equivalence classes of a-convertible terms. To
avold name capture problems in substitutions we re-
strict ourselves to representatives in which bound and
free identifiers are always distinct, and we employ the
same conventions for names.

Reduction Rules. Figure 2 gives the reduction rules
of Av. They define a reduction relation between terms in
the usual way: we take (—) to be the smallest relation

on Av x Av that contains the rules in Figure 2 and that,
for any context C, is closed under the implication

M — N = C[M]— C[N].

Rule 7 1s the usual reduction rule of pure A-calculus.
Rule é expresses rewriting of applied primitive opera-
tors. To abstract from particular primitive operators
and their rewrite rules, we only require the existence of
a partial function é from primitive operators p and val-
ues V to terms. é can be arbitrary, as long as its result
does not depend on the body of a an argument func-
tion, or the value of a local argument name. That is,
we postulate that for every primitive operator p there
exist closed terms NP (c € Names®). N¥, N} and N?

such that for all values V for which é(p, V) is defined:

NP ifV=ec
S, V) = NP if V' is a local name
’ NY if V is a A-abstraction
N(pw) My My itV = (My, Ms)

Note that all primitive operators are strict, since 6 re-
quires 1ts arguments to be values.

The remaining rules of Figure 2 are particular to Av.
Rule eq defines (==) to be syntactic identity. Rule vy
says that v- and A-prefixes commute. Rule v, says that
v-prefixes distribute through pairs. Finally, rule v, says
that a v-prefixes 1s absorbed by any name that differs
from the name bound in the prefix. Taken together,
these rules have the effect of pushing names into a term,
thus exposing the term’s outer structure and allowing it
to interact with its environment.

An important consequence of these rules is that the term
vn.n cannot be reduced further, but is not a value ei-
ther, and hence cannot be decomposed or compared. In
other words, the identity of a name 1s known only within
its (dynamic) scope. This does not restrict expressive-
ness since it is always possible to extend the scope of a
variable by passing the “rest” of the computation as a
continuation (see the examples in the next section).

An Alternative. Instead of “pushing” v-prefixes into
a term, one might also consider to “pull” them out of
a function application. I.e. rather than with the v rules
of Figure 2 one might want to work with the rules

v (vn.My) My — vn(My M)
VR My (vn.Ms) — wvn.(M; Ms).

These rules can be regarded as an axiomatization of
gensym in Scheme. They closely correspond to the op-
erational semantics of the nu-calculus [17].

Rule vy, is n-equivalent to rule vy. But adding rule vg to
the A calculus breaks the Church-Rosser property. For
instance,

(Az.(z,2)) (vn.n)

reduces (with 8) to (vn.n,vn.n) but also reduces (with
vg and then) to vn.(n,n), and the two reducts do not
reduce by frrvg to a common term. Hence, [needs to
be abandoned if we want to have a confluent calculus
with vg.

The difference between the the nu-calculus and Av can

also be illustrated by looking at their reductions on the
term

(Az.x == z) (vn.n).

With v and a suitably restricted f-rule this reduces to
true, while in Av this reduces to

vn.n == vn.n,

a term in normal form that is not a value (such terms are
often called “stuck”). TIntuitively, reduction gets stuck
since the value of a symbol is undefined outside its scope.
This restriction is required to ensure that all equalities
of the underlying A-calculus are preserved. Indeed, the
preservation law even extends to all observational equiv-
alences (Theorem 5.9).

A Note on Church-Encoding Pairs. We have cho-
sen to make the pairing function (-,-) a primitive term
constructor with associated primitive projections fst
and snd. What would have happened if we had en-
coded pairs as functions instead? The Church-encoding
of pairs defines a pairing function

P = XxXyAffay
and associated projections

71 = Ap.p (Az.dy.x)
72 = Ap.p (Az.Ayy).

The crucial question is what happens to v, or, rather
its Church-encoded form

vn.PM N = P (vn.M) (vn.N). (1)

It is easily verified that this not an equality derivable
from the other reductions. On the other hand, if we
apply a projection m; to each side of (1) then we do get
an equality that is derivable from § and v,. This is
shown by some straightforward computation:

71 (vn.P M N)

= (by definition of w1, P and /)
71 (P (vn.M) (vn.N))

The case where the projection is 75 is completely analo-
gous. In summary, the v, rule for Church-encoded pairs
is subsumed by vy and 3, as long as pairs are used as
intended (i.e. only projections are applied to them).

data Id = String

data Term = ID Id | AP Term Term
LAM Id Term

data TID = Name ()

data Type = TV TID | Type :-> Type

data E a = Suc a | Err

type TypeEnv Id -> Type
Type —> Type

(Subst -> E a) -> Subst -> E a

type Subst

type SubstTran a

upd :: (a->b) >a->b->(a->hb)

upd f x a y if y == x then a else f y

mgu :: Type -> Type -> E Subst

-- most general unifier; definition is left out

unify :: Type —> Type -> SubstTran a

unify t1 t2 k s case mgu (s t1) (s t2) of
Suc 8> ->k (s . 8”)

Err -> Err

tp :: TypeEnv -> Term -> Type
-> SubstTran a

tp e (IDn) t
tp e (AP a b) t

unify (e n) t

new n ->
tpe a (TVn
tp e b (TV n)
new n —-> new m ->
unify (TVn :-> TV m) t .
tp (upd e x (TV n)) a (TV m)

=> 1)

tp e (LAM x a) t

Figure 3: Type reconstruction algorithm for the simply typed A-calculus.

3 Applications

To demonstrate how the Av-extensions can be used in a
functional programming language, we study two exam-
ple applications: a type reconstruction algorithm and
an implementation of state transformers. We use a pro-
gramming notation that extends Haskell with a new
construct new n => M, the ASCII form of vn. M. A name
has type Name a, for some type a. The typing rule rule
for new is:

I'n:Name 7 F M:7

I' F newn->M:7

Example 3.1 (Type Reconstruction) Type recon-
struction algorithms for polymorphically typed lan-
guages need to define fresh identifiers for type vari-
ables “on the fly”. To this purpose, a name supply
is usually passed along as an additional argument to
the type reconstruction function. As an alternative, we
present here a type reconstruction algorithm for the sim-
ply typed A-calculus that replaces the name supply by
bound Ar names.

The code for the type checker is given in Figure 3. Types
are either variables TV n or function types t1 :=> t2.
The identifying part n of a type variable TV n is a name
(of type TID, which is a synonym for Name ()). The
main function tp constructs a proof for a goale F a: ¢,
where e is a typing environment, a is a term, and ¢ 1s a
type. e, a and t are the first three arguments of tp.

Fresh names are created in the clauses of tp that have
to do with function abstraction and application. tp is
written in continuation passing style in order to extend
the scope of names as far as needed. Its result is a
substitution transformer (of type SubstTran), which is
a mapping that takes a continuation and a substitution
and yields either failure or succeeds with some result
type that is determined by the continuation.

Example 3.2 (State Transformers)

Using state-transformers, one can write imperative pro-
grams in a functional programming language, by treat-
ing an imperative statement as a function from states to
states (and, possibly, intermediate results). State trans-
formers can be classified according to whether they are
global or local, and according to whether state is fixed
or dynamic.

[22] and [23] describe local state-transformers that can
be embedded in other terms and that operate on a fized
state data structure. By contrast, [16] describes global
state-transformers that act as the main program and
thus cannot be embedded in another term. State in [16]
is dynamic, i.e. it consists of a heap with dynamically
created references.

Figure 4 shows an implementation of local state-
transformers with dynamic state. This is to my knowl-
edge the first fully formal treatment of this class of state-
transformers, even if [4] and [5] contain similar informal
proposals.

State is represented as a polymorphic function from

type State = all a. Name a -> a

type ST a = all b. (a -> State -> b) -> State -> b

-- Monadic Operators:

return i a-> 8T a

(>>=) :: 8STa->(a->STb) ->S8ThH
pure :: 8T a -> a

return a ks = kas

(p >>=q) ks p (\x ->qxk)s

pure p = p (\x => \s -> x) bot
bot = bot

-- State-Based Operators:

newref : ST (Name a)

(:=) :: Name a -> a -=> ST ()
deref :: Name a -> ST a

newref ks = newn->%kns

(n:=a) ks = k (O (upd s n a)

deref n ks = k(sn)s

upd s n X m = if n == m then x else s m

Figure 4: State Transformers

names of type Name a to terms of type a. Its type is:
all a.Name a -> a

A state-transformer of type ST ais a function that takes
a continuation and a state as arguments, and returns the
result of the continuation. Its type is:

all b.(a -> State -> b) -> State -> b

Note that the polymorphic types of state and state
transformers exceed the capabilities of first-order type
systems such as Haskell’s or ML’s. However, an efficient
implementation of state transformers would treat type
ST a as an abstract data type and would hide type State
altogether in order to guarantee that state is single-
threaded. Such an implementation could do with just
ML-style let-polymorphism.

State transformers form a Kleisli monad, with return as
the monad unit, and with infix (>>=) as the “bind” op-
erator. If we leave out the redundant state parameter s
this 1s just the standard continuation monad. The result
type of a continuation is an observer of type State -> a

(as in [21]).

Function pure, of type ST a -> a, allows one to get out
of the ST monad. pure runs its state transformer argu-
ment in an empty initial state with a continuation that
yields its first argument as answer.

The remaining operations access state. newref returns
a freshly allocated reference as result. Its implementa-
tion is based on v-abstraction. (n := a) updates the

state, returning the unit value as result, while deref n
returns the current value of the state at reference n.

This concludes our first implementation of state in Av.
It 1s perhaps surprising how simple such an implementa-
tion can be, once the problem of expressing local names
is taken care of. However, one could argue that we have
oversimplified, in that the implementation of Figure 4
does not really describe state! Indeed, there are two
trouble-spots.

The first problem is caused by the fact that the state ar-
gument s is not linear in the definition of deref. There-
fore, access to state is only single-threaded if the appli-
cation s n in the body of deref gets resolved before
control is passed to the continuation. But nothing in
the implementation forces this evaluation order! One
could solve the problem by making continuations strict
in their first argument. However, this forces s n to be
reduced to a wvalue, which 1s needlessly drastic. To en-
sure single-threadedness, it 1s enough to just perform
the function application without further evaluation.

Another problem concerns the meaning of readers and
assignments that involve names from some outer block.
In the implementation of Figure 4, such accesses are not
errors. Instead, the read or write is performed on a lo-
cally allocated cell that is named by the non-local name.
Therefore, the same name might identify several loca-
tions in different states. This approach, which is similar
to the semantics of state in [20], is perfectly acceptable
from a theoretical standpoint. But it raises some imple-
mentation problems, since it prevents the identification
of names with machine addresses.

Both problems are solved by a slightly more refined im-
plementation that marks stored terms with a data con-
structor. We modify the type of state as follows:

type State all a. Name a -> D a

data D a = D a

The implementation of the state-based operators then

becomes:
newref ks = newn ->
kn (upd s n (D bottom))
(n :=a) ks = case s n of

Db ->k () (upd s n (D a))
case 8 n of
Da->kas

deref n k s

In the new implementation, the case construct in the
body of deref forces s n to be evaluated before control
is passed to the case-branch. This takes care of the first
problem. Moreover, both readers and writers require
that an entry for the accessed reference exists in the
local state, and newref allocates such an entry for a
freshly created reference. This takes care of the second
problem.

The contribution of Av to this implementation is rather
subtle. It consists of the v-abstraction in the code of
newref and the equality test in function upd. Never-
theless, the presence of local names is important for
modeling dynamic local state in a simple way. To see
this, let’s try to model local state without local names,
by representing heaps as arrays with references as in-
dices, say. Now, any implementation of local state has
to distinguish between variables that are defined in dif-
ferent pure-blocks. This is necessary to guard against
access to non-local variables and against export of lo-
cal variables out of their block, both referentially opaque
operations. A straightforward scheme to distinguish be-
tween variables defined in different blocks would pass a
name supply to each block, such that the block, and all
the variables defined in it, can be tagged with a unique
identifier. The problem with this scheme is that it has
a “poisoning” effect on the environment that surrounds
a block. Each function now has to pass along name-
supply arguments even if the function itself does not
contain pure-blocks as subterms. It is not clear what is
gained by this method over a program that contains a
single, global state, and hence is imperative all the way
to the top.

4 Reduction

This section details the fundamental laws of Av-
reduction: reduction is confluent and there is a standard
evaluation order. The treatment largely follows [1], and
we assume that the reader is familiar with some of the
more fundamental definitions and theorems given there.
Most of the proofs in this and the following chapters are
sketched or left out; for a more detailed treatment, see

[11].

Confluence

We show in this section analogues for Av of the Finite
Developments and Church-Rosser theorems for the A-
calculus.

Definition 4.1 Let Agr be the extension of Av with
labeled redexes (Agz.M) N and pg V and with labeled

reduction rules
Bo : (M. M)N — [Nfe]M
bg : poV — (p, V).

Let —> be the reduction relation generated by o, 6o,
€q, Ux, Vp, Vn.

Theorem 4.2 (Finite Developments) — is strongly
normalizing.

Proof: The proof is similar to the proof of finite de-
velopments in the pure A calculus ([1],CH.11,§2). We
construct a family of non-negative decreasing weight-
ings and show that each reduction step maps a term
with a decreasing weighting to a term with a smaller
decreasing weighting.

Theorem 4.3 The notion of reduction in Av i1s Church-
Rosser: if M — My and M — M5 then there is a term
M3 s.t. M1 — M3 and M2 — Mg.

Proof: Using a case analysis on reduction rules; cou-
pled with a case analysis on the relative position of
redexes, one shows that the notion of reduction év is
weakly Church-Rosser and commutes with 5. Then by
Theorem 4.2 and Newman’s lemma ([1],CH.3,81) év is
Church-Rosser, and together with the lemma of Hind-
ley /Rosen ([1],CH.3,83) this implies the proposition.

Evaluation
As programmers, we are interested not only in proving

equality of terms, but also in evaluating them, i.e. re-
ducing them to an answer. We now define a computable

evaluation function that maps a term to an answer A
iff Av = M = A. Following Felleisen [2], the evalua-
tion function is defined by means of a context machine.
At every step, the machine separates its argument term
deterministically into an evaluation context and a redex
and then performs a reduction on the redex. Evaluation
stops once the argument is an answer. Evaluation con-
texts for Av are defined as follows:

E = []|EM|pE | vnE (2)

The first three clauses generate evaluation contexts for
the applied call-by-name A-calculus, whereas the last
clause is particular to Av.

Definition. The deterministic reduction relation —on
terms in Av 1s the smallest relation that satisfies

M AN = E[M]— E[N].

A simple inspection of the productions for E establishes
that — is indeed deterministic:

Proposition 4.4 For any redexes Ay, A, and evalua-
tion contexts F1, Fs,

El[Al] = EQ[AQ] = L= FEsNA = As.

A redex Ais a head redex of a term M if M = E[A], for
some evaluation context E. A redex that is not head
redex is called an internal reder. Reduction of internal
redexes keeps head and internal redexes separate, in the
sense of

Lemma 4.5 Let M be a program s.t. M 2. N where
A is an internal redex of M. Then,

(¢) If N has a head redex then so has M,

(#i) the residual of M’s head redex is head redex in N,
(#i7) the residuals of every internal redex in M are in-
ternal redexes in N.

Theorem 4.6 (Correspondence) For every program
M € Av and every answer A,

M—»AC}MTA.

Proof: Direction “«<” follows immediately. To prove
“=” assume that M —» A. One shows first as an inter-
mediate result that, whenever M — A, there 1s a term
N st. M — N — A, where the reduction sequence
N — A from N to A consists of only internal reduc-
tions. This result corresponds to the main lemma for
the Curry/Feys standardization theorem ([1],CH.11,§4)
and has exactly the same proof. That proof uses only
the theorem of finite developments (Theorem 4.2 for Av)
and a lemma equivalent to Lemma 4.5. The proposition
then follows from the observation that no internal Av re-
duction ends in an answer, hence we must have N = A.

5 Observational Equivalence

Observational equivalence is the most comprehensive
notion of equivalence between program fragments. Intu-
itively, two terms are observationally equivalent if they
cannot be distinguished by some experiment. Experi-
ments wrap a term in some arbitrary context that binds
all free identifiers and local names in a term. The
only observation allowed in an experiment is whether
the resulting program reduces to an answer, and, if
so, to which one. We define observational equiva-
lence for arbitrary extensions of applied A calculus. In
the following, let 7 be an equational theory that ex-
tends A and has term language Terms(7) and a set
of answers Ans(7) C Names®(T). We assume that
Names®(T)\Ans(T) is infinite.

Definition 5.1 Two terms M, N € Terms(T) are ob-
servationally equivalent in T, written 7 |= M = N, iff
for all contexts C' in Terms(T) such that C[M] and
C[N] are closed, and for all answers A € Ans(7),

T+ CIM=4A & T F C[N]= A.

Proposition 5.2 The following are observational
equivalences in Av:

vnvm.M =2 vmuvn M
vn.M

(n# m)
M (n ¢ FN(M))

R

Definition 5.3 7 is an observational extension of Ty if
Terms(T) 2 Terms(Ty) and, for all M € Terms(7Ty),

ToEM=N =T EM=N.

The extension is conservative if the implication can be
strengthened to an equivalence.

The main result of this section states that Av is an ob-
servational extension of A. The proof relies on the con-
struction of a syntactic embedding from Av to A. Syn-
tactic embeddings were first defined in [13]; we use here
the following, simplified definitions.

Definition 5.4 Given an inductively defined term lan-
guage Terms, an extended term is formed from the in-
ductive definitions of Terms and []. (Hence, both terms
and contexts are extended terms).

Definition 5.5 A term M is A-closed iff FV(M) = 0.
M may contain free occurrences of local names.

Definition 5.6 (Syntactic Embedding) Let 7 and 7
be extensions of A such that Terms(7T) D Terms(Tp)

and Ans(7) = Ans(Tp). Let £ be a syntactic mapping
from extended 7-terms to extended 7p-terms. Then &£
is a syntactic embedding of T in Ty if 1t satisfies the
following two requirements.

1. £ preserves A-closed 7y-subterms. For all 7-
contexts C'; A-closed 7y-terms M,

Ty + E[CIMT] = E[CT M.

2. & preserves semantics. For all closed 7-terms M,
answers A,

THM=As T, E[M]= A.

Theorem 5.7 Let 7 and 7; be extensions of A such
that Terms(7T) D Terms(7y) and Ans(7) = Ans(7Tp).
If there 1s a syntactic embedding of 7 in 7y then 7 is
an observational extension of 7.

The next lemma was shown in [11].

Lemma 5.8 There exists a syntactic embedding of Av
n A

Together with Theorem 5.7, this implies:

Theorem 5.9 Av is a conservative observational exten-
sion of A.

Proof: By Lemma 5.8, £ is a syntactic embedding of
Av in A. By Theorem 5.7 this implies that Av is
an observational extension of A. That the extension
is conservative follows directly from the observation
that Av-convertibility is a conservative extension of A-
convertibility.

6 Denotational Semantics

We develop a denotational semantics for a typed version
of Av that results from adding v-abstractions to PCF
terms. The semantics 1s an extension of the continuous
function model for PCF [18]. In that sense, it follows
the spirit of previous sections, where Av was studied as
an extension of A-calculus, rather than as a theory of its
own.

We use a “possible worlds” semantics [15], where a world
is characterized by a finite set of names. Intuitively,
these are the names available for program evaluation.
As a new twist, the meaning of the term vn.M in a
world W is the intersection of the meaning of M in

all possible worlds that extend W with a new suitable
location. A location is suitable if it does not clash with
locations used in other parts of the program. Instead
of trying to trace these locations explicitly, we simply
choose the “best” co-finite set L of possible candidate
locations in the information ordering. I.e.

iy = U () [MIdn—1
Lepeefin(Name) leL

It is a consequence of Theorem 6.9 that the least upper
bound always exists. The meaning of all other con-
structs is the same as in PCF.

Example 6.1 The meaning of vn.n is bottom:

ULepwf”‘(Name) mleL [
= 1

[vn.n] p

This corresponds to the term vn.n being “stuck” in the
reduction semantics. It reflects on the fact that the
identity of a name is known only within its scope.

Example 6.2 The meaning of vn.vm.n == mis false.

Indeed,

[vnvmn==mlp = Ug Miex UL Mier ¥ =1

where K and L range over p®°/(Name). If K, k, and
L are chosen, then (,., k = [is either L (if k € L)
or false (if k ¢ L). Hence, for any given K and k, the
value of ULGWCOfm(Name) (Mier, k =1is false. But this
implies [vn.vm.n == m] p = false.

In the rest of this section, we make these notions precise.
In particular, we need to give a semantic characteriza-
tion of the functions that belong to a world W — infor-
mally, these are the functions that access only locations
in W. We also have deal with the fact that the [ub of a
chain of functions that access strictly increasing sets of
locations accesses an infinite number of locations, and
hence is not a member of any world. As a consequence,
our domains form a locally complete partial order ({epo)
[7] rather than a cpo.

We base our discussion on a typed version of Av, given
by the typing rules in Figure 5. We also assume the
usual constants and operations of PCF, without listing
their typing rules explicitly.

Definition 6.3 Let Name be a countably infinite set
of names, and let m,n € Name. The exchange X, , is
the unique logical relation such that for names z, y,

rXpny & m=zAy=nV
m=yAzx=nV

| D o o R

e:o b M1

(NAME) I')n:Name b n: Name
I')n:Name - M .71
(NU) 'vanM:1
I' = M: Name I' F N:Name
(FQ) ' - M == N : Bool

Figure 5: Typing Rules for Av

(ABS) ' XeM: 7
r-mM:c—r ' = N:o
(APPL) T - MN:r
(ID) [T,z:r>a:7]p =
(ABS) [T X M:o—1]p =
(APPL) [T M N :1]p
(NAME) [I',n:Namet n: Name] p =
(NU) [T>vnM:1]p =
(EQ) [T>M == N : Bool] p =

pT
Ay T z:0> M : 7] plx — y]
(> M:o—=7]p)([l>N:0]p)

pn
Urepeosin(name) (Nier [T n:Name> M : 7] pln —]
[T>M:Name]p=[T'> N: Name] p

Figure 6: Semantic Function [-]

for elements of other ground types,
T Xm,n y < r=y,

and such that L X,,, L.

Exchanges have the property that they are closed under
intersections and unions:

Lemma 6.4 (i) If, for all i € I, 4; X, », B, then

iel iel
(4) If{A; | i e I} and {B; | ¢ € I} are directed sets
and for all i € I, A; Xy B;, then
U4 X B
iel iel
Definition 6.5 The smooth set of a value x € D,
{m: Name | 3L € pf ™" (Name).
VneLl .z Xpmn 2}

smooth(z) =

The support of & is the complement of its smooth set,

support(x) = Name \ smooth(z).

10

Informally, support(x) is « if is a name, and is the set
of names accessed by x if x is a function. A character-
1zation of support and smooth that is easier to use in
proofs is given by:

Lemma 6.6

m € smooth(x) < Vne smooth(z). ¢ Xmn 2.

This equivalence cannot be used to define smooth, how-
ever, since its right hand side is not monotonic in
smooth(z).

Example 6.7 The support of the name n is {n}. The

support of the function f © e m is {m}. This
can be derived as follows: Let n be any name differ-
ent from m. Then m X,,, n. But f m # f n,
which proves =(f X, »f) and hence shows that m is
not in smooth(f). On the other hand, let k,[be ar-
bitrary names different from m. It is easy to check
that f Xy ; f. Hence, by Lemma 6.6, smooth(f) 2
Name\{m}. In summary, smooth(f) = Name\{m},
and hence support(f) = {m}.

Definition 6.8 For type 7 and finite name set W, the
domains [7]w and [r] are defined as follows:

[Name]lw = W,.

For all other ground types o, [o]w is the usual in-
terpretation of o in PCF.

[o — 7lw = {f : [o] LN [7] | support(f) C W,
where D % F denotes the locally continuous func-
tions from D to F.

[7] = Uwe pfin(Name) [r]w.

The interpretation of Av terms is defined in Figure 6.
Let T’ be a set of type hypotheses and let W be a finite
set of names. A (T, W)-environment is a function p
on identifiers and names that maps each identifier = €
dom(T") to a value in [I'(#)], and that maps each name
n € dom(T') to a unique name in W. The semantic
function [-] takes as arguments a type judgement T >
M : 7 and a (T, W)-environment p. It yields a value in

[rlw.

Theorem 6.9 For all valid type judgements I' = M :
7, finite name sets W and (T', W)-environments p,

[T F M:7]p e [7]w.

Proof: A standard induction on type derivations. The
following lemma is needed for the abstraction case.

Lemma 6.10 Let m,n e Name. Let ' = M : 7 be a
valid type judgement. Let p, p’ be (T', W) environments
such that, for all € dom(T'), px X, n p ®. Then

[T>M:7]p Xpp [T>M:7]p.

Theorem 6.11 [-] defines a computationally adequate
model of Av.

Proof: One verifies easily that all reductions in Av are
equalities in the model. To show adequacy, we adapt
Plotkin’s adequacy proof for PCF [18]. Say M is com-
putable if one of conditions (1)-(4) holds.

(1) M is closed of ground type, and [M] = [A] implies
M — A.

(2) M is closed, of type ¢ — 7, and M N is computable
for all closed, computable terms N of type o.

(3) z : Tis free in M, and [N/x]M is computable for all
closed, computable terms N of type 7.

(4) n: Name is free in M, and vn.M is computable.
Using structural induction on M, one shows that every
term in Av 1s computable, which implies the proposition.

The model fails to be fully abstract. A counter-example
to full abstraction is as follows. Consider the program

11

fragment

vm.
f(Az.if x == m then z else 1) and
f(Az.if x == m then L else z)

for an arbitrary Boolean ranged function f, defined else-
where. An easy case analysis shows that this fragment
is observationally equivalent to

f(L).

However, the two fragments are distinguished in our
model. This can be seen by substituting for f the func-
tion F' defined below.

F(l‘):{

A similar example was suggested to us by Peter
O’Hearn. It remains to be seen whether recent advances
in models for Algol-like languages [14] are applicable in
the setting of Av.

true if supporit(z) # 0

false otherwise

7 Conclusions

We have studied reduction semantics, observational
equivalence theory and denotational semantics of Av,
a theory for functions that create local names. Each of
these three equational theories for Av is a conservative
extension of the corresponding standard theory for A
(respectively PCF). Av is in that sense fully compatible
with functional programming. There is also good evi-
dence that it 1s a useful foundation for modelling many
constructs that so far were outside the domain of func-
tional programming. For instance, Example 3.2 shows
how imperative programming with mutable local vari-
ables can be expressed in Av. It would be interesting to
see other applications of the calculus, such as in logic or
concurrent programming.

Acknowledgements This work was supported in
part by grant N00014-91-J-4043 from DARPA. I thank
Vincent Dornic, Paul Hudak, Peter O’Hearn and Dan
Rabin for their comments on earlier versions of the pa-
per. Dan Rabin in particular helped to improve its pre-
sentation considerably. John Launchbury, Jayadev Mis-
ra, David Turner and Phil Wadler also commented on
this work in helpful discussions.

References

(1]

[10]

[11]

[12]

H. P. Barendregt. The Lambda Calculus: its Syntax
and Semantics, volume 103 of Studies in Logic and the
Foundations of Mathematics. North-Holland, Amster-

dam, revised edition, 1984.

E. Crank and M. Felleisen. Parameter-passing and the
In Proc. 18th ACM Symposium on
Principles of Programming Languages, Orlando, Flori-
da, pages 233-244, January 1991.

lambda-calculus.

M. Felleisen and R. Hieb. The revised report on the
syntactic theories of sequential control and state. The-
oretical Computer Science, 103:235-271, 1992.

P. Hudak and D. Rabin. Mutable abstract datatypes
— or — how to have your state and munge it too. Re-
search Report YALEU/DCS/RR-914, Yale University,
Department of Computer Science, July 1992.

J. Launchbury. Lazy imperative programming. In

SIPL '98 ACM SIGPLAN Workshop on State in Pro-
gramming Languages, Copenhagen, Denmark, pages
46-56, June 1993. Yale University Research Report
YALEU/DCS/RR-968.

I. Mason and C. Talcott.

equivalence in the presence of side effects.

Axiomatising operational
In IFEEFE
Symposium on Logic in Computer Science, pages 284—
303, Asilomar, California, June 1989.

A. R. Meyer and K. Sieber. Towards fully abstract se-
mantics for local variables: Preliminary report. In Proc.
15th ACM Symposium on Principles of Programming
Languages, pages 191-203. ACM, ACM Press, Januar
v 1988.

R. Milner. Functions as processes. Rapport de
Recherche 1154, INRIA Sophia-Antipolis, February
1990.

R. Milner. Elements of interaction. Communications

of the ACM, 36(1):78-89, January 1993. Turing Award
lecture.
E. Moggi.
ads. In Proceedings 1989 IEEE Symposium on Logic in
Computer Science, pages 14-23. IEEE, June 1989.

M. Odersky. A syntactic theory of local names. Re-
search Report YALEU/DCS/RR-965, Department of
Computer Science, Yale University, May 1993.

M. Odersky and D. Rabin. The unexpurgated call-
by-name, assignment, and the lambda-calculus. Re-
search Report YALEU/DCS/RR-930, Department of
Computer Science, Yale University, May 1993.

Computational lambda-calculus and mon-

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

M. Odersky, D. Rabin, and P. Hudak. Call-by-name,
In Proc. 20th
ACM Symposium on Principles of Programming Lan-

call-by-value, and the lambda calculus.

guages, pages 43-56, January 1993.
P. O’Hearn and R. D. Tennent.

metricity and local variables. In Conference Record
of the Twentieth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
Charleston, South Carolina, January 10-13, 1993,
pages 171-184. ACM Press, January 1993.

Relational para-

F. J. Oles. A Category-Theoretic Approach to the Se-
mantics of Programming Languages. PhD thesis, Syra-
cuse University, August 1982.

S. L. Peyton Jones and P. Wadler.
In Proc. 20th ACM Symposium
on Principles of Programming Languages, pages 71-84.
ACM Press, January 1993.

Imperative func-

tional programming.

A. Pitts and I. Stark. On the observable properties
of higher order functions that dynamically create lo-
cal names. In SIPL 93 ACM SIGPLAN Workshop on
State in Programming Languages, Copenhagen, Den-
mark, pages 31-45, June 1993. Yale University Research
Report YALEU/DCS/RR-968.

G. D. Plotkin. LCF considered as a programming lan-
guage. Theoretical Computer Science, 5:223-255, 1977.

J. C. Reynolds. Preliminary design of the programming
language Forsythe. Technical Report CMU-CS-88-159,
Carnegie Mellon University, June 1988.

J. G. Riecke. Delimiting the scope of effects. In Proc.
Conf. on Functional Programming and Computer Ar-
chitecture, pages 146155, June 1993.

V. Swarup, U. S. Reddy, and E. Ireland. Assignments
for applicative languages. In J. Hughes, editor, Func-
tional Programming Languages and Computer Archi-
tecture, pages 192-214. Springer-Verlag, August 1991.

Lecture Notes in Computer Science 523.

P. Wadler. In Proc. ACM
Conf. on Lisp and Functional Programming, pages 61—
78, June 1990.

Comprehending monads.

P. Wadler. The essence of functional programming. In
Proc.19th ACM Symposium on Principles of Program-
ming Languages, pages 1-14, January 1992.

S. Weeks and M. Felleisen. On the orthogonality of as-
signments and procedures in Algol. In Proc. 20th ACM
Symposium on Principles of Programming Languages,
pages 57-70. ACM Press, January 1993.

