
A Functional Theory of Local Names

Martin Odersky

Universit�at Karlsruhe�

����� Karlsruhe� Germany

odersky	ira
uka
de

Revised from a paper presented at the ��st ACM Symposium on Principles of Programming Languages� January ����

Abstract

�� is an extension of the ��calculus with a binding con�
struct for local names� The extension has properties
analogous to classical ��calculus and preserves all ob�
servational equivalences of �� It is useful as a basis for
modeling wide�spectrum languages that build on a func�
tional core�

� Introduction

Recent years have given us a good deal of theoreti�
cal research on the interaction of imperative program�
ming �exempli�ed by variable assignment� and function�
al programming �exempli�ed by higher order functions�
��	 
	 ��	 
�	 
��� The commonmethod of all these works
is to propose a ��calculus extended with imperative fea�
tures and to carry out an exploration of the operational
semantics of the new calculus�

Based on our own experience in devising such an ex�
tended �� calculus ����	 the present work singles out the
name	 whose only observational property is its identity	
as an essential component of any such extension� We
present a simple extension of the pure ��calculus with
names� we show by examples how much of the �avor
of imperative programming is captured by this simple
extension	 and we prove compatibility of the extended
calculus with the pure calculus in terms of both opera�
tional and denotational semantics�

�Most of this work was done while at Yale University

Permission to copy without fee all or part of this material is grant�
ed provided that the copies are not made or distributed for direct
commercial advantage� the ACM copyright notice and the title of
the publication and its date appear� and notice is given that copy�
ing is by permission of the Association for Computing Machinery�
To copy otherwise� or to republish� requires a fee and�or speci�c
permission�
c� ���	 ACM

We are in good company� for instance Milner�s Turing
Award Lecture emphasizes naming as the key idea of
the ��calculus ���� However	 Milner relies on names and
processes alone	 and requires an implementation map�
ping to recapture functional programming ���� This im�
plementation is not fully abstract in that it invalidates
observational equivalences that hold in a purely func�
tional programming language�

By contrast	 this paper presents a syntactic theory for
names that builds directly on �call�by�name� ��calculus�
The basic idea is to generalize the notion of constant
symbol already present in applied ��calculus	 by intro�
ducing an abstraction �n�M that binds a name n� Con�
stant symbols in classical applied ��calculus then be�
come a special case of names that are not bound any�
where� The new calculus	 ��	 is pleasingly symmetric�
Names can be bound just like placeholder identi�ers in
��abstractions	 and both names and identi�ers are sub�
ject to ��renaming� The di�erence between the two lies
in the operations that can be applied to them� One can
substitute a term for an identi�er	 and one can compare
two names for equality	 but not vice versa�

In a sense	 names are the greatest common denomina�
tor of all programming languages that are not purely
functional� Hence	 one expects a theory that combines
names with ��abstractions to help in understanding de�
sign issues of wide�spectrum languages that build on a
functional core� So far	 the main results of this work
are�

� Names can be added to the � calculus in a refer�
entially transparent way� Full � remains a valid
reduction rule�

� The resulting calculus	 ��	 is con�uent and admits
a standard evaluation function�

� The addition of names is fully compatible with
functional programming� Every observational
equivalence in � carries over to ��� This has im�

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197598876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


portant practical consequences� We are guaranteed
that every equational technique for verifying	 trans�
forming	 or compiling functional programs is also
applicable to programs with local names�

� The extension property also applies to denotational
semantics� There is a model of �simply typed� ��
that is a conservative extension of the continuous
function model of PCF�

Related work� A theory with a scope close to �� has
also been developed independently by Pitts and Stark
����� The term languages of both theories are strikingly
similar	 but their operational semantics are quite di�er�
ent� The nu�calculus of Pitts and Stark is intended to
model names as they arise in ML�style references	 for
instance� It is not intended to be a referentially trans�
parent extension of a functional core �this is discussed
further in Section 
��

Recent work on monads ���	 

	 
�	 �
	 �� shares with ��
the motivation to extend functional programming lan�
guages to new application domains� Monads solve the
problem of making sequencing explicit	 which is needed
if state is to be updated destructively� �� solves the or�
thogonal problem of expressing and encapsulating refer�
ences� The two techniques complement each other well	
as is shown in Example ��
�

Some of the more syntactic themes of this paper have
also been addressed in the context of �var ����� The
present work extends the scope of ���� with an inves�
tigation of models for ��� It also achieves considerable
simpli�cations by isolating the treatment of names from
all other issues of imperative programming� This sep�
aration of concerns helped simplify the �rather hard�
proofs on the observational equivalence theories of the
imperative language� For this reason	 we have based an
extended version of the �var�report on �� ��
��

The rest of this paper is organized as follows� Sec�
tion 
 describes term syntax and reduction rules of ���
Section � presents two applications of local names	 a
type reconstruction algorithm and an implementation
of state� Section � shows properties of ��	 in particular
its con�uence and its standard evaluation order� Sec�
tion � discusses the observational equivalence theory of
�� and shows that it is a conservative extension of the
corresponding theory of �� Section 
 gives a denotation�
al semantics for ��� Section � concludes�

� The �� Calculus

Terms� The term�forming productions of �� are giv�
en in Figure �� The three productions on the �rst line
are those of classical	 pure ��calculus� The three pro�
ductions on the next line are particular to ��� Besides
��bound identi�ers there is a new	 countably in�nite al�
phabet of names� Names fall into two classes	 global
and local� A global name nc is an atomic constant� We
assume that there are two such constants denoting the
Boolean values true and false� A local name n� is a
name that is bound in a name abstraction �n��M � In
contrast to the case of ��bound identi�ers	 nothing is ev�
er substituted for a name� Rather	 names can be tested
for equality	 as in n� �� n�� Both constants and local
names can be operands of �����

We study here an applied variant of ��� Accordingly	 we
have on the last line productions for pairs �M��M�� and
applied primitive operators pM � Primitive operators
are always unary	 but operators of greater arity can be
simulated by currying� We assume that at least the
following operators are de�ned�

pair� �M��M�� � true

pair� � false

name� n � true

name� � false

fst �M��M�� � M�

snd �M��M�� � M�

Notational conventions� We use BV �M � and
FV �M � to denote the bound and free identi�ers in
a term M 	 respectively� Analogously	 BN �M � and
FN �M � denote bound and free local names in a term
M � A term is closed if FV �M � � FN �M � � �� Closed
terms are also called programs� Note that programs do
not contain free local names n� 	 but they may contain
constants�

We use M � N for syntactic equality of terms �modulo
��renaming� and reserve M � N for convertibility� If R
is a notion of reduction	 we use ���

R
to express that M

reduces in one R reduction step to N 	 and M ���
R
� N to

express that M reduces in zero or more R�steps to N �

We also use M ���� N to express that M reduces to N
by contracting redex � in M �

The syntactic category of values V comprises constants	
names	 pairs	 and � abstractions� An observable value

�or answer� A is an element of some nonempty subset






x � Idents ��bound identi�ers

n � Names � Namesc �Names� names

nc � Namesc constants

n� � Names� ��bound local names

p � Primops primitive operators

M � �� terms

M ��� x j �x�M j M� M�

j n j �n�M j M� ��M�

j �M��M�� j p M

Figure �� Syntax of ��

� ��x�M � N � �N�x�M

	 p V � 	�p� V �

eq n �� n � true

n �� m � false �n �� m�

�� �n��x�M � �x��n�M

�p �n��M��M�� � ��n�M�� �n�M��

�n �n�m � m �n �� m�

Figure 
� Reduction rules for ��

of the alphabet of constants�

V ��� n j �M��M�� j �x�M

A � Answers � Namesc

A context C� � is a term with a single hole � � in it� C�M �
denotes the term that results from replacing the hole in
C� � with M �

Following Barendregt ���	 we take terms that di�er only
in the representatives of bound identi�ers and names to
be equal� That is	 all terms we write are representa�
tives of equivalence classes of ��convertible terms� To
avoid name capture problems in substitutions we re�
strict ourselves to representatives in which bound and
free identi�ers are always distinct	 and we employ the
same conventions for names�

Reduction Rules� Figure 
 gives the reduction rules
of ��� They de�ne a reduction relation between terms in
the usual way� we take ��� to be the smallest relation

on ��	�� that contains the rules in Figure 
 and that	
for any context C	 is closed under the implication

M � N 
 C�M �� C�N ��

Rule � is the usual reduction rule of pure ��calculus�
Rule 	 expresses rewriting of applied primitive opera�
tors� To abstract from particular primitive operators
and their rewrite rules	 we only require the existence of
a partial function 	 from primitive operators p and val�
ues V to terms� 	 can be arbitrary	 as long as its result
does not depend on the body of a an argument func�
tion	 or the value of a local argument name� That is	
we postulate that for every primitive operator p there
exist closed terms Np

c �c � Namesc�� Np
� 	 N

p
� and N

p

�����

such that for all values V for which 	�p� V � is de�ned�

�



	�p� V � �

�����
����

Np
c if V � c

Np
� if V is a local name

Np

� if V is a ��abstraction

Np

����� M� M� if V � �M��M��

Note that all primitive operators are strict	 since 	 re�
quires its arguments to be values�

The remaining rules of Figure 
 are particular to ���
Rule eq de�nes ���� to be syntactic identity� Rule ��
says that �� and ��pre�xes commute� Rule �p says that
��pre�xes distribute through pairs� Finally	 rule �n says
that a ��pre�xes is absorbed by any name that di�ers
from the name bound in the pre�x� Taken together	
these rules have the e�ect of pushing names into a term	
thus exposing the term�s outer structure and allowing it
to interact with its environment�

An important consequence of these rules is that the term
�n�n cannot be reduced further	 but is not a value ei�
ther	 and hence cannot be decomposed or compared� In
other words	 the identity of a name is known only within
its �dynamic� scope� This does not restrict expressive�
ness since it is always possible to extend the scope of a
variable by passing the �rest� of the computation as a
continuation �see the examples in the next section��

An Alternative� Instead of �pushing� ��pre�xes into
a term	 one might also consider to �pull� them out of
a function application� I�e� rather than with the � rules
of Figure 
 one might want to work with the rules

�L ��n�M��M� � �n��M� M��

�R M� ��n�M�� � �n��M� M���

These rules can be regarded as an axiomatization of
gensym in Scheme� They closely correspond to the op�
erational semantics of the nu�calculus �����

Rule �L is 
�equivalent to rule ��� But adding rule �R to
the � calculus breaks the Church�Rosser property� For
instance	

��x��x� x�� ��n�n�

reduces �with �� to ��n�n� �n�n� but also reduces �with
�R and then �� to �n��n� n�	 and the two reducts do not
reduce by ��L�R to a common term� Hence	 � needs to
be abandoned if we want to have a con�uent calculus
with �R�

The di�erence between the the nu�calculus and �� can
also be illustrated by looking at their reductions on the
term

��x�x �� x� ��n�n��

With �R and a suitably restricted ��rule this reduces to
true	 while in �� this reduces to

�n�n �� �n�n�

a term in normal form that is not a value �such terms are
often called �stuck��� Intuitively	 reduction gets stuck
since the value of a symbol is unde�ned outside its scope�
This restriction is required to ensure that all equalities
of the underlying ��calculus are preserved� Indeed	 the
preservation law even extends to all observational equiv�
alences �Theorem �����

A Note on Church�Encoding Pairs� We have cho�
sen to make the pairing function ��� �� a primitive term
constructor with associated primitive projections fst
and snd� What would have happened if we had en�
coded pairs as functions instead� The Church�encoding
of pairs de�nes a pairing function

P � �x��y��f�f x y

and associated projections

�� � �p�p ��x��y�x�

�� � �p�p ��x��y�y��

The crucial question is what happens to �p	 or	 rather
its Church�encoded form

�n�P M N � P ��n�M � ��n�N �� ���

It is easily veri�ed that this not an equality derivable
from the other reductions� On the other hand	 if we
apply a projection �i to each side of ��� then we do get
an equality that is derivable from � and ��� This is
shown by some straightforward computation�

�� ��n�P M N �

� �by de�nition of ��	 P �

��p�p ��x��y�x�� ��n��f�f M N �

� �by ��

��n��f�f M N � ��x��y�x�

� �by ���

��f��n�f M N � ��x��y�x�

� �by ��

�n�M

� �by de�nition of ��	 P and ��

�� �P ��n�M � ��n�N ��

The case where the projection is �� is completely analo�
gous� In summary	 the �p rule for Church�encoded pairs
is subsumed by �� and �	 as long as pairs are used as
intended �i�e� only projections are applied to them��

�



data Id � String unify �� Type �� Type �� SubstTran a

data Term � ID Id � AP Term Term �

LAM Id Term unify t� t� k s � case mgu 	s t�
 	s t�
 of

data TID � Name 	
 Suc s� �� k 	s � s�


data Type � TV TID � Type ��� Type Err �� Err

data E a � Suc a � Err

tp �� TypeEnv �� Term �� Type

type TypeEnv � Id �� Type �� SubstTran a

type Subst � Type �� Type

type SubstTran a � 	Subst �� E a
 �� Subst �� E a tp e 	ID n
 t � unify 	e n
 t

tp e 	AP a b
 t � new n ��

upd �� 	a �� b
 �� a �� b �� 	a �� b
 tp e a 	TV n ��� t
 �

upd f x a y � if y �� x then a else f y tp e b 	TV n


tp e 	LAM x a
 t � new n �� new m ��

mgu �� Type �� Type �� E Subst unify 	TV n ��� TV m
 t �

�� most general unifier
 definition is left out tp 	upd e x 	TV n

 a 	TV m


Figure �� Type reconstruction algorithm for the simply typed ��calculus�

� Applications

To demonstrate how the ���extensions can be used in a
functional programming language	 we study two exam�
ple applications� a type reconstruction algorithm and
an implementation of state transformers� We use a pro�
gramming notation that extends Haskell with a new
construct new n �� M	 the ASCII form of �n�M � A name
has type Name a	 for some type a� The typing rule rule
for new is�

��n � Name � � � M � �

� � new n �� M � �

Example ��� �Type Reconstruction� Type recon�
struction algorithms for polymorphically typed lan�
guages need to de�ne fresh identi�ers for type vari�
ables �on the �y�� To this purpose	 a name supply
is usually passed along as an additional argument to
the type reconstruction function� As an alternative	 we
present here a type reconstruction algorithm for the sim�
ply typed ��calculus that replaces the name supply by
bound �� names�

The code for the type checker is given in Figure �� Types
are either variables TV n or function types t� ��� t��
The identifying part n of a type variable TV n is a name
�of type TID	 which is a synonym for Name ���� The
main function tp constructs a proof for a goal e � a � t	
where e is a typing environment	 a is a term	 and t is a
type� e	 a and t are the �rst three arguments of tp�

Fresh names are created in the clauses of tp that have
to do with function abstraction and application� tp is
written in continuation passing style in order to extend
the scope of names as far as needed� Its result is a
substitution transformer �of type SubstTran�	 which is
a mapping that takes a continuation and a substitution
and yields either failure or succeeds with some result
type that is determined by the continuation�

Example ��� �State Transformers�
Using state�transformers	 one can write imperative pro�
grams in a functional programming language	 by treat�
ing an imperative statement as a function from states to
states �and	 possibly	 intermediate results�� State trans�
formers can be classi�ed according to whether they are
global or local	 and according to whether state is �xed
or dynamic�

�

� and �
�� describe local state�transformers that can
be embedded in other terms and that operate on a �xed
state data structure� By contrast	 ��
� describes global
state�transformers that act as the main program and
thus cannot be embedded in another term� State in ��
�
is dynamic	 i�e� it consists of a heap with dynamically
created references�

Figure � shows an implementation of local state�
transformers with dynamic state� This is to my knowl�
edge the �rst fully formal treatment of this class of state�
transformers	 even if ��� and ��� contain similar informal
proposals�

State is represented as a polymorphic function from

�



type State � all a� Name a �� a

type ST a � all b� 	a �� State �� b
 �� State �� b

�� Monadic Operators� �� State�Based Operators�

return �� a �� ST a newref �� ST 	Name a


	���
 �� ST a �� 	a �� ST b
 �� ST b 	��
 �� Name a �� a �� ST 	


pure �� ST a �� a deref �� Name a �� ST a

return a k s � k a s newref k s � new n �� k n s

	p ��� q
 k s � p 	�x �� q x k
 s 	n �� a
 k s � k 	
 	upd s n a


deref n k s � k 	s n
 s

pure p � p 	�x �� �s �� x
 bot

bot � bot upd s n x m � if n �� m then x else s m

Figure �� State Transformers

names of type Name a to terms of type a� Its type is�

all a�Name a �� a

A state�transformer of type ST a is a function that takes

a continuation and a state as arguments	 and returns the

result of the continuation� Its type is�

all b�	a �� State �� b
 �� State �� b

Note that the polymorphic types of state and state
transformers exceed the capabilities of �rst�order type
systems such as Haskell�s or ML�s� However	 an e cient
implementation of state transformers would treat type
ST a as an abstract data type and would hide type State
altogether in order to guarantee that state is single�
threaded� Such an implementation could do with just
ML�style let�polymorphism�

State transformers form a Kleisli monad	 with return as
the monad unit	 and with in�x ���	� as the �bind� op�
erator� If we leave out the redundant state parameter s
this is just the standard continuation monad� The result
type of a continuation is an observer of type State �� a

�as in �
����

Function pure	 of type ST a �� a	 allows one to get out
of the ST monad� pure runs its state transformer argu�
ment in an empty initial state with a continuation that
yields its �rst argument as answer�

The remaining operations access state� newref returns
a freshly allocated reference as result� Its implementa�
tion is based on ��abstraction� �n �	 a� updates the

state	 returning the unit value as result	 while deref n

returns the current value of the state at reference n�

This concludes our �rst implementation of state in ���
It is perhaps surprising how simple such an implementa�
tion can be	 once the problem of expressing local names
is taken care of� However	 one could argue that we have
oversimpli�ed	 in that the implementation of Figure �
does not really describe state! Indeed	 there are two
trouble�spots�

The �rst problem is caused by the fact that the state ar�
gument s is not linear in the de�nition of deref� There�
fore	 access to state is only single�threaded if the appli�
cation s n in the body of deref gets resolved before
control is passed to the continuation� But nothing in
the implementation forces this evaluation order! One
could solve the problem by making continuations strict
in their �rst argument� However	 this forces s n to be
reduced to a value	 which is needlessly drastic� To en�
sure single�threadedness	 it is enough to just perform
the function application without further evaluation�

Another problem concerns the meaning of readers and
assignments that involve names from some outer block�
In the implementation of Figure �	 such accesses are not
errors� Instead	 the read or write is performed on a lo�
cally allocated cell that is named by the non�local name�
Therefore	 the same name might identify several loca�
tions in di�erent states� This approach	 which is similar
to the semantics of state in �
��	 is perfectly acceptable
from a theoretical standpoint� But it raises some imple�
mentation problems	 since it prevents the identi�cation
of names with machine addresses�






Both problems are solved by a slightly more re�ned im�

plementation that marks stored terms with a data con�

structor� We modify the type of state as follows�

type State � all a� Name a �� D a

data D a � D a

The implementation of the state�based operators then

becomes�

newref k s � new n ��

k n 	upd s n 	D bottom



	n �� a
 k s � case s n of

D b �� k 	
 	upd s n 	D a



deref n k s � case s n of

D a �� k a s

In the new implementation	 the case construct in the
body of deref forces s n to be evaluated before control
is passed to the case�branch� This takes care of the �rst
problem� Moreover	 both readers and writers require
that an entry for the accessed reference exists in the
local state	 and newref allocates such an entry for a
freshly created reference� This takes care of the second
problem�

The contribution of �� to this implementation is rather
subtle� It consists of the ��abstraction in the code of
newref and the equality test in function upd� Never�
theless	 the presence of local names is important for
modeling dynamic local state in a simple way� To see
this	 let�s try to model local state without local names	
by representing heaps as arrays with references as in�
dices	 say� Now	 any implementation of local state has
to distinguish between variables that are de�ned in dif�
ferent pure�blocks� This is necessary to guard against
access to non�local variables and against export of lo�
cal variables out of their block	 both referentially opaque
operations� A straightforward scheme to distinguish be�
tween variables de�ned in di�erent blocks would pass a
name supply to each block	 such that the block	 and all
the variables de�ned in it	 can be tagged with a unique
identi�er� The problem with this scheme is that it has
a �poisoning� e�ect on the environment that surrounds
a block� Each function now has to pass along name�
supply arguments even if the function itself does not
contain pure�blocks as subterms� It is not clear what is
gained by this method over a program that contains a
single	 global state	 and hence is imperative all the way
to the top�

� Reduction

This section details the fundamental laws of ���
reduction� reduction is con�uent and there is a standard
evaluation order� The treatment largely follows ���	 and
we assume that the reader is familiar with some of the
more fundamental de�nitions and theorems given there�
Most of the proofs in this and the following chapters are
sketched or left out� for a more detailed treatment	 see
�����

Con�uence

We show in this section analogues for �� of the Finite
Developments and Church�Rosser theorems for the ��
calculus�

De	nition 
�� Let ��� be the extension of �� with
labeled redexes ���x�M � N and p� V and with labeled
reduction rules

�� � ���x�M � N � �N�x�M

	� � p� V � 	�p� V ��

Let ��
�
be the reduction relation generated by ��	 	�	

eq	 ��	 �p	 �n�

Theorem 
�� �Finite Developments� ��� is strongly
normalizing�

Proof� The proof is similar to the proof of �nite de�
velopments in the pure � calculus ����	CH���	x
�� We
construct a family of non�negative decreasing weight�
ings and show that each reduction step maps a term
with a decreasing weighting to a term with a smaller
decreasing weighting�

Theorem 
�� The notion of reduction in �� is Church�
Rosser� ifM ��M� and M ��M� then there is a term
M� s�t� M� ��M� and M� ��M��

Proof� Using a case analysis on reduction rules	 cou�
pled with a case analysis on the relative position of
redexes	 one shows that the notion of reduction 	� is
weakly Church�Rosser and commutes with �� Then by
Theorem ��
 and Newman�s lemma ����	CH��	x�� 	� is
Church�Rosser	 and together with the lemma of Hind�
ley"Rosen ����	CH��	x�� this implies the proposition�

Evaluation

As programmers	 we are interested not only in proving
equality of terms	 but also in evaluating them	 i�e� re�
ducing them to an answer� We now de�ne a computable

�



evaluation function that maps a term to an answer A
i� �� � M � A� Following Felleisen �
�	 the evalua�
tion function is de�ned by means of a context machine�
At every step	 the machine separates its argument term
deterministically into an evaluation context and a redex
and then performs a reduction on the redex� Evaluation
stops once the argument is an answer� Evaluation con�
texts for �� are de�ned as follows�

E ��� � � j E M j p E j �n�E �
�

The �rst three clauses generate evaluation contexts for
the applied call�by�name ��calculus	 whereas the last
clause is particular to ���

De	nition� The deterministic reduction relation ��
d
on

terms in �� is the smallest relation that satis�es

M M��� N 
 E�M � ��
d
E�N ��

A simple inspection of the productions for E establishes
that ��

d
is indeed deterministic�

Proposition 
�
 For any redexes ��	 �� and evalua�
tion contexts E�	 E�	

E����� � E����� 
 E� � E� 
�� � ���

A redex � is a head redex of a termM ifM � E���	 for
some evaluation context E� A redex that is not head
redex is called an internal redex� Reduction of internal
redexes keeps head and internal redexes separate	 in the
sense of

Lemma 
�� Let M be a program s�t� M ���� N where
� is an internal redex of M � Then	
�i� If N has a head redex then so has M 	
�ii� the residual of M �s head redex is head redex in N 	
�iii� the residuals of every internal redex in M are in�
ternal redexes in N �

Theorem 
�� �Correspondence� For every program
M � �� and every answer A	

M �� A � M ��
d
� A�

Proof� Direction ��� follows immediately� To prove
�
�	 assume thatM ��

d
� A� One shows �rst as an inter�

mediate result that	 whenever M �� A	 there is a term
N s�t� M ��

d
� N ��

i
� A	 where the reduction sequence

N ��
i
� A from N to A consists of only internal reduc�

tions� This result corresponds to the main lemma for
the Curry"Feys standardization theorem ����	CH���	x��
and has exactly the same proof� That proof uses only
the theorem of �nite developments �Theorem ��
 for ���
and a lemma equivalent to Lemma ���� The proposition
then follows from the observation that no internal �� re�
duction ends in an answer	 hence we must have N � A�

� Observational Equivalence

Observational equivalence is the most comprehensive
notion of equivalence between program fragments� Intu�
itively	 two terms are observationally equivalent if they
cannot be distinguished by some experiment� Experi�
ments wrap a term in some arbitrary context that binds
all free identi�ers and local names in a term� The
only observation allowed in an experiment is whether
the resulting program reduces to an answer	 and	 if
so	 to which one� We de�ne observational equiva�
lence for arbitrary extensions of applied � calculus� In
the following	 let T be an equational theory that ex�
tends � and has term language Terms�T � and a set
of answers Ans�T � � Namesc�T �� We assume that
Namesc�T �nAns�T � is in�nite�

De	nition ��� Two terms M�N � Terms�T � are ob�

servationally equivalent in T 	 written T j� M �� N 	 i�
for all contexts C in Terms�T � such that C�M � and
C�N � are closed	 and for all answers A � Ans�T �	

T � C�M � � A � T � C�N � � A�

Proposition ��� The following are observational
equivalences in ���

�n��m�M �� �m��n�M �n �� m�

�n�M �� M �n �� FN �M ��

De	nition ��� T is an observational extension of T� if
Terms�T � � Terms�T�� and	 for all M � Terms�T��	

T� j�M �� N 
 T j�M �� N�

The extension is conservative if the implication can be
strengthened to an equivalence�

The main result of this section states that �� is an ob�
servational extension of �� The proof relies on the con�
struction of a syntactic embedding from �� to �� Syn�
tactic embeddings were �rst de�ned in ����� we use here
the following	 simpli�ed de�nitions�

De	nition ��
 Given an inductively de�ned term lan�
guage Terms	 an extended term is formed from the in�
ductive de�nitions of Terms and � �� �Hence	 both terms
and contexts are extended terms��

De	nition ��� A term M is ��closed i� FV �M � � ��
M may contain free occurrences of local names�

De	nition ��� �Syntactic Embedding� Let T and T�
be extensions of � such that Terms�T � � Terms�T��

�



and Ans�T � � Ans�T��� Let E be a syntactic mapping
from extended T �terms to extended T��terms� Then E
is a syntactic embedding of T in T� if it satis�es the
following two requirements�

�� E preserves ��closed T��subterms� For all T �
contexts C	 ��closed T��terms M 	

T� � E ��C�M ��� � E ��C�� �M ��


� E preserves semantics� For all closed T �terms M 	
answers A	

T � M � A � T� � E ��M �� � A�

Theorem ��
 Let T and T� be extensions of � such
that Terms�T � � Terms�T�� and Ans�T � � Ans�T���
If there is a syntactic embedding of T in T� then T is
an observational extension of T��

The next lemma was shown in �����

Lemma ��� There exists a syntactic embedding of ��
in ��

Together with Theorem ���	 this implies�

Theorem ��� �� is a conservative observational exten�
sion of ��

Proof� By Lemma ���	 E is a syntactic embedding of
�� in �� By Theorem ��� this implies that �� is
an observational extension of �� That the extension
is conservative follows directly from the observation
that ���convertibility is a conservative extension of ��
convertibility�

� Denotational Semantics

We develop a denotational semantics for a typed version
of �� that results from adding ��abstractions to PCF
terms� The semantics is an extension of the continuous
function model for PCF ����� In that sense	 it follows
the spirit of previous sections	 where �� was studied as
an extension of ��calculus	 rather than as a theory of its
own�

We use a �possible worlds� semantics ����	 where a world
is characterized by a �nite set of names� Intuitively	
these are the names available for program evaluation�
As a new twist	 the meaning of the term �n�M in a
world W is the intersection of the meaning of M in

all possible worlds that extend W with a new suitable
location� A location is suitable if it does not clash with
locations used in other parts of the program� Instead
of trying to trace these locations explicitly	 we simply
choose the �best� co��nite set L of possible candidate
locations in the information ordering� I�e�

���n�M �� � �
�

L��cofin�Name�

�
l�L

��M �� ��n �� l�

It is a consequence of Theorem 
�� that the least upper
bound always exists� The meaning of all other con�
structs is the same as in PCF�

Example ��� The meaning of �n�n is bottom�

���n�n�� � �
S
L��cofin�Name�

T
l�L l

� �

This corresponds to the term �n�n being �stuck� in the
reduction semantics� It re�ects on the fact that the
identity of a name is known only within its scope�

Example ��� The meaning of �n��m�n�� m is false�
Indeed	

���n��m�n�� m�� � �
S
K

T
k�K

S
L

T
l�L k � l

where K and L range over 
cofin�Name�� If K	 k	 and
L are chosen	 then

T
l�L k � l is either � �if k � L�

or false �if k �� L�� Hence	 for any given K and k	 the
value of

S
L��cofin�Name�

T
l�L k � l is false� But this

implies ���n��m�n�� m�� � � false�

In the rest of this section	 we make these notions precise�
In particular	 we need to give a semantic characteriza�
tion of the functions that belong to a world W # infor�
mally	 these are the functions that access only locations
in W � We also have deal with the fact that the lub of a
chain of functions that access strictly increasing sets of
locations accesses an in�nite number of locations	 and
hence is not a member of any world� As a consequence	
our domains form a locally complete partial order �lcpo�
��� rather than a cpo�

We base our discussion on a typed version of ��	 given
by the typing rules in Figure �� We also assume the
usual constants and operations of PCF	 without listing
their typing rules explicitly�

De	nition ��� Let Name be a countably in�nite set
of names	 and let m�n � Name� The exchange Xm�n is
the unique logical relation such that for names x� y	

x Xm�n y � m � x 
 y � n �

m � y 
 x � n �

m �� x � y �� n�

�



�ID� �� x �� � x � � �NAME� �� n �Name � n � Name

�ABS�

�� x �� � M � �

� � �x�M � � �NU �

�� n �Name � M � �

� � �n�M � �

�APPL�

� � M � �� � � � N � �

� � M N � � �EQ�

� � M � Name � � N � Name

� � M �� N � Bool

Figure �� Typing Rules for ��

�ID� ���� x �� � x � � �� � � � x

�ABS� ��� � �x�M � � � � �� � � �y����� x �� �M � � �� ��x �� y�

�APPL� ��� � M N � � �� � � ���� �M � � �� � �� �� ���� � N � ��� ��

�NAME� ���� n �Name� n � Name�� � � � n

�NU � ��� � �n�M � � �� � �
S
L��cofin �Name�

T
l�L ���� n �Name�M � � �� ��n �� l�

�EQ� ��� � M �� N � Bool�� � � ��� �M � Name�� � � ��� � N � Name�� �

Figure 
� Semantic Function �����

for elements of other ground types	

x Xm�n y � x � y�

and such that � Xm�n ��

Exchanges have the property that they are closed under
intersections and unions�

Lemma ��
 �i� If	 for all i � I	 Ai Xm�n Bi	 then�
i�I

Ai Xm�n

�
i�I

Bi�

�ii� If fAi j i � Ig and fBi j i � Ig are directed sets
and for all i � I	 Ai Xm�n Bi	 then�

i�I

Ai Xm�n

�
i�I

Bi�

De	nition ��� The smooth set of a value x � D	

smooth�x� � fm � Name j �L � 
cofin�Name��

�n � L� x Xm�n xg�

The support of x is the complement of its smooth set	

support�x� � Name n smooth�x��

Informally	 support�x� is x if x is a name	 and is the set
of names accessed by x if x is a function� A character�
ization of support and smooth that is easier to use in
proofs is given by�

Lemma ���

m � smooth�x� � �n � smooth�x�� x Xm�n x�

This equivalence cannot be used to de�ne smooth	 how�
ever	 since its right hand side is not monotonic in
smooth�x��

Example ��
 The support of the name n is fng� The

support of the function f
def
� �x�x �� m is fmg� This

can be derived as follows� Let n be any name di�er�
ent from m� Then m Xm�n n� But f m �� f n	
which proves ��f Xm�nf� and hence shows that m is
not in smooth�f�� On the other hand	 let k� l be ar�
bitrary names di�erent from m� It is easy to check
that f Xk�l f � Hence	 by Lemma 
�
	 smooth�f� �
Namenfmg� In summary	 smooth�f� � Namenfmg	
and hence support�f� � fmg�

De	nition ��� For type � and �nite name set W 	 the
domains ��� ��W and ��� �� are de�ned as follows�

��



��Name��W � W��

For all other ground types o	 ��o��W is the usual in�
terpretation of o in PCF�

��� � � ��W � ff � ����� lc��� ��� �� j support�f� � Wg	

where D lc��� E denotes the locally continuous func�
tions from D to E�

��� �� �
S
W��fin�Name���� ��W �

The interpretation of �� terms is de�ned in Figure 
�
Let � be a set of type hypotheses and let W be a �nite
set of names� A ���W ��environment is a function �
on identi�ers and names that maps each identi�er x �

dom��� to a value in ����x���	 and that maps each name
n � dom��� to a unique name in W � The semantic
function ����� takes as arguments a type judgement � �
M � � and a ���W ��environment �� It yields a value in
��� ��W �

Theorem ��� For all valid type judgements � � M �
� 	 �nite name sets W and ���W ��environments �	

��� � M � � �� � � ��� ��W �

Proof� A standard induction on type derivations� The
following lemma is needed for the abstraction case�

Lemma ���� Let m�n � Name� Let � � M � � be a
valid type judgement� Let �	 �� be ���W � environments
such that	 for all x � dom���	 � x Xm�n �� x� Then

��� �M � � �� � Xm�n ��� �M � � �� ���

Theorem ���� ����� de�nes a computationally adequate
model of ���

Proof� One veri�es easily that all reductions in �� are
equalities in the model� To show adequacy	 we adapt
Plotkin�s adequacy proof for PCF ����� Say M is com�

putable if one of conditions ������� holds�
��� M is closed of ground type	 and ��M �� � ��A�� implies
M �� A�
�
�M is closed	 of type � � � 	 andM N is computable
for all closed	 computable terms N of type ��
��� x � � is free in M 	 and �N�x�M is computable for all
closed	 computable terms N of type � �
��� n � Name is free in M 	 and �n�M is computable�
Using structural induction on M 	 one shows that every
term in �� is computable	 which implies the proposition�

The model fails to be fully abstract� A counter�example
to full abstraction is as follows� Consider the program

fragment

�m�

f��x�if x �� m then x else �� and

f��x�if x �� m then � else x�

for an arbitrary Boolean ranged function f 	 de�ned else�
where� An easy case analysis shows that this fragment
is observationally equivalent to

f����

However	 the two fragments are distinguished in our
model� This can be seen by substituting for f the func�
tion F de�ned below�

F �x� �

�
true if support�x� �� �

false otherwise

A similar example was suggested to us by Peter
O�Hearn� It remains to be seen whether recent advances
in models for Algol�like languages ���� are applicable in
the setting of ���

� Conclusions

We have studied reduction semantics	 observational
equivalence theory and denotational semantics of ��	
a theory for functions that create local names� Each of
these three equational theories for �� is a conservative
extension of the corresponding standard theory for �
�respectively PCF�� �� is in that sense fully compatible
with functional programming� There is also good evi�
dence that it is a useful foundation for modelling many
constructs that so far were outside the domain of func�
tional programming� For instance	 Example ��
 shows
how imperative programming with mutable local vari�
ables can be expressed in ��� It would be interesting to
see other applications of the calculus	 such as in logic or
concurrent programming�

Acknowledgements This work was supported in
part by grant N���������J����� from DARPA� I thank
Vincent Dornic	 Paul Hudak	 Peter O�Hearn and Dan
Rabin for their comments on earlier versions of the pa�
per� Dan Rabin in particular helped to improve its pre�
sentation considerably� John Launchbury	 Jayadev Mis�
ra	 David Turner and Phil Wadler also commented on
this work in helpful discussions�

��



References

��� H� P� Barendregt� The Lambda Calculus� its Syntax

and Semantics� volume ��� of Studies in Logic and the

Foundations of Mathematics� North�Holland� Amster�

dam� revised edition� �	
��

��� E� Crank and M� Felleisen� Parameter�passing and the

lambda�calculus� In Proc� �	th ACM Symposium on

Principles of Programming Languages� Orlando� Flori


da� pages ���
���� January �		��

��� M� Felleisen and R� Hieb� The revised report on the

syntactic theories of sequential control and state� The


oretical Computer Science� �������
���� �		��

��� P� Hudak and D� Rabin� Mutable abstract datatypes


 or 
 how to have your state and munge it too� Re�

search Report YALEU�DCS�RR�	��� Yale University�

Department of Computer Science� July �		��

��� J� Launchbury� Lazy imperative programming� In

SIPL ��� ACM SIGPLAN Workshop on State in Pro


gramming Languages� Copenhagen� Denmark� pages

��
��� June �		�� Yale University Research Report

YALEU�DCS�RR�	�
�

��� I� Mason and C� Talcott� Axiomatising operational

equivalence in the presence of side e�ects� In IEEE

Symposium on Logic in Computer Science� pages �
�


���� Asilomar� California� June �	
	�

��� A� R� Meyer and K� Sieber� Towards fully abstract se�

mantics for local variables� Preliminary report� In Proc�

�
th ACM Symposium on Principles of Programming

Languages� pages �	�
���� ACM� ACM Press� Januar

y �	

�

�
� R� Milner� Functions as processes� Rapport de

Recherche ����� INRIA Sophia�Antipolis� February

�		��

�	� R� Milner� Elements of interaction� Communications

of the ACM� �������


	� January �		�� Turing Award

lecture�

���� E� Moggi� Computational lambda�calculus and mon�

ads� In Proceedings ��	� IEEE Symposium on Logic in

Computer Science� pages ��
��� IEEE� June �	
	�

���� M� Odersky� A syntactic theory of local names� Re�

search Report YALEU�DCS�RR�	��� Department of

Computer Science� Yale University� May �		��

���� M� Odersky and D� Rabin� The unexpurgated call�

by�name� assignment� and the lambda�calculus� Re�

search Report YALEU�DCS�RR�	��� Department of

Computer Science� Yale University� May �		��

���� M� Odersky� D� Rabin� and P� Hudak� Call�by�name�

call�by�value� and the lambda calculus� In Proc� ��th

ACM Symposium on Principles of Programming Lan


guages� pages ��
��� January �		��

���� P� O�Hearn and R� D� Tennent� Relational para�

metricity and local variables� In Conference Record

of the Twentieth Annual ACM SIGPLAN
SIGACT

Symposium on Principles of Programming Languages�

Charleston� South Carolina� January ������ �����

pages ���
�
�� ACM Press� January �		��

���� F� J� Oles� A Category
Theoretic Approach to the Se


mantics of Programming Languages� PhD thesis� Syra�

cuse University� August �	
��

���� S� L� Peyton Jones and P� Wadler� Imperative func�

tional programming� In Proc� ��th ACM Symposium

on Principles of Programming Languages� pages ��

��

ACM Press� January �		��

���� A� Pitts and I� Stark� On the observable properties

of higher order functions that dynamically create lo�

cal names� In SIPL ��� ACM SIGPLAN Workshop on

State in Programming Languages� Copenhagen� Den


mark� pages ��
��� June �		�� Yale University Research

Report YALEU�DCS�RR�	�
�

��
� G� D� Plotkin� LCF considered as a programming lan�

guage� Theoretical Computer Science� �����
���� �	���

��	� J� C� Reynolds� Preliminary design of the programming

language Forsythe� Technical Report CMU�CS�

���	�

Carnegie Mellon University� June �	

�

���� J� G� Riecke� Delimiting the scope of e�ects� In Proc�

Conf� on Functional Programming and Computer Ar


chitecture� pages ���
���� June �		��

���� V� Swarup� U� S� Reddy� and E� Ireland� Assignments

for applicative languages� In J� Hughes� editor� Func


tional Programming Languages and Computer Archi


tecture� pages �	�
���� Springer�Verlag� August �		��

Lecture Notes in Computer Science ����

���� P� Wadler� Comprehending monads� In Proc� ACM

Conf� on Lisp and Functional Programming� pages ��


�
� June �		��

���� P� Wadler� The essence of functional programming� In

Proc���th ACM Symposium on Principles of Program


ming Languages� pages �
��� January �		��

���� S� Weeks and M� Felleisen� On the orthogonality of as�

signments and procedures in Algol� In Proc� ��th ACM

Symposium on Principles of Programming Languages�

pages ��
��� ACM Press� January �		��

�



