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Abstract

Temporal logic model checking is an automatic veri�cation method for �nite-state

systems. In global model checking, the truth of a formula (and its subformulae) is

determined for all the states in the model. Local model checking procedures are

designed for proving that a speci�c state of the model satis�es a given formula. This

may avoid the exhaustive traversal of a model. Also, the proof tree constructed dur-

ing local model checking can serve as a witness (counterexample) which demonstrates

the error in the design and can thus help locating errors.

In [SW91] it was shown how local model checking can be performed in the modal

�-calculus. In this paper, we introduce a tableau system and thus a local model

checking method for the more expressive �-calculus of Park [Par76] and prove its

soundness and completeness.

1 Introduction

In the last twenty years many approaches to program veri�cation have been developed.

Hoare's partial correctness logic for simple while programs gave an early sound and

relatively complete proof system. This approach was subsequently extended to total

correctness and richer classes of programs. Dynamic logics o�ered a more abstract view

of Hoare logics, especially in their propositional versions. Pnueli pioneered the use of

propositional temporal logics as more general program logics, capable of describing cru-

cial properties of perpetual concurrent systems. A variety of temporal logics have been

studied, particularly branching and linear time.

An elegant generalization of propositional dynamic and temporal logics is the propo-

sitional modal �-calculus, due to Pratt [Pra81] and Kozen [Koz83]. The modal �-calculus

has been shown to include Propositional Dynamic Logic, Process Logic, linear time tem-

poral logic, the branching time computation tree logics CTL and CTL* [KP83] [EL86],

past temporal operators as well as extended temporal operators like \at all even mo-

ments, P holds" [Wol83]. It also generalizes Hennessy-Milner logic [HM85] and thereby

provides a natural temporal logic for process theory. Consequently, the modal �-calculus

can be viewed as a general purpose program logic.

A hallmark of modal and temporal logics is that their primary truth de�nition relates

elements of a model (states, runs, or whatever) and formulae. But when these logics are
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applied to reason about programs it is common to abstract from this relative truth. E.g.,

in [MP89], models are dispensed with by coding them in the logic as theories: verifying

that elements of a model have a crucial property reduces to showing that it is formally

derivable within the appropriate theory. This abstraction, however, is not adopted by

the model checking method, as pioneered by Clarke, Emerson and Sistla [CES86]. This

approach, extended to the modal �-calculus in [EL86], hinges on constructing algorithms

for computing all the states of the �nite model which have the relevant property.

In contrast to this global model checking, local model checking ([SW91], [Cle90],

[Win91], [BS92], etc.) focuses on establishing whether particular elements of a model

have a property. This may avoid the exhaustive traversal of a model inherent in global

model checking. Also, it permits the use of other techniques that may be speci�c to

the program under consideration. Furthermore, the proof tree constructed during local

model checking can serve as a witness for a formula (or counterexample for the negation

of the formula). This proof tree can thus help locating errors in the design of a system.

Even more expressive than the modal �-calculus is Park's �-calculus [Par76]. E.g.,

bisimulation equivalence, transitive closure, the transition relation of the product of !-

automata or, more generally, de�ning new relations on the basis of given transition

relations can not be expressed in the modal �-calculus whereas it can be expressed in

Park's �-calculus [BCM+92].

In [BCM+92], a global model checking algorithm is advocated where the transition

relation of a �nite model is represented symbolically by BDDs [Bry86]. They derive

e�cient decision procedures for CTL model checking, satis�ability of linear time temporal

logic formulae, strong and weak observational equivalence of �nite transition systems and

language containment for !-automata. All the �xpoint computations can be concisely

expressed as a formula in Park's �-calculus. They thus provide a uniform framework

based on Park's �-calculus.

In this paper, we develop a local model checking method for Park's �-calculus. This

method also has the advantages over global model checking of Park's �-calculus as stated

above for the modal �-calculus. The tableau calculus presented in this paper is mainly

inspired by the tableau calculus in [SW91]. However, most of our proofs are totally

di�erent from theirs.

The rest of the paper is structured as follows. In Section 2, we summarize Park's

�-calculus. In Section 3, we modify the global model checking algorithm presented in

[BCM+92] and state some properties about the information saved during model checking.

These properties are needed in Section 4, where we present a local tableau method for

model checking Park's �-calculus and prove its soundness and completeness. In Section

5, we give an example which shall enhance the understanding of the completeness proof

of Section 4. In Section 6, we draw some conclusions and hint at further work.

2 Park's �-calculus

In this section we remind the reader of the syntax and semantics of Park's �-calculus. In

this section, we mainly follow [BCM+92].

2.1 Syntax

We assume we are given a �nite signature S. Each symbol in S is either an individ-

ual variable or a relational variable with some positive arity. There are two syntactic

categories: formulas and relational terms. Formulas have the following form:
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1. R(z1; z2; : : : ; zn), where R is an n-ary relational term and z1; z2; : : : ; zn are indi-

vidual variables in S not free in R.

2. :f; f _ g; 9z[f ], where f and g are formulas and z is an individual variable in S.

Relational terms of arity n have the following form:

1. P , where P is an n-ary relational variable in S.

2. �z1; z2; : : : ; zn[f ], where f is a formula and z1; z2; : : : ; zn are distinct individual

variables in S.

3. �P [R], where P is an n-ary relational variable in S and R is an n-ary relational

term that is formally monotone with respect to P .

In the following, the word `term' shall stand for either formula or relational term. We

write p � q if p is a subterm of q, and p � q if p is a proper subterm of q. A relational

variable X is called a �-variable or �-variable if X occurs as �X [R] or �X [R] in a

formula, respectively. �X [R] shall stand for either �X [R] or �X [R]. thu  vi denotes

the formula/relational term formed from substituting term v for the free instances of

(individual or relational) variable u in t.

8;^ are treated as abbreviations in the usual manner. We write :R as an abbreviation

for �z1; : : : ; zn[:R(z1; : : : ; zn)]. �P [R] = :�P [:RhP  (:P )i].

In the case of 9z[f ] and 8z[f ] we suppose that there is a free individual variable

z occurring in f . This is not a restriction since if not, either of these terms could be

rewritten to f . We also suppose (without loss of generality) that all �-variables are

named di�erently. It is clear that a formula can be transformed into a normal form

where : is only applied to relational variables. We assume in the rest of the paper that

the formulae are in this normal form.

2.2 Semantics

The truth or falsity of a formula is determined with respect to a modelM = (D; IR; ID),

where D is a non-empty set called the domain of the model, IR is the relational variable

interpretation, and ID is the individual variable interpretation. For a given domain, let

ID and IR be the set of all possible individual variable interpretations and the set of all

possible relational variable interpretations, respectively. In this paper, the domain of a

model will always be �nite.

The semantic function D maps formulas to elements of

(IR ! (ID ! ftrue; falseg))

and n-ary relational terms to elements of

(IR ! (ID ! 2D
n

))

D(R(z1; z2; : : : ; zn))(IR)(ID) = (ID(z1); : : : ; ID(zn)) 2 D(R)(IR)(ID)

D(:f)(IR)(ID) = :(D(f)(IR)(ID))

D(f _ g)(IR)(ID) = D(f)(IR)(ID) _ D(g)(IR)(ID)

D(9z[f ])(IR)(ID) = 9e 2 D : D(f)(IR)(IDhz  ei)
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D(P )(IR)(ID) = IR(P )

D(�z1; : : : ; zn[f ])(IR)(ID) = f(e1; : : : ; en) 2 D
njD(f)(IR)(IDhz1  e1; : : :zn  eni)g

D(�P [R])(IR)(ID) = Z

where Z is the subset of Dn that is the least �xed point (under the inclusion ordering)

of the equation

Z = D(R)(IRhP  Zi)(ID)

We writeM j= f to indicate that f is true inM according to the above semantics.

3 Saving information during global model checking

The model checking problem is: given a model M and a formula f , does M j= f . We

give here a modi�ed global model checking algorithm (originally given in [BCM+92])

(Algorithm 1) where information needed for the later pseudo tableau construction in

Section 3 is saved. We also de�ne functions and state some properties needed in the next

section. This information and these properties are necessary only for the proof of the

completeness of the local model checking method presented in the next section.

Vectors shall denote the iteration numbers of the �xpoint iterations of subformulae

of the form �X:p in the model checking algorithm below. ~x = (x1; : : : ; xm) 2 N
m
0 shall

denote a vector of integers. The ordering on these vectors is de�ned by: (x) < (y) ,
x < y, (x1; : : : ; xm) < (y1; : : : ; ym) , x1 < y1 _ x1 = y1 ^ (x2; : : : ; xm) < (y2; : : : ; ym).

For vectors with di�erent lengths we de�ne

(x1; : : : ; xm) < (y1; : : : ; yl),

(
(x1; : : : ; xm) < (y1; : : : ; ym) m � l

(x1; : : : ; xl) < (y1; : : : ; yl) otherwise

(x1; : : : ; xm) = (y1; : : : ; yl),

(
81 � i � m : xi = yi m � l

81 � i � l : xi = yi m > l

Note that = and < on vectors is not transitive. We write ~x � ~y , ~x < ~y _ ~x = ~y and

~x v ~y if ~x is a pre�x of ~y. () is the empty vector.

The global model checking method in [BCM+92] is based on BDDs [Bry86]. A BDD

is represented by place-holder variables d1; : : : ; dn. Thus, e.g., hd1  x1; : : : ; dn  xni
stands for the substitution of the argument variables for the place-holder variables.

Algorithm 1 (Modi�ed model checking algorithm)

For a given model M and a given relational term R which contains relational vari-

ables P 1; : : : ; Pn, where P 1; : : :Pm denote the �-variables and Pm+1 : : :Pn denote the

�-variables in f , BDDR(R; ()) determines the set of vectors of elements in D which are

in the relation R.

function BDDf(f: formula, IR: rel-interp, (x1; : : : ; xk) : N
�
0):BDD

begin

case f of the form

individual variable : b := BDDAtom(f);

f1 ^ f2 : b := BDDAnd(BDDf(f1; IR; (x1; : : : ; xk)), BDDf(f2; IR; (x1; : : : ; xk)));

f1 _ f2 : b := BDDOr(BDDf(f1; IR; (x1; : : : ; xk)), BDDf(f2; IR; (x1; : : : ; xk)));

9z[f1] : b := BDDExists(z,BDDf(f1; IR; (x1; : : : ; xk)));

8z[f1] : b := BDDAll(z,BDDf(f1; IR; (x1; : : : ; xk)));
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R(z1; : : : ; zn) : b := BDDR(R; IR; (x1; : : : ; xk))hd1 z1; : : : ; dn  zni;

esac

f(x1;::: ;xk) := b;

return b;

end

function BDDR(R: rel-term, IR: rel-interp, (x1; : : : ; xk) : N
�
0):BDD

begin

case R of the form

relational variable : b := IR(R);

: P (P relational variable) : b := BDDNegate(IR(P ));

�z1; : : : ; zn[f ] : b := BDDf(f; IR; (x1; : : : ; xk))hz1 d1; : : : ; zn  dni;
�P [R0] : b := lfp(P;R0; IR,BDDFalse,(x1; : : : ; xk; 0));

�P [R0] : b := gfp(P;R0; IR,BDDTrue,(x1; : : : ; xk));

esac

R(x1;::: ;xk) := b;

return b;

end

function lfp(P :rel-var,R:rel-term,IR:rel-interp,Z:BDD, (x1; : : : ; xk) : N
�
0):BDD

begin

Z' := BDDR(R,IRhP  Zi; (x1; : : : ; xk));

if Z' = Z then return Z

else return lfp(P;R0; IR; Z
0; (x1; : : : ; xk�1; xk + 1));

end

function gfp(P :rel-var,R:rel-term,IR:rel-interp,Z:BDD, ~x : N
�
0):BDD

begin

for all g � �P [R] for all ~y with ~x v ~y : g~y := BDDFalse;

Z' := BDDR(R,IRhP  Zi; ~x);
if Z' = Z then return Z

else return gfp(P;R0; IR; Z
0; ~x);

end

Remark 1

� When model checking, we consider only closed terms. We de�ne an ordering on

individual variables in a term t: xi < xj , there is a subterm of t of the form

� : : :xi : : :� : : : xj : : : u where �; � is �, 9 or 8.

� Within this remark and the following de�nition, individual variables bound by �

shall also count as free individual variables.

� The values calculated for a relational term R during the model checking algorithm

is a function Dn ! ftrue; falseg. In a similar way, for any subterm u � t a function

uf : D
n ! ftrue; falseg is computed where n is the number of free individual vari-

ables in u. uf(a1; : : : ; an) = true , D(uhx1  a1i : : :hxn  ani)(IR)(ID) = true

where x1; : : : ; xn are all free individual variables in u and 81 � i < j � n : xi < xj
and IR and ID are the respective interpretations during the model checking algo-

rithm in the respective call of the procedure.

� In the following, we misuse notation. We drop the index f from uf .
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� As a consequence, we associate a set of tuples with a term u model checked, in fact

the set of tuples which are in the relation u, i.e., we write (a1; : : : ; an) 2 p instead

of p(a1; : : : ; an) = true. We write ; for the empty relation.

� Let � be a substitution of individual variables by elements in D. Let x1; : : : ; xn
be all free individual variables in a term p. If the substitution � contains the

substitutions hx1  a1i; : : : ; hxn  ani we identify p� with p(a1; : : : ; an).

� Let x1; : : : ; xn be all free individual variables in a term p. If the substitution �

contains the substitutions hx1  a1i; : : : ; hxn�1  an�1i but not a substitution for

xn we write an 2 p�, (a1; : : : ; an) 2 p.

� p~x and p~x de�ned below are the functions computed in the corresponding iteration

~x in the model checking algorithm.

� The vectors ~x can be viewed as a kind of signature for the respective subterm as

de�ned in [SE89]. In this paper, we have thus shown how to actually compute a

similar type of signature and thus the there de�ned choice function.

Note that X(x1;::: ;xk�1;xk;::: ;xl) = X(x1;::: ;xk�1;xk;::: ;xj) if �X:p(X) is labeled

(�X:p(X))(x1;::: ;xk�1) in the model checking algorithm and therefore we de�ne

X(x1;::: ;xk�1;xk) = X(x1;::: ;xk�1;xk;::: ;xl). Similarly, if (�X:p(X))(x1;::: ;xk) we have

X(x1;::: ;xk;::: ;xl) = X(x1;::: ;xk;::: ;xj) and we de�ne X(x1;::: ;xk) = X(x1;::: ;xk;::: ;xl). In the rest

of the paper we use these abbreviations.

De�nition 1

In the following, let p � f , p~x obtained by BDDf(f; ()), ~x = (x1; : : : ; xk) 2 N
k
0; ~y 2 N

k
0

and p shall contain n free individual variables. We de�ne

� (p(x1;::: ;xk+1) = p(x1;::: ;xk+1) n p(x1;::: ;xk)) ^ (p
(x1;::: ;xk�1;0) = p(x1;::: ;xk�1;0))

� l(p(a1; : : : ; an)) = 9~y : (a1; : : : ; an) 2 p
~y

� min : L� ! (L� � N
�
0) [ f?g

min(p(a1; : : : ; an)) =

(
(p(a1; : : : ; an))

minf~yj(a1;::: ;an)2p
~yg l(p(a1; : : : ; an)) = true

? otherwise

Note that there can be several ~y with (a1; : : : ; an) 2 p
~y .

� v : (L� � N
�
0) [ f?g ! (N�

0 [ f1g)

v(g) =

(
~x g = p~x

1 g = ?

In the following, let 8~x 2 N�
0 : ~x <1.

Lemma 1 Let p ^ q; p _ q; 9z[f ]; 8z[f ]; �z1; : : : ; zn[f ]; �P [R
0]; �P [R] be subterms of for-

mula f model checked by the above algorithm. Let � be an arbitrary substitution of free

individual variables by elements in D. If l((p ^ q)�) = true; l((p _ q)�) = true; : : : ,

respectively, in the items below then

� v(min(p�)) � v(min((p^ q)�))^ v(min(q�)) � v(min((p^ q)�)) and

v(min((p^ q)�)) = v(min(p�))_ v(min((p^ q)�)) = v(min(q�))

� v(min(p�)) � v(min((p_ q)�))_ v(min(q)) � v(min((p_ q)�)) and
v(min((p_ q)�)) = v(min(p�))_ v(min((p_ q)�)) = v(min(q�))
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� 9e 2 D : v(min((fhz  ei)�)) � v(min((9z[f ])�)) and

8e 2 D : v(min((fhz  ei)�)) � v(min((9z[f ])�))!
v(min((fhz ei)�)) = v(min((9z[f ])�))

� 8e 2 D : v((min(fhz  ei)�)) � v(min((8z[f ])�)) and
9e 2 D : v((min(fhz  ei)�)) � v(min((8z[f ])�))!

9e 2 D : v((min(fhz  ei)�)) = v(min((8z[f ])�))

� v(min(�z1; : : : ; zn[f ]�)) = v(min(f�))

� v(min(�P [R](d1; : : : ; dn))) = v(min(P (d1; : : : ; dn))) =

v(min(R(d1; : : : ; dn)))

� v(min(�P [R](a1; : : : ; an))) = v(min(P (a1; : : : ; an))) > v(min(R(a1; : : : ; an)))

In fact, if v(min(P (a1; : : : ; an))) = (x1; : : : ; xk�1; xk + 1) then

v(min(R(a1; : : : ; an))) = (x1; : : : ; xk�1; xk).

Proof: from the way Algorithm 1 works

4 Local model checking

In this section we present a tableau system for Park's �-calculus. We prove its soundness

and completeness in the two subsections, respectively.

4.1 A tableau system

The syntax of the �-calculus is extended to embrace a family of relational constant

symbols. Associated with a constant U is a declaration of the form U = A where A is

a relational term of the form �P [R]. A de�nition list is a sequence � of declarations

U1 = A1; : : : ; Un = An such that Ui 6= Uj whenever i 6= j and such that each constant

occurring in Ai is one of U1; : : : ; Ui�1. Let dom(�) = fU1; : : : ; Ung and �(Ui) = Ai.

�:(U = A) means appending U = A to the de�nition list �. A de�nition list � is

admissible for B if every constant occurring in B is declared in �. De�nition lists are

used to keep track of the \dynamically changing" subformulae as �xpoints are unrolled.

We further extend the syntax to incorporate constants ofD: if R is an n-ary relational

term and x1; : : : ; xn are elements of D or individual variables in S not free in R then

R(x1; : : : ; xn) is a formula. The semantics is extended accordingly: ID(e) = e for e 2 D,

IR operates on the set of relational variables and constants. L� shall denote the set of

all formulae and relational terms - allowing the above extension.

De�nition 2

If �:U = A is admissible for B then

D(B�:U=A)(IR)(ID) = D((BhU  Ai)�)(IR)(ID)

De�nition 3

If � = U1 = A1; : : : ; Un = An then ~� = hUn  Ani : : :hU1  A1i.

When model checking we want to determine the truth of a formula. Therefore, in

the local model checking procedure there will only be formulae appearing in the tableau

rules.
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De�nition 4 (Tableau rules TR)

`� f _ g

`� f

`� f _ g

`� g

`� f ^ g

`� f `� g

`� 9z[f ]

`� fhz  ei
e 2 D

`� 8z[f ]

`� fhz  e1i : : : `� fhz  eni
fe1 : : : eng = D

`� (�z1; : : : ; zn[f ])(d1; : : : ; dn)

`� fhz1  d1; : : : ; zn  dni

`� �P [R](d1; : : : ; dn)

`�0 U(d1; : : : ; dn)
B and �0 = �:(U = �P [R])

`� U(d1; : : : ; dn)

`� RhP  Ui(d1; : : : ; dn)
C and �(U) = �P [R]

The condition B is that the new U must be di�erent from any U 0 where there is

a `�00 U 0(e1; : : : ; en) for some �00; (e1; : : : ; en); appearing in the proof tree as a node

above the current premise `� �P [R](d1; : : : ; dn). The condition C is that (for �xed

(d1; : : : ; dn)) no node above the current premise, `� U(d1; : : : ; dn), in the proof tree is

labelled `�0 U(d1; : : : ; dn) for some �0.

Lemma 2 Let t be a formula or relational term. Then

D(t)(IR)(IDhy  di) = D(thy  di)(IR)(ID)

Proof: by induction on the structure of t:

Induction base:

D(P )(IR)(IDhy  di) = IR(P )

D(P hy  di)(IR)(ID) = D(P )(IR)(ID) = IR(P )

Induction steps:

�

D(R(z1; z2; : : : ; zn))(IR)(IDhy  di) =

((IDhy  di)(z1); : : : ; (IDhy  di)(zn)) 2 D(R)(IR)(IDhy  di) =

by de�nition of ID and induction hypothesis

(ID(z1hy  di); : : : ; ID(znhy  di)) 2 D(Rhy  di)(IR)(ID) =

by de�nition

D(R(z1; z2; : : : ; zn)hy  di)(IR)(ID)
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�

D(:f)(IR)(IDhy  di) = :(D(f)(IR)(IDhy  di)) =

:(D(fhy  di)(IR)(ID)) = D((:f)hy  di)(IR)(ID)

� The case for _ goes in the same way as the previous case.

�

D(9z[f ])(IR)(IDhy  di) =

The case y � z is straight-forward. We show the case y 6� z

9e 2 D : D(f)(IR)(IDhy  dihz ei) =

9e 2 D : D(f)(IR)(IDhz  eihy  di) =

9e 2 D : D(fhy  di)(IR)(IDhz  ei) =

D(9z[fhy  di])(IR)(ID) = D(9z[f ]hy  di)(IR)(ID)

� The case for D(�z1; : : : ; zn[f ])(IR)(ID) goes in the same way as the previous case.

�

D(�P [R])(IR)(IDhy  di) = Z

where Z is the subset of Dn that is the least �xed point (under the inclusion

ordering) of the equation

Z = D(R)(IRhP  Zi)(IDhy  di) = D(Rhy  di)(IRhP  Zi)(ID) =

D(�P [R]hy  di)(IR)(ID)

Lemma 3 Let t be a formula or relational term, Q a relational variable or relational

constant, and w a term which does not contain free relational variables or free individual

variables. Then

D(thQ wi)(IR)(ID) = D(t)(IRhQ D(w)(IR)(ID)i)(ID)

Proof: by induction on the structure of t:

Induction base:

if P = Q:

D(P hQ wi)(IR)(ID) = D(w)(IR)(ID)

D(P )(IRhQ D(w)(IR)(ID)i)(ID) = (IRhQ D(w)(IR)(ID)i)(P ) = D(w)(IR)(ID)

if P 6= Q:

D(P hQ wi)(IR)(ID) = D(P )(IR)(ID) = IR(P )

D(P )(IRhQ D(w)(IR)(ID)i)(ID) = (IRhQ D(w)(IR)(ID)i)(P ) = IR(P )

Induction steps:
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�

D(R(z1; z2; : : : ; zn)hQ wi)(IR)(ID) =

(ID(z1); : : : ; ID(zn)) 2 D(RhQ wi)(IR)(ID) =

(ID(z1); : : : ; ID(zn)) 2 D(R)(IRhQ D(w)(IR)(ID)i)(ID) =

D(R(z1; z2; : : : ; zn))(IRhQ D(w)(IR)(ID)i)(ID)

� The cases _ and : are straight-forward.

�

D(9z[f ]hQ wi)(IR)(ID) = D(9z[fhQ wi])(IR)(ID) =

9e 2 D : D(fhQ wi)(IR)(IDhz  ei) =

9e 2 D : D(fhQ wihz  ei)(IR)(ID) =

by Lemma 2

9e 2 D : D(fhz  eihQ wi)(IR)(ID) =

since there are no free individual variables in w

9e 2 D : D(fhz  ei)(IRhQ D(w)(IR)(ID)i)(ID) =

by induction hypothesis

9e 2 D : D(f)(IRhQ D(w)(IR)(ID)i)(IDhz  ei) =

by Lemma 2

D(9z[f ])(IRhQ D(w)(IR)(ID)i)(ID)

� The case for D(�z1; : : : ; zn[f ])(IR)(ID) goes in the same way as the previous case.

� if P = Q:

D(�P [R]hQ wi)(IR)(ID) = D(�P [R])(IR)(ID) = Z

where Z is the subset of Dn that is the least �xed point (under the inclusion

ordering) of the equation

Z = D(R)(IRhP  Zi)(ID)

D(�P [R])(IRhQ D(w)(IR)(ID)i)(ID) = Y

where Y is the least �xpoint of

Y = D(R)(IRhQ D(w)(IR)(ID)ihP  Y i)(ID) =

D(R)(IRhP  Y i)(ID) = Z

if P 6= Q:

D(�P [R]hQ wi)(IR)(ID) = D(�P [RhQ wi])(IR)(ID) = Z

Z = D(RhQ wi)(IRhP  Zi)(ID) =

D(R)(IRhP  ZihQ D(w)(IRhP  Zi)(ID)i)(ID) =

10



by induction hypothesis

D(R)(IRhP  ZihQ D(w)(IR)(ID)i)(ID) =

since P does not occur free in w

D(R)(IRhQ D(w)(IR)(IDihP  Zi)(ID) =

since P 6= Q

D(�P [R])(IRhQ D(w)(IR)(ID))(ID)

For the rules to be backwards sound we need to restrict the syntax: given a term p

then

� 8�P [R] � p : �P [R] does not contain free individual variables (C1).

� 8�P [R] � p : P does not occur free in p (C2).

The two restrictions are necessary to ensure that syntactic substitutions in the term

as they occur in the tableau rules do not interfere with each other. These restrictions

are not signi�cant since all applications presented in [BCM+92] conform to them. These

restrictions shall hold from now onwards.

Lemma 4 The tableau rules TR are backwards sound, i.e., if
`� u

`�0 v : : : `�00 w
is a rule

and D(v�0)(IR)(ID) = true and : : : and D(w�00)(IR)(ID) = true then D(u�)(IR)(ID) =
true.

Proof: It is easy to see that all rules preserve admissibility of �. The statement then

follows from the de�nition of D using Lemmata 2 and 3 and relying on the above restric-

tion.

�

D((f _ g)�(IR)(ID) = D((f _ g) ~�)(IR)(ID) = D(f ~� _ g ~�)(IR)(ID) =

D(f ~�)(IR)(ID) _ D(g ~�)(IR)(ID)

The claim follows immediately.

� The case f ^ g goes in the same way.

�

D(fhz  ei ~�)(IR)(ID) = D(f ~�hz  ei)(IR)(ID) =

because of C1, and by Lemma 2 we have

D(f ~�)(IR)(IDhz  ei)

This implies:

9e 2 D : D(f ~�)(IR)(IDhz  ei) = D(9z[f ~�])(IR)(ID) =

D(9z[f ] ~�)(IR)(ID)

� The cases 8z[f ] and (�z1; : : : ; zn[f ])(d1; : : : ; dn) are similar to the previous case.

11



�

D(U(d1; : : : ; dn) ~�0)(IR)(ID) = D(U(d1; : : : ; dn)hU  �P [R]i ~�)(IR)(ID) =

D(�P [R](d1; : : : ; dn) ~�)(IR)(ID)

� Let � = �2:�3 and �2 = �1:(U = �P [R]).

D(U ~�)(IR)(ID) =

since only variables in �1 appear in �P [R]

D(U ~�2)(IR)(ID) =

D(�P [R] ~�1)(IR)(ID) =

by condition C2

D(�P [R ~�1])(IR)(ID) = Z

where Z is the least �xpoint of

Z = D(R ~�1)(IRhP  Zi)(ID)

On the other hand,

D(RhP  Ui�)(IR)(ID) = D(RhP  Ui�2
)(IR)(ID) =

because of the way the tableau rules are applied only declaration constants in �1

can appear in R

D(R ~�1hP  U ~�2i)(IR)(ID) =

by Lemma 3

D(R ~�1)(IRhP  D(U ~�2)(IR)(ID)i)(ID) =

D(R ~�1)(IRhP  Zi)(ID) = Z

which shows that the two expressions are equal.

A tableau for ` f , f a formula, is a maximal proof tree whose root is labelled with the

sequent ` f . The sequents labelling the immediate successors of a node are determined

by application of one of the rules. Maximality means that no rule applies to a sequent

labelling a leaf of a tableau.

Theorem 1 Every tableau for ` f is �nite (if D is �nite).

Proof: All rules of TR decrease the length of the formula except the last one. Let �X [R]

be a top-level �-subformula of f where R has arity n. Then the sequent `� U(d1; : : : ; dn)

with �(U) = �X [R] can occur at most jDjn+1 times. This is because there can be only

jDjn di�erent (d1; : : : ; dn) and because no other relational variables can cause another

sequent ` �X [R] (since it is top-level). This U can have spawned at most jDjn tableaux

for proper top-level �-subformulae of �X [R].

We can repeat this argument for these proper �-subformulae of �X [R] and their

�-subformulae until a �-subformula has been reached which does not contain any �-

subformulae. As a consequence, there can be only �nitely many vertices in the tableau.
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De�nition 5 (Successful tableau)

LetM = (D; IR; ID) be a model. Then a successful tableau for ` f is a �nite tableau in

which every leaf is labelled by a sequent `� p ful�lling one of the following requirements:

1. p = R(d1; : : : ; dn) and D(R(d1; : : : ; dn))(IR)(ID) = true

2. p = :R(d1; : : : ; dn) and D(R(d1; : : : ; dn))(IR)(ID) = false

3. p = U(d1; : : : ; dn) and �(U) = �P [R]

Theorem 2 If ` f has a successful tableau thenM j= f .

Proof: In a similar way as the proof of a similar theorem for the modal �-calculus in

[SW91], relying on Lemma 4.

4.2 Constructing pseudo tableaux

We now show the completeness of the tableau method.

De�nition 6 (Reverse substitution)

Let � = (U1 = : : :) : : :(Un = : : : ). Then �(U) = Z if �(U) = �Z[R]; f = ((fhUn  

�(Un)i) : : :hU1  �(U1)i) (f is f where the declaration constants are substituted by the

original variables in the formula); ` f = f ; f~x = f
~x
.

We extend the de�nition of min to formulae p containing declaration constants:

min(p) =

(
pv(min(p)) l(p) = true

? otherwise

De�nition 7 (Tableau rules PTR)

`� (f _ g)~x

choose(`� (f _ g)~x)

`� (f ^ g)~x

`� min(f) `� min(g)

`� (9z[f ])~x

choose(`� (9z[f ])~x)

`� (8z[f ])~x

`� min(fhz  e1i) : : : `� min(fhz  eni)
fe1 : : : eng = D

`� ((�z1; : : : ; zn[f ])(d1; : : : ; dn))
~x

`� (fhz1  d1; : : : ; zn  dni)~x

`� (�P [R](d1; : : : ; dn))
~x

`�0 min(U(d1; : : : ; dn))
B and �0 = �:(U = �P [R])

`� (U(d1; : : : ; dn))
~x

`� min(RhP  Ui(d1; : : : ; dn))
C and �(U) = �P [R]

13



The condition B is that the new U must be di�erent from any U 0 where there is a

`�00 (U 0(e1; : : : ; en))
~z for some �00; (e1; : : : ; en); ~z; appearing in the proof tree as a node

above the current premise `� (�P [R](d1; : : : ; dn))
~x. The condition C is that (for �xed

(d1; : : : ; dn)) no node above the current premise, `� (U(d1; : : : ; dn))
~x, in the proof tree

is labelled `�0 (U(d1; : : : ; dn))
~x for some �0.

choose(`� (p_ q)~x) =

choose u 2 f`� min(p)jv(min(p))� ~xg [ f`� min(q)jv(min(q))� ~xg;
return u;

choose(`� (9z[f ])~x) =

choose e 2 fe0j(e0) 2 f~z ^ ~z � ~xg;

return `� min(fhz  ei);

De�nition 8 (Pseudo tableau, Successful pseudo tableau)

A pseudo tableau for ` f is a tableau for ` min(f) where the rules PTR are used instead

of TR. A successful pseudo tableau for ` f is a �nite pseudo tableau for ` f in which every

leaf is labelled by a sequent `� p~x ful�lling the same requirements as for the successful

tableau.

Theorem 3 Every pseudo tableau for ` f is �nite (if D is �nite).

Proof: In the same way as the proof for the �niteness of a tableau.

Theorem 4 IfM j= f then ` f has a successful pseudo tableau.

Proof: The tableau rules PTR guarantee that for the successors ` g also M j= g.

Therefore, all nodes in the tableau are true since the tableau is started with a true root.

It is clear from the semantics and the model checking algorithm that there are always such

successors for nodes which ful�ll the side conditions of the rules (e.g., C). Consequently,

the tableau construction stops when all current leaves are nodes which do not ful�ll the

side conditions.

The leaves of the maximal pseudo tableau will therefore be of the three types as in

the de�nition of successful pseudo tableau. All that remains to be shown in order for

the pseudo tableau to be successful is that if a leaf is of the form ` U(d1; : : : ; dn) then

�(U) = �P [R]. This is done in the following argument.

All tableau rules PTR do not increase ~x. This follows from Lemma 1. On a path of

the proof tree (pseudo tableau), for a given U , �(U) will always be the same because

of condition B and the vectors corresponding to this U will all have the same length.

Lemma 1 implies that the last rule actually decreases ~x if �(U) = �P [R]. Furthermore,

the last rule has to be applied before any new ` (U(e1; : : : ; en))
~y can be reached. As

a consequence, if �(U) = �P [R] then for ` (U(d1; : : : ; dn))
~x and ` (U(e1; : : : ; en))

~y

lying on a path in the pseudo tableau in this order it holds that ~y < ~x. Therefore,

(d1; : : : ; dn) and (e1; : : : ; en) must be di�erent since there can be at most one ~x with

v(min(U(d1; : : : ; dn))) = ~x (The unique minimum is always chosen.). It follows that

there can not be a leaf `� U(d1; : : : ; dn) with �(U) = �P [R].

Theorem 5 IfM j= f then ` f has a successful tableau.

Proof: A successful tableau can be easily obtained from a successful pseudo tableau by

stripping o� the ~x from all formulae in the pseudo tableau.
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5 Example

Let model M consist of the two states s0; s1 where the relational variable P has the inter-

pretation P (x) = true, x = s1 (We identify the variable name with its interpretation.)

and the transition relation R has the interpretation R(x; y) = true , x = s0 ^ y = s1.

These two relations are represented as BDDs: P (d) � d = s1, R(d; d
0) � d = s0^d

0 = s1.

Model checking the formula �Q[�s[P (s) _ 9t[R(s; t)^Q(t)]]](s0) yields the following
trace.

BDDf(�Q[�s[P (s) _ 9t[R(s; t) ^Q(t)]]](s0); IR; ())

BDDR(�Q[�s[P (s) _ 9t[R(s; t) ^Q(t)]]]); IR; ())hd s0i
lfp(Q; �s[P (s)_ 9t[R(s; t) ^Q(t)]]; IR; BDDFalse; (0))

BDDR(�s[P (s) _ 9t[R(s; t)^ Q(t)]]; IRhQ BDDFalsei; (0))
BDDf(P (s) _ 9t[R(s; t) ^Q(t)]; IRhQ BDDFalsei; (0))hs di

BDDf(P (s); IRhQ BDDFalsei; (0))
BDDR(P; IRhQ BDDFalsei; (0))hd si

P(0) = (d = s1)

P (s)(0) = (s = s1)

BDDExists : : :

Q(0) = BDDFalse

Q(t)(0) = BDDFalse

(R(s; t)^Q(t))(0) = BDDFalse

(9t[R(s; t)^ Q(t)])(0) = BDDFalse

(P (s) _ 9t[R(s; t) ^Q(t)])(0) = (s = s1)

(�s[P (s) _ 9t[R(s; t) ^Q(t)]])(0) = (d = s1)

lfp(Q; �s[P (s)_ 9t[R(s; t) ^Q(t)]]; IR; (d = s1); (1))

BDDR(�s[P (s) _ 9t[R(s; t)^ Q(t)]]; IRhQ (d = s1)i; (1))
BDDf(P (s) _ 9t[R(s; t) ^Q(t)]; IRhQ (d = s1)i; (1))hs di

BDDf(P (s); IRhQ (d = s1)i; (0))
: : :

P (s)(1) = (s = s1)

BDDf(9t[R(s; t) ^Q(t)]; IRhQ (d = s1)i; (1))
BDDf(R(s; t) ^Q(t); IRhQ (d = s1)i; (1))

BDDf(R(s; t); IRhQ (d = s1)i; (1))
BDDR(R; IRhQ (d = s1)i; (1))hd sihd0  ti

R(1) = (d = s0 ^ d
0 = s1)

R(s; t)(1) = (s = s0 ^ t = s1)

BDDf(Q(t); IRhQ (d = s1)i; (1))
BDDR(Q; IRhQ (d = s1)i; (1))hd ti

Q(1) = (d = s1)

Q(t)(1) = (t = s1)

(R(s; t)^Q(t))(1) = (s = s0 ^ t = s1)

(9t[R(s; t)^ Q(t)])(1) = (s = s0)

(P (s) _ 9t[R(s; t) ^Q(t)])(1) = (s = s1 _ s = s0)

(�s[P (s) _ 9t[R(s; t) ^Q(t)]])(1) = (d = s0 _ d = s1)

lfp(Q; �s[P (s)_ 9t[R(s; t) ^Q(t)]]; IR; (d = s0 _ d = s1); (2))

: : :

Q(t)(2) = (t = s0 _ t = s1)

: : :

(�s[P (s) _ 9t[R(s; t) ^Q(t)]])(2) = (d = s0 _ d = s1)
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(�Q[�s[P (s)_ 9t[R(s; t) ^Q(t)]]])() = (d = s0 _ d = s1)

(�Q[�s[P (s)_ 9t[R(s; t)^ Q(t)]]](s0))() = (s0 = s0 _ s0 = s1) = true

As a consequence, we have, e.g.:

� Q(0) = BDDFalse; Q(1) = (d = s1); Q
(2) = (d = s0)

� P (0) = (d = s1); 8i > 0: P (i) = BDDFalse

� (�s[P (s)_ 9t[R(s; t) ^Q(t)]])(0) = (d = s1)

(�s[P (s)_ 9t[R(s; t) ^Q(t)]])(1) = (d = s0)

(�s[P (s)_ 9t[R(s; t) ^Q(t)]])(2) = BDDFalse

� (9t[R(s; t)^Q(t)])(0) = BDDFalse

(9t[R(s; t)^Q(t)])(1) = (s = s0)

(9t[R(s; t)^Q(t)])(2) = BDDFalse

� (R(s; t)^Q(t))(0) = BDDFalse

(R(s; t)^Q(t))(1) = (s = s0 ^ t = s1)

(R(s; t)^Q(t))(2) = BDDFalse

The pseudo tableau looks as follows:

` (�Q[�s[P (s) _ 9t[R(s; t) ^Q(t)]]](s0))
()

` (U(s0))
(2)

`� ((�s[P (s)_ 9t[R(s; t) ^ U(t)]])(s0))
(1)

`� (P (s0) _ 9t[R(s0; t) ^ U(t)])
(1)

`� (9t[R(s0; t) ^ U(t)])
(1)

`� (R(s0; s1) ^ U(s1))
(1)

`� (R(s0; s1))
(0) `� (U(s1))

(1)

`� ((�s[P (s)_ 9t[R(s; t)^ U(t)]])(s1))
(0)

`� (P (s1)_ 9t[R(s1; t)^ U(t)])
(0)

`� (P (s1))
(0)

Where � = (U = �Q[�s[P (s)_ 9t[R(s; t)^ Q(t)]]])

For the construction of the pseudo tableau we needed among others the following

calculations:

� Calculation of min(U(s0)):

min(Q(s0)) = Q(s0)
minf~yjs02Q

~yg

By Remark 1 we have

s0 2 Q
~y , Q~y(s0) = true

The only vector for which this is the case is ~y = (2). Therefore

min(Q(s0)) = Q(s0)
(2)

and thus

min(U(s0)) = U(s0)
v(min(Q(s0))) = U(s0)

(2)
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� Calculation of choose(`� (P (s0)_ 9t[R(s0; t)^ U(t)])
(1)):

l(P (s0)) = false

since there is no ~y with s0 2 P ~y . As a consequence, we can immediately deduce

that

min(9t[R(s0; t)^ U(t)]) = (9t[R(s0; t)^ U(t)])
(1)

since by Lemma 1 v(min((p _ q)�)) = v(min(p�)) or v(min((p _ q)�)) =

v(min(q�)).

� Calculation of choose(`� (9t[R(s0; t) ^ U(t)])
(1)):

(e) 2 (R(s0; t)^ Q(t))
~z , (e) 2 (R(s; t)^Q(t)hs s0i)

~z ,

(s0; e) 2 (R(s; t)^Q(t))~z

The only e and ~z for which this expression is true is e = s1 and ~z = (1). As a

consequence

fej(e) 2 (R(s0; t)^Q(t))
~z ^ ~z � (1)g = fs1g

6 Conclusion and further work

In this paper, we have presented a local model checking method for Park's �-calculus.

Since Park's �-calculus is even more expressive than the modal �-calculus (and of course

also more expressive than CTL, fair CTL, CTL*, etc.) we have thus developed a powerful

model checking technique which, in contrast to global model checking, may avoid the

exhaustive traversal of a model. Furthermore, a tableau itself can be viewed as a witness

showing that a certain property holds in the model. If a property does not hold in a model

then the tableau for the negation of the property can be viewed as a counterexample which

shows where the error in the model occurs.

The feature of counterexample construction is an important advantage of global

fair CTL model checking [CGL93] over other veri�cation techniques. Although it is

a very powerful technique, the global model checking procedure for Park's �-calculus in

[BCM+92] lacks this important feature. In further work, we will show how to modify

the technique presented in this paper to construct counterexamples in the case of global

model checking.
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