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Abstract

We de	ne an extension of the call�by�name lambda cal�
culus with additional constructs and reduction rules
that represent mutable variables and assignments� The
extended calculus has neither a concept of an explicit
store nor a concept of evaluation order
 nevertheless� we
show that programs in the calculus can be implemented
using a single�threaded store� We also show that the
new calculus has the Church�Rosser property and that
it is a conservative extension of classical lambda calcu�
lus with respect to operational equivalence
 that is� all
algebraic laws of the functional subset are preserved�

� Introduction

Are assignments harmful� Commonwisdom in the func�
tional programming community has it that they are

seemingly� they destroy referential transparency� they
require a determinate evaluation order� and they weaken
otherwise powerful type systems such as ML�s� Con�
sequently� programming languages with a strong func�
tional orientation often forbid or at least discourage the
use of assignments�

On the other hand� assignments are useful� With
them� one can implement mutable� implicit� distributed
state�a powerful abstraction� even if it is easily mis�
used� The traditional alternative o�ered by functional
programming is to make state explicit� The result�
ing �plumbing� problems can be ameliorated by hid�
ing the state parameter using monads ���� or by us�
ing continuation�passing style ����� Wadler� for exam�
ple� uses the monad technique in ���� to present �pure�
functional programming as an alternative to �impure�
programming with assignments� Monads are indeed
successful in eliminating explicit mention of state ar�
guments� but they still require a centralized de	nition
of state�

We show here that one need not choose between purity
and convenience� We develop a framework that com�
bines the worlds of functions and state in a way that can
naturally express advanced imperative constructs with�
out destroying the algebraic properties of the functional
subset� The combinations are referentially transparent

names can be freely exchanged with their de	nitions�
More generally� we show that every meaningful opera�
tional equivalence of the functional subset carries over
to the augmented language�

Since we would like to abstract away from the issues
of a particular programming language� we will concen�
trate in this paper on a calculus for reasoning about

functions and assignments� The calculus is notable in
that it has neither a concept of an explicit store nor a
concept of evaluation order� Instead� expanding on an
idea of Boehm ���� we represent �state� by the collection
of assignment statements in a term� A Church�Rosser
property guarantees that every reduction sequence to
normal form yields the same result� Following Plotkin
���� and Felleisen ���� we derive from the reduction rules
both a theory and an evaluator and study the relation�
ship between them�

The main contributions of this paper are


� We de	ne �in Section �� syntax and reduction rules
of �var � a calculus for functions and state�

� We show �in Section �� that �var is Church�Rosser
and that it admits a deterministic evaluation func�
tion which acts as a semi�decision procedure for
equations between terms and answers�

� Even though the syntax of �var is storeless� we show
�in Section �� that �var�programs can still be e��
ciently implemented using a single�threaded store�

� We show �in Section �� a strong conservative ex�
tension theorem
 every operational equivalence be�
tween terms in classical applied ��calculus also
holds in �var �provided the domain of basic con�
stants and constructors is su�ciently rich�� This is
to our knowledge the 	rst time such a result has
been established for an imperative extension of the
��calculus�

These properties make �var suitable as a basis for the
design of wide�spectrum languages which combine func�
tional and imperative elements� On the functional side�
we generally assume call�by�name� but call�by�value can
also be expressed� since strictness can be de	ned by a
��rule� On the imperative side� 	rst class variables and
procedures can be used as building blocks for muta�
ble objects �Section � presents an example making use
of these constructs�� We do not impose any particular
restrictions on either functions or side�e�ecting proce�
dures� except for requiring that their di�erence is made
explicit�

Building on �var is attractive because it gives us an
equational semantics that makes reasoning about pro�
grams quite straightforward� In contrast� the traditional
store�based denotational or operational semantics of im�
perative languages impose a much heavier burden on
program derivations and proofs
 at every step� one has
to consider the global layout of the store� including a
map from names to locations and a map from locations
to values� Other semantic approaches� such as Hoare
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x � Vars immutable variables

v � Tags mutable variables �tags�

f � FConsts primitive functions

cn � Constrs constructors of arity n �n � ��

M � �var terms

M 

� f j cn j x j x �M j M� M�

j v j var v �M j M � j M� �
 M� j M� � x �M�

j returnM j pureM

Figure �
 Syntax of �var

logic or weakest predicate transformers might accommo�
date simpler reasoning methods� but they are not easily
extended to structure sharing or higher�order functions�

� Term Syntax and Reduction

Rules of �var

The term�forming productions of �var fall into three
groups� each presented on one line in Figure �� The 	rst
group consists of clauses de	ning ��calculus with primi�
tive function symbols and data constructors� We refer to
this basic calculus as the applied ��calculus� The second
group adds the constructs for modeling assignment
 the
third introduces constructs for mediating between the
world of assignments and the world of functions�

Basic applied ��terms� We denote functional ab�
straction �x �M � without the customary leading �
 this
modi	cation makes some of our reduction rules more
legible� The presence of primitive function symbols f
and 	xed�arity constructors cn shows the applied na�
ture of the calculus� Basic constants are included as
constructors of arity �� We assume that every calcu�
lus we consider has at least the unit value �� as basic
constant�

Store tags and primitive state transformers�

The scope of a mutable variable v is delimited by the
construct var v �M � Mutable variables� also called tags�
are syntactically distinct from the immutable variables
introduced by abstractions x �M � We denote tags by the
letters u� v � w � and immutable variables by x � y � z �

Tag readers M � and assignments M� �
 M� are the

primitive state transformers� If M computes a tag� M �
is the state transformer that produces the value associ�
ated with that tag without altering the store� Dually�
if M� computes a tag� M� �
 M� is the state trans�
former that sets that tag to M� and produces an ignor�
able value�

Composition of state transformers� State trans�
formers are composed into sequences using the monad�
bind expression M� � x �M�� This construct connects
a state transformer M� with a functional abstraction
x �M�� It denotes the state transformer that passes the
value produced by M� to x �M� in the state resulting
from the computation of M�� We take ��� to be right�
associative and often employ the following abbreviation


N 
 M
def
� N � x �M �x �� fv M ��

Coercion of state transformers� The �var�
expression returnM allows a pure expression M to be
used as a state transformer
 the expression pureM per�
mits �under certain conditions� the coercion of a state
transformer to a pure expression�

Correspondence with programming languages�

Figure � relates terms of �var with constructs of tra�
ditional imperative programming languages� We use
Modula as a representative of such a language�

The �var�calculus deviates from common imperative
programming languages in its notation for assignments�
which goes from left to right� and in its variable�readers�
which are explicit state transformers rather than expres�
sions� These notational conventions make tag�matching
in the reduction rules easier to follow� In particular� be�
cause of the re�orientation of assignments� information
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�var Modula

v� � x �M �v�x �M variable lookup �implicit in Modula�

N � x �M N �x � 
 M procedure call� x is result parameter

var v �M VAR v 
 T 
 M variable de	nition

M �
 v v 
� M assignment

N 
 M N 
 M sequential composition

returnM RETURN M return statement

pureM M e�ect masking� implicit in Modula

Figure �
 Correspondence between �var and Modula

and computation in a state transformer �ows uniformly
from left to right� In each case� the conventional nota�
tion can be obtained by syntactic sugaring� if desired�
We would expect that such sugaring is introduced for
any programming languages based on �var �

Notational conventions for reduction� We use
bv M �fv M � to denote the bound �free� variables and
tags in a term M � A term is closed if fv M � �� Closed
terms are also called programs� We use M � N for
syntactic equality of terms �modulo ��renaming� and
reserve M � N for convertibility� If R is a notion of
reduction� we use M ���

R
N to express that M reduces

in one R reduction step to N � and M ���
R
� N to express

that M reduces in zero or more R�steps to N � The
subscript is dropped if the notion of reduction is clear
from the context� A value V is a ��abstraction� a prim�
itive function� or a �possibly applied� constructor� An
observable value �or answer� A is an element of some
nonempty subset of the basic constants��

V 

� x �M j f j cn M� ���Mm �� � m � n�

A 	 c�

A context C is a term with a hole � � in it� A state pre�x

S is a special context that is of one of the forms

S 

� � � j var v �S j M �
 v 
 S

and that satis	es in addition the requirement that
wr S 	 bv S � The set of variables written in S � wr S �
is de	ned as follows


wr � � � �

wr �var v �S � � wr S

wr �M �
 v 
 S � � fvg 
 wr S �

�Other observations such as convergence to an arbitrary value

can be encoded using suitable ��rules�

Following Barendregt ���� we take terms that di�er only
in the names of bound variables to be equal� Hence all
terms we write are representatives of equivalence classes
of ��convertible terms� We follow the �hygiene� rule
that bound and free variables in a representative are
distinct� and we use the same conventions for tags�

Figure � gives the reduction rules of �var �

Rule ��� is the usual ��rule of applied ��calculus� It is
the only rule whose reduction involves substitution�

Rule ��� expresses rewriting of applied basic functions�
To abstract from particular constants and their rewrite
rules� we only require the existence of a partial func�
tion � from primitive functions� f and values to terms�
We restrict � not to �look inside� the structure of its
argument term� except when the term is a fully ap�
plied constructor at top�level� That is� we postulate
that for every primitive function f there exist terms Nf

and Nf �cn �cn � Constrs� such that for all values V for
which ��f �V � is de	ned


��f �V � �

�
Ncn M� ���Mn if V � cn M� ���Mn

N V otherwise�

State transformers obey two of the three laws of a Kleisli
monad
 ��� is associative and return is a left unit� The
third law� stating that return is a right unit� fails� A
counter�example is

� � �x �return x � �� ��

Note� however� that this example would be typically
regarded as a type error in a statically typed language�
since the number � is not a state transformer� In fact�
every reasonable type system should establish the third
monad law as an operational equivalence for well�typed
terms�

�Primitive functions of more than one argument are obtained

by currying�

�



� �x �M � N � �N �x �M

� f V � ��f �V � ���f �V � de	ned�

�� �M� � x �M�� � y �M� � M� � x ��M� � y �M��

r� �return N � � x �M � �x �M � N

v� �var v �M � � x �N � var v ��M � x �N �

�
� �M� �
 M�� � x �M� � M� �
 M� 
 �x �M�� �� �x � fv M��

f N �
 v 
 v� � x � M � N �
 v 
 �x �M � N

b� N �
 v 
 w� � x � M � w� � x � N �
 v 
 M �v �� w�

b� var v � w� � x � M � w� � x � var v � M �v �� w�

pc pure �S �return cn M� ���Mk �� � cn �pure �S �returnM���� ��� �pure �S �returnMk ��� �k � n�

p� pure �S �return x �M �� � x � pure �S �returnM ��

pf pure �S �return f �� � f

Figure �
 Reduction rules for �var �

Rule �v�� extends the scope of a tag over a ��� to the
right� Variable capture is prevented by the hygiene con�
dition �bound and free variables are always di�erent��
Rule ��
�� passes ��� the result value of an assignment�
to the term that follows the assignment�

Rules �f �� �b��� and �b�� deal with assignments� The
fusion rule �f � reduces a pair of an assignment and a
dereference with the same tag� The bubble rules �b��
and �b�� allow variable�readers to �bubble� to the left
past assignments and introductions involving other tags�
Note that bubble and fusion reductions are de	ned only
on tags v whereas the corresponding productions Mv�
and M� �
 Mv in the context�free syntax �Figure ��
admit arbitrary terms in place of Mv � This is a conse�
quence of tags being 	rst class� for even if Mv is not a
tag it might still be reducible to one�

The 	nal three rules implement �e�ect masking�� by
which local state manipulation can be isolated for use
in a purely functional context� These three rules can
be applied only if the argument to pure is of form
S �return V � where V is a value and S is a state pre�
	x� The context�condition �wr S 	 bv S � for state
pre	xes S ensures that evaluation of the argument to
pure neither a�ects nor observes global storage� E�ect
masking �pushes state inwards�� and thus exposes the
outermost structure of the result of the pure expression�
In the special cases where the result is a basic constant
or primitive function the state disappears altogether��

�Initially� we studied a calculus that had only one e�ect mask�

ing rule� A context pure �S �return � 		
 can be dropped if

Example ��� �Counters� To illustrate the syntax and
reduction semantics of �var � we construct a function to
generate counter objects� The generated counters en�
capsulate an accumulator cnt � They export a function
that takes an increment �inc� and yields the state trans�
former that adds inc to the �current� value of cnt while
returning cnt �s �old� value� This is expressed in �var as
follows �with layout indicating grouping�


mkcounter �

initial � var cnt �

initial �
 cnt 


return inc � cnt� �

c � c � inc �
 cnt 


return c

The reduction rules de	ne a reduction relation between
terms in the usual way
 we take � to be the smallest
relation on �var � �var that contains the rules in Fig�
ure � and that� for any context C � is closed under the
impliciation

M � N � C �M �� C �N ��

The sample reduction given in Figure � illustrates the
use of mkcounter in a program that de	nes a counter

global storage is una�ected and none of the variables bound in S

appear in the term in the hole� This approach looks simpler at

�rst glance� but it is not clear how a standard evaluation function

for the resulting calculus can be constructed�

�



mkcounter � � ctr � ctr � 
 ctr � ���
�

�var cnt � � �
 cnt 
 returnCTR� � ctr � ctr � 
 ctr � ���
v�

var cnt � �� �
 cnt 
 returnCTR� � ctr � ctr � 
 ctr � ���
��

var cnt � � �
 cnt 
 return CTR � ctr � ctr � 
 ctr � ���
r�

var cnt � � �
 cnt 
 �ctr � ctr � 
 ctr �� CTR ���
�

var cnt � � �
 cnt 
 CTR � 
 CTR � �

var cnt � � �
 cnt 
 �inc � cnt� � c � c � inc �
 cnt 
 return c� � 
 CTR � ���
�

var cnt � � �
 cnt 
 cnt� � c � c � � �
 cnt 
 return c 
 CTR � ��
f

var cnt � � �
 cnt 
 �c � c � � �
 cnt 
 return c� � 
 CTR � ���
�

var cnt � � �
 cnt 
 � � � �
 cnt 
 return � 
 CTR � ���
r�

var cnt � � �
 cnt 
 � � � �
 cnt 
 CTR � ��

var cnt � � �
 cnt 
 � � � �
 cnt 
 � � � � � �
 cnt 
 return �

Figure �
 A sample reduction�

ctr � increments it� and then inspects the 	nal value�
We use the abbreviation CTR � inc � cnt� � c � c �
inc �
 cnt 
 return c� For each step in the reduction�
the redex for the next reduction is underlined� Other
reduction sequences are possible as well� but they all
yield the same normal form� since �var is Church�Rosser
�Section ���

� Fundamental Theorems

In this section� we establish that our calculus has the
fundamental properties that make it suitable as a basis
for reasoning about programs� We 	rst show that re�
duction is con�uent
 we then derive from the reduction
relation a theory �var for equational reasoning about
�var terms� We also derive from the reduction relation
an evaluation function that takes programs to answers�
We conclude by showing that the evaluation function is
a semi�decision procedure for equations between pro�
grams and answers� Due to space limitations� most
proofs are sketched or omitted
 full proofs can be found
in �����

In the sequel� let ��
�

be the union of all reductions in

Figure � except ��� and ����

Proposition ��� ��
�
is strongly normalizing
 every se�

quence of ��
�
�reductions terminates�

Proof� A standard termination measure argument�

Proposition ��� ��
�

is Church�Rosser
 if M ��
�
� M�

and M ��
�
�M� then there exists M� such that M� ��

�
�M�

and M� ��
�
�M��

Proof� A case analysis on the relative positions of re�
dexes coupled with a case analysis on reduction rules
shows that ��

�
is weakly Church�Rosser� The proposi�

tion then follows by Newman�s lemma ����� Proposition
������� and Proposition ����

This leads us to the con�uence result of the full reduc�
tion relation


Theorem ��� � is Church�Rosser�

Proof� The purely functional reduction relation ���
��

is

easily shown to be Church�Rosser �using Mitschke�s the�
orem ����� Theorem �������� for instance�� By Proposi�
tion ���� ��

�
is Church�Rosser� A straightforward case

analysis on the relative positions of redexes establishes
that ��

�
commutes with ���

��
� By the lemma of Hindley

and Rosen ����� Proposition ������� the combined notion
of reduction � is Church�Rosser�

Reduction gives rise in the standard way to an equa�
tional theory� As usual� we de	ne equality ��� to be the
smallest equivalence relation that contains reduction�

De�nition� The theory �var has as formulas equations
M � N between terms M �N � �var � Equality ���
is the smallest equivalence relation between terms that
contains reduction ����

�



We now de	ne a computable procedure� or evaluation
function� that maps a program to an answer if it re�
duces to one� We de	ne our evaluation function via a
context machine� At every step� a context machine sep�
arates its argument term into a head redex that occupies
a uniquely�determined evaluation context and then per�
forms a reduction on the redex� Evaluation stops once
the argument is an answer�

Evaluation contexts for �var are de	ned as follows


E 

� � � j E M j f E

j var v �E j E� j M �
 E

j E � x �M j M �
 v � x �E

j pure E j pure S �return E �

The productions on the 	rst line generate evaluation
contexts in classical ��calculus with constants
 the other
productions deal with the evaluation of state transform�
ers�

Given a �var�term� a step of the evaluation function
starts at the root of the term� If it is a redex� it is
reduced
 otherwise� the term�s abstract syntax tree is
matched against the E �productions� and the subterm
occupying the position of the E is recursively checked�
If no redex is found� evaluation stops
 otherwise the
process is repeated�

De�nition� A redex � is a left redex of a �var term
M if M � E ���� for some evaluation context E � A
left redex � of M is the head redex of M if� for all left
redexes �� of M � �� 	 ��

De�nition� The evaluation function evalvar on �var

programs is de	ned as follows


eval E �M � � eval E �N � if M is head redex

in E�M� and M � N �

eval A � A�

What is the relation between �var and evalvar� We
can show �by adapting a proof of the Curry�Feys stan�
dardization theorem in ���� Section ����� that evalvar is
a semi�decision procedure for equations in �var of the
form M � A where M is a program and A is an answer
�a constant c��


Theorem ��� �Correspondence� For every closed term
M � �var and answer A�

�var 
 M � A � evalvar M � A�

� Simulation by a

Single�Threaded Store

We now show that assignments in �var can be imple�
mented using a single sequentially�accessed store� In
order to do this� we de	ne a translation from �var into
another calculus� ��� that represents stores explicitly�
This calculus has reduction rules that closely resem�
ble the usual meanings of store�operations in imperative
models of computation
 furthermore� we can de	ne an
evaluation function on the language �� that evaluates
sequences of such operations in the expected temporal
order� We establish that the evaluation functions for
�� and �var agree on those terms that are present in
both languages� This simulation result shows both that
�var possesses a reasonable implementation as a pro�
gramming language and also that �var indeed reasons
about assignment as claimed�

To form the new term language ��� we make stores ex�
plicit by extending the de	ning grammar of �var �Fig�
ure �� with the additional production M 

� 	 � M �
Here� 	 � fv� 
 M�� ���� vn 
 Mng is a state� repre�
sented by a set of pairs v 
M of tags v and terms M �
dom 	 � fv�� ���� vng is called the domain of 	� Tags in
dom 	 are considered to be bound by 	�

Reduction rules for states are derived from the reduction
rules of �var � with the following modi	cations
 We keep
��� and ��� reduction as well as the �attening rules �����
�r��� �v��� ��
��� We replace the remaining bubble� fu�
sion� and e�ect masking rules by rules that construct�
access� update� and destroy states� as shown in Figure ��
The new basic constant undef is used to �ag an unitial�
ized variable� The rules in Figure � de	ne a reduction
relation �� between terms in ��� This relation can be
shown to be con�uent


Theorem ��� �� is Church�Rosser�

Note that� even though a state 	 can be duplicated in
rule 	pc � the resulting states are all read�only� Therefore
it su�ces to copy a pointer to the state instead of the
state itself
 state in �� is single�threaded �� ��

The evaluation contexts in �� are given by the grammar


E 

� � � j E M j f E

j E� j M �
 E

j E � x �M j

j pure E j pure S �return E �

j 	 � E

Based on this de	nition of evaluation context� we de	ne
the notion of head redex and the standard evaluation

�



	var 	 � var v �M � 	 
 fv 
undefg � M

	�� 	 
 fv 
N �g � N �
 v 
 M � 	 
 fv 
N g � M

	� 	 
 fv 
N g � v� � x �M � 	 
 fv 
N g � �x �M � N �N �� undef��

	pure pureM � � � M

	pc 	 � return �cn M� ���Mk � � cn �	 � return �M��� ��� �	 � return �Mk �� �k � n�

	p� 	 � return �x �M � � x � 	 � return �M �

	pf 	 � return �f � � f

Figure �
 Modi	ed reduction rules for �� �

function eval� for programs in �� as was done for �var

in Section �� eval� closely corresponds to usual notions
of store�based computations with store access and up�
date as single reduction steps� Analogously to the sit�
uation in �var � eval� is a semi�decision procedure for
equations between terms and answers in ���

Theorem ��� �Correspondence� For every closed term
M � �� and answer A�

�� 
 M � A � eval� M � A�

Since �var � �� � it makes sense to apply eval� to a
term in �var � Moreover� both evaluation functions are
equivalent if we consider only observable results


Theorem ��� �Simulation� For every closed term M

in �var and answer A�

�var 
 M � A � �� 
 M � A�

Proof� There is a close correspondence between states
in �� and state pre	xes in �var � Every state pre	x S

corresponds to a state 	S � de	ned by

dom 	S � bv S

S � S ��N �
 v 
 C � ��� v �� wr C � �v 
N � � 	S

v � bv S � v �� wr S � �v 
undef� � 	S

De	ne S��pure �S �M ���� � 	S �M and extend S canon�
ically to all of �var � S is surjective but not injective

every non�empty state corresponds to an in	nite num�
ber of state pre	xes� We de	ne a right inverse S�� of
S by picking for each state 	 one of the state pre	xes
that corresponds to 	� Assume that tag identi	ers are
totally ordered� and that the identi	ers v�� ���� vn in a
state 	 � fv� 
 M�� ���� vn 
 Mng form an ascending se�
quence� De	ne

S����	 �M �� � pure �var v�� � � � var vn �

M� �
 v� 
 � � � 
 Mn �
 vn 
 M ��

and extend S�� canonically to a mapping from �� to
�var � It is straightforward to verify that

�i� M ���
�
� S��M ���

�ii� �� 
 S��S����	���� � 	�

�iii� �var j� S����S��M ���� �� M �operational equivalence
�� is de	ned in the next section��

Using these laws� one shows by a case analysis over the
respective notions of reduction in �var and �� that

�iv� If M � N by contracting a head redex � in M �
and N �� A then �� 
 S��M �� � S��N ���

�v� If M ���
�

N then �var 
 S����M �� �� S����N ���

The theorem then follows from laws �i�v� by an induc�
tion on the length of the reduction sequence from M to
A�

� Operational Equivalence

Operational equivalence is intended to re�ect the notion
of interchangeability of program fragments� It equates
strictly more terms than does convertibility� We will
de	ne operational equivalence for arbitrary extensions
of the ��calculus�

De�nition� An equational theory �� over terms in ��

is an extension of � �wrt conversion�� if � 	 ��� and�
for any terms M � N in ��

� 
 M � N � �� 
 M � N

An extension is conservative if the implication in the
last statement can be strengthened to an equivalence�

 



De�nition� Let �� be some extension of the ��calculus�
Two terms N and M are operationally equivalent in ���
written �� j� N �� M � if for all contexts C in �� such
that C �M � and C �N � are closed� and for all answers A�

�� 
 C �N � � A � �� 
 C �M � � A�

Lemma 	�� For any terms M � N � and context C �

�� 
 M �� N � �� 
 C �M � �� C �N ��

Proposition 	�� The following are operational equiv�
alences in �var 


��� v� � x � w� � y � M �� w� � y � v� � x � M

��� N �
 v 
 N � �
 w 
 M �� N � �
 w 
 N �
 v 
 M

�v �� w�

��� var v � N �
 w 
 M �� N �
 w 
 var v � M

�v �� w � v �� fv N �

��� var v � var w � M �� var w � var v � M

��� N �
 v 
 N � �
 v 
 M �� N � �
 v 
 M

��� S �S ��M �� �� S ��M � �S � �� � ��

bv S � fv S ��M � � ��

Proof� One uses the correspondence and simulation re�
sults of Sections � and �� together with an induction on
the de	nition of eval� �

Equation ��� says that variable lookups commute�
Equations ���� ��� and ��� say that assignments and
variable introductions commute with themselves and
with each other� Equation ��� says that if a variable
is written twice in a row� the second assigned value is
the one that counts�

Equation ��� implements �garbage collection�
 it says
that a state pre	x S of an expression S �S ��M �� can
be dropped if every variable written in S is unused
in S ��M �� The reason for the second state pre	x S � is
to prevent false operational equivalences involving non�
sense terms� as in var v �� ��� �� Note that� using the
�bubble� conversion laws and the commutative laws ����
��� and ���� garbage can always be moved to a state pre�
	x�

Relationship between �var and classical ��calcul�
us� Clearly� convertibility in � implies convertibility in
�var � since ��� and ��� are reduction rules in �var � How�
ever� this goes only part of the way� For instance� the
equation tail �cons x �� id between list processing func�
tions is not an equality in the sense of ���convertibility�

but it is an operational equivalence� Other opera�
tional equivalences are those that identify some diverg�
ing terms or terms that involve 	xpoints� Since equiv�
alences like these are routinely used when reasoning
about programs� we would like them to be preserved in
�var � We establish now the result that �var indeed pre�
serves the operational equivalences of �� and� further�
more� that �var does not introduce any new operational
equivalences between ��terms� The only provision on
this result is that the underlying set of constructors and
basic function symbols needs to be �su�ciently rich�
�meaning that we can always 	nd enough constructors
that are not used in the reduction of some given pro�
gram��

De�nition� An �extension of� applied � calculus ��
has a su�ciently rich set of constants if

�a� The constructor alphabet includes for every arity
n an in	nite number of constructors that do not form
part of any of the terms Nf �cn � Nf used to de	ne the �
function�

�b� For every type constructor cn one can de	ne in ��
a projection function proj cn such that

proj cn �cn M� ���Mn � P Q � P M� ���Mn

proj cn V P Q � Q V

for any other value V �

�c� One can de	ne in �� a function projector proj f such
that

proj f �cn M� ���Mn � P Q � Q �cn M� ���Mn �

for any data value cn M� ���Mn

proj f V P Q � P V

for any non�data value V �i�e� for any function��

Clearly� these projection functions can be de	ned by
suitable ��rules� The functions proj cn represent a
stripped down version of pattern matching on data
types� as it is found in many functional programming
languages� Function proj f can be thought to be a dy�
namic type test� similar to procedure� in Scheme�

Theorem 	�� �Conservative Extension� Assume that
� and �var have the same� su�ciently rich set of con�
stants� Then for any two terms M �N � ��

� j� M �� N � �var j� M �� N �

Proof� The proof is based on 	nding a syntactic em�

bedding F from the store�based calculus �� to terms in
��

!



De�nition� Let �� be an extension of �� Let R be
an unspeci	ed domain of environments� A mapping E 

�� �R� � is a syntactic embedding from �� to � if
E is compositional	� i�e�

�C � ��� � �
 � R �
� � R �M � ��

� 
 E ��C �M ���
� �E ��C ��
��E ��M ��
���

E is the identity on � programs� i�e� for all closed M � ��

 � R�

� 
 E ��M ��
 � M �

and E is semantics preserving� i�e�

�� 
 M � A� � 
 E ��M ��
 � A�

For technical reasons� we use a variant of �� � in which
states are represented as sequences of bindings v 
M �
rather than as sets of such bindings� The reduction
rules in Figure � carry over� except that the 	rst three
rules are now de	ned on sequences rather than sets


	 � var v �M �

	 a
 �v 
undef� � M

	 a
 �v 
N �� a
 	� � N �
 v 
 M �

	 a
 �v 
N � a
 	� � M

	 a
 �v 
N � a
 	� � v� � x �M �

	 a
 �v 
N � a
 	� � �x �M � N �N �� undef��

where a
 is the append operator on lists� Clearly� The�
orem ��� holds for the new just as for the original ��
calculus� Assuming for the moment that we have found
a syntactic embedding F from the new �� to �� we can
then prove Theorem ��� as follows


���
 Assume that � j� M �� N and let A be an answer�
Then� for all ��contexts C� such that C��M � and C��N �
are closed


� 
 C��M � � A� � 
 C��N � � A�

Assume 	rst that both M and N are closed� Let C

be an arbitrary closed �var �context and let 
 be in the
environment domain of F � Since F is compositional�
there exists an environment 
� with

F ��C �M ���
� �F ��C ��
��F ��M ��
���

�We assume that syntactic embeddings are extended canoni�

cally to contexts� e�g� E��� 			 � � 	�

Furthermore�

�var 
 C �M � � A

� �Theorem ����

�� 
 C �M � � A

� �F is semantics preserving�

� 
 F ��C �M ���
� A

� �F is compositional�

� 
 �F ��C ��
��F ��M ��
�� � A

� �F is the identity on � programs�

� 
 �F ��C ��
��M � � A

� �premise
 � j� M �� N �

� 
 �F ��C ��
��N � � A

� �reverse the argument�

�var 
 C �N � � A�

Now let M and N be arbitary � terms� with fv M 

fv N � fx�� ���� xng� Then�

� 
 M �� N

� �Lemma ����

� 
 x�� � � � xn �M �� x�� � � � xn �N

� �	rst part of proof�

�var 
 x�� � � � xn �M �� x�� � � � xn �N

� �Lemma ����

�var 
 M �� N �

���� Assume �var j� M �� N � Then we have

�var 
 C �M � � A� �var 
 C �N � � A

for all contexts C in �var such that C �M � and C �N �
are closed and therefore also for all such contexts C

in �� Since terms M � � have only � and � redexes�
and since � is closed under �� reduction� this implies
� j� M �� N �

The remainder of this section is devoted to the de	ni�
tion of the syntactic embedding F from �� to �� This
construction is actually of a broader importance than
just as a technique for the proof of conservative exten�
sion� for it also gives us a way to construct models for
�var � by composing any denotational semantics of ap�
plied � calculus with F � We assume from now on that
�var has a su�ciently rich set of constants�

F is de	ned in Figure �� It takes as environment a stack
of symbol tables� Each symbol table contains bindings
for mutable and immutable variables local to some pure
scope� �A pure scope extends over a subterm with
outermost constructor pure� but excludes any nested
pure�terms�� Symbol tables are represented as sets of

�



F ��f �� ts � f

F ��cn �� ts � cn

F ��x �� �t 
 ts� � if �M �fx ��M g 	 t thenM

else outer �F ��x �� ts�

F ��x �M �� �t 
 ts� � y �F ��M ����fx �� yg 
 t� 
 ts�

where y �� fv�t 
 ts�

F ��M� M��� ts � �F ��M��� ts� �F ��M��� ts�

F ��v ���t 
 ts� � if �M �fv �� M g 	 t thenM

else outer �F ��v �� ts�

F ��var v M �� �t 
 ts� � Var

�y �F ��M ����fv �� yg 
 t� 
 ts��

where y �� fv�t 
 ts�

F ��M ��� ts � Deref �F ��M �� ts�

F ��M� �
 M��� ts � Assign �F ��M��� ts� �F ��M��� ts�

F ��returnM �� ts � Return �F ��M �� ts�

F ��M� � x �M��� ts � bind �F ��M��� ts� �F ��x �M��� ts�

F ��pureM �� ts � exec � �F ��M �� ts�

F ��	 �M �� ts � exec s �F ��M �� �t 
 ts��

where

�v� 
M�� ���� vn 
Mn � � 	

s � �F ��M��� �t 
 ts�� ����F ��Mn�� �t 
 ts��

t � fv� �� Tag �� ���� vn �� Tag �n���g

Figure �
 Syntactic embedding F

bindings x ��M and v ��M � The stack is implemented
as a list� using � for the empty list and �
� as constructor
symbol�

The translation scheme mentions constructors Var �
Deref � Assign� Bind � Return� Tag in Figure �� as well as
In� Out � Undef � which are de	ned later� We call these
constructors F�internal� and assume that they do not
occur in the terms F is applied to� This can always be
achieved by a suitable renaming since �var is su�ciently
rich�

F maps state transformers in �var to data structures
in � that are then passed to one of two �interpreter�
functions bind or exec� To de	ne these functions and
others used in the de	nition of F � we use a functional
notation similar to Haskell� rather than a formulation
in terms of projection functions in order to aid legibil�
ity� Functional abstractions are still expressed as x �M
instead of Haskell�s nx �M �

bind �Bind x f � g � Bind x �y �bind �f y� g�

bind �Return x � g � g x

bind �Var f � g � Var �y �bind �f y� g�

Intuitively� bind simulates �� reductions ����� �r���
and �v��� The remaining non�functional �� reductions�
which all reference state� are simulated by function exec�

exec s �Var f � �

exec �s a
 �Undef �� �f �Tag �length s���

exec s �Bind �Assign x �Tag i�� g� �

exec �take i s a
 �x � a
 �drop �i��� s�� �g ���

exec s �Bind �Deref �Tag i�� g� j s""i �� Undef �

exec s �g �s""i��

exec s �Return �cn x� ��� xn �� �

cn �exec s �Return x��� ��� �exec s �Return xn ��

exec s �Return f � j f not a data value

x � exec s �Return �f x ��

In the second�to�last clause cn ranges over all data con�
structors except those that are F�internal� In the last
clause f ranges over all non�data values �i�e� values that
do not consist of a fully applied constructor at top�
level�� The syntax of values ensures that non�data val�
ues are always functions�

The translation scheme represents states as lists of
terms� and tags as values Tag i where i acts as an index
into the �state� list
� This scheme poses one rather dif�
	cult problem
 �� uses globally unique tag names� but
the representation of a tag as an index is unique only
among all tags bound in the same state pre	x� How�
ever� it is mandatory to be able to distinguish between
tags bound in a given state pre	x and tags that are free
in it� Otherwise� global variable accesses and updates
in a pure go undetected� There is no hope of 	nding
a syntactic embedding F that assigns globally unique
names to tags
 every such mapping would have to pass
a name supply between pure terms� This would violate
the condition that F maps purely functional ��terms
to themselves� and hence F would not be a syntactic
embedding�

We overcome this problem by introducing the mutually
recursive functions outer and inner � Function outer

marks occurrences of �mutable and immutable� vari�
ables in pure scopes other than the one in which the
variables are de	ned� The number of outer operators
applied to such variables equals the di�erence in nest�
ing level of the pure scope that de	nes the variable and

�This part of the embedding is similar to the presentation of

monadic state transformers in �

	

��



data QEntry a � Cons a �Var �QEntry a��

type Queue a � f put 
 a � Proc ���

get 
 Proc a�

isempty 
 Proc Bool g

mkqueue 
 Proc �Queue a�

mkqueue � var v �

var front � v �
 front 


var rear � v �
 rear 


return f put x � rear� � y � var w � Cons x w �
 y 
 w �
 rear �

get � front� � y � y� �Cons x z � z �
 front 
 return x �

isempty � front� � y � rear� � z � return y
�
� z g

Figure  
 A queue implementation

mkqueue � q � q �put x 
 q �get �M �� mkqueue � q � M x

q �put x 
 q �put y 
 q �get �� q �put x 
 q �get � z � q �put y 
 return z

mkqueue � q � q � isempty �M �� mkqueue � q � M True

q �put x 
 q � isempty �� q �put x 
 return False

Figure !
 Axioms for an imperative queue abstract data type

the pure scope in which it is used� Function inner can�
cels out the e�ect of outer � The de	nition of these two
functions is as follows


outer �Tag M � � Out �Tag M �

outer �Out M � � Out �Out M �

outer �In M � � M

inner �Tag M � � In �M �

inner �Out M � � M

inner �In M � � In �In M �

For every other data value cn M� ��� Mn � including val�
ues formed from F�internal constructors


outer�cn M� ���Mn � � cn �outer M�� ����outer Mn �

inner�cn M� ���Mn � � cn �inner M�� ����inner Mn �

For every non�data value f 


outer f � x �outer �f �inner x ��

inner f � x �inner �f �outer x ��

Proposition 	�� F is a syntactic embedding�

Proof� It is straightforward to verify that F is composi�
tional and that it maps ��programs to themselves� That
F also preserves semantics is shown using a technique
similar to the proof of Theorem ����

Proposition ��� gives us a way to treat �var programs
as syntactic sugar for functional programs� In the ter�
minology of ���� � can express �var � One might ask why
one should bother with �var at all� if all its terms can
be mapped via F to functional values� We believe that
the main reason for studying �var independently lies in
its simplicity� compared to the translated image under
F � In the next section� we give an example showing
how the laws of �var can help reasoning about imper�
ative programs that previously required very complex
proofs�

� Example	 Queue ADT

Figure  presents an imperative implementation of an
abstract data type �Queue�� A queue is represented
as a record whose 	elds are closures implementing the
operations put �i�e� append to end�� get �remove from

��



front� and isempty �

Internally� a queue is implemented by two references to
a linked list of entries� Each entry has a data 	eld and
a link 	eld� The link 	eld is a mutable variable pointing
to the next entry in the list� The last link 	eld in the list
is always uninitialized� front always refers to a variable
that in turn either refers to the 	rst entry in the queue�
or is uninitialized� if the queue is empty� rear always
refers to the last link 	eld of the queue�

For conciseness we augment the basic calculus with pat�
tern matching and records� Field selection is expressed
by in	x ���� of higher precendence than function ap�
plication� Also� even though �var is untyped� we still
write type declarations and function signatures in order
to help understanding� Var � designates the type of
mutable variables that contain values of type �� Proc �
designates the type of state transformers that return
results of type ��

One feature of �var not discussed so far concerns vari�
able identity
 In the last line of the example� y

�
� z

is intended to be true i� y and z designate the same
tag� �

�
�� cannot be de	ned via ��� since tags are not

values� We de	ne �
�
�� instead by adding reduction rules

v
�
� v � true and v

�
� w � false if v �� w � It is

straightforward to show that this addition does not in�
validate any of the results presented in earlier sections�

The implementation in Figure  satis	es the axioms for
queues shown in Figure !� This can be shown using
�var �s conversion rules and the operational equivalences
of Proposition ���� For the second axiom� a structural
induction on terms is needed� As an example� we show
in Figure � the proof that our implementation satis�
	es the 	rst queue axiom� Even though this proof is
far from short� all its steps are simple and amenable
to machine�assisted proof�checking� Also� some of the
proof�s size is due to the detailed level of presentation�
By contrast� the traditional approach to verifying pro�
grams with pointers treats pointer�threaded structures
as graphs� This requires complex arguments when iso�
morphism between graphs needs to be shown�


 Related Work

Hoare et� al� ��� present a normalizing set of equations
for an imperative language with assignment� conditional
and nondeterministic choice� Functional abstraction is
not considered� Field � � extends the deterministic part
of their theory with shared variables� Boehm ��� gives
an equational semantics for a 	rst�order Algol�like lan�
guage� In his setting� expressions have both values and
e�ects� which are de	ned by di�erent fragments of his

calculus�

Felleisen� Friedman� and Hieb ��� �� have developed a
succession of calculi for reasoning about Scheme pro�
grams� Since their target programming language is call�
by�value� they have based their work on the �V �calculus
of Plotkin���� instead of the pure ��calculus� It is inher�
ent in their goal of reasoning about Scheme that their
theories are not a conservative extension with respect to
operational equivalence of either the classical ��calculus
or of �V � Mason and Talcott ���� ��� have also de�
veloped equational calculi with motivations similar to
those of Felleisen et� al� and with comparable results�

Our work was in�uenced in part by the Imperative
Lambda Calculus �ILC� of Swarup� Reddy and Ireland
��!�� Like �var � ILC assumes call�by�name and mod�
els assignment by rewriting variable uses to approach
and merge with their de	nitions� Unlike �var � ILC is
de	ned in terms of a three�level type system of values�
references and observers� This somewhat restricts ex�
pressiveness on the imperative side
 references to ob�
jects that encapsulate state cannot be expressed� and
all procedures have to be formulated in continuation�
passing style� Also� unlike �var � ILC is strongly nor�
malizing� and� as a consequence� not Turing�equivalent
�e�g� recursion is prohibited��

A programming language with motivation similar to
that of �var is Forsythe ����� The language distin�
guishes between mutable and immutable variables� and
also between value expressions and commands
 however�
it does so by means of a re	ned type system that is
based on intersection types� Forsythe essentially uses a
two�phase semantics� in which a term is 	rst expanded
to some potentially in	nite program which is then exe�
cuted in a second phase� Some common programming
idioms such as procedure variables do not 	t in this
framework and therefore cannot be expressed�

� Conclusions and Future Work

We have extended the applied ��calculus with assign�
ment� We have shown that the resulting calculus is
con�uent� preserves all operational equivalences of the
original calculus� and permits implementation by a con�
ventional� sequentially updated� store� We hope that
�var will prove useful as a framework for extending lazy
functional programming languages with imperative con�
structs�

An important step to that goal will be the study of type
systems for �var � We have intentionally kept the present
treatment untyped in order that many of our results
may be applied immediately to versions of �var with ar�
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mkqueue � q � q �put x 
 q �get �M

� �expand mkqueue�

var v � var front � v �
 front 
 var rear � v �
 rear 
 returnQ � q �

q �put x 
 q �get �M

where Q � fput � ���� get � ���� isempty � ���g� as in Figure  

� �r� on returnQ � followed by ��

var v � var front � v �
 front 
 var rear � v �
 rear 


Q �put x 
 Q �get � �Q�q �M

� �expand Q �put � Q �get�

var v � var front � v �
 front 
 var rear � v �
 rear 


rear� � y � var w � Cons x w �
 y 
 w �
 rear 


front� � y � � y �� � Cons x � z � z �
 front 
 return x � � �Q�q �M

� �fuse on rear�

var v � var front � v �
 front 
 var rear � v �
 rear 


var w � Cons x w �
 v 
 w �
 rear 


front� � y � � y �� � Cons x � z � z �
 front 
 return x � � �Q�q �M

� �bubble and fuse on front�

var v � var front � v �
 front 
 var rear � v �
 rear 


var w � Cons x w �
 v 
 w �
 rear 


v� �Cons x � z � z �
 front 
 return x � � �Q�q �M

� �bubble and fuse on v�

var v � var front � v �
 front 
 var rear � v �
 rear 


var w � Cons x w �
 v 
 w �
 rear 


w �
 front 
 return x � �Q�q �M
�� �rearrange� using Proposition ��� ���� ���� ����

var w � var v � Cons x w �
 v 


var front � v �
 front 
 w �
 front 


var rear � v �
 rear 
 w �
 rear 


return x � �Q�q �M
�� �Proposition ��� ���� twice�

var w � var v � Cons x w �
 v 


var front � w �
 front 


var rear � w �
 rear 


return x � �Q�q �M
�� �Proposition ��� ���� eliminating var v � Cons x w �
 v 
 � ��

var w � var front � w �
 front 
 var rear � w �
 rear 


return x � �Q�q �M

� �r�� x not free in Q�

var w � var front � w �
 front 
 var rear � w �
 rear 
 �Q�q � �M x �

� ���r� in reverse�

var w � var front � w �
 front 
 var rear � w �
 rear 
 returnQ � �M x �

� �collapse de	nition of mkqueue� using that v and w not free in Q � M �

mkqueue � q � M x

Figure �
 Proof of a law on queues�

��



bitrary descriptive type systems� Had we started out
with a typed calculus instead� all our results would hold
only for the particular type system used� This would re�
sult in a loss in generality� since there are many possible
candidates for such a type system� In particular� there
are several widely di�ering approaches to implementing
the e�ect checking required by the pure rule �examples
are �!� ��� �!� ��� ����� By keeping �var untyped we
avoid being overly speci	c�

Also left to future research is the investigation of vari�
ants of �var � A call�by�value variant promises to be a
useful tool for reasoning about programs in existing im�
perative or impurely functional languages� A variant
with control�operators could provide an equational the�
ory for a language with call#cc or exceptions�
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