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1 Introduction

Until the late 1980s research in many-valued logic (MVL) focussed on theoreti-
cal issues in proof theory, algebra, expressivity, axiomatizability and, on the ap-
plicative side, discrete function minimization and simpli�cation. The �rst papers
with practical implementation of deduction systems in mind came up in para-
consistent/annotated logic programming [18, 76] and in automated theorem prov-
ing [55, 108].

A partial survey of the results up to 1993 is contained in [58]. In the past �ve
years deduction methods for MVL got more and more re�ned. Recent results can
match those in classical theorem proving with respect to depth and attention to
detail. They are not con�ned to mimicking improvements of deduction invented
in classical logic, rather, speci�cally non-classical strategies are started to being
pursued. As can be seen from the references list of this article, there is considerable
activity in MVL deduction which is why we felt justi�ed in writing this survey.

Needless to say, we cannot give a general introduction to MVL in the present
context. For this, we have to refer to general treatments such as [153, 53, 93].

2 A classi�cation of many-valued logics according

to their intended application

Many-valued logic (MVL) can be conceived as a set of formal representation lan-
guages that have proven to be useful for both real world and computer science
applications:

� Since expressiveness of fuzzy logic can be captured by in�nite-valued logic
[66] and its main phases, namely interpolation and defuzzi�cation rely on
functional theories, fuzzy controllers can be modeled by MVL together with

�Part of this work was supported within the Acci�on Integrada \Algorithms for Manipulating
Discrete Functions" by DAAD (Deutscher Akademischer Auslandsdienst) and MEC (Ministerio
der Educaci�on).
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appropriate logical calculi. Fuzzy control now is a well established area with
a huge variety of industrial applications (see Section 7), used to optimize
both discrete and continuous industrial processes: chemistry, mechanical and
electrical engineering, medicine, scheduling, etc.

� Within computer science there is a broad span of �elds relying on MVL; their
scope covers a fairly large spectrum going from special purpose through gen-
eral purpose computer systems. A non-exhaustive list of such �elds is: Expert
systems [52], error correcting codes [105], optimisation of discrete functions
[129, 14], deductive databases [145], logic programming [91], constraint logic
programming ([64] and the article of Lu in this special issue), automated the-
orem proving [58], inconsistent reasoning [88], dealing with partial knowledge
[74, 114], non-monotonic reasoning [16], multi agent systems [156, 112, 118]
and distributed AI [34, 103].

The expressiveness of MVL enables to model various aspects of uncertainty,
namely those relying on truth functional theories [153] including fuzziness [66],
stochastic signals modelled by functional (Bayesian, Markov) probabilities [116]
and imprecise information [114].

MVL languages can also be used in general applications using di�erent kinds of
information coming from di�erent real sources, for example, sensors supplying im-
perfect or uncertain information. Some application areas with these properties are
robotics [117], multi agent Systems [156, 112, 118], decision processes [39], modular
deductive systems [3, 2].

After this panoramic view of the attractive features inherent to MVL we classify
the variety of MVLs according to four parameters: the number of truth values, their
mathematical structure, the semantics associated to connectives and to �rst order
quanti�ers.

2.1 An abstract framework for many-valued logics

MVL owes its signi�cant di�erences to classical logic from varying the four param-
eters indicated above.

Classical propositional logic is de�ned by two di�erent Boolean algebras.
The syntax algebra hProp; Ci gives rise to well-formed (propositional) formulas

(WFF) built by structural induction on the connectives C = f:;_;^;!g.
Meaning is assigned to WFFs by a Boolean semantics algebra hf0; 1g; I; A(C)i.

The function I, called valuation function or interpretation, assigns a value in
f0; 1g to each proposition in Prop. A(C) = fA(:); : : : ; A(!)g are mappings on
f0; 1g of suitable arity associated with each connective symbol. As usual, I is
extended to a homomorphism I from WFFs to f0; 1g.

In the many-valued propositional case, the syntax algebra is then hProp; Ci,
where C = f�1; �2; : : : ; �kg and the semantics algebra is hN; I;A(C)i, where A(C) =
fA(�1); A(�2); : : : ; A(�k)g. N represents the truth values. I is a valuation function
that assigns to each proposition an element of N . C are the function (or connective)
symbols with corresponding mappingsA(C) on N . Each pair of such algebras forms
a many-valued propositional logic L. Note that the homomorphic extension of
I maps WFFs to N

In many applications the de�nition of the semantics has well-known properties.
For example, if N = f0; 1g then classical propositional logic may be obtained. In
other words, MV propositional logics generalize Boolean logic.

The syntax algebra of classical �rst order logic is a quadruple hF; P;C;Qi, where
F , P , C, and Q are the following sets, respectively: function, predicate, connective
and quanti�er symbols. Usually, Q = f8; 9g and C � f:;_;^;!g. Well-formed
(�rst order) terms and formulas are de�ned inductively as usual.
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The semantics algebra is M = hf0; 1g;T; IF ; IP ; A(C); A(Q)i, where T is a
domain or set of semantical terms, IF associates with each m-ary function symbol
a mapping Tm ! T; IP associates with an m-ary predicate symbol a mapping
Tm ! f0; 1g; A(C) is as above; given M and a variable assignment � : Var ! T

one de�nes as usual inductively a valuation function vM;� that maps quanti�er
free formulas into f0; 1g. This is extended to quanti�ed formulas by stipulating
that A(Q) maps a quanti�ed formula 8x� (9x�) to 0 i� there are (for all) variable
assignments vM;�(�) = 0.

A many-valued �rst order logic can be de�ned by extending the classical
binary case to N and by paying special attention to the connectives and quanti�ers.
The many-valued syntax algebra again is hF; P;C;Qi, where C is as in the MVL
propositional case and Q = f�1; �2; : : : ; �mg.

The meaning of �rst order MVL formulas relies on the semantics algebra M =
hN;T; IF ; IP ; A(C); A(Q)i. N is as in propositional MVL, T and IF are as in
classical �rst order logic.

Each connective symbol �i has an associated mapping A(�i) : Nk ! N , where k
is the arity of �i and each quanti�er symbol�j has an associated discrete distribution
function A(�j) : (2N �f;g)m ! N , where m is the arity of the quanti�er �j . In the
present paper we only need m = 1, so the quanti�er case of vM;� is then de�ned via

vM;�(�x�) = A(�)(fvM;�0 (�) j �0 variable assignmentg)

Historically, a deduction problem in MVL was represented by a pair hD;�i where
D � N and � is a WFF. Thus, the deduction problem is to search for interpretations
that assign to a given WFF a truth value in D, the set of designated truth

values, which generalize the rôle of \1" in the Boolean case. Two general deduction
problems are distinguished: (1) whether there is at least one such interpretation, or
(2) whether all interpretations have the mentioned property.

In the �rst case, we speak of D-(un)satis�ability of a WFF and in the second
case, of a D-tautology. Other concepts such asD-logical consequence, sound in-
ferences of WFFs, D-logically equivalent formulas are easily de�ned analogously
to classical logic.

2.2 The cardinality of the truth value set

In this subsection we present a classi�cation of MVLs based on their number of
truth elements.

Finite If the cardinality of the set N is very small (say, less than ten but, more
typically, three or four), then the functions (connectives) are generally de�ned by
truth tables or algebraically by some standard mathematical structures as for in-
stance lattices, partial orders, etc. [124]. Some well known MVLs of this type are
Kleene's three-valued weak and strong logic [80], often de�ned by truth tables and
Belnap's Logic [6], usually de�ned by a lattice. These MVLs are suitable for appli-
cations where deduction must be done in presence of partial knowledge [74, 114],
inconsistency [88], or non-monotonicity [37].

Notice yet, that if functions are de�ned by truth tables, then memory require-
ments grow exponentially with the arity of the involved connectives. Then, even
as truth tables for function de�nitions are convenient, because its easy to de�ne
whole families of functions, the truth table approach becomes infeasible due to this
exponential increase.

MVLs with a reasonable limit on the cardinality of the truth value set are often
found in applications where the truth values are called \linguistic labels", such as
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Very High, Quite High, High,. . . , Very Low. These logics appear in many important
applications such as expert systems [52] and fuzzy control [23].

Sometimes a larger (though �nite) number of truth degrees is needed; this is the
case for discrete optimisation functions, hardware veri�cation [44], approximation
of continuous fuzzy sets.

When the number of �nite truth values or the arity of connectives is truly large,
their functions need to be calculated without truth tables; one chooses suitable com-
putable functions such as max, min, addition, subtraction, exponential, logarithm,
polynomial. These are su�cient to compute functions such as T-norms [54] and
certain implications [92].

In�nite When the number of truth values is in�nite, two cases arise: either they
are countable or not.

Applications with a countably in�nite number of truth values appear in real
world contexts, where in practice approximations of continuous variables are ac-
ceptable by considering discrete variables with in�nite domains.

These approximations are suitable for all the real world systems based on discrete
variables such as the control processes, where the discrete phenomena emerge due
to the inclusion of a computer into the process control loop.

MVLs with an uncountably in�nite number of truth values permit a sharp mod-
elling of any kind of problem requiring continuous variables. For example, this
situation is common in control processes based on analog hardware.

Analog hardware may be employed for classical and current fuzzy controllers,
too. Indeed, both kinds of control systems are modelled with continuous variables
and functions, in other words, with MVLs where variables and functions are con-
tinuous.

Thus, given that a computer cannot represent an in�nite number of values cor-
responding to the domains of continuous variables and functions, such applications
as diagnostics in analog systems, say analog electronic circuits, need a di�erent
approach than the truth tables and computable functions mentioned before.

Still, often even these system models allow a �nite representation: �gures in
its transfer functions stand for thresholds such that beyond a certain threshold the
behaviour of the system changes. Then, any system can be controlled in practice
by considering merely the numerical values explicitly occurring in the model of a
system. Thus, the control system can be modelled with appropriate �nite MVLs.

2.3 The structure of the truth value set

Next, we discuss MVLs according to the di�erent mathematical structure of N .
More precisely, the input variable domains, the connective functions and the output
value must be related to the mathematical structure of N . Vice versa, if we need
functions for applications in a certain mathematical structure, then the variables'
and functions' domains must be de�ned according to the nature of N .

Unordered The structure of N is a simple set. For example, this is the case in
the de�nition of MV logics and their deduction problems represented by the pair
hD;WFF i.

In recent years it has been suggested [55, 108] to associate a set S � N with
each formula � in an MVL and then consider pairs hS; �i, called signed formulas
as an atom of Boolean logic. Instead of hS; �i one writes more compactly S �.

vM;�(S �) holds (that is S p is satis�able) i� vM;�(�) 2 S. In the case when �

is atomic, S � is called a signed literal.
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This mixed Boolean and many-valued logic, called signed logic, has turned out
to be of great practical interest. Indeed, this logic preserves most of the properties
of propositional logic and the set S, depending on the context, models constraints,
imprecision, inconsistency and other things.

A particular subset of signed MVLs are the monosigned MVLs where the sign
S of each formula is a singleton.

Another simple and unordered structure used in MVL, and which we encoun-
tered already, is the truth table. Each connective � has an associated truth table.
If A(�) is the connective function of arity 2, the entry at hi; ji of the table indicates
the value of �(i; j). In the general case, the truth table of an n-ary function is an
n-dimensional hypercube.

Truth tables have the nice property that all discrete functions can be de�ned with
them, but this feature is of limited value in practice, because the ratio memory/k
(k being the maximal arity of any connective) increases exponentially.

Partially ordered In many real world situations, the available information can
be imprecise, inconsistent, and partial. Hence, many results concerning knowledge
representation and its deductive aspects cannot be employed straightforwardly.

Many problems that feature inconsistent and partial knowledge come from dis-
tributed AI [34, 103] and decision theory [39, 95].

Belnap's four-valued lattice and other (three-element) lattices have been envis-
aged to deal with: partial, inconsistent knowledge in so-called paraconsistent logics
[88], non-monotonic reasoning [37].

The lattice order corresponds to degrees of truth, knowledge, or of other param-
eters. Ginsberg [51] suggested an algebraic structure allowing to combine several
parameters.

Ginsberg's ideas were used in [95] which is discussed in Section 7. Another
proposal to combine several sources of uncertainty is described in [3, 2]. Here the
problem is tied to modular programs where each module is developed relative to a
particular MVL. Their di�erence is chiey based on the number of truth degrees.
Thus, the technical di�culty is due to the need of combining the truth degrees
coming from a set of modules. Indeed, the combined truth degree must ensure global
soundness with respect to local module soundness. The idea is to de�ne appropriate
quasi-morphisms among di�erent MVL algebras which allow to determine mappings
over truth degrees of two particular modules. In [2] restrictions concerning the
MVLs that can be used in modules are set up.

Totally ordered MVLs with totally ordered sets of truth values have computa-
tionally attractive features. They are also natural for graded truth found in many
real world applications. For instance, in uncertainty management, the larger a truth
value attached to a knowledge unit, the more certain it is. The generic problem can
be modeled by a pair htruth level; �i, \truth level" being a label indicating that the
problem has a solution if there exists an assignment such that the truth value of
the WFF � is greater or equal than the \truth level" [42, 62, 87, 106].

Graded truth can be mapped to a signed formula of the form h�; Si, where S
is of the form fi 2 N j i � i0g or fi 2 N j i � i1g, with respect to a total
ordering < of N . In this case S is a regular sign [56]. If all literals of a classical
formula are signed formulas with regular signs relative to the same total order, we
speak of a regular formula. In the case of regular signs and formulas, N can
without loss of generality, assumed to be a set of equidistant rational numbers of
the form f0; 1

n�1
; : : : ; n�2

n�1
; 1g. Some aspects concerning the negation function in

representations where the graded thuth values are not equidistant are studied in
[150].
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If signs are taken from the rational or real unit real interval one obtains in�nite
regular logics [42, 62]. In practice, knowledge bases are �nitely bounded by memory.
Hence, the number of knowledge units (bases and rules) as well as the number of
truth values in each sign taken from the rational or real unit interval, are �nite.

2.4 Connectives and Quanti�ers

Recall from Section 2.1 that any function � : Nk ! N can be considered as a
many-valued connective while any function � : (2N�f;g) ! N can be considered
as a many-valued quanti�er. Such diversity can lead to high computational cost for
deduction in the worst case (Section 5). Fortunately, the many-valued connectives
and quanti�ers arising from applications are much more structured. In the following
we mention some important cases.

For instance, it is quite often the case that connectives � are normal [124] which
means there is a designated truth value 1 2 D � N and a non-designated truth
value 0 2 N �D such that the restriction of � to f0; 1g yields a classical connective.

As an example we mention the so-called T-norms, S-norms, and R-impli-

cations, a family of binary connectives widely used in fuzzy logic [54]. Kleene's
connectives based on min and max with respect to a total ordering of N are par-
ticular instances of a T-norm and S-norm.

Other many-valued connectives closely related to the classical ones are the so-
called regular connectives introduced by H�ahnle [56]. They are characterized by
a monotonicity condition with respect to a total ordering of N plus a restriction
to regular signs (Section 2.3). An attractive feature of regular connectives is that
nearly classical deductive techniques can be employed for them.

Furthermore, just as in the classical case, many-valued quanti�ers often can be
gained by in�nitely iterating associative and commutative propositional connectives.
Thiele [149], for instance, derives T-quanti�ers and S-quanti�ers from T-norms
and S-norms, respectively. Zabel [157] and Zach [158] showed that quanti�ers in-
duced by associative, commutative and idempotent connectives have crisp proof
theoretical characterizations. Recently, these results were generalized to quanti�ers
based on certain types of lattices [61, 128].

As a �nal example of connectives that relate many-valued to two-valued logic we
mention Rosser & Turquette's [125] unary assertion connectives Ji which evaluate
to 1 if their argument evaluates to i and and give 0 otherwise. Such connectives
allow to express the semantics of other connectives as is witnessed by the fact
that any �nite-valued logic containing ^ = max, _ = max, and Ji for all i 2 N is
functionally complete, i.e., for each f : Nk ! N there is a formula �f (p1; : : : ; pk)
such that f = I(�f ).

2.5 Expressivity

While the additional truth values of many-valued logic do increase expressivity,
well-known syntactic classes of classical logic are orthogonal to this and remain
unaltered. An important distinction is full logic syntax vs. clause normal form
syntax. Most many-valued logics do not possess a subset of their w�s that can be
regarded as normal form. In general it is necessary to extend the syntax in order
to obtain normal form.

Accordingly, the calculi developed for deduction with many-valued logic formu-
las in normal form di�er substantially from those dealing with full syntax. Also
computation of normal form in many-valued logic is a much more di�cult process
than in classical logic as it has to account for the characteristics of each logic. On
the other hand, it turns out that there is a generic, clause-based normal form into
which each �nite-valued �rst order logic can be transformed, see Section 4.1. As
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a consequence, clause-based reasoning in many-valued logic is independent of the
logic from which the clauses were obtained by transformation.

Once clausal normal form has been obtained, one can de�ne a Horn fragment,
Krom (2-CNF) fragment, Datalog fragment and so on, see Section 5.

2.6 Combining Many-Valuedness with other Non-Classical

Features

It is an interesting question how deduction systems for many-valued logics and for
other non-classical logics can be combined. This has been done for many-valued plus
higher-order sorted logic [74, 73], many-valued plus modal logic [45, 46] and even
many-valued non-monotonic modal logic [47]. An interesting case is [99, 100], where
additional truth values were used to simplify a tableau system for intuitionistic and
modal logic while, on a similar line, Doherty [38] showed that a particular three-
valued logic can ease the proof theoretic treatment of certain non-monotonic logics.

[31] showed that the modal logic S5 can be captured by �nite-valued proposi-
tional logic. A general framework for obtaining deduction systems for combinations
of non-classical logics is [49]. It has been applied within the context of MVL in [139].

3 Proof theory of many-valued logics

As is the case for other non-classical logics, proof calculi for deduction in MVL can
be roughly divided into two classes:

Internal calculi: the objects constructed during a proof are from the same lan-
guage as the goal to be proven; a typical example are Hilbert type calculi.

External calculi: the objects occurring during a formal proof are over an extended
language that may involve elements from the semantics such as designators
for truth values, worlds or even non-logical expressions such as constraints; a
typical example are signed semantic tableaux.

Proof theorists often only accept calculi of the �rst kind and regard the second
option as a kind of \cheating". On the other hand, if a uniform and computation-
ally e�cient treatment of deduction is desired, there seems to be no alternative to
external calculi: otherwise, highly indeterministic rules such as cut and weakening
are inevitable, even if an internal axiomatization exists.

A somewhat extreme position of gaining a classical logic approach to deduction
in non-classical logic would be to formulate the \external" elements in the second
approach as a meta theory in classical logic. For a wide range of logics this is even
possible in �rst order logic. The \meta theory" of �nite-valued logic in particular
can always be captured without having to move to a higher-order stage.1 From
the viewpoint of e�ciency, however, it is de�nitely better to formulate dedicated
calculi for many-valued logics. The situation is analogous to higher programming
languages which usually contain built-in functions for, say, standard arithmetical
operators instead of having them implemented in the language itself.

3.1 Internal Proof Systems

Hilbert style calculi for all well-known MVLs may be found, for example, in over-
views such as [124, 22]. \Internal" Gentzen style calculi for some logics were given
by Avron [9] and H�osli [68].

1This is not necessarily true for in�nite-valued logic, see [134].
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An interesting example of an internal proof system constitutes many-valued
non-clausal resolution introduced by Stachniak [141], now nicely summarized in
[142]. The basic idea is to derive from formulas �(p) and  (p) (where p is an atom
occurring in � and  ) a new formula2 �(�)_ (�) for certain variable-free formulas
� and then to perform logic-speci�c simpli�cations.

3.2 External Proof Systems

As pointed out at the beginning of this section, we now extend the language used
in the proof wrt to the language of the formula to be proven. Many notations have
been invented, the most exible being the signed formulas of Section 2.3:

As pointed out, it is possible to view a signed formula S �(x1; : : : ; xm) with free
variables x1; : : : ; xm itself as an atomic expression and to build classical �rst order
formulas over such atoms, for example, S (p t q) _ S0 r. Here, t is a many-valued
connective, say t = max, and _ is classical disjunction.

Each of the following deduction systems must have means to express a signed
formula S�(�1; : : : ; �m) (where � is an m-ary connective) by a classical formula over
atoms of the form Si �i for suitable Si � N , formally:

Theorem 1 Let � = S�(�1; : : : ; �m) (m � 1, S � N , jN j = n) be a signed formula
from an n-valued logic L. Then there are numbers M1;M2 � nm, index sets I1,
. . . , IM1

, J1, . . . , JM2
� f1; : : : ;mg, and signs Srs; Skl � N with 1 � r �M1; 1 �

k �M2 and s 2 Ir; l 2 Jk such that

� is satis�able i�
WM1

r=1

V
s2Ir

Srs�s is satis�able i�
VM2

k=1

W
l2Jk

Skl�l is satis�able.

In this generality the theorem was �rst proven by H�ahnle [55], other references
are given below. A similar result holds which grants elimination of many-valued
quanti�ers by a generalization of classical Skolemization.

Obviously, by repeated application of Theorem 1 each signed formula can be
converted to a classical formula over signed literals.

By the usual transformation then, a classical CNF or DNF formula over signed
literals, called signed CNF/DNF formula, is obtained. Some MVL deduction
systems assume this conversion was done in a preprocessing step: they check con-
sistency of conjunctions of clauses of the form

S1 p1 _ � � � _ Sm pm (1)

where the Si pi are signed literals. Other calculi interleave normalization and
consistency checking.

3.2.1 Sequents and Tableaux

Recall that in classical logic signed semantic tableaux and sequent systems corre-
spond to each other very closely (see, for example, [48, p. 96f]). This extends to
the many-valued case. Indeed, both sequent and tableau rules can be derived from
Theorem 1, if one keeps in mind that tableau rules correspond to a disjunction of
conjunctions, whereas sequent rules correspond to a conjunction of disjunctions.
Thus, if Srs, Skl are as in the theorem, then the following sequent, resp., tableau
rules are sound and complete for the connective appearing in the premise provided
that there is a rule for each occurring sign:

2There are workarounds if _ = max happens not to be a connective of the given logic.
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� [
S
l2J1

S1l �l � � � � [
S
l2JM2

SM2l �l

� [ fS �(�1; : : : ; �m)g

S �(�1; : : : ; �m)
...

...
...

S1s �s � � � SM1s �s...
...

...

(2)

Note that unlike in classical logic sequents are not pairs of formula sets separated
by an arrow, but simply sets of signed formulas (recall that a classical sequent �) �
can be expressed with ff1g j  2 �g [ ff0g �j � 2 �g).

Inconsistency (i.e. closure) of tableau branches is signalled by one of the
following conditions. Either there are formulas S1 �; : : : ; Sm � on a branch such
that

T
1�i�m Si = ; or there is a complex formula S � such that none of the truth

values in S is reached by the leading connective of �. Tautologyhood or, in other
words, axiomatic status of sequents is expressed by dual conditions.

All results in this section still hold for monosigned formulas. In this case, there
is no need for set brackets and one simply writes i � for signed formulas. In fact,
historically, Theorem 1 was �rst proven for the singleton case and sequents indepen-
dently by Rousseau [126] and Takahashi [148]. Other authors who had essentially
the same idea, but with certain restrictions, are Schr�oter [137] and Kirin [78, 79].
Surma [147], Carnielli [33], Baaz & Zach [13], Zabel [157], and Bloesch [21] worked
the dual tableau case. Natural deduction systems based on the same idea are de-
scribed in [12]. A summary of results is contained in [11].

The idea of using truth value sets as signs is due to H�ahnle [55] and, indepen-
dently, to Doherty [38] and Murray & Rosenthal [108, 110]. It occurs in disguise
for a special case in [146].

Needless to say, all these authors invented a plethora of notations to denote what
boils down to signed formulas. Rousseau [126], for instance, uses n-ary sequents of
the form

�0 j � 1

n�1

j � � � j �1

in which the i-th slot contains the formulas being asserted truth value i.

3.2.2 Resolution

Many-valued resolution systems work on clauses of the form (1).3;4 It is assumed
that a CNF over such clauses has been achieved somehow, see Section 4.1 below and
the discussion following Theorem 1. Note that signed clauses are independent of the
many-valued logic they originated from. In fact, signed clauses do not contain any

many-valued connective and are simply a generic and exible language for denoting
many-valued interpretations.

As in classical logic it is common to identify a signed clause with its set of literals
that is sequence and multiplicity of literals is irrelevant.

Recall that classical resolution is based on combining clauses that contain incon-
sistent literal sets. Many-valued resolution does exactly the same, but, of course,
one has to use the many-valued version of inconsistency de�ned in Section 3.2.1. In
contrast to classical logic inconsistency sets in general are required to contain more
than two elements. In this case one has a choice whether to combine two clauses
at a time or all required clauses at once. Accordingly, most many-valued resolution
rules are instances of one of the following schemata:

S1 p _C1 � � � Sm p _Cm

C1 _ � � � _Cm
if
\

1�i�m

Si = ; (3)

3Non-clausal resolution is mentioned in Section 3.1.
4Again, a lot of di�erent notations for signed clauses were invented.
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S p _C S0 p _C0

(S \ S0) p _C _C0

; p _C

C
(4)

Rule (3) can be simulated by several applications of rules (4). On the other hand,
(4) has resolvents which can't be produced with (3). Let us call (3) (many-valued)
hyperresolution and (4) (many-valued) binary resolution. The literal (S \
S0) p in binary resolution is called a residue, the rule on the right in (4) is called
a reduction rule.

Similar as for tableau and sequent calculi, historically the monosigned restriction
of rule (4) came �rst [84, 83, 102, 10]. Or lowska [113] and Schmitt [135, 136]
implicitly considered truth value sets as signs in a specialized context.

Rule (3) appeared �rst in [57] and, independently, rule (4) in [108, 110]. All of
those papers stipulated a many-valued merging rule as well, but in [62] is proven
that either of (3) and (4) alone is complete with just merging of identical literals.

It is easy to prove [111, 62] that every CNF formula over signed literals is
equivalent to one in which only regular signs occur. Such a formula is called a
regular formula. For regular formulas re�ned versions of many-valued resolution
were given [62].

Lifting of resolution to �rst order CNF formulas over signed literals is done
exactly as in classical logic and requires no further discussion.

The restriction of binary resolution to the case when one input clause must
be a unit (unit resolution) is at the heart of the Davis-Putnam-Loveland pro-
cedure [35]. Its many-valued version was introduced for regular formulas in [62].
Recently, it has been analyzed and improved by Many�a [94], see also Section 5.

Several resolution-based calculi were also given for logic programs based on
signed formulas. They are discussed in Section 4.3.

Lehmke [85, 86] gave a resolution system for what he called weighted bold

clauses. These are signed pairs where the �rst argument is a multiset of literals of
length n and the second is one of f0; n� 1g. Their semantics is given by

I (hhl1; : : : ; lni; �i) = maxf0;minf1;

nX

i=1

I(li)� �gg :

Conceiving clauses as sequences or multisets instead of sets allows to handle
many-valued logics (such as  Lukasiewicz logic) for whose connectives the law of
idempotency does not hold, see Section 4.1 below.

A resolution step is split up into two stages representing combination of clauses
and removal of an inconsistent pair of literals:

i hhl1; : : : ; lni; �i i0 : hhl0
1
; : : : ; l0mi; �

0i

minfi; i0g hhl1; : : : ; ln; l
0
1
: : : ; l0mi; � + �0 + maxfi; i0gi

i hh: : : ; l; : : : ; l; : : :i; �i

i hh: : :i; � � 1i
(5)

The sign i here has the meaning fj 2 N j j � ig. Inconsistent signed bold
clauses i C are those with I(C) < i for all I which can be easily checked.

3.2.3 Decision Diagrams

No account of deduction in many-valued logic would be complete without mention-
ing the extensive body of work done in the area of Computer Aided Design (CAD)
of digital circuits, where many-valued deduction tasks are encountered for quite
some time (see Section 7 below).

While early approaches often were of a heuristical nature and did not correspond
to formal logical systems [25], in the last decade a family of logical calculi called
decision diagrams (DD) became the dominant tool. For the binary case, DDs are
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often credited to [5], but they appear already in the work of Boole, Shannon and
others. Binary DDs (BDD) were popularized in the CAD communityby Bryant [26],
but they really took o� only after e�cient implementations became available [24].
Many-valued DDs (MDD) were introduced in [140].

From a logical point of view DDs are closely related to tableau systems. Many of
them can be seen as being derived from the DNF characterizations

WM

r=1Cr (where
Cr = Srs �s) provided in Theorem 1 with the additional condition that the union
of any two conjuncts Ci, Cj is inconsistent in the sense of many-valued tableau
branches (Section 3.2.1). This expresses the restriction that the case analysis ex-
pressed in the disjunction over the Ci's is exclusive. Even if DD methods are close to
tableaux from a purist point of view they add important features: (a) rules are ap-
plied in a �xed order determined from a total ordering on atoms, (b) simpli�cation
steps on variable-free formulas are performed whenever possible, and (c) identical
subformulas are expanded at most once imposing a DAG structure on DDs.

Conditions (a){(c) together ensure that most variants of (binary and many-
valued) DDs are a strong normal form for Boolean, respectively, discrete functions:
formulas with identical functions have the same DD. This is an important property
for implementation.

The relationship between classical tableaux and BDDs is worked out in [119],
aspects of the relationship between many-valued tableau systems and MDDs are
discussed in [63].

Surveys and introductions to DD techniques are provided by [27, 144, 101]. Some
recent research papers are collected in [133].

We stress that DD methods are essentially con�ned to the ground case as prop-
erty (a) is not compatible with applying substitutions and the strong normal form
property is lost [120].

3.2.4 Other Calculi

There is a deduction method which, like non-clausal resolution, avoids to compute
any normal form altogether: Murray & Rosenthal's dissolution rule is available
both for classical [109] and �nite-valued logics [108, 111].

Many-valued dissolution operates on formulas in signed negation normal

form (NNF), i.e. formulas built up from ^, _ and signed literals. The dissolution
rule selects in a signed NNF formula an implicitly conjunctively connected pair
of literals S p, S0 p and restructures it in such a way that at least one conjoint
occurrence of S p, S0 p is replaced with (S \ S0) p. Producing ; p leads to obvious
simpli�cations such that any unsatis�able formula is reduced to the empty formula
after a �nite number of dissolution steps.

In contrast to dissolution, the so-called TAS method [1] computes a simpli�ed
DNF of a given formula in NNF. The input formula is unsatis�able i� the result is
the empty formula i.e. falsity. The power of the method comes from the fact that
before each application of the distributive laws unitary models of subformulas are
computed and used for simpli�cation. The generalization of the TAS method to
signed NNF formulas is found in this special issue.

Both, the dissolution and TAS method can principally be lifted to �rst order
logic. This is not the case for the next approach which, on the other hand, is one
of the few practical deduction methods that can deal with in�nite-valued logics.

H�ahnle [59] showed the following: given any formula � of a logic whose connec-
tives are expressable in in�nite-valued  Lukasiewicz logic, then there is a number of
linear inequations with size in O(j�j) with rational variables over [0; 1] and discrete
variables over f0; 1g having a solution i� � is satis�able. Problems of the latter kind
are known as a mixed integer programming problems and there are well-developed
tools for solving them.
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4 Types of deduction problems

4.1 Normal form computation

Most known normal forms of classical logic have many-valued counterparts [60,
11]. Several deduction problems de�ned on those normal forms have been already
discussed, so e�cient approaches to produce normal forms should be discussed as
well.

MVL normal forms are mostly adapted directly from classical ones, with the
speci�c nature of an MVL in mind, see Section 2. Thus, CNF and DNF was
de�ned for signed logic and its regular and monosigned subclasses (Section 3.2). As
pointed out in Section 3.2.2, [60, 11] give sound and complete resolution-like calculi
for signed CNF formulas. These calculi turn out to be particularly signi�cant in
light of the result that any unrestricted WFF of any �nite-valued �rst order logic
can be transformed into a signed CNF Formula in polynomial time [60], see also
Section 5.

(Regular) many-valued Horn formulas are straightforward to de�ne once it is
noted that for j 2 N regular signed literals of the form fi j i � jg p can be
considered positive while literals of the form fi j i � jg p are negative. This
notion of polarity was introduced in [62].

In [108] signed NNF formulas are de�ned: these are negation-free Boolean for-
mulas with signed literals or signed formulas as atoms.

Lehmke [85, 86] observed that every formula of in�nite-valued  Lukasiewicz logic
can be expressed in signed NNF provided that  Lukasiewicz sum� and product 
 are
used instead of classical disjunction and conjunction.5 He called this hierarchical
normal form. Essentially by using Tseitin's [151] trick of introducing new atoms
to abbreviate complex expressions he can show that any  Lukasiewicz formula can
be converted into a CNF over so-called bold clauses as mentioned at the end of
Section 3.2.2.

4.2 Satis�ability and related Deduction Problems

In this section, as before, N is a set of truth values with cardinality n in case it is
�nite.

Here we point out some deduction problems for which neither computational nor
complexity analysis have been discussed. In contrast to this, Section 5 is devoted
to problems whose computational features have already been established.

In Section 2 we de�ned the problem of satis�ability of �rst many-valued logic.
Recall for a given WFF and a subset D of N (called the designated truth values)
the notions of D-satis�ability, D-validity and D-consequence.

Satis�ability in MVL often can be used to de�ne logical consequence, logical
equivalence, etc (that is, whenever consequence is S-consequence for some S � N ).
On the other hand, consequence relations deviating from this approach can be
considerably less [115, 30] or more complex [153] than the satis�ability problem.

In the following we discuss computational properties of some of the MVLs men-
tioned in Section 2. We divide them into three classes:

1. Signed logic [58, 111, 11].

One works with Boolean formulas over signed literals that is pairs hS; pi (usu-
ally written as S p), where p is an atom (or sometimes a complex formula)
and S � N is called the sign of p. A signed literal is satis�ed exactly by
those interpretations I such that I(p) 2 S. In contrast to the Boolean lit-
eral case there are nk di�erent interpretations over k propositional symbols.

5This process can blow up a formula exponentially.
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As we mentioned, there are two sub-cases of signed logic that deserve to be
considered.

(a) In case N is a totally ordered set, we introduced regular formulas, where
signs are of the form fi j i � jg or fi j i � jg, where j 2 N . As only
the thresholds j instead of the whole set of truth values in each sign
are required to perform sound and complete inferences, one often uses
notations such as p � j or p � j for regular signed formulas.

(b) If each sign is a singleton we speak of monosigned formulas. As with
regular formulas, no other signs need to be involved in a deduction, and
one typically uses a notation such as i p instead of fig : p.

If one restricts attention to monosigned CNF formulas, then automated de-
duction in the two latter cases can be improved by pruning techniques, see
[43] (in contrast to the general signed logic framework).

2. One may also consider unsigned, non-Boolean functions built from arbitrary
connectives � with meaning A(�) : Nk ! N . These functions can either have
mathematically justi�ed semantics as do T-norms, S-norms, and residuated
implications employed in fuzzy environments or, otherwise, their semantics is
ad hoc and depends on the intuition and experience of experts in a particular
application context. N can be �nite or countably/uncountably in�nite (see
Section 2).

3. In case N is a partially ordered set (for example, a lattice) one may proceed
similarly as in signed logic: for example, in [75, 88, 95] a literal is of the
form � p (or similar), where � is an element of a partially ordered set P . An
interpretation I satis�es (does not satisfy) � p i� I(p) �P � (I(p) 6�P �).
But in partial orders (and in lattices in particular) one has generally not
P = fi j i �P jg [ fi j i �P jg. This fact is exploited to handle inconsistency
with the partial order determined by a lattice structure [75] as well as to
accomodate partial knowledge [97] and some uncertainty paradigms [81].

Based on the principles described above, other deduction problems have been
tackled. We give examples of deduction problems which have been studied but for
which neither experimental nor complexity results were obtained yet. Others may
be found in Section 3.2.4.

1. Obtaining Prime Implicants/Implicates in NNF Regular and Post Logics.
Ramesh & Murray discuss a novel approach having the advantage that no
intermediate clause normal form must be computed. As [122] is only an ab-
stract and [123] is not easily available, a full account of this work is contained
in this special issue.

2. In a similar vein is an e�ort to simplify signed NNF formulas by removal of
so-called anti-links [14], again without retracting to clause form.

3. Determining the relationship between signed logic programing and constraint
logic programming [69]. A �rst step into this direction is the article by Lu in
this special issue.

4.3 Deductive Databases and Logic Programming

Relational databases correspond to recursion-free, safe Datalog (i.e. without func-
tion symbols) programs [152]. Expressiveness of queries resp. conciseness of the data
can be improved by allowing recursion or admitting function symbols or non-Horn
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rules. All of these drastically increase computational cost (the �rst two relaxations
even imply undecidability). Not so signed formula logic programming (SFLP) and
annotated logic programming (ALP).

A signed formula logic program [32] is a collection of signed clauses of the
form

S p S1 �1; : : : ; Sn �n ; (6)

where p is an atom and the �i are formulas of a �nite-valued logic. By using
signed CNF representations of the signed formulas Si �i (cf. Section 4.1) one may
assume without loss of generality that all �i are atomic [87].

An annotated (sometimes called paraconsistent) logic program [19, 88, 77]
has the same form as (6), but S and Si are not arbitrary �nite sets of truth values;
they denote principal �lters in complete lattices. Moreover, the �i are assumed
atomic from the start.

Often paraconsistent logics (such as Belnap's logic [17] are based on the lattice
FOUR which contains besides the classical truth values 0 and 1 those for repre-
senting missing information (?) and contradictory information (>) on the truth of
a proposition. The partial order employed here is ? < 0, ? < 1, 0 < >, 1 < >.
The logic based on FOUR has also been represented by Petri Nets [107].

Lu [87] showed that ALP and SFLP can be translated into each other, see also
[89, 90]. ALP (and thus SFLP) can also be considered as generalizations of regular
formulas (Section 3.2.2), because the truth values in the signs need only be partially
ordered.

Deductive tasks in databases di�er from automated theorem proving: while
consistency of a database is important, it is often guaranteed by non-deductive
means and even if not, rarely performed.

More important tasks are query answering, updates, and query optimization.
Query answeringmeans to decide whether a conjunction of atoms logically follows
from a given logic program. It is important for such algorithms that they can take
advantage from the fact that a logic program does not change between subsequent
queries that is there should be some sort of compilation. This compilation process
should be incremental in order to allow database updates. As these requirements
are ful�lled by standard logic programming techniques one seeks for deductive algo-
rithms which are close those for standard logic programming [82, 98, 95]. Another
topic derived from classical database theory is the optimization of queries before
they are submitted [81].

Non-monotonic ALP is considered in [16] while [91] is an overview of generalized
logic programming.

5 Complexity of deduction in many-valued logics

Although in recent years the number of theoretical papers focussing on MVL was
considerable, most of them highlighted on expressiveness and proof theory. Still,
some e�ort was devoted to computational complexity in MVL. We review the main
results.

A pioneer result is due to Mundici [104] who proved that satis�ability of formulas
in in�nite-valued  Lukasiewcz logic is NP-complete. A di�erent proof that works via
reduction to mixed integer linear optimization was obtained by H�ahnle [59].

As to satis�ability of signed, regular and monosigned formulas (See Section 2.3
and 3.2), although it has not been explicitly claimed by any author, it is straight-
forward to see that their satis�ability problems are all NP-complete and the dual
validity problems are co-NP-complete.
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More surprising is that for signed CNF formulas already signed 2-SAT (all
clauses contain at most two literals) is NP-complete [94] as opposed to the two-
valued case, which is linear [7] and even belongs to NC [71].

If one restricts the 2-SAT problem to regular formulas, then an O(j�jP ) algo-
rithm (j�j is the number of literals in a signed CNF formula � and P denotes the
number of positive clauses) can be obtained and if the number of truth values is
�xed, then even a linear algorithm is possible [94].

Also MV satis�ability problems derived from the Horn restriction were proved
to be tractable, and very e�cient algorithms were proposed. The �rst such result
was given in [42], where an algorithm with complexity O(j�j logn) is described (�
is a Horn formula over classical syntax with ^ = min, _ = max, :p = 1 � I(p),
and each clause has a regular sign). In [62] an algorithm with the same complexity
is proposed, but for the whole class of signed regular Horn formulas (that is each
atom may have a di�erent signs attached to it and _, ^, : are classical). In [42]
a method to obtain minimal models in linear time for a certain subclass of regular
CNF formulas is given. For the case when n = jN j is �xed, linear algorithms for
regular Horn formulas are in [62, 94].

Recently, a set of on-line (that is: incremental) algorithms for Horn formulas
with numerical uncertainty has been proposed [8]. The uncertainty problems are of
numerical type. The uncertainty logic may be seen as an MVL as follows: ^ and
_ connectives are interpreted by the min and max functions, respectively. Impli-
cation is the product of the uncertainty factor of the rule and the minimum of the
uncertainty values in the premise. For this MVL data structures are studied which
admit a linear worst case complexity of the satis�ability problem in formula size,
however, it is assumed that multiplication can be done in constant time, whereas
the best known algorithm for multiplication is in O(k logk log2 k) [4]. For in�nite-
valued logic (that is unbounded number of truth values), an almost cubic algorithm
is described.

[60] contains a method to transform any signed formula into a satis�ability equiv-
alent signed CNF formula with worst case complexity in O(nkj�j), if connectives
are at most k-ary. This is at the same time a tight upper bound for the size of the
representations given in Theorem 1.

A many-valued propositional backward interpreter for strati�ed logic programs
with linear worst-case complexity is detailed in [43].

Mundici & Olivetti [106] also propose polynomial algorithms to decide regular
Horn and 2-CNF problems and for computing minimal models of regular Horn for-
mulas, but with weaker worst-case bounds than [94]. Their main new contribution
is the insight that every signed formula of in�nite-valued  Lukasiewicz logic over one
variable can be polyomially translated into regular signed literal

Some authors used a weak many-valued semantics to lower the complexity of
computing the consequence relation in knowledge representation tasks, see [115].
An overview of results along this line is [30].

As previously said MDDs represent discrete functions. Space complexity of
various kinds of MDDs is discussed, for example, in [130] where further pointers to
the literature can be found. In fact every kind of MDD has exponential worst-case
space complexity. Indeed, space complexity is sacri�ced for e�cient computation in
practice. In [140] it is empirically argued that exponential growth rarely arises in
real problems. The worst-case, best-case and relative space complexity of various
kinds of signed DNF representations of discrete functions was recently investigated
in [132].
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6 Systems

MUltlog The system MUltlog [127, 155] is not a theorem prover, but a tool
for developing and analyzing sequent and tableau rules (as displayed in equation
(2) above) for any given �nite-valued �rst order logic. Its output can be used to
instantiate the systems discussed in the following paragraph.

3TAP & Deep Thought The system 3TAP [15], developed at University of Karls-
ruhe, is a tableau-based theorem prover for many-valued �rst order logic with sorts
and (two-valued) equality; it is implemented in Prolog.

3TAP is able to handle full �rst order logics with any �nite number of truth
values. Hierarchical (tree-shaped) sorts attached to terms are supported. E�cient
processing of the (two-valued) equality predicate is provided. Currently, versions
for classical �rst order logic, for a certain three-valued �rst order logic [135] and for
a seven-valued propositional logic [65] are speci�ed. It is possible either to prove
a theorem from a given set of assumptions or to try to check the consistency of
an axiom set. Other highlights are methods for handling redundant axiom sets,
utilization of pragmatic information contained in axioms to rearrange the search
space, and a graphical user interface for control and output visualization.

The system Deep Thought [50] essentially is a re-implementation of 3TAP in the
language C. It is considerably faster, but implements only a subset of the former's
features.

Milord Milord II [121] essentially consists of a system architecture together with
an MVL language developed to facilitate the design of experts systems real world
applications [40].

One of its main characteristics is its modularity [52, 3, 2]. A large knowledge base
can be split into simpler parts by forming subroutines. From the user's view this
is a major advantage, because experts with a minimal knowledge of programming
expert systems can more quickly reach the necessary programming skill. From the
technical side modularity notably simpli�es the validation phase of the input data
[154].

Each module contains a knowledge base expressed in a local MVL together
with a local inference mechanism controlled by Horn-like meta rules. A mapping
determines the global truth degree from the truth degrees computed by each module
[52, 3, 2].

MDDs Implementations of many-valued DDs (cf. Section 3.2.3) are reported in
[140, 131].

7 Selected applications of MVL Deduction

Some of the following entries are described in greater detail in [58, Chapter 7].

Coding Theory Mundici [105] showed that  Lukasiewicz logic is a model of com-
munication over a distorted channel with a bounded number of errors. MVL de-
duction might be used to optimize such communication.

Formal Veri�cation The description of digital circuits at the switch level can
be done naturally with many-valued logic [67]. Formal veri�cation of such speci�-
cations leads to MVL deduction problems [28, 65].
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In software veri�cation and mathematical applications, several approaches em-
ploy three-valued logic to model partiality of programs and mathematical func-
tions [20, 72, 74].

Natural Language Representation The idea to use deduction for solving the
task of assigning meaning to natural language discourse is extensively studied in
computational linguistics [70]. Various ambiguity phenomena in natural language
are best modelled with many-valued logic [73].

Databases & Knowledge Representation Some applications of signed for-
mula and annotated logic programming in databases and knowledge representation
are [145, 96, 97] others can be found in the papers cited in Section 4.3.

Speci�cally, in [95, 97] examples are given that illustrate the suitability of lattice
structures to model hybrid knowledge originating from di�erent sources (agents)
with distinct information. In [97] an annotated logic program is derived from a
lattice.

A general framework for using many-valued logic in knowledge representation
was given by [36]. An application of many-valued deduction in description logic is
[143].

Fuzzy Control Most fuzzy controllers are based on fuzzy rules [23] in which the
premise is a conjunction and each conjunct has the form \Xi is Ai", Xi denoting
an input or state variable of the process to be controlled and Ai a fuzzy set. In [41]
the di�erent possible semantics for such rules is analysed in a lucid style. Many
kinds of functions that determine the value of a rule's conclusion were proposed.

Fuzzy Controllers do not model the system to be controlled, but merely focus
on the degree of error of a signal depending on which they generate the input signal
control aiming at cancelling out the error.

Expert Systems The �rst expert systems, starting with Mycin [29], modelled un-
certainty by Bayesian probabilities [116]. At present, uncertainty knowledge mod-
eled by probabilities or in general, by numerical models is not longer considered.
Instead, symbolic approaches based on truth value labels (see Section 2.2), which
dramatically outperform numerical models in many aspects, are preferred. They
allow both precision in modelling and e�cient deduction as is witnessed by the shell
Milord II [121], see also Section 6.
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