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1 Introduction

Robinson developed semantic tree arguments to provide completeness proofs for
resolution and related inference systems; these arguments are not entirely trans-
parent. The excess literal technique discovered by Anderson and Bledsoe [1],
which is strictly syntactic, was a considerable simpli�cation. Their technique,
which is essentially an induction on the size of the formula, was the basis for the
�rst completeness proofs of certain re�nements of resolution. Their technique has
been considered by other authors but has seldom been applied to non-resolution
systems. (There have been some non-resolution applications: Baumgartner and
Furbach [2], where a similar technique is applied to model elimination, and
Letz [7], where such an induction is made implicitly. Bibel's connection graph
resolution completeness result [3] uses a related technique.)

Reducing the size of the search space is an important consideration in most
automated deduction systems. With resolution, this is often done with sub-
sumption checking and with the linear restriction. Analogously, the search space
for the tableau method can be reduced using regularity and connectivity. The
�rst proof that the tableau method is complete with these restrictions is due
to Letz [7] (proofs for closely related systems were presented previously in [6,8];
other restrictions have been investigated by Wallace and Wrightson [15]). While
elegant and insightful, Letz' proof is not the easiest to follow. The proof pre-
sented here provides a slight generalization by disallowing extensions by unit
clauses, while at the same time being considerably shorter and simpler. The
slight generalization is not the focus of this paper; the proof technique, which
may be of interest in other settings, and the results for negation normal form
are.

E�ective proof methods that do not rely on conjunctive normal form (CNF)
are often desirable for AI applications since reliance on clause form can create an
exponential blow-up even before inference procedures are applied. E�cient clause
form translations commonly used in theorem provers preserve unsatis�ability
but not logical equivalence. Thus, any system | for example, the diagnosis
system reported in [12], based on Reiter's theory [13] | that depends on logical
equivalence cannot use these translations. One di�culty with non-clausal proof
methods is that relatively few re�nements have been developed for restricting
the search space. Among the many re�nements for CNF based systems, linear
restrictions are of considerable importance.

In this paper, the Anderson-Bledsoe technique is adapted to paradigms that
employ negation normal form (NNF). Completeness is proved for NNF infer-
ence techniques under a kind of linearity restriction as well as with a regularity
condition, while preserving the simplicity and elegance of their technique. In par-
ticular, the completeness of connected tableaux and connected regular tableaux for
NNF formulas (de�ned below) and the completeness of linear non-clausal reso-
lution are established. Several proofs are omitted for lack of space and can be
found in [5].

In Section 2 the Anderson-Bledsoe excess literal technique for proving com-
pleteness of resolution is described; it is generalized and applied to prove the
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completeness of linear resolution. An alternative generalization is used to demon-
strate the completeness of regular connected tableaux with CNF input. The com-
pleteness of non-clausal tableaux and of linear non-clausal resolution is discussed
in Section 3.

2 Conjunctive Normal Form

Recall that a clause is a disjunction of literals, and that a formula in conjunctive

normal form (CNF) is a conjunction of clauses. Such a conjunction is often
referred to as a set of clauses. A link is a complementary pair of literals occurring
in di�erent clauses, and a literal occurrence is said to be pure if it is not linked
to any literal in the clause set. It is easy to verify the Pure Rule:

Lemma 1. (Pure Rule) If a clause set with a pure literal is unsatis�able, then
so is the set of clauses produced by removing the clause containing the pure
literal. ut

2.1 Resolution

The work described here was inspired by the Anderson-Bledsoe [1] excess literal
proof of the completeness of resolution, and we begin with that proof.

Theorem 2. (Anderson-Bledsoe) Binary resolution (with merging) is refu-
tation complete for propositional logic.

Proof: Let S = fC1; C2; : : : ; Cmg be an unsatis�able set of clauses. We must
show that there is a refutation of S using resolution. Let n be the number of
excess literals in S, i.e., the number of literals in S minus the number of clauses
in S, and proceed by induction on n. If n = 0, then every clause is a unit clause.
Since S is unsatis�able, there must be two clauses consisting of complementary
literals. Since they are unit clauses, their resolvent is the empty clause.

Suppose now that there is a resolution proof of any unsatis�able clause set
with at most n excess literals, and suppose that S has n+ 1 excess literals. At
least one clause, say C1, contains at least two literals. Let C0

1
be the result of

removing one literal, say p, from C1, and let S0 be the result of replacing C1

by C0

1
in S. Since any satisfying interpretation for S0 would satisfy S (i.e., if C0

1

is true, so is C1), S
0 must be unsatis�able. Since S0 has n excess literals, there

exists a resolution proof of S0. That proof produces the empty clause from S0.
Thus, if it is applied to S, it will either produce the empty clause or a clause
containing only the literal p. That clause may contain several copies of p, but
they can be merged to create the clause fpg.

We now have a set of clauses containing S00 = ffpg; C2; C3; : : : ; Cmg, which
is unsatis�able since any satisfying interpretation would satisfy S. Finally, S00

has fewer excess literals than S, so there is a proof of S00; the two proofs together
provide a proof of S. ut
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An interesting variation of this proof can be obtained by applying the induc-
tion to the number of distinct atoms that appear in S. This can be demonstrated
by proving that resolution with the linear restriction is complete. Formally, a res-
olution proof is linear if one parent of each resolvent, except for the �rst, is the
most recently derived clause. We require the following two lemmas. The �rst
is [8, Lemma 2.3.2, p.63], and the second is a variant.

Lemma 3. Let S be a minimally unsatis�able set of clauses, let B be a subset of
the clause C 2 S, and let S0 = (S �fCg)[fBg. Then S0 contains a minimally
unsatis�able set of clauses that includes B (and does not include C). ut

Lemma 4. Let S = fC0; C1; C2; : : : ; Ckg be a minimally unsatis�able set of
clauses, and suppose C0 = fpg[fq1; : : : ; qng, where n � 0. Obtain S0 from S by
deleting every occurrence of p in S, and obtain S00 by applying the Pure Rule to
S0, i.e., by deleting clauses containing p. Let C0

0
= fq1; : : : ; qng. Then

1. S0 is unsatis�able;
2. S00 is unsatis�able;
3. C0

0
is a member of any minimally unsatis�able subset of S0;

4. C0

0
is a member of any minimally unsatis�able subset of S00. ut

Theorem 5. Linear binary resolution (with merging) is refutation complete for
propositional logic.

Let S = fC1; C2; : : : ; Cmg be an unsatis�able set of clauses. We assume that
S is minimally unsatis�able; otherwise, restrict attention to a minimally unsatis-
�able subset. We must show that there is a refutation of S using linear resolution.
We will prove the following slightly stronger result: There is a refutation of S in
which any clause may be used as the top clause, i.e., the one used in the �rst
step.

We proceed by induction on the number of distinct atoms in S. If there are
none, then S contains the empty clause, and we are done. Otherwise, suppose
that all unsatis�able sets of clauses with at most n atoms can be refuted with
linear resolution, and assume that S has n+1 atoms including the atom p. If S
contains the unit clause fpg, �ne; otherwise, remove all occurrences of p from S.
This formula is unsatis�able since any satisfying interpretation would also satisfy
S. Consider a minimally unsatis�able subset; by Lemma 4, every clause that had
contained p in S is in this set. Also, since no occurrence of p is linked, no clause
containing p is present. By the induction hypothesis, there is a refutation Rp by
linear resolution. Note that if that refutation is applied to S | call the resulting
refutation R0

p | none of the clauses containing p are resolved upon, and that
the result is either the empty clause1 or the clause fpg; (merging several copies
of p may be required). This clause is of course the last resolvent.

Analogously, if we begin by deleting p, a proof Rp can be found that, when
applied to S | let the resulting proof be R0

p | will produce the empty clause or

1 In fact, this cannot happen because of minimality, but this is not really relevant.
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the clause fpg. If either R0 orR0

p did produce the empty clause, then we are done.
Otherwise, we may assume that the latter proof began with a clause C containing
p. The two proofs are linear, and we can put them together, maintaining linearity,
by resolving fpg and C. This proof may still produce the unit clause fpg because
of multiple occurrences of p. However, by resolving with the unit fpg, linearity
is maintained and the empty clause is produced. ut

The above induction is somewhat reminiscent of the Davis-Putnam proce-
dure [4]. Refutations are obtained from the induction hypothesis by removing
all occurrences of a given atom. Completeness for connected CNF tableaux can
be proved with this technique. Below the size-based induction of Theorem 2 is
adapted to obtain Letz' result [7] (with a slight strengthening) that complete-
ness also holds when a regularity restriction is imposed along with connectivity.
In subsequent sections, these induction techniques are employed to prove com-
pleteness for various non-clausal systems.

2.2 Analytic Tableaux

De�nition. A tableau proof tree for a set (conjunction) S of clauses is a tree
labeled with formulas, constructed as follows:

1. The tree consisting of the single node S is a tableau; this tree is the initial

tableau.
2. Suppose T is a tableau containing a node on the branch � labeled C, the con-

junction of C1; C2; : : : ; Cn, (each of which is a clause). Then a tableau is ob-
tained by replacing the node labeled C with n new nodes labeled C1; C2; : : : ; Cn

on the branch �. This is the alpha rule; it is applied automatically to nodes
labeled with conjunctions.

3. Suppose T is a tableau containing a node labeled C, a clause containing the
literals l1; l2; : : : ; ln. Then a tableau is obtained by extending any branch �

below C by appending n new leaves to � labeled fl1g; fl2g; : : : ; flng. This is
the beta rule; it is sometimes referred to as a beta extension.

A tableau is closed if each branch contains a pair of nodes labeled with
complementary literals. In this case we speak of a proof or a refutation of S.

Observe that, for a set of clauses, the alpha rule is applied exactly once: to
the initial tableau. Many authors choose to omit alpha rules, thus simplifying
the de�nition of a tableau proof tree. We employ the alpha rule because it makes
CNF tableaux and the de�nitions in the next paragraph special cases of NNF
tableaux. Also, there is a slight technical advantage: All unit clauses are placed
(by the �rst and only alpha step) on the initial branch and therefore need never
be used for extensions.

A tableau proof tree with CNF input is weakly connected if each time a beta
rule extends a branch, the formula to which the rule has been applied is linked
to a node along the branch. (This property is present in the fully condensed
proof trees of [11], but its presence is not su�cient for a proof tree to be fully
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condensed.) The tableau is connected if immediately prior to the extension the
node to which the selected formula is linked appears after the last branch point.
Note that after the �rst beta extension of a non-unit clause, this link must be
to a leaf. Insisting that tableaux be connected is similar to the linear restriction
for resolution.

A tableau proof tree with CNF input is regular if no branch contains distinct
nodes labeled with identical literals. Observe that even a clause set with two
identical clauses can have a regular tableau proof tree. This is the only way in
which a regular (thus alpha) step can introduce repeated formulas on a branch
when the input is in CNF. Such repeated formulas can be introduced much more
easily with NNF input. In fact, repetitions along a branch due to alpha rules
cannot be avoided in NNF. However, obvious ones such as repeated clauses can:
If a conjunction (or disjunction, for that matter) has identical arguments, all
but one can simply be deleted. Henceforward we assume all formulas have been
so condensed.

It is interesting to note that regularity excludes extensions by unit clauses.
This is no problem. Indeed, this is desirable: No closure is ever enabled by such an
extension since all such unit clauses label nodes on every branch in the tree. This
e�ect is produced by the �rst (and only) alpha step. The formal inclusion of the
alpha rule also makes possible connected proofs that are free of (unnecessary!)
unit extensions. As with Theorem 5, it is essential that we work with aminimally

unsatis�able set of clauses.

The next theorem demonstrates that Letz' result can be obtained in a straight-
forwardmanner by adapting the induction argument fromTheorem 2. Theorem 6
slightly enhances Letz' in that extensions with unit clauses are disallowed.

Theorem 6. The tableau method restricted to regular connected tableaux, free
of unit extensions, is complete for unsatis�able (�nite) sets of (ground) clauses.

Proof: Let S be an unsatis�able set of clauses. We assume that S is minimal;
otherwise, restrict attention to a minimal subset. We will prove the following
slightly stronger result: Given any (non-unit) clause in S, there is a closed tableau
for S in which that clause is the �rst to which a beta rule is applied. We proceed
by induction on the number n of literal occurrences in S.

If n = 0, the result is trivial. The case n = 1 is not possible by minimality.
If n = 2, there must be two unit clauses containing complementary literals, no
beta rule is necessary, and again the result is trivial. Observe, again because of
minimality, that this is the only case in which S contains only unit clauses.

Assume now that there is a closed regular connected tableau for every unsat-
is�able formula with at most n literal occurrences, and let S = fB1; B2; : : : ; Bmg

be a minimally unsatis�able clause set with n + 1 literal occurrences (n � 2).
Suppose that B1 = fl1; l2; : : : ; lkg is the (non-unit) clause in S selected for the
�rst extension step; let T be the resulting tableau | see Figure 1a.

Observe that T is both regular and connected: Were T irregular, some branch
would have duplicate literals, which is to say, for some i; 1 � i � k, S contains
the unit clause flig. But that clause would subsume B1, contrary to minimality.
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S
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.

Bm
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8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

B2
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.

.

Bj = f: : : ; li; : : :g
.
.
.

Bm

flig

eTi
8>><
>>: � � � li � � �

Extension with Bj

(b)

Fig. 1. Tableau T and forest ~T from the proof.

That T is connected follows for the same reason: Were B1 not linked, it would
be unnecessary.

For each i, let Si = (S � fB1g) [ ffligg = fflig; B2; : : : ; Bmg. By Lemma 3,
any minimally unsatis�able subset of Si contains flig. The induction hypothesis
applies to each Si, so there is a regular connected tableau Ti for each Si. In each
Ti, beta rules are applied only to non-unit clauses in a minimally unsatis�able
subset. Furthermore, li is linked to a clause Bj in that subset. If Bj is not a
unit, the induction hypothesis allows us to assume that the �rst application of
a beta rule in Ti is to Bj . Let ~Ti be the forest obtained from Ti by deleting the
nodes labeled with the clauses from Si | see Figure 1b. If Bj is a unit, i.e., if

Bj = flig, then Ti closes with flig, and ~Ti is empty.

We expand T by, for every i, adjoining ~Ti to the branch whose leaf is labeled
flig; i.e., the roots of the forest ~Ti become the children of the leaf flig. Observe
that, if ~Ti is empty, then li is linked to the unit clause flig; so the branch whose
leaf is flig is closed in T . Thus, since every Ti is closed, T is a closed tableau
for S. Since there are no unit extensions in T , the proof will be complete if we
show that T is regular and connected.

T is regular since the initial extension of Bj is regular and each Ti is regular.
Finally, T is connected because the extension of Bj is connected and each li
either closes its branch or is linked to the non-unit of the �rst extension in Ti.

ut

3 Non-Clausal Methods

The techniques illustrated in the previous section can be used in non-clausal
settings. The proofs are somewhat involved and are omitted here for lack of
space; see [5].
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We begin by recalling that a formula is in negation normal form (NNF) if the
only connectives are conjunction, disjunction, and negation, and if all negations
are at the atomic level. The tableau method works with NNF formulas as well
as with formulas in clause form. In the NNF context, the phrase set of formulas

means the conjunction of the formulas in the set. In particular, we assume the
formulas in the set to be either disjunctions or literals.

We now de�ne NNF tableaux. Since only atoms are negated, and since con-
junction and disjunction are the only other logical operators, the rules for con-
structing an NNF tableau are the obvious generalization of the alpha and beta
rules for CNF tableaux and are quite simple. The alpha rule, which applies to
conjunctions, does not increase the number of branches and is applied automat-
ically; the beta rule, which applies to disjunctions, does increase the number of
branches and should not be applied automatically.

De�nition. A tableau proof tree for an NNF formula S is a tree labeled with
formulas and constructed as follows:

1. The tree consisting of a single node labeled S is a tableau; this tree is the
initial tableau.

2. If T is a tableau, and if N is a node in T labeled with S = ^ni=1 Si, where
each Si is a disjunction or a literal, then N is replaced by n new nodes on
the same branch labeled S1;S2; � � � ;Sn. This is the alpha rule and is applied
automatically to any node labeled with a conjunction.

3. If T is a tableau, and if N is a node in T labeled with S = _ni=1 Si, where
each Si is a conjunction or a literal, then a tableau may be obtained by
appending n new nodes below any branch � containing N ; each new node
is uniquely labeled with some Si, 1 � i � n. This is the beta rule and we say
that � has been beta-extended by S.

A tableau is closed if each branch contains a node labeled false or contains
a pair of nodes labeled with complementary literals. The next theorem provides
completeness for the tableau method with NNF formulas; the proof uses the
Davis-Putnam style induction.

Theorem 7. The tableau method is a complete refutation procedure for unsat-
is�able (�nite) sets of (ground) NNF formulas. ut

A tableau proof tree is weakly connected if each time a beta rule extends a
branch, the formula to which the rule has been applied is linked to a node along
the branch. The tableau is connected if immediately prior to the extension the
node to which the selected formula is linked appears after the last branch point.
This amounts to saying that the link is to a leaf or to a node created by an alpha
rule applied to a leaf.

The next theorem strengthens Theorem 7 with a connectedness restriction;
the proof is a reasonably straightforward adaptation of the proof of Theorem 7.
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Theorem 8. Connected tableaux are a complete inference procedure for �nite
sets of ground NNF formulas. ut

There are two problems with Theorem 8: No notion of regularity is enforced,
and unit extensions are not excluded. The following example shows that unit
extensions cannot be excluded if we demand a connected tableau. Let S be
the conjunction of the two unit clauses fpg and fqg and the formula B =
(l ^ (p _ q)) _ p. After the �rst alpha rule application, the only possible non-
unit extension is with B. To complete the proof tree without unit extensions,
(p _ q) must be extended, and connectivity cannot be maintained.

Observe that both p and q are linked to unit clauses in S. Therefore, violating
connectivity (at least in this example) would seem to be both necessary and
harmless. We shall see that this situation is more than fortuitous.

We say that the beta extension of a node labeled F is u-connected if every
link in F is to a node labeled with a literal. A tableau is u-connected if every
beta extension is either connected or u-connected. Note that u-connectivity for
tableaux is a bit weaker than connectivity but stronger than weak connectivity.

In order to generalize CNF regularity to the NNF case in a useful way, both
semantic and proof theoretic issues must be considered. Insu�cient space pre-
cludes a detailed discussion, but the de�nition below is a generalization of the
de�nition of regularity for CNF tableaux. Since nodes labeled by conjunctions
are automatically replaced by the alpha rule, the nodes of an NNF tableau are
always labeled by either literals or disjunctions.

Suppose we have a node labeled F = (F1_F2_ :::_Fn) on a branch � in an
NNF tableau. Suppose further that we beta-extend � to create n new branches
�1; :::; �n, where �i = � [ Fi. Note that if Fi is a literal, then it labels the
single new node on �i; otherwise, Fi = Fi1 ^ Fi2 ^ ::: ^ Fiq, the alpha rule
applies, and each Fij labels a new node on �i. We say that this beta extension is
irregular if for some �i, the new nodes on �i are a subset of the nodes on �; i.e.,
the extension is irregular if for some Fi, every node produced by the application
of the alpha rule to Fi is labeled with a formula identical to that labeling some
node on �. The step is regular if it is not irregular. Observe that all alpha steps
are regular. A tableau proof tree is regular if every extension is regular.

Theorem 9. The tableau method restricted to regular u-connected tableaux
free of unit extensions is a complete refutation procedure for unsatis�able (�nite)
sets of (ground) NNF formulas. ut

We now consider NC-resolution and begin by providing a precise de�nition
(in the ground case). Let F and G be arbitrary unnormalized ground formulas,
where H occurs as a subformula of both F and G. If � = true or � = false, we
denote by F [�=H] the result of replacing all occurrences of H in F by � and of
performing truth-functional simpli�cations. Then the formula

F [true=H] _ G[false=H]
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is an NC-resolvent of F and G on the subformula H. For the remainder of this
paper we will consider only the case where H is a literal. Note that NC-resolution
is de�ned for completely unnormalized formulas and does not require NNF. Here
we restrict attention to NNF, so that the results of Section 3 can be employed.

The de�nition of linear NC-resolution is completely analogous to that of
ordinary linear resolution. Formally,an NC-resolution proof is linear if one parent
of each resolvent, except for the �rst, is the most recently derived formula.

Theorem 10. Linear non-clausal resolution is a complete inference procedure
for �nite sets of ground NNF formulas. ut
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