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We determine all minimal polynomials for second order homogeneous lin-

ear di�erential equations with algebraic solutions decomposed into in-

variants and we show how easily one can recover the known conditions

on di�erential Galois groups [12,19,25] using invariant theory. Applying

these conditions and the di�erential invariants of a di�erential equation

we deduce an alternative method to the algorithms given in [12,20,25] for

computing Liouvillian solutions. For irreducible second order equations

our method determines solutions by formulas in all but three cases.

1 Introduction

Algorithms computing algebraic solutions of second order di�erential equa-
tions are well-known since last century. Already in 1839, J. Liouville published

such a procedure. However, the degree of the minimal polynomial of a solution

must be known. Among other renowned mathematicians, L. Fuchs [5,6] de-
veloped from 1875 to 1877 a method for computing algebraic solutions, which
is based only on binary forms. He wanted to clear up the question of when a

second order linear di�erential equation has algebraic solutions and he solved

it by determining the possible orders of symmetric powers associated with the
given di�erential equation for which at least one needs to have a root of a

rational function as a solution (see e.g. [5, No. 22, Satz]). Thereby, he gave
a method { presumably without taking note of it { that remains valid for

determining Liouvillian solutions of irreducible linear di�erential equations of
second order.
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Modern algorithms for computing Liouvillian solutions are based on di�eren-

tial Galois theory. These algorithms determine a minimal polynomial of the

logarithmic derivative of a Liouvillian solution since one knows that these

derivatives are algebraic of bounded degree (see Singer [16] Theorem 2.4).

This approach for second order equations stems from Kovacic [12] and has

been implemented in Maple and some other computer algebra systems. A

more accessible version of this algorithm was given by Ulmer and Weil [25]

and is implemented in Maple, too.

Even when the solutions are algebraic, one can determine the minimal polyno-

mial of a solution. In Singer and Ulmer [20] this is used to solve equations with

a �nite primitive unimodular Galois group by extending the Fuchsian method

to arbitrary order. For this, one �rst has to compute a minimal polynomial

decomposed into invariants for every possible Galois group.

In this paper we take up the ideas from Fuchs once again. Applying invariant

theory we reformulate these ideas and state themmore precisely. From that we

obtain an alternative method for computing Liouvillian solutions. Unlike the
known algorithms [12,20,25] we compute for irreducible second order equations
{ except for three cases { all Liouvillian solutions directly by formulas and not
via their minimal polynomials (Theorem 11).
In the three exceptional cases we get a minimal polynomial of a solution using

exclusively absolute invariants and their syzygies by computing { depending on
the case { one rational solution of the 6th, 8th or 12th symmetric power of the
di�erential equation and determining its corresponding constant (Theorem
16). There is no need for a Gr�obner basis computation in these cases. In
Fuchs [5, p. 100] and Singer and Ulmer [20, p. 67] one needs in these cases to

substitute a minimal polynomial decomposed into invariants in the di�erential
equation. But this is very expensive.
We note, that it is possible to extend the algorithm presented here at least to
all linear di�erential equations of prime power order.

The paper is organized as follows. In the rest of this section we briey in-
troduce di�erential Galois theory and the concept of invariants. In section 2

we summarize important properties of linear di�erential equations with alge-

braic solutions, which we use in section 3 to compute minimal polynomials
decomposed into invariants. In section 4 we show, how easily one can obtain

the known criteria for di�erential Galois groups [12,19,25] using invariant the-
ory. These criteria result in an algorithm for computing Liouvillian solutions

of a second order linear di�erential equation which is presented in section 5.
Finally we give for every (irreducible) case an example.

The rest of this section and the following one contains nothing new, but are

included to complete the picture.
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1.1 Di�erential Galois Theory

For the exact de�nitions of the following concepts we refer to Kaplansky [10],

Kolchin [11] and Singer [17].

Functions, which one gets from the rational functions by successive adjunctions

of nested integrals, exponentials of integrals and algebraic functions, are the

Liouvillian functions.

A di�erential �eld (k; 0) is a �eld k together with a derivation 0 in k. The set

of all constants C = fa 2 k j a0 = 0g is a sub�eld of (k; 0).
Let C be algebraically closed and k be of characteristic 0. Consider the follow-

ing ordinary homogeneous linear di�erential equation

L(y) = y(n) + an�1y(n�1) + : : : + a1y
0 + a0y = 0 (ai 2 k) (1)

over k with a system fy1; : : : ; yng of fundamental solutions.
By extending the derivation 0 to a system of fundamental solutions and by
adjunction of these solutions and their derivatives to k in a way the �eld of

constants does not change, one gets K = khy1; : : : ; yni, the so-called Picard-

Vessiot extension (PVE) of L(y) = 0. With the above assumptions, the PVE
of L(y) = 0 always exists and is unique up to di�erential isomorphisms. This
extension plays the same role for a di�erential equation as a splitting �eld for
a polynomial equation.

The set of all automorphisms of K, which �x k elementwise and commute with
the derivation inK, is a group, the di�erential Galois group G(K=k) = G(L) of
L(y) = 0. Since the automorphisms must commute with the derivation, they
map a solution to a solution. Therefore G(L) operates on the C-vector space
of the fundamental solutions and from that one gets a faithful matrix repre-

sentation of G(L), hence G(L) is isomorphic to a linear subgroup of GL(n; C).
Moreover, it is isomorphic to a linear algebraic group. Furthermore, there is a

(di�erential) Galois correspondence between the linear algebraic subgroups of

G(L) and the di�erential sub�elds of K=k (see Kaplansky [10], Theorems 5.5
and 5.9).
The choice of another system of fundamental solutions leads to an equivalent

representation. Hence, for every di�erential equation L(y) = 0, there is exactly

one representation of G(L) up to equivalence.

Many properties of L(y) = 0 and its solutions can be found in the structure of
G(L). Such an important property is: The component of the identity of G(L)�
of G(L) in the Zariski topology is solvable, if and only if K is a Liouvillian
extension of k (see Kolchin [11], x25, Theorem). By this, we have a criterion to

decide whether a linear di�erential equation L(y) = 0 has Liouvillian solutions.
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An ordinary homogeneous linear di�erential polynomial L(y) is called reducible

over k, if there are two homogeneous linear di�erential polynomials L1(y) and

L2(y) of positive order over k with L(y) = L2(L1(y)), otherwise L(y) is called

irreducible. L(y) = 0 is reducible, if and only if the corresponding representa-

tion of G(L) is reducible (see Kolchin [11], x22, Theorem 1). If an irreducible

linear di�erential equation L(y) = 0 has a Liouvillian solution over k, then all

solutions of L(y) = 0 are Liouvillian (see Singer [16], Theorem 2.4). However,

if L(y) = 0 is reducible then Liouvillian solutions only possibly exist.

Against this, a second order linear di�erential equation has either only Li-

ouvillian solutions or no Liouvillian solutions (see e.g. Ulmer and Weil [25],

section 1.2).

1.2 Invariants

In this section we introduce informally some concepts of invariant theory. For
the exact de�nitions we refer the reader to Sturmfels [21], Springer [18] or
Schur [15].
Let V be a �nite dimensional C-vector space and G a linear subgroup of

GL(V ). An (absolute) invariant is a polynomial function f 2 C[V ] which
remains unchanged under the group action, i.e. f = f � g for all g 2 G. If,
for some g 2 G, f and f � g di�er from each other only by a constant factor
then the polynomial function f is called a relative invariant. The set of all
invariants of G forms the ring of invariants C[V ]G. For irreducible groups

G 2 GL(V ), the rings of invariants C[V ]G are �nitely generated by Hilbert's
�niteness theorem (see e.g. Sturmfels [21]).
For �nite groups G 2 GL(V ) the Reynolds operator RG(f) =

1
jGj
P

g2G f � g
maps a polynomial function f 2 C[V ] to the invariant RG(f) 2 C[V ]G. With

the Hessian H(I1) = det
�

@2I1
@vi@vj

�
and the Jacobian J(I1; : : : ; In) = det

�
@Ii
@vj

�
it is possible to generate new invariants from the invariants I1(v); : : : ; In(v)

(see e.g. [21,18,15]).

Molien and Hilbert series (see e.g. Sturmfels [21]) of a ring of invariants allow
us to decide whether a set of invariants already generates the whole ring.

Let V be the C-vector space of a system of fundamental solutions of L(y) = 0
and let I(v) 2 C[V ]G(L) be an invariant of G(L). If one evaluates the invariant
I(v) with the fundamental solutions and takes into account that exactly the

elements a 2 k are invariant under the Galois group G(L) then I(y1; : : : ; yn)
must be an element of k. An important tool for computing such an element

are the symmetric powers of L(y) = 0.

Themth symmetric power L
s m

(y) = 0 of L(y) = 0 is the di�erential equation

whose solution space consists exactly of all mth power products of solutions
of L(y) = 0. There is an e�cient algorithm to construct symmetric powers
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described e.g. in Singer and Ulmer [19], pp. 20 or Fakler [3], pp. 14.

2 Algebraic Solutions

In this section we briey give some important properties of linear di�erential

equations with algebraic solutions.

Theorem 1 ([23], Theorem 2.2; [16], Theorem 2.4)

Let k be a di�erential �eld of characteristic 0 with an algebraically closed �eld

of constants. If an irreducible linear di�erential equation L(y) = 0 has an

algebraic solution, then

{ all solutions are algebraic

{ G(L) is �nite
{ the PVE of L(y) = 0 is a normal extension and coincides with the splitting

�eld k(y1; : : : ; yn).

For many statements on di�erential equations it is assumed that the Galois

group corresponding to L(y) = 0 is unimodular (i.e. � SL(n; C)).

Theorem 2 ([10], p. 41; [20], Theorem 1.2)

Let L(y) be the linear di�erential equation (1), then G(L) is unimodular, if

and only if there is a W 2 k such that W 0=W = an�1:

Using the variable transformation y = z � exp
 
�
R
an�1
n

!
, it is always possible

to transform the equation L(y) = 0 into the equation

LSL(z) = z(n) + bn�2z
(n�2) + : : : + b1z

0 + b0z = 0 (bi 2 k):

According to Theorem 2 G(LSL) is unimodular. For second order equations

we get LSL(z) = z00 +
�
a0 � a21

4
� a01

2

�
z = 0.

Under such a transformation it is clear that L(y) = 0 has Liouvillian solutions

if and only if LSL(z) = 0 has Liouvillian solutions. Furthermore, if L(y) = 0

has only algebraic solutions, then LSL(z) = 0 has only algebraic solutions (cf.

[23], p. 184).

Theorem 3 ([20], Corollary 1.4)

Let k � K be a di�erential �eld of characteristic 0 and let the common �eld of

constants of k and K be algebraically closed. If y 2 K is algebraic over k and

y0=y is algebraic of degree m over k, then the minimal polynomial P (Y) = 0
of y over k can be written in the following way

P (Y) = Y
d�m + am�1Y

d�(m�1) + : : :+ a0 =
Y
�2T

�
Y

d � (�(y))d
�
; (2)
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where [k(y) : k(y0=y)] = d = jH=N j, H=N is cyclic, aj 2 k, H = G(K=k(y0=y))
is a 1-reducible subgroup of G = G(K=k) and T is a set of left coset represen-

tatives of H in G of minimal index m.

3 Minimal polynomials decomposed into invariants

Theorem 3 and Theorem 1 imply that any irreducible linear di�erential equa-

tion L(y) = 0 with algebraic solutions has a minimal polynomial P (Y) of the

form (2). Therefore, it remains to compute for any �nite di�erential Galois

group such a minimal polynomial.

In this section, we compute for any �nite unimodular group a minimal poly-

nomial written in terms of invariants. The restriction to unimodular groups is

necessary, since only these groups are all known. However, Theorem 2 secures

that we can construct a linear di�erential equation with unimodular Galois

group from any linear di�erential equation L(y) = 0.

3.1 Imprimitive unimodular groups of degree 2

The �nite imprimitive algebraic subgroups of SL(2; C) are the binary dihedral
groups DSL2

n of order 4n [25]. These are central extensions of the dihedral
groups Dn. They are generated by (Springer [18], p. 89)

un =

 
e
�i
n 0
0 e�

�i
n

!
and v =

�
0 i

i 0

�
:

A simple calculation shows that these representations are irreducible. The
invariants of the binary dihedral groups are generated by

I4 = y21y
2
2; I2n = y2n1 + (�1)ny2n2 ; I2n+2 = y1y2(y

2n
1 � (�1)ny2n2 )

and they satisfy the relation

I22n+2 � I4I
2
2n + (�1)n4In+14 = 0; (3)

see Springer [18], p. 95.

Let fy1; y2g be a set of fundamental solutions of an equation L(y) = 0 of
second order.

Theorem 4

Let L(y) = 0 be an irreducible second order linear di�erential equation over k
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with a �nite unimodular Galois group G(L) �= DSL2
n . Then

P (Y) = Y
4n � I2nY

2n + (�1)nIn4

is a minimal polynomial decomposed into invariants for a solution of L(y) = 0.

PROOF. The degree of a minimal polynomial for a solution of L(y) = 0 of

order 2 equals the order of the group G(L), see e.g. Singer and Ulmer [20],

p. 55. Comparing this with P (Y) from Theorem 3 shows that d �m = jG(L)j.
H = huni with jHj = 2n is a maximal subgroup of G(L). H is a cyclic group

and hence Abelian and 1-reducible and the elements of H have the common

eigenvector z = y1 (z is a solution of L(y) = 0). T = funn; vunng is a set of left
coset representatives of H in G(L).
Together with m = [G(L) : H] = 2 and thus d = 2n one can calculate the

minimal polynomial in the following way:

P (Y) =
Y
�2T

�
Y

2n � �(z)2n
�

=
�
Y

2n � (�y1)2n
� �
Y

2n � (�iy2)2n
�

=Y
4n � (y2n1 + (�1)ny2n2 )Y2n + (�1)ny2n1 y2n2 :

Decomposing this expression into the above mentioned invariants completes
the proof.

2

3.2 Primitive unimodular groups of degree 2

Up to isomorphisms, there are three �nite primitive unimodular linear alge-
braic groups of degree 2. These groups are the tetrahedral group (ASL2

4 ), the

octahedral group (SSL2
4 ) and the icosahedral group (ASL2

5 ), see e.g. Ulmer and

Weil [25].

In contrast to Fuchs, the minimal polynomials in this section are determined

using exclusively absolute invariants. The de�nitions of the matrix groups stem
fromMiller, Blichfeldt and Dickson [1] pp. 221, while the necessary 1-reducible
subgroups, left coset representatives and eigenvectors are found in Singer and

Ulmer [20]. All the fundamental invariants are computed with the algorithms

and implementations given in Fakler [3,4] (see also the relative invariants given
in [1] pp. 225).
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3.2.1 The tetrahedral group

Y
24+48I1Y

18+
�
90I3 + 228I1

2
�
Y

12+
�
288I1I3 + 2368I1

3
�
Y

6�3I32+36I12I3�
108I1

4

is a minimal polynomial decomposed into invariants for the tetrahedral group.

The invariants of this group are generated by

I1=
1

2
R
A
SL2
4

(y51y2)(y) = y1y2
5 � y1

5y2

I2=� 1

25
H(I1) = y2

8 + 14y1
4y2

4 + y1
8

I3=
1

8
J(I1; I2) = y2

12 � 33y1
4y2

8 � 33y1
8y2

4 + y1
12:

and they satisfy the relation I3
2 � I2

3 + 108I1
4 = 0:

Using Molien and Hilbert series one can show that the ring of invariants can

be written as the direct sum of graded C-vector spaces

C[y1; y2]A
SL2
4 = C[I1; I2; I3] = C[I1; I2]� I3 � C[I1; I2]:

In this expression for the minimal polynomial I1 was multiplied by ��3 and
I3 by the factor �26

3
�2 + 26

3
� � 7

3
, where �4 � 2�3 + 5�2 � 4� + 1 = 0 2 and

i =
p�1 = 2�3 � 3�2 + 9� � 4.

The above representation needs an algebraic extension. It can be an advan-
tage to choose a representation which is less sparse but does not require an

algebraic extension. One obtains such a representation e.g. by computing a
lexicographical Gr�obner basis from the three equations of the fundamental
invariants for y2 � y1 � I3 � I2 � I1:

Y
24 + 10I2Y

16 + 5I3Y
12 � 15I22Y

8 � I2I3Y
4 + I41 : (4)

In this expression for a minimal polynomial decomposed into invariants for

the tetrahedral group I1 was multiplied by 1
4
, I2 by � 5

80
and I3 by the factor

� 1
16
.

3.2.2 The octahedral group

Y
48+20I1Y

40+70I1
2
Y

32+
�
2702I2

2 + 100I1
3
�
Y

24+
�
�1060I1I22 + 65I1

4
�
Y

16

+
�
78I1

2I2
2 + 16I1

5
�
Y

8 + I2
4

2 This algebraic extension becomes necessary for computing an eigenvector.
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is a minimal polynomial decomposed into invariants for the octahedral group.

The ring of invariants of this group is generated by

I1=
1

24
R
S
SL2
4

(y41y
4
2)(y) = y2

8 + 14y1
4y2

4 + y1
8

I2=
1

9408
H(I1) = y1

2y2
10 � 2y1

6y2
6 + y1

10y2
2

I3=� 1

16
J(I1; I2) = y1y2

17 � 34y1
5y2

13 + 34y1
13y2

5 � y1
17 y2:

These three invariants satisfy the sysygy I3
2 + 108I2

3 � I1
3I2 = 0:

That this syzygy is the only relation among the fundamental invariants is

con�rmed by the Molien and the Hilbert series. They also show, that the ring

of invariants decomposes as the direct sum of graded C-vector spaces

C[y1; y2]S
SL2
4 = C[I1; I2; I3] = C[I1; I2]� I3 � C[I1; I2]:

In the above-mentioned expression for the minimal polynomial I1 was multi-

plied by � 1
16

and I2 by the factor 1
16
.

3.2.3 The icosahedral group

Y
120 + 20570I2Y

100 + 91I3Y
90 � 86135665I2

2
Y

80 � 78254I2I3Y
70 +�

14993701690I2
3 + 11137761250I1

5
�
Y

60 + 897941I2
2I3Y

50 +�
�11602919295I24 + 273542733750I1

5I2
�
Y

40 +�
�151734I23 � 6953000I1

5
�
I3Y

30+
�
503123324I2

5 � 7854563750I1
5I2

2
�
Y

20+�
1331I2

4 + 500I1
5I2
�
I3Y

10 + 3125I1
10

is a minimal polynomial decomposed into invariants for the icosahedral group.

The three invariants

I1=� 1

25
R
A
SL2
5

(y61y
6
2)(y) = y1y2

11 � 11y1
6y2

6 � y1
11y2

I2=� 1

121
H(I1) = y2

20 + 228y1
5y2

15 + 494y1
10y2

10 � 228y1
15y2

5 + y1
20

I3=
1

20
J(I1; I2) = y2

30 � 522y1
5y2

25 � 10005y1
10y2

20

� 10005y1
20y2

10 + 522y1
25y2

5 + y1
30

are the fundamental invariants of the icosahedral group and satisfy the alge-
braic relation I3

2 � I2
3 + 1728I1

5 = 0:

Molien and Hilbert series verify that this relation is the only syzygy and show,
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that the ring of invariants decomposes as the direct sum of graded C-vector
spaces

C[y1; y2]A
SL2
5 = C[I1; I2; I3] = C[I1; I2]� I3 � C[I1; I2]:

In the above-mentioned expression for the minimal polynomial I1 was multi-

plied by 1
125

, I2 by � 1
275�125 and I3 by the factor � 11

25�125.

4 Criteria for di�erential Galois groups

The numbers and degrees of the invariants of all �nite unimodular linear

algebraic groups determined in the previous section yield conditions for the

Galois group of a second order di�erential equation. In this section, we show

how easily one can recover the known results (see Kovacic [12], Singer and

Ulmer [19] and Ulmer and Weil [25]) using invariant theory.

If the Galois group G(L) is an imprimitive group, it is not easy to distinguish

between a �nite and an in�nite group (see Singer and Ulmer [19], p. 25). The
only in�nite imprimitive unimodular Galois group of degree 2 is

D1 =
��

a 0
0 a�1

�
;

�
0 �a
a�1 0

��
where a 2 C

�:

This group has only one fundamental invariant I4 = y21y
2
2 (see Ulmer and Weil

[25], section 3.2).

The following Lemma allows a simple method to distinguish all Galois groups
G(L) for which an irreducible second order linear di�erential equation L(y) = 0
has Liouvillian solutions. This is no longer true in higher order.

Lemma 5 (cf. [21], Lemma 3.6.3; [15], p. 47)

A binary form of positive degree over k cannot vanish identically. In particular,

this holds for homogeneous invariants in two independant variables.

Rational solutions of the m-th symmetric power L
s m

(y) = 0 correspond

to homogeneous invariants of degree m of G(L) (cf. Fakler [3], Singer and

Ulmer [20]). Hence, as a consequence of Lemma 5, any invariant of degree m

corresponds bijectively to a non-trivial rational solution of them-th symmetric

power of L(y) = 0 (see Singer and Ulmer [20], Lemma 3.5 (iii)).

Corollary 6 (see [25], Lemma 3.2)

Let L(y) = 0 be an irreducible second order linear di�erential equation over k

with G(L) �= DSL2
n . Then L

s 4
(y) = 0 has a non-trivial rational solution.

In particular
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(1) L
s 4

(y) = 0 has two non-trivial rational solutions, if and only if G(L) �=
DSL2

2 .

(2) Otherwise, L
s 4

(y) = 0 has exactly one non-trivial rational solution.

PROOF. DSL2
2 has two fundamental invariants of degree 4 (see section 3.1).

All the other binary dihedral groups DSL2
n have exactly one fundamental in-

variant of fourth degree. 2

The determination of the fundamental invariants of all �nite unimodular

groups in the last section allows the following result.

Proposition 7

Let L(y) = 0 be a second order linear di�erential equation over k with an

unimodular Galois group G(L). If L
s m

(y) = 0 has a non trivial rational

solution for m = 2 or odd m 2 N, then L(y) = 0 is reducible.

PROOF. If L(y) = 0 is irreducible, L
s m

(y) = 0 has at most non-trivial
rational solutions for even m � 4. 2

It ought to be clear, that the practical use of such a statement is restricted.
However, the following proposition allows e�ective computations.

Proposition 8 (see [25], Lemmata 3.2 and 3.3)

Let L(y) = 0 be an irreducible second order linear di�erential equation over k

with an unimodular Galois group G(L). Then the following holds

(1) G(L) is imprimitive, if and only if L
s 4

(y) = 0 has a non-trivial rational

solution.

(2) G(L) �= D1, if and only if L
s 4m

(y) = 0 has exactly one non-trivial

rational solution for any m 2 N.

(3) G(L) �= DSL2
n , if and only if L

s 4
(y) = 0 has one and L

s 2n
(y) = 0

has two or exactly one non-trivial rational solution depending on whether

4j2n or not.

(4) G(L) is primitive and �nite, if and only if L
s 4

(y) = 0 has none and

L
s 12

(y) = 0 has at least one non-trivial rational solution.

(5) G(L) �= ASL2
4 (tetrahedral group), if and only if L

s 4
(y) = 0 has none

and L
s 6

(y) = 0 has a non-trivial rational solution.

(6) G(L) �= SSL2
4 (octahedral group), if and only if L

s m
(y) = 0 for m 2

f4; 6g has none and L
s 8

(y) = 0 has a non-trivial rational solution.
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(7) G(L) �= ASL2
5 (icosahedral group), if and only if L

s m
(y) = 0 for m 2

f4; 6; 8g has none and L
s 12

(y) = 0 has a non-trivial rational solution.

(8) G(L) �= SL(2; C), if none of the above cases hold.

PROOF. FromCorollary 6 and the above remarks on the in�nite imprimitive

group D1 one gets immediately (1)-(3).

The Galois group of an irreducible linear di�erential equation L(y) = 0 is

irreducible (see Kolchin [11] x22, Theorem 1). An irreducible group is either

imprimitive or primitive. Comparing the degrees of the fundamental invariants

of the three �nite primitive unimodular linear algebraic groups of degree 2 and

the fact that there is no in�nite primitive algebraic subgroup of SL(2; C) (see
Singer and Ulmer [19] p. 13) together with Lemma 5 yields (4).

(5)-(7) are simple consequences of Lemma 5 and the invariants computed in

the previous section.

If none of the above cases hold, then G(L) is primitive and in�nite and thus,

as above stated, equals SL(2; C). 2

As a consequence, we get a nice criterion to decide, whether an irreducible

second order linear di�erential equation has Liouvillian solutions (cf. Singer
and Ulmer [19] Proposition 4.4, Kovacic [12], Fuchs [5] Satz II, No. 17 and
Satz I & II, No. 20).

Corollary 9

Let L(y) = 0 be an irreducible second order linear di�erential equation over

k with an unimodular Galois group G(L). Then L(y) = 0 has a Liouvillian

solution, if and only if L
s 12

(y) = 0 has a non trivial rational solution.

In particular, L(y) = 0 has a Liouvillian solution, if and only if L
s m

(y) = 0

has a non trivial rational solution for at least one m 2 f4; 6; 8; 12g.

PROOF. L(y) = 0 has a Liouvillian solution, if and only if the corresponding

Galois group is either imprimitive, or primitive and �nite. Now, the result

follows from Proposition 8. 2

5 An alternative algorithm

In this section we derive a direct method to compute Liouvillian solutions

of irreducible second order linear di�erential equations with an imprimitive
unimodular Galois group. Computing a minimal polynomial is no longer nec-

essary, but to compute it is still possible. When the di�erential equation has

12



a primitive unimodular Galois group, we show how one can determine a min-

imal polynomial of a solution by knowing the group explicitly and using all

the fundamental invariants. There is no longer a need to substitute a minimal

polynomial decomposed into invariants in the di�erential equation as it is in

Fuchs [5, p. 100] and in Singer and Ulmer [20, p. 67].

Let fy1; : : : ; yng be a system of fundamental solutions of L(y) = 0 and

� =

����������

y1 � � � yn y

y01 � � � y0n y0
...

. . .
...

...

y
(n)
1 � � � y(n)n y(n)

����������
:

Further let Wi =
@�
@y(i)

(i = 0; : : : ; n), and let W = Wn, the Wronskian, and

W 0 = Wn�1 its �rst derivative. With this, the di�erential equation L(y) = 0

is uniquely determined by

L(y) =
�

W
= y(n) � W 0

W
y(n�1) +

Wn�2
W

y(n�2) + : : : + (�1)nW0

W
y = 0

or

ai = (�1)n�i Wi

Wn

(i = 0; : : : ; n� 1):

Transforming a fundamental system into another system of fundamental so-

lutions of L(y) = 0 does not change L(y) = 0, e.g. the coe�cients are dif-
ferentially invariant under the general linear group GL(n; C). Because these
transformations depend on L(y) = 0, we will denote their group with G(L).

The coe�cients ak are nth order di�erential invariants. They form a basis
for the di�erential invariants of G(L), see Schlesinger [14], p. 16. Hence, one

can represent any di�erential invariant of G(L) as a rational function in the
a0; : : : ; an�1 and their derivatives.

De�nition 10

Let L(y) = 0 be a linear di�erential equation with Galois group G(L) and I an

invariant of degree m of G(L). The rational solution R of the mth symmetric

power L
s m

(y) = 0 corresponding to I, is called the rationalvariant of I.

An algebraic equation, which determines the constant c (c 2 C; c 6= 0) for

I 7! c �R, R 6= 0 is the determining equation for the rationalvariant R.

13



5.1 The imprimitive case

All imprimitive Galois groups possess the common invariant I4 = y21y
2
2 (see

sections 3.1 and 4), which consists of a single monomial. This common invari-

ant allows to compute Liouvillian solutions with ease.

Theorem 11

Let L(y) = 0 be an irreducible second order linear di�erential equation with an

imprimitive unimodular Galois group G(L). Then L(y) = 0 has a fundamental

system in the following two solutions

y1 =
4
p
r e

�C
2

R
Wp
r and y2 =

4
p
r e

C
2

R
Wp
r :

Thereby, W is the Wronskian, r is the rationalvariant of the invariant I4 =
1
C2 � r (C 2 C; C 6= 0) and

4r00r � 3(r0)2

16r2
+
W 2

4r
C2 +

r0

4r
a1 + a0 = 0 (5)

its determining equation.

In particular (cf. Fuchs [5], p. 118), if a1 = 0 then

y1 =
4
p
r e

� �C
2

R
1p
r and y2 =

4
p
r e

�C
2

R
1p
r ( �C = CW )

form a system of fundamental solutions, where �C is determined by equation

(5).

PROOF. Let r be a rational solution of L
s 4

(y) = 0 with I4 = y21y
2
2 = c � r

(c 2 C; c 6= 0). Hence, it is y2 =
p
c�r
y1

. If we substitute this expression for y2
and for y02 its derivative in the Wronskian W = y1y

0
2 � y01y2, we have

y01
y1

=
r0

4r
� W

2
p
c � r (6)

or

y1 =
4
p
re

� 1

2
p
c

R
Wp
r

respectively. Substituting y1 in the di�erential equation L(y) = 0 we obtain

the determining equation (5) for the constant c = 1
C2 .

14



If a1 = 0 e.g. W is constant, then y1 is simpli�ed to 4
p
re

� W

2
p
c

R
1p
r and we get

with �C = Wp
c
for equation (5)

4r00r � 3(r0)2

16r2
+

1

4r
�C2 + a0 = 0:

2

Remark 12

Equation (6) is already the solved minimal polynomial of the logarithmic

derivative of a solution, which is computed in the second case of Kovacic's

algorithm [12]. Indeed, Kovacic has used the invariant I4 to prove the second

case of his algorithm ([12], p. 10).

In the case of an imprimitive unimodular Galois group, L
s 4

(y) = 0 has

exactly one non-trivial rational solution except forDSL2
2 by Proposition 8. Now,

suppose L
s 4

(y) = 0 has exactly one non-trivial rational solution. Then, using

Theorem 11, we can directly compute both Liouvillian solutions of L(y) = 0.
Since the determining equation for the constant C must be valid for all regular
points of L(y) = 0, we only have to evaluate this equation for an arbitrary
regular point.

When L
s 4

(y) = 0 has two linearly independent non-trivial rational solutions
r1 and r2 (e.g. G(L) �= DSL2

2 ) then we have two ways to compute Liouvillian
solutions. In the �rst way we only set r = c1r1 + c2r2 and C = 1 and get the

solutions by solving the determining equation (5).
The second possibility is to compute a further non-trivial rational solution r3

of L
s 6

(y) = 0. With this rational solutions one makes the Ansatz

I4a = c1r1 + c2r2; I4b = c3r1 + c4r2; I6 = c5r3

and substitute into the syzygy

I26 � I4aI
2
4b + 4I34a = 0:

From the numerator of the thereby obtained rational function we get a system

of polynomial equations for the constants c1; : : : ; c5. Solving this system can
be done by computing a lexicographical Gr�obner basis (cf. Sturmfels [21]).

This gives a necessary condition for the previous invariants. It can be made
su�cient by choosing the constants in a way that makes I4a; I4b and I6 non-

trivial and furthermore I4a and I4b linear independent. Since there are in�nite

many solutions for the invariants this is always possible. Using Theorem 11 we
now can compute the Liouvillian solutions from the just constructed invariant

I4a.
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Another way to compute the solutions is to solve the minimal polynomial of

Theorem 4 explicitly.

The condition, that a linear di�erential equation in the imprimitive case has

algebraic solutions is based on a Theorem of Abel, see Fuchs [5] p. 118. One

can state this condition more precisely as follows.

Lemma 13

Let L(y) = 0 be a second order linear di�erential equation with a �nite im-

primitive unimodular Galois group G(L). Then the following equation holds

Z
Wp
I4

=
1

2n
log

I2n+2 + I2n
p
I4

I2n+2 � I2n
p
I4
: (7)

PROOF. Theorem 4 implies that the solutions of L(y) = 0 are of the form

y1;2 =
2n

s
1

2

�
I2n �

q
I22n � (�1)n4In4

�
: (8)

Substituting I22n by syzygy (3) together with further manipulations give

y1;2 =
4

q
I4 2n

vuuut �I2n+2 + I2n
p
I4

2
q
In+14

:

Once more applying syzygy (3) on In+14 and manipulations we get by Theorem
11

y1;2 =
4

q
I4

4n

vuut (�1)n+1�I2n+2 + I2n
p
I4

�I2n+2 � I2n
p
I4

= 4

q
I4 e

� 1
2

R
Wp
I4

and therefore

�1

2

Z
Wp
I4

= � 1

4n
log

I2n+2 + I2n
p
I4

I2n+2 � I2n
p
I4
:

2

The solutions of L(y) = 0 are algebraic, if and only if one can write the integralR
Wp
I4
in the form (7).

Remark 14

It seems Lemma 13 allows us to determine explicitly the (imprimitive) Galois

group of L(y) = 0. We will study this in a seperate paper.
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5.2 The primitive case

This section present the tools for determining the rationalvariant of an invari-

ant of degree m. The idea stems from Fuchs [6], p. 22.

Lemma 15

Let y1, y2 be independent functions in x, and let f(y1; y2) and g(y1; y2) be

binary forms of degree m and n respectively. Then the following identities

hold:

(1) for the Hessian of f(y1; y2)

H(f) =
m� 1

W 2

2
4 f 0

f

!2

+m

 
f 0

f

!0
+ma1

 
f 0

f

!
+m2a0

3
5f2

(for a1 = 0, cf. Fuchs [6] p. 22) and

(2) for the Jacobian of f(y1; y2) and g(y1; y2)

J(f; g) =
mfg0 � nf 0g

W
:

Thereby, W is the Wronskian of y1 and y2 and further a0 =
W0

W
and a1 = �W1

W

are di�erential invariants of second order.

PROOF. For an arbitrary binary form f(y1; y2) =
Pm

i=0 biy
m�i
1 yi2 the follow-

ing identity holds

�
y1 y2
y01 y02

�
�
�
fy1
fy2

�
=

�
mf

f 0

�
resp:

1

W

�
y02 �y2
�y01 y1

�
�
�
mf

f 0

�
=

�
fy1
fy2

�
:

In particular, this is valid for the forms @f

@y1
= fy1 and @f

@y2
= fy2 of degree

m� 1:

1

W

�
y02 �y2
�y01 y1

��
(m�1)fy1
f 0y1

�
=

�
fy1y1
fy1y2

�
;

1

W

�
y02 �y2
�y01 y1

��
(m�1)fy2
f 0y2

�
=
�
fy2y1
fy2y2

�
:

From this one gets the identities by reverse substitution in H(f) = fy1y1fy2y2�
fy1y2fy2y1 and J(f; g) = fy1gy2 � fy2gy1 if one takes the Wronskian and the

di�erential equation �
W

= 0 for n = 2 into account. 2
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Thus, it su�ces to compute the non-trivial rational solution of the smallest

possible symmetric power of L(y) = 0. The two remaining fundamental ra-

tionalvariants can be determined with Lemma 15. If the rationalvariants are

known, one gets the constants from the sygyzies.

Theorem 16

Let L(y) = 0 be an irreducible second order linear di�erential equation over k

with �nite primitive unimodular Galois group G(L) and let r be the smallest

rationalvariant (e.g. I1 = c � r ( c 2 C; c 6= 0)). If one sets the Wronskian

W = 1 in the case of a1 = 0, then a determining equation for the rational-

variant r for each case is given by

G(L) �= ASL2
4 : (25J(r;H(r))2 + 64H(r)3) c2 + 106 � 108r4 = 0

G(L) �= SSL2
4 : (49J(r;H(r))2 + 144H(r)3) c� 118013952r3H(r) = 0

G(L) �= ASL2
5 : (121J(r;H(r))2 + 400H(r)3) c+ 708624400 � 1728r5 = 0:

PROOF. Let denote H(f) = 1
W 2

~H(f), J(f; g) = 1
W

~J(f; g) and for constant

W let J(f;H(f)) = 1
W 3

~J(f; ~H(f)). Then

H(c � r)= c2H(r) =
c2

W 2
~H(r)

J(c � r;H(c � r))= c3J(r;H(r))

and for constant W (e.g. a1 = 0)

J(c � r;H(c � r))= c3

W 3
~J(r; ~H(r)):

Furthermore, let I1 = c � r. Substituting respectively the expressions for the
fundamental invariants in the corresponding syzygies, see section 3.2, one ob-
tains in the case of a1 = 0

G(L) �= ASL2
4 :

��
~J(r; ~H(r))
8�25

�2
+
�
~H(r)
25

�3�
c2 + 108r4W 6 = 0

G(L) �= SSL2
4 :

��
~J(r; ~H(r))

16�9408
�2

+ 108
�

~H(r)

9408

�3�
c� r3 ~H(r)

9408
W 4 = 0

G(L) �= ASL2
5 :

��
~J(r; ~H(r))

20�121
�2

+
�
~H(r)

121

�3�
c+ 1728r5W 6 = 0:

For satisfying these equations one can arbitrary choose one of the two non-
zero constants c and W , respectively. The assertion follows from the previous
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relations by setting W = 1 in each of them. In a similiar way one gets for

a1 6= 0 the equations

G(L) �= ASL2
4 :

��
J(r;H(r))

8�25
�2

+
�
H(r)

25

�3�
c2 + 108r4 = 0

G(L) �= SSL2
4 :

��
J(r;H(r))

16�9408
�2

+ 108
�
H(r)

9408

�3�
c� r3H(r)

9408
= 0

G(L) �= ASL2
5 :

��
J(r;H(r))

20�121
�2

+
�
H(r)
121

�3�
c+ 1728r5 = 0:

2

It is possible to solve the determining equation for the smallest rationalvariant

through evaluation of an arbitrary regular point of L(y) = 0, since it must

hold for all regular points.

Consequently, Theorem 16 allows to determine for second order linear di�eren-

tial equations with primitive unimodular Galois group a minimal polynomial
of a solution without a Gr�obner basis computation.

5.3 The algorithm

Based on the results of the previous two sections, we propose the following
method as an alternative to the already known algorithms of Kovacic [12],
Singer and Ulmer [20] and Ulmer and Weil [25]. Thereby, for solving a re-
ducible di�erential equation we refer to one of these procedures. Computing

rational solutions can be done e.g. with the algorithm described in Bronstein
[2]. Moreover, rationalvariants can be determined by the method of van Hoeij
and Weil [8] without computing any symmetric power.

Algorithm 1

Input: a linear di�erential equation L(y) = 0 with G(L) � SL(2; C)
Output: fundamental system of solutions fy1; y2g of L(y) = 0

or minimal polynomial of a solution

(i) Test, if L(y) = 0 is reducible. If yes, then compute an exponential and

a further Liouvillian solution by applying e.g. one of the previous algo-

rithms.

(ii) Test, if L
s 4

(y) = 0 has a non-trivial rational solution.
(a) If the rational solution space is one-dimensional: Apply Theorem 11.
(b) If the rational solution space is two-dimensional:

Either set r = c1r1 + c2r2, C = 1 and apply Theorem 11,

or compute the rational solution of L
s 6

(y) = 0 and determine the
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three rationalvariants I4a, I4b and I6 (with a Gr�obner basis compu-

tation) from syzygy (3) for n = 2. Subsequently 3 : substitute the

rationalvariants in equation (8).

(iii) Test successively, for m 2 f6; 8; 12g, if L
s m

(y) = 0 has a non-trivial

rational solution. If yes, then: compute both remaining rationalvariants

with Lemma 15 and determine their constants (Proposition 8) by Theo-

rem 16. Substituting the rationalvariants in the matching minimal poly-

nomial decomposed into invariants from section 3.2 gives the minimal

polynomial of a solution.

(iv) L(y) = 0 has no Liouvillian solution.

In the following we solve for each of the cases 2(a), 2(b) and 3 of Algorithm

1 an example with the computer algebra system AXIOM 1.2 (see Jenks and

Sutor [9]).

Example 17 (see Ulmer and Weil [25] pp. 193, Weil [26], pp. 93)

The di�erential equation

L(y) = y00 � 2

2x� 1
y0 +

(27x4 � 54x3 + 5x2 + 22x+ 27)(2x � 1)2

144x2(x� 1)2(x2 � x� 1)2
y = 0

is irreducible and has an unimodular Galois group, since W 0

W
= 2

2x�1 and W 2
k. Its fourth symmetric power L

s 4
(y) = 0 has an one-dimensional rational

solution space generated by r = x(x� 1)(x2 � x� 1)2.
The constant C is determined by

(36C2 � 4)x2 + (�36C2 + 4)x+ 9C2 � 1

36x6 � 108x5 + 36x4 + 108x3 � 36x2 � 36x
= 0

or e.g. for the regular point x0 = 2 by

9C2 � 1 = 0:

For the integral
R

Wp
9r

one gets

Z
2x� 1q

9x(x� 1)(x2 � x� 1)2
=

1

3
log

(�2x� 1)
q
x(x� 1) + 2x2 � 1

(�2x+ 3)
q
x(x� 1) + 2x2 � 4x+ 1

:

3 or apply Theorem 11 to the rationalvariant of I4a
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Therefore L(y) = 0 has a fundamental system in the solutions

y1;2 =
4

q
x(x� 1)(x2 � x� 1)2

0
@(�2x+ 3)

q
x(x� 1) + 2x2 � 4x+ 1

(�2x� 1)
q
x(x� 1) + 2x2 � 1

1
A
� 1

6

:

To this fundamental system corresponds the invariant I4 = x(x�1)(x2�x�1)2.
Substituting both solutions in I2n for n = 3 we get

I6 = 4x2(x� 1)2(x2 � x� 1)2:

Hence, G(L) �= DSL2
3 . By the relation (3) we obtain the remaining fundamental

invariant

I8 =
q
I4I

2
6 + 4I44 = 2x2(x2 � x+ 1)(x� 1)2(x2 � x� 1)3:

3

Example 18 (see Ulmer [24] pp. 396, [27])

Consider the irreducible di�erential equation

L(y) = y00 +
27x

8(x3 � 2)2
y = 0

constructed from Hendriks. Its fourth symmetric power L
s 4

(y) = 0 has a

two-dimensional rational solution space, generated by r1 = x3 � 2 and r2 =
x(x3 � 2). Corollary 6 implies that G(L) �= DSL2

2 is the corresponding Galois

group of L(y) = 0. The rational solution space of L
s 6

(y) = 0 is generated
by r3 = (x3 � 2)2.

Substituting the Ansatz

I4a = c1(x
3 � 2) + c2x(x

3 � 2); I4b = c3(x
3 � 2) + c4x(x

3 � 2);

I6 = c5(x
3 � 2)2

in the relation (3) for n = 2 gives the necessary condition:

(c5
2 � c2c4

2 + 4c2
3)x12 + (�c1c42 � 2c2c3c4 + 12 c1c2

2)x11

+ (�2c1c3c4 � c2c3
2 + 12c1

2c2)x
10 + (�8c52 + 6c2c4

2 � c1c3
2 � 24c2

3 + 4c1
3)x9

+ (6c1c4
2 + 12c2c3c4 � 72c1c2

2)x8 + (12c1c3c4 + 6c2c3
2 � 72c1

2c2)x
7

+ (24c5
2 � 12c2c4

2 + 6c1c3
2 + 48c2

3 � 24c1
3)x6 +

(�12c1c42 � 24c2c3c4 + 144c1c2
2)x5 + (�24c1c3c4 � 12c2c3

2 + 144c1
2c2)x

4 +

(�32c52 + 8c2c4
2 � 12c1c3

2 � 32c2
3 + 48c1

3)x3

+ (8c1c4
2 + 16c2c3c4 � 96c1c2

2)x2 +

(16c1c3c4 + 8c2c3
2 � 96c1

2c2)x+ 16c5
2 + 8c1c3

2 � 32c1
3 = 0:
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In order to satisfying this condition all the coe�cients must vanish identically.

For instance, we can add c4 � � = 0 to the coe�cient equations and compute

for this system a lexicographical Gr�obner basis for c1 � c2 � c3 � c4 � c5.

If one computes an ideal decomposition from this result with the algorithm

groebnerFactorize and take therein the secondary condition c5 6= 0 into

account, one gets the (parametrized) ideal (� 6= 0)

f�3c1 + 3

4
c3c

2
5; �

2c2 � 3

4
c25; c

3
3 � 2�3; c4 � �; c45 +

4

27
�6g;

or the variety

P =

8>>>>>><
>>>>>>:

�
c1 = �

3
4
c3c5

2

�3

�
;

�
c2 =

3
4
c5

2

�2

�
;

n
c3 =

3
p
2�3; c3 =

�
�1

2

p�1
p
3� 1

2

�
3
p
2�3

o
; fc4 = �g;

n
c5 = � 4

q
� 4

27
�6; c5 = �p�1 4

q
� 4

27
�6
o

9>>>>>>=
>>>>>>;
:

P contains all possible choices for the constants of the fundamental invariants.
For instance, the points (c1; c2; c3; c4) = (1

6

p�3 3
p
2�; �1

6

p�3�; 3
p
2�; �) sat-

isfy the su�cient condition for the rationalvariants. Substituting these points
in equation (8) for n = 2, we get the two solutions

y1;2 =
4

vuut1

6
�(x3 � 2)

 
3x+ 3

3
p
2� 2

r
3
�
x2 +

3
p
2x+

3
p
22
�!

:

3

Example 19 (see Singer and Ulmer [20] p. 68, Kovacic [12] p. 23, [25], [7])

In order to illustrate the given method in the primitive case, we consider the

irreducible di�erential equation (Kovacic [12])

L(y) = y00 +

 
3

16x2
+

2

9(x� 1)2
� 3

16x(x� 1)

!
y = 0:

Its fourth symmetric power L
s 4

(y) = 0 has no non-trivial rational solutions.

While L
s 6

(y) = 0 has the rationalvariant r = x2(x� 1)2 which generates its

one-dimensonal rational solution space. Therefore, by Proposition 8 G(L) �=
ASL2
4 is the corresponding Galois group of L(y) = 0 (cf. Kovacic [12]).

For W = 1, the further two rationalvariants are computed with

H(r) =
25

4
x2(x� 1)3
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and

J(r;H(r)) = �25

2
x3(x� 1)4(x� 2):

From these rationalvariants one gets the determining equation of r

�
c2 + 27648

�
x16 +

�
�8c2 � 221184

�
x15 +

�
28c2 + 774144

�
x14+�

�56c2 � 1548288
�
x13 +

�
70c2 + 1935360

�
x12+�

�56c2 � 1548288
�
x11 +

�
28c2 + 774144

�
x10+�

�8c2 � 221184
�
x9 +

�
c2 + 27648

�
x8=0;

respectively e.g. for the regular point x0 = 2 the equation

c2 + 27648 = 0:

Hence, c = �96p�3. Substituting

I1=
1

4
� c � r = 24

p
�3 x2(x� 1)2

I2=� 5

80
� �1
25

c2H(r) = 432x2(x� 1)3

I3=� 1

16
� 1
8
� �1
25

c3J(r;H(r)) = 10368
p
�3 x3(x� 1)4(x� 2)

in the minimal decomposed into invariants (4), we obtain the minimal poly-

nomial of a solution:

Y
24 � 4320x2(x� 1)3Y16 + 51840

p�3 x3(x� 1)4(x� 2)Y12

�2799360x4(x�1)6Y8+4478976
p�3 x5(x�1)7(x�2)Y4+2985984x8(x�1)8:

3

6 Conclusion

The work of Fuchs is di�cult to read. The author has �rst developed the

algorithm presented here by himself and noticed afterwards that it is basically

a reformulation and improvement of the Fuchsian method. Nevertheless, our

method is essentially more e�cient. The reason for this lies in using all absolute

fundamental invariants of the Galois group associated with the di�erential
equation; this enables us to compute the constants from the syzygies.
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But in principle our algorithm cannot be more e�cient than the algorithm

given by Ulmer and Weil [25]. Indeed, both methods have the same time com-

plexity. The algorithm from Ulmer and Weil computes a minimal polynomial

of the logarithmic derivative of a solution via a recursion for the coe�cients in

all cases, while our method tries to determine the solutions explicity as much

as possible. If the associated Galois group is the tetrahedral or the octahedral

group one can represent both algebraic solutions in radicals. 4

We feel, that this paper shows the connection between determining the Galois

group, the rationalvariants and the Liouvillian solutions of a given (irreducible)

second order di�erential equation very clearly. For instance, in the imprimitive

case it is easier to compute �rst the Liouvillian solutions and determine from

them the (possibly) missing rationalvariants and the Galois group. Against it,

in the primitive case the better way is to compute �rst the Galois group and to

determine from it the remaining rationalvariants and the minimal polynomial

of a solution. The behaviour in the case of DSL2
2 is somehow special (cf. Ulmer

[24]). Also it becomes clear, that a Liouvillian solution or a minimal polynomial

of a solution always contains all fundamental rationalvariants.
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