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Noisy Inference and Oracles

Frank Stephan�

Abstract

A learner noisily infers a function or set, if every correct item is pre-

sented in�nitely often while in addition some incorrect data ("noise")

is presented a �nite number of times. It is shown that learning from a

noisy informant is equal to �nite learning with K-oracle from a usual

informant. This result has several variants for learning from text and

using di�erent oracles. Furthermore, partial identi�cation of all r.e.

sets can cope also with noisy input.

1 Introduction

Many scienti�c or mathematical problems are only solved numerically and

the correctness of the solution depends on the computer power available.
Scientists therefore have to trust the data, which may be incorrect; they can

not wait until better computer are available 10 years later. So they make up

their current theories from uncertain data.
Modeling the development of science as a long process, it has to be taken

into account that errors in today's simulation-data are discovered in 10 or 20

years, when the experiments will be done using more powerful computers,
which e.g. enable to work with smaller grids and higher precision. Discover-

ing an error results in a revision of the theory, if necessary. So there is an

in�nite sequence of data, where each correct item, say each correct outcome

of a given simulation process, occurs in�nitely often, while the incorrect
items only occur a �nite number of times; from this sequence of data scien-

tists generate a �nite sequence of theories; the last of these theories should

be correct.
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In inductive inference, the topic of exploration is typically modeled by a

function or a set to be learned. And a given simulation is modeled as a pair

(x; y) where x is the input and y the output. The supplied information (x; y)

is correct i� f(x) = y. The sequent theories guessed by the scientists are

modeled as programs, which are intended to compute f . There are various

approaches to inference from faulty data [2, 5, 7, 17]; Jain [7] distinguishes

three basic types of concepts for learning in the limit from faulty data: (a)

the learner receives some faulty data together with the information on the

concept to be learned, (b) all data is correct but some information on the

concept is never presented and (c) the combination of both concepts.

Many concepts of learning from faulty data have the disadvantage, that

it is impossible to de�ne the object to be learned only from the input to the

learner. If e.g. in case (a) the informations (0; 0) and (0; 1) are both supplied

to the learner, then it is impossible to know which one is correct, i.e., whether
f(0) = 0 or f(0) = 1. The same holds if according to (b) no statement of

the form (0; y) is made at all. The learner therefore has to overcome this

gap by a priori knowledge about f , e.g. that always f(0) = f(1) and f(1) is
speci�ed uniquely on the information supplied to the learner.

The model considered here solves this problem by presenting the correct

information in�nitely often while the incorrect one occurs only �nitely often,

i.e., f(x) = y i� (x; y) occurs in�nitely often on the learner's input-tape.
During the inference process, the learner still has the problem not to know

whether the current input is correct, but in the limit it turns out which data

is correct and which is incorrect; so the learner needs less a priori knowledge
for learning in the limit.

So the noisy inference considered here can be put into Jain's �rst cate-

gory (a), i.e., learning with additional faulty information. The noisy text in
this context are a combination of the intrusion texts as de�ned by Osherson,

Stob and Weinstein [17, Exercise 5.4.1 E] which may contain �nite addi-

tional false words and the fat texts [17, Section 5.5.4] in which each item

appears in�nitely often. Learning from texts and learning from fat texts are
equivalent models [17, Proposition 5.5.4 A]. But the intrusion texts are more

restrictive than noisy texts as de�ned below since the class ff0g; f1gg can be

learned from very noisy text but not from intrusion texts. Now the concepts

are presented in detail:

De�nition 1.1 A noisy informant for a function f is an in�nite sequence

T such that every pair (x; f(x)) occurs in�nitely often in this sequence while

for each x pairs (x; y) with y 6= f(x) occur only �nitely often. A noisy
informant for a set is a noisy informant for its characteristic function.
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A noisy text for a set L is an in�nite sequence T = fwigi2! in which

every x 2 L occurs in�nitely often, i.e., (8x 2 L) (91i) [wi = x], while only

�nitely often some x =2 L occurs, i.e., (81i) [wi 2 L].

An IIM M infers L noisily (from text or informant), i� for every L 2 L

and on every noisy text/informant T = fwigi2! for L, M converges to an

index for L, i.e., i� M(w0w1 : : : wn) = e for some index e for L and for almost

all n. These criteria are denoted by NoisyTxt and NoisyInf.

A very noisy text for a set L is an in�nite sequence T such that x 2 L i�

x occurs in�nitely often in T . A very noisy informant is a very noisy text

for the graph of a function. Every noisy text is also very noisy but not vice

versa.

A further important concept of learning theory in this paper is that of

learning without mindchanges: An IIM learns �nitely (FIN) a language or

function i� it makes exactly one guess during the inference process and this
guess is correct.

An IIM M learns dual strongly monotonic (SMond) i� the guessed lan-

guages form a descending sequence, i.e., WM(�) � WM(��) for all strings �; �
[11, 14].

Osherson, Stob and Weinstein [17] give an overview and further details

on inductive inference.

The main recursion-theoretic de�nitions and notations can be found in the

books of Odifreddi [16] and Soare [18]. Nevertheless some basic facts are

included for the convenience of the reader:

A set is recursive enumerable (r.e.) i� there is an algorithm which outputs
a sequence just containing all elements of the set, i.e., which outputs a text T

of the set { this text may contain the symbol # to avoid unde�ned output in

the case of ;. RE denotes the class of all r.e. sets, REC that of all recursive
functions.

A set A is Turing reducible to B (A �T B) if A can be computed via a

machine which knows B, i.e., which has an in�nite database which supplies

for each x the information whether x belongs to B or not. Such a database
is called an oracle and the question \x 2 B?" a query to B. The class

fA : A �T Bg is called the Turing degree of B where A �T B means that

both, A �T B and B �T A hold. Given two sets A and B, the Turing degree
of the join A�B = f2x : x 2 Ag[f2x+1 : x 2 Bg is the least upper bound

of the Turing degrees of A and B. K denotes the halting problem, i.e., the

set fx : 'x(x) # g. This notion can be relativized: A0 = fx : 'Ax (x) # g is
the halting problem relative to A where 'Ax is the x-th recursive function
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equipped with the oracle A. Also an IIM may use an oracle, e.g., FinTxt[A]

denotes the class of all families of languages learnable �nitely via an IIM

which uses the oracle A.

A set A has high Turing degree if K 0 �T A
0, i.e., if the halting problem

relative to K can be solved using the halting problem relative to A. The

high Turing degrees are also the degrees of the sets A such that there is

a function f computable in A which dominates every recursive function g,

i.e., which satis�es (81x) [g(x) < f(x)]. Some kind of counterpart are the

hyperimmune-free degrees: they are the degrees of all sets A such that any

function f computable relative to A is dominated by a recursive function,

i.e., (8f �T A) (9g 2 REC) (8x) [f(x) � g(x)].

The 1-generic sets are those that either meet or strongly avoid each re-

cursive set of strings: If A is 1-generic and W is a recursive set of strings,

then there is a pre�x � � A such that either � 2 W (\A meets W") or
�� =2 W for all � (\A strongly avoids W"). The interested reader may �nd

more information about 1-generic sets in Jockusch's paper [10] or Soare's

book [18, A.VI.3.6-9].

Section 2 deals with learning from noisy informant; this concept can be

identi�ed with �nite learning from informant: NoisyInf = FinInf[K]. This

connection relativizes and motivates looking for similar relations w.r.t. noisy
learning and oracles. Further it provides an easy characterization for the

inference degrees of noisy inference | the inference degree of an oracle A is

fB : NoisyInf[B] = NoisyInf[A]g [4]. In particular section 3 provides many
connections for learning from noisy text, but it does not �nd an equivalence

between noisy learning and an already well-known concept. Section 4 looks

for connections between the text and informant version of noisy learning.
Section 5 considers the case, where the family to be learned is uniformly

recursive. Section 6 deals with partially identi�cation. Osherson, Stob and

Weinstein [17] showed that the class of all r.e. sets is partially identi�able

from text; the same holds for noisy text and noisy informant, but not for
very noisy text.

2 Inference From Informant

The main result of this section is, that �nite learning from informant with

K-oracle equals learning from noisy informant. This relation motivates the

study of connections between noisy inference and �nite inference with oracles.

Theorem 2.1 FinInf[K] = NoisyInf.
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Proof: NoisyInf � FinInf[K]: Assume that M is a recursive IIM which

learns a family L of sets from noisy informant. A string � is called �-con-

sistent i�

(8x < j�j) [((x; y) occurs in �) ) y = �(x)]:

Now the following FinInf[K] IIM N infers L:

N(�) =

8><
>:
e if e = N(�� ) for some string � of length up to j�j

and for all �-consistent strings � ;

? otherwise, i.e., there is no such �.

In short: N searches | using K-oracle | some kind of locking sequence �

and then outputs e = M(�).

Assume now that on the inference of U , N(�) outputs e = N(�) for
some � � U . Let whx;yi = (x;U(x)) for all x; y. Now �w0w1w2 : : : is a noisy

informant for U and thus M has to converge on this informant to a correct

index. Since all strings �n = w0w1 : : : wn are �-consistent, e = N(��n) and e
is an index for U . Thus the �rst guess is already correct and no mindchange

is necessary.

So it remains to verify that N always converges. Assume that N does
not converge, i.e., for every � and every � � U there is an �-consistent

� with M(�� ) 6= M(�). Let �0 = (0; 0). For n = 1; 2; : : :, there are

(U(0); U(1); : : : ; U(n))-consistent strings �n such that

M(�n) 6= M(�n�1) where

�n = �n�1 (0; U(0)) (1; U(1)) : : : (n;U(n)) �n:

It follows that T = limn�n is a noisy informant for U and that M diverges on

T , a contradiction. Thus N infers every U 2 L and NoisyInf � FinInf[K].

FinInf[K] � NoisyInf: Let NK be a FinInf[K] IIM for some family L. A

string � is called �-consistent i� for all x < j�j the pair (x; �(x)) occurs in

� at least as often as any other pair (x; y). Now

M(�) =

8><
>:
NKj�j(�) for the shortest �-consistent �

which satis�es NKj�j(�)# 6= ? within j�j steps.

? otherwise, i.e., there is no such �.

M NoisyInf infers L: Let � � U be the shortest string with NK(�) = e 6= ?.

Then � is �-consistent for almost all � � T of any given noisy informant T

for U . Since any �0 which is �-consistent for in�nitely many � � T either

satis�es �0 � � or �0 � �, eitherNKj�j(�0)#= ? holds for almost all these � or
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�0 is not considered since already � � �0 satis�es all necessary requirements.

Thus M converges on every noisy informant T of U to the same index e

which N infers.

It is easy to see that the proof holds as well for learning functions as well

for learning r.e. sets. Further the proof relativizes. Since FinInf[A] �

FinInf[B] , A �T B [4, Theorem 6.36], the relativized version of this

theorem also characterizes the inference degrees for noisy informant. In the

non-relativized world, NoisyInf is between FinInf and LimInf.

Corollary 2.2

(a) NoisyInf[A] = FinInf[A0].

(b) NoisyInf[A] � NoisyInf[B] i� A0 �T B
0.

(c) FinInf � NoisyInf � LimInf.

While for sets the de�nitions of noisy informant and very noisy informant

are equivalent (data (x; y) with y > 1 can be ignored), this equivalence does
not hold in the �eld of inferring functions. But there remains a connection:

Theorem 2.3 If L can be learned from noisy informant and some K-recur-

sive function f bounds all functions g 2 L, then L can also be learned from

very noisy informant.

Proof: Let M be an IIM which infers L from noisy informant and let

fs be a uniform recursive sequence of functions which approximate f in the
limit: (8x) (81s) [f(x) = fs(x)]. Since f only has to be an upper bound,

w.l.o.g. the fs approximate f from below.

Every very noisy informant T = w0w1 : : : for g 2 L can be translated

into a new noisy informant T 0 = v0v1 : : : as follows:

vs =

�
ws if ws = (x; y) and y � fs(x);

# otherwise.

Also in T 0 every pair (x; g(x)) occurs in�nitely often since (x; g(x)) occurs

in�nitely often in T , g(x) � f(x) and therefore g(x) � fs(x) for almost all s.

On the other hand, if y > f(x), then y > fs(x) for all x and therefore (x; y)
never occurs in T 0. Further if y � f(x) and y 6= g(x), then (x; y) occurs only

�nitely often in T and therefore also only �nitely often in T 0. Thus T 0 is a

noisy informant for g. Since this translation is computable and can be done

on all �nite initial segments of T , M can infer g from T 0.
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The converse does not hold. For example the family fe1e01 : e 2 !g can be

learned from very noisy informant, but it has no bound on f(0) at all. On

the other hand, the condition, that f is K-recursive can not be weakened,

since the family

f0xy01 : x 2 ! ^ 1 � y � f(x)g

can be learned from very noisy informant i� some K-recursive function ma-

jorizes f .

3 Inference From Text

Comparing the de�nition for learning from noisy informant with those for

learning from noisy text and from very noisy text, the second seems more to
�t to its counterpart than the �rst one. But it turns out that learning from

very noisy text is a very restrictive concept since here two restrictions add -

that of texts (compared to informant) and that of noise. Indeed the class of
all singleton sets can only be learned from noisy text and not from very noisy

text as similarly the class of all constant functions can only be learned from

noisy informant but not from very noisy informant. So the next theorem
indicates why noisy text is more interesting than very noisy text.

Theorem 3.1 The class  L containing all singleton sets fxg can be learned

from noisy text but not from very noisy text.

Proof: There is an easy algorithm to infer  L from noisy text: For each in-
put �w the learner just guesses fwg. Since for each given noisy text w0w1 : : :

almost allwi are the single word x of the singleton language fxg to be learned,

this algorithm is correct.
Assume by the way of contradiction that M learns all singleton sets from

very noisy text. Then let �0 be the empty string and �n+1 = �n0nk for the

�rst k with M(�n0nk) outputting an index for fng. Such a k must exist

since �n0n1 is a very noisy text for fng. The limit of all these �n is a very

noisy text for f0g since 0 occurs in�nitely often (in each �n exactly n times)

and each n occurs only the k times for the k in the de�nition of �n+1. But

M does not converge on this very noisy text and so M does not infer the
family from very noisy text.

Locking sequences are an important tool in learning from text. Therefore it

is useful to de�ne them also for inference from noisy text. Let M be an IIM
which infers L. � is called a locking sequence for L i�
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� M(�) = e with We = L and

� M(�� ) = M(�) for all � 2 L�.

Since L = We, � is also called a locking sequence for the index e. The proof,

that a locking sequence exists, is almost identical to the one in the case of

learning from text and is therefore omitted. Using the concept of locking

sequences, the next theorem shows, that it is impossible to learn a class of

sets from noisy text, if some of the sets is a proper subset of some other.

Theorem 3.2 If L0 � L then fL0; Lg =2 NoisyTxt.

Proof: Let M be an IIM which infers at least L and has a locking se-

quence � for L. Further let w0w1 : : : be an enumeration of L0 in which every

element of L0 occurs in�nitely often. Now �w0w1 : : : is a noisy text for L0,

but since e = M(�) is an index for L and M(�w0w1 : : : wn) = e for all n (by

w0; w1; : : : 2 L), M does not infer L0 from noisy text.

The severe restriction from Theorem 3.2 contrasts the fact, that if the sets to

be learned are the graphs G of a set of functions, then there is no di�erence

between noisy and non-noisy text, so learning from noisy text is in general

not so restrictive as learning from noisy informant.

Theorem 3.3 Let G be a the set of the graphs of some set of total recursive

functions. Then G 2 NoisyTxt , G 2 LimTxt.

Proof: If w0w1 : : : is a noisy text for the graph of a function g, then it
contains only �nitely many (x; y) with y 6= g(x) while each pair (x; g(x))

occurs in�nitely often in w0w1 : : :. There is a �rst k such that all wi with

i � k are of the form (x; g(x)) for some x. So wkwk+1wk+2 : : : is a text for
graph(g) which is not noisy. Some IIM M infers G from text. The following

IIM N infers G from noisy text:

On input w0w1 : : :wn, N searches the least m � n such that the

information wm; wm+1; : : : ; wn is not contradictory, i.e.,

(8i; j) [m � i � j � n ^ wi = (x; y) ^ wj = (x; z) ) y = z];

and then N outputs M(wmwm+1 : : :wn).

For almost all n, this m (depending on n) coincides with k and therefore

(81n) [N(w0w1 : : : wn) = M(wkwk+1 : : : wn) ]:

Thus N on the noisy text w0w1 : : : and M on the text wkwk+1 : : :, both

converge to the same index for graph(g).
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Some families of functions can be inferred in the limit, but are not in

FinInf[A] for any oracle A. The family

ff : (81x) [f(x) = 0]g 2 LimInf � FinInf[A]

is an example. So their graphs are LimTxt and NoisyTxt learnable, but

not FinInf[A] and FinTxt[A] learnable for any oracle A. Therefore inference

from noisy text is not contained in �nite inference relative to any oracle:

Corollary 3.4 NoisyTxt 6� FinTxt[A] for all oracles A.

So in contrary to the case of the informant, the classes FinTxt[K] and

NoisyTxt do not coincide. Indeed Theorem 3.7 will show, that FinTxt[A]

and NoisyTxt are incomparable for all oracles A. Since Theorem 3.7 also

studies the connections FinTxt[A] � NoisyTxt[B] it is worth to look �rst at
the inference degrees with respect to learning from noisy text:

Theorem 3.5 The following holds for all oracles A and B:

(a) If A is r.e. then NoisyTxt[A] � NoisyTxt[B] , A �T B.

(b) If A;B �T K then NoisyTxt[A] � NoisyTxt[B] , A0 �T B
0.

(c) NoisyTxt[A] = NoisyTxt i� A �T K and A has recursive or 1-generic

degree.

Proof: (a): Obviously A �T B ) NoisyTxt[A] � NoisyTxt[B] holds.

For the converse consider the family L consisting of the r.e. set A and all
sets fxg with x =2 A. The IIM M(w0w1 : : : wn) outputs an index of the set

fwng if wn =2 A;
A otherwise, i.e., if wn 2 A:

M is obviously A-recursive; further if w0w1 : : : is a noisy text for fxg, then
wi = x for almost all i and M converges to an index for fxg. If w0w1 : : : is

a noisy text for A then wi 2 A for almost all i and the M almost always

outputs the same index for A.
On the other hand, assume that M is B-recursive and infers L. A has a

locking sequence �. If x =2 A, then M converges on �x1 to an index of fxg,

thus M(�xn) 6= M(�) for some n. If x 2 A, then M(�xn) = M(�) for all n

since � is a locking sequence for A. In short

x 2 A , (8n) [M(�xn) = M(�)]

and the r.e. set A is co-r.e. relative to B. Thus A �T B.
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(b): Let A;B �T K, A0 �T B
0 and L 2 NoisyTxt[A] via M . The set of all

locking sequences � for some We is recursive in A0 by the formula

E = f(�; e) : (8� 2 We
�) [M(�� ) = M(�)]g:

Thus E has a B-recursive approximation Es such that w.l.o.g. no Es is void.

The new B-recursive IIM N infers L 2 L from the text w0w1 : : : as follows:

N(w0w1 : : :wn) = e where there are m and � = v0v1 : : : vm such

that (�; e) 2 En and the norm

e+m+ v0 + v1 + : : :+ vm + jfi � n : wi =2 Wegj

of (�; e) w.r.t. the current input w0w1 : : : wn is minimal among

the norms of all (�0; e0) 2 En w.r.t. w0w1 : : : wn.

Since B �T K the We are uniformly decidable relative to B. Since for each
s some pair (�; e) 2 Es the algorithm �nds at least one e and furthermore

it has to compare the pair (�; e) only with a �nite number of other pairs

(�0; e0) since almost all pairs (�0; e0) have a higher norm than (�; e). Thus
the algorithm terminates using the B-oracle.

Since for every set L 2 L there is a pair (�; e) 2 E with We = L, this

pair is found for su�cient long n and either the algorithm converges to this

e for the pair (�; e) for L or to e0 for some other pair (�0; e0) 2 E. Assume by
the way of contradiction, that the algorithm takes the second case for some

e0 with We0 6= L. If there is some w 2 L �We0, then this w occurs in�nitely

often. While the norm of (�; e) w.r.t. each input w0w1 : : :wn is bounded by
a constant c, the norm of (�0; e0) is greater than the number of occurrences

of w in the so far seen input and so the norm of (�0; e0) is almost always

greater than c and greater than the norm of (�; e). From this contradiction
it follows that the algorithm takes e0 only if L � We0. Since (�0; e0) 2 E, it

follows that M(�0� ) = e0 for all � 2 We0 and in particular M(�0� ) = e0 for

all � 2 L�. Since M converges to e0 on some noisy text T 2 �L1, e0 must

be an index for L, a contradiction. So this case also fails and N infers L.
For the other way round, let C be a retraceable set of degree A0, which

is co-r.e. in A. Now let L consist of the sets

fx; 0g i� x > 0 and x 2 C;

fxg i� x > 0 and x =2 C:

Further Cs denotes an A-recursive approximation of C. Now given any

input �, let x(�) denote the last y > 0 which occurs in �, i.e., x(�) = y ,
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� 2 !�y0�. If � 2 0� then x(�) = 0. Now M(�) outputs an index of the set

fx(�); 0g if x(�) 2 Cj�j

fx(�)g otherwise.

If T is a noisy text for f0; xg or fxg, then x(�) = x for almost all � � T .

Further x 2 Cj�j i� x 2 C for almost all � � T . Thus L 2 NoisyTxt[A]

via M .

Thus L 2 NoisyTxt[B] via some B-recursive N . If x 2 C then there is a

locking sequence � such that N(�� ) = e for some index e of f0; xg and all

� 2 f0; xg�. On the other hand if x =2 C then N converges on every text

�x1 to an index for fxg. Thus

x 2 C , (9�) (9e) (8n) [0 2 We ^N(�xn) = e]:

Therefore C is r.e. in B0; since C is retraceable, C is even recursive in B0

and A0 �T B
0 follows.

(c): The proof of this fact is similar to that of [13, Theorem 9.5] concerning

LimTxt inference degrees.

Theorem 3.5 also holds with LimTxt instead of NoisyTxt [13, Theorems 9.2,
9.4 and 9.5]. So it is likely, that the structures of the LimTxt and NoisyTxt

inference degrees coincide and the following conjecture holds:

Conjecture 3.6 NoisyTxt[A] � NoisyTxt[B] , LimTxt[A] � LimTxt[B].

The next result deals with the relation between FinTxt[A] and NoisyTxt[B].

Theorem 3.7 FinTxt[A] � NoisyTxt[B] , K �T B ^ (A�K)0 �T B
0.

Proof: The proof consists of three parts:
(a) If FinTxt � NoisyTxt[B] then K �T B.

(b) If FinTxt[A] � NoisyTxt[B] then (A�K)0 �T B
0.

(c) If (A�K)0 �T B
0 and K �T B then FinTxt[A] � NoisyTxt[B].

(a): Let L contain K plus all singletons fxg with x =2 K. There is a recursive

function f such that

Wf(x) =
�
K if x 2 K;

fxg if x =2 K.

Now the FinTxt IIM waits for the �rst x to appear on the input, outputs
the guess Wf(x) and terminates. The proof of Theorem 3.5:(a) shows that
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L 2 NoisyTxt[B] only if K �T B.

(b): Let FinTxt[A] � NoisyTxt[B]. Let C be a retraceable set of degree

(A � K)0 which is co-r.e. in A � K. So C is the domain of the partial

function  A�K . Let Uy contain all x such that the computation of  A�Ky(x)

terminates within y steps and equals to that relative A � K: whenever an

odd number 2z + 1 is queried, then either z 2 Ky or z =2 K. Furthermore,

all queries are made to numbers below y. Note that Uy � C. Further each

x =2 C is in almost all sets Uy. The sets Uy are uniformly co-r.e. in A and

there is a recursive function h such that Uy = W
fz2A:z<yg
h(y)

. Now let L consist

of the sets
f2x; 1; 3; 5; 7; : : :g i� x 2 C;

f2x; 2y + 1g i� x 2 Uy:

First L 2 FinTxt[A] is shown. The IIM waits until the even number 2x and
an odd number 2y + 1 are in the input. Then it outputs the index f(x; y)

where

Wf(x;y) =

(
f2x; 2y + 1g if x 2 Uy, i.e., if x =2 W fz2A:z<yg

e ;

f2x; 1; 3; 5; 7; : : :g otherwise, i.e., if x 2 W fz2A:z<yg
e .

The function f is A-recursive and queries A only below y. f(x; y) con-

tains a table of A(0); A(1); : : : ; A(y) and �rst enumerates 2x and 2y+ 1 into

Wf(x;y). Then the machine emulates the enumeration of W
fz2A:z<yg

h(y) until x
is enumerated into this set; if this happens then all odd numbers are enu-

merated into Wf(x;y). So the IIM guesses f2x; 2y + 1g if x 2 Uy and guesses

f2x; 1; 3; 5; 7; : : :g if x =2 Uy, in particular if x 2 C. Thus L 2 FinTxt[A] and
L 2 NoisyTxt[B] via some B-recursive M .

If x 2 C then M infers Vx = f2x; 1; 3; 5; 7; : : :g and Vx has a locking

sequence. If x =2 C, then x 2 Uy for some y. Then M infers f2x; 2y+ 1g and

Vx has no locking sequence since f2x; 2y + 1g � Vx. So the equivalences

x 2 C , Vx has a locking sequence

, (9�) (9e) (8� 2 Vx
�) [M(�� ) = e ^ jWej > 2]

hold. C is r.e. in B0. Since C is retraceable, C �T B
0 and (A�K)0 �T B

0.

(c): If B �T K and (A�K)0 �T B
0, then NoisyTxt[A�K] � NoisyTxt[B].

So it remains to show that FinTxt[A] � NoisyTxt[A�K].

Let L 2 FinTxt[A]. Form the de�nition of �nite learning follows, that

there are A-recursive functions f; g such that for every L 2 L:

� If Df(i) � L then Wg(i) = L;

12



� There is some i with Df(i) � L.

Such a sequence can be obtained by A-recursively enumerating all strings �

on which a given FinTxt[A] IIM M outputs some e 6= ?. Then for the i-th

such string �i, let Df(i) = range(�i) and g(i) = M(�i). W.l.o.g. L 6= f;g

and therefore Df(i) 6= ; for all i. Now the following IIM N infers L from

noisy text:

� For all i � j�j, N calculates ci which is the maximal number y such

that every x 2 Df(i) occurs y times in �.

� N �nds the least i with ci � cj for all j � j�j.

� N outputs g(j) for the least j with Df(j) � Wg(i) and Df(i) � Wg(j).

In a given text T for L, only �nitely often, say k times, occurs some x =2 L.

On the other hand each x 2 L occurs in�nitely often in T . There is a minimal
j with Df(j) � L and Wg(j) = L. Every x 2 Df(j) occurs at least k+ 1 times

in almost all � � T , thus for almost all � � T , the i computed in the second

step satis�es Wg(i) = L. Then Df(j) � Wg(i) and Df(i) � Wg(j) and further
that j is the minimal index with this property. So N(�) = j for almost all

� � T and N infers L from noisy text.

So the only relation is FinTxt[K] � NoisyTxt[K] and there is no equivalent

statement to FinInf[K] = NoisyInf. The family

f! � fig : i 2 !g

is learnable from very noisy text but not FinTxt[A] learnable for any oracle
A. On the other hand there is a nice characterization of FinTxt[K] using

monotonicity notions:

Kapur [11] introduced (in the restricted context of section 5) the no-

tion of strongly dual monotonic inference, i.e., whenever the IIM makes a

mindchange from e to e0, then the guessed language must be more special:

We0 � We. Jain and Sharma [8] and Kinber and Stephan [12] generalized this

and other notions of monotonic inference to learning r.e. languages. While
the class FinTxt[K] can not be characterized in terms of noisy inference, it

turned out to be equivalent with strongly dual monotonic inference without

oracle. The reader may �nd more information on the �eld of monotonic
learning in [9, 11, 14, 19, 20].

Theorem 3.8 L 2 FinTxt[K] i� L can be learned via a recursive and

strongly dual monotonic machine.

13



Proof: SMondTxt � FinTxt[K]: Assume that M SMondTxt infers L.

Then an IIM N FinTxt[K] infers L as follows:

N(�) =

8<
:
e if there is a locking sequence � for We with M(� ) = e,

j� j � j�j and range(� ) � range(�);

? otherwise.

Further N is required to make no further mindchange if it once has made a

guess. Since N has only to check the strings � in a �nite set whether they

are locking sequences for WM(�) or not, this can be done with K-oracle: � is

a locking sequence i� M(��) = M(� ) for all � 2 WM(�)
�. Since during the

SMondTxt inference of a language L, all guesses WM(�) contain L, N never

falsely suggests a � being locking sequence. On the other hand there is a

locking sequence � and whenever � is long enough, i.e., range(�) � range(� )

and j�j � j� j, the locking sequence is discovered.

FinTxt[K] � SMondTxt: This proof is similar to the corresponding part

of Theorem 2.1. Given the FinTxt[K] IIM M , the guess N(�) of the new

SMondTxt IIM is calculated as follows:

� Let s = j�j. N searches for the shortest � � � with MKs(� ) 6= ?.

� If there is no such � , then N outputs an index of ��.

� Otherwise N computes e = MKs(� ) and outputs an index f(e) of the

set

Wf(e) =

8><
>:
We if MKt(�) = MKs(�) for all � � � and t � s;

�� otherwise, i.e., if MKt(�) 6= MKs(�)
for some � � � and t � s.

The condition in the \otherwise"-case is r.e., thus an uniform algorithm
for Wf(e) �rst enumerates We until it discovers that the condition in

the \otherwise"-case holds and then enumerates the whole set ��. So

f is recursive.

The inference process converges to the guess e of M and all previous guesses

are changed to �� at the moment that an error in the estimation MKs is

discovered.

One might ask, if this theorem relativizes. It does not relativize in the

obvious way; the relativization needs the concept of inferring with �nitely

many queries. An IIM M SMondTxt[A�] infers L i� M is strongly dual
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monotonic and L has a locking sequence � such that M(�� ) = M(�) for all

� 2 WM(�)
� and M makes the same oracle queries while calculating M(�)

and M(�� ). An equivalent de�nition is that M on every text for L makes

only �nitely many queries to A. See [4, De�nition 2.23 and Section 5.2] for

more information. Now the relativizations are:

Theorem 3.9

(a) SMondTxt[A�] = FinTxt[A�K].

(b) SMondTxt[A] � FinTxt[A0].

(c) SMondTxt[A] = FinTxt[A0] for 1-generic sets A.

(d) SMondTxt[K] � FinTxt[K 0].

Proof: The proofs of (a) and (b) follow the corresponding parts of The-

orem 3.8. (c) follows from the fact, that A0 �T A � K for every 1-generic

set A. The inclusion in (d) follows from (b) and the family L containing the

sets

fxg i� x > 0 and x 2 K 00;

f0; xg i� x > 0 and x =2 K 00;

witnesses that the inclusion SMondTxt[K] � FinTxt[K 0] is proper: The
proof of Theorem 3.7 shows, that L 2 FinTxt[K 0] since K 00 is r.e. in K 0. To

show that L =2 SMondTxt[K] assume by the way of contradiction, that a

K-recursive IIM M infers L dual monotonically from text. If x 2 K 00, then

M infers fxg form the text x1 and there is an n such that M(xn) outputs
an index for fxg. Otherwise (x =2 K 00) the IIM M must identify f0; xg on

each text xn+101 and therefore M(xn) always outputs a language which not

only contains x but also 0. Thus

x 2 K 00
, (9n) [0 =2 WM(xn)]:

Since the computation of M(xn) and the test, whether 0 =2 WM(xn), are

recursive in K, K 00 would be r.e. in K, which is obviously not possible. Thus

such an M does not exist and the inclusion is proper.

4 Informant Versus Text

It follows immediately from the de�nition that every family of r.e. sets, which

is learnable from text, is also learnable from informant. But this does not

15



hold in the case of noisy inference, since the de�nitions of noisy text and noisy

informant do not match so good as in the standard case. So the following

holds:

Theorem 4.1 NoisyInf[A] and NoisyTxt[B] are incomparable for all oracles

A and B.

Proof: The family f;;��g is �nitely learnable from noisy informant, but

not learnable from noisy text by Theorem 3.2. The family mentioned to

prove Corollary 3.4 is in NoisyTxt[B] for all oracles B, but not in FinInf[A0]

for any oracle A, in particular not in NoisyInf[A].

So it is better to look for inclusions which hold under additional constraints.

The �rst is to consider very noisy text versus (very) noisy informant; note

that in the case of characteristic functions of sets, there is no di�erence
between noisy and very noisy informant. Given a noisy informant T =

(w0; b0); (w1; b1); : : : for a set L, the sequence T containing all wi with bi = 1

is a very noisy text for L: wi occurs in T 0 in�nitely often i� (wi; 1) occurs
in T in�nitely often i� wi 2 L. Thus one can translate every (very) noisy

informant into a very noisy text and simulate the IIM learning from very

noisy text. Thus the following theorem holds (and also relativizes to every
oracle):

Theorem 4.2 Every class of sets learnable from very noisy text is also

learnable from noisy informant.

While NoisyInf[A] 6� NoisyTxt[B] for all oracles A and B, there is a connec-
tion if the IIM learns from text without any noise:

Theorem 4.3 NoisyInf[A] � LimTxt[B] , A0 �T B
0.

Proof: ()): Let NoisyInf[A] � LimTxt[B]. Further let C be a retrace-
able set of degree A0 and let the class L contain the sets

Xx = fx; x+1; x+2; : : :g i� x 2 C;

Xx;y = fx; x+1; x+2; : : : ; x+yg i� x =2 C and y 2 !:

The class has a FinInf[A0] IIM which on input � outputs indices of the

following sets:
Xx if x 2 C and � � 0x1;

Xx;y if x =2 C and � � 0x1�1y0;

? otherwise.
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The IIM makes only one guess and is recursive in C, i.e., recursive in A0.

From FinInf[A0] = NoisyInf[A] follows, that L 2 LimTxt[B] via some N .

If x 2 C then N has a locking sequence � for the set Xx. If x =2 C then

there is no locking sequence � 2 X�
x: The range of � is �nite and there is

some y > max(range(�)) such that M(�) is not an index for Xx;y. Therefore

there is some � 2 X�
x;y with M(�� ) 6= M(�). So the equivalences

x 2 C , N has a locking sequence on the set Xx

, (9� 2 X�
x) (8� 2 X�

x) [N(�� ) = N(�)]

hold and show that C is r.e. in B0. Since C is retraceable, C is recursive in

B0 and A0 �T B
0.

((): From L 2 NoisyInf[A] and A0 �T B
0, it follows by Corollary 2.2 (a)

that L 2 NoisyInf[B] via some M �T B. Now a LimTxt learner N �T B

just translates the given text w0w1 : : : into a noisy informant v0 v1 : : : for

M and emulates M :

From input w0w1 : : : wn compute v0; v1; : : : ; vn via

vhi;ji =

(
(i; 1) if i 2 fw0; w1; : : : ; wjg;
(i; 0) otherwise (i =2 fw0; w1; : : : ; wjg);

and output M(v0 v1 : : : vn).

Since j � hi; ji the values v0; v1; : : : ; vn are computed without accessing the
input-text beyond wn, thus the computation is well-de�ned. Furthermore

the whole sequence v0 v1 : : : is a noisy informant for L: if i =2 L then i

does not occur in the sequence w0w1 : : : and thus only (i; 0) occurs in the
informant. If i 2 L then wn = i for some n and vhi;ji = (i; 1) for all j � n,

i.e., (i; 1) occurs in�nitely often in the noisy informant and (i; 0) only �nitely

often (at most n times). So N behaves on the text w0w1 : : : exactly as M
on the noisy informant v0 v1 : : : and thus L 2 LimTxt via N .

5 Learning Uniformly Recursive Families

Angluin [1] introduced the concept of learning, where the class L to be
learned must have a uniformly recursive representation. Zeugmann's Habili-

tationsschrift [20] gives an overview on this �eld of learning theory. There are

three well-known forms of learning uniformly recursive family fL0; L1; : : :g

of languages:
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Exact Learning: The learner outputs indices of the original uniformly re-

cursive family fL0; L1; : : :g.

Class Preserving Learning: The learner outputs indices of some uniformly

recursive family fH0;H1; : : :g with fL0; L1; : : :g = fH0;H1; : : :g.

Class Comprising Learning: The learner outputs indices of some uniformly

recursive family fH0;H1; : : :g with fL0; L1; : : :g � fH0;H1; : : :g.

In the context of noisy inference these three notions turn out to be equivalent.

Furthermore, they are very restrictive, therefore the results, in particular the

relativization, are di�erent from those in section 3.

Theorem 5.1 For a uniformly recursive family L = fLig the following is

equivalent:

(a) (8i; j) [Li � Lj ) Li = Lj].
(b) L is exactly learnable from noisy text.

(c) L is class preserving learnable from noisy text.

(d) L is class comprising learnable from noisy text.

Proof: (b ) c) and (c ) d) are obvious. Further (d ) a) follows from

Theorem 3.2.

(a) b): Let L ful�ll the requirement from (a). It is shown that the following
machine M infers L 2 L from the text w0w1 : : : as follows:

M(w0w1 : : :wn) = i for the �rst i such that

norm(i; w0w1 : : :wn) = i+ jfm � n : wm =2 Ligj

is minimal among all values norm(j; w0w1 : : : wn) for j � i+ n.

Let T = w0w1 : : : be a noisy text for L 2 L and let i be the minimal index

of L in the given enumeration. There are k numbers m such that wm =2 Li.

Furthermore for each j � k+ j with Lj 6� Li there is some xj 2 Lj �Li. For

almost all n the k elements wm =2 Li are on the initial segment w0w1 : : : wn

and also each of the xj occurs at least i + k + 1 times for those j � i + k

with Li 6� Lj. So it holds that

norm(j; w0w1 : : : wn) = j + k if Lj = Li and therefore j � i;

norm(j; w0w1 : : : wn) > i+ k + j if Lj 6= Li and j � i+ k;

norm(j; w0w1 : : : wn) > i+ k if j > i+ k.

18



Thus M outputs the correct value i for all su�cient long w0w1 : : : wn � T

and learns L exactly from noisy text.

It is easy to see that Theorem 3.2 holds also in a relativized world, i.e., that

for any oracle A, L � L0 ) fL;L0g =2 NoisyTxt[A]. Since avoiding inclusions

is the only restriction to L and this restriction can not be overcome, oracles

do not help to increase the learning power:

Theorem 5.2 If L is a uniformly recursive family which is NoisyTxt[A]

learnable for some oracle A, then L is already learnable from noisy text

without any oracle.

The theorem needs that L is uniformly recursive. Note that this is totally

di�erent in the case of learning arbitrary families of r.e. languages since by
Theorem 3.7, there is even no greatest inference degree and the jump of an

oracle always supplies more learning power: NoisyTxt[A] � NoisyTxt[A0].

Theorem 5.3 For a uniformly recursive family L = fLig the following is

equivalent:

(a) (8i) (9D) (8j) [D � Lj , Li = Lj ].

(b) L is exactly FinTxt[K] learnable.

(c) L is class preserving FinTxt[K] learnable.

(d) L is class comprising FinTxt[K] learnable.

Proof: (b) c) and (c) d) are obvious.

(a ) b): Let L ful�ll the requirement from (a). The FinTxt[K] IIM asks
on input � with range D always i� D has two incomparable extensions in L.

Or more formally, the IIM asks the query

(9i; j; x) [D � Li ^D � Lj ^ (x 2 Li � Lj _ x 2 Lj � Li)]:

Since D is a �xed �nite set, the query is K-recursive. By condition (a) after

�nite time the query receives a negative answer. Then the IIM has only to

output the �rst index i with D � Li; this index exists since � is part of a

text of some language Li.

(d) a): If L is class comprising FinTxt[K] learnable, then for each Li there

is some string � such that the FinTxt[K] IIM M makes a guess, which of

course is correct, i.e., M(�) guesses Li. Assume that D = range(�) � Lj .

Then on one hand � is also a pre�x of some text for Lj and on the other

hand M does not change its mind after guessing Li on input �. It follows

that Lj = Li and for each i there is a D satisfying condition (a).
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The degree-structure of the FinTxt and FinInf inference degrees relative to

learning uniform recursive families of sets is di�erent from the degree struc-

ture of learning arbitrary families of r.e. sets. Fortnow et al. [4, Theorem 6.36]

showed that the latter coincides with the Turing degrees.

Theorem 5.4 Let F[A] be the set of all functions f which are majorized

by an A-recursive function and for which the set f(x; y) : y <f(x)g is r.e.;

further consider the inference degrees with respect to learning uniformly re-

cursive families. Now the following is equivalent:

(a) F[A] � F[B].

(b) FinTxt[A] � FinTxt[B].

(c) FinInf[A] � FinInf[B].

Proof: (a ) b): Let F[A] � F[B] and L = fLig 2 FinTxt[A] be a

uniformly recursive family. W.l.o.g. if i 6= j then Li 6= Lj. Now for each i let

wi;x = x if x 2 Li and wi;x = # otherwise (x =2 Li). Further let fA(i) be the
�rst x such that M(wi;0wi;1 : : : wi;x) 6= ?. Certainly range(wi;0wi;1 : : : wi;x) =

fy 2 Li : y � xg 6� Lj for every set Lj 6= Li. Thus fA dominates the function

fL given by

fL(i) = minfx : (8j 6= i) (9y � x) [y 2 Li � Lj]g:

The set f(i; y) : y < fL(i)g is r.e. and fL 2 F[A]. From the hypothesis (a)
follows, that a B-recursive function fB majorizes fL. The new IIM M works

as follows:

M(�) =

�
i if i � j�j and (8x � fB(i)) [x 2 Li , x 2 range(�)];
? otherwise.

Since fx 2 Li : x � fB(i)g 6� Lj for all j 6= i, the i in the expression is unique

and M is well-de�ned. Whenever M infers Li then M outputs ? until it has
seen all elements in fx 2 Li : x � fB(i)g; then it begins to output its only

guess i. So L 2 FinTxt[B] via M .

(b ) c): Note that L 2 FinInf[A] , L0 = fL � L : L 2 Lg 2 FinTxt[A]:

Thus L 2 FinInf[A] ) L0 2 FinTxt[A] ) L0 2 FinTxt[B] ) L 2 FinInf[B]

and therefore FinInf[A] � FinInf[B].

(c ) a): This is shown by contraposition, let f 2 F[A]� F[B] and let the

A-recursive function fA majorize f . Since f has a recursive approximation
from below, the family

L = fD : (9i 2 D) [D � fi; i+ 1; i+ 2; : : : ; i+ f(i)g ] g

is uniformly recursive. M �nitely infers L relative to A as follows:
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� If � = 0i1� and j� j > fA(i) then M outputs an index for fx < j�j :

�(x) = 1g.

� Otherwise M makes no guess, i.e., M(�) = ?.

On the other hand assume that L 2 FinInf[B] via N and let

fB(i) = minfj� j : N(0i1� ) 6= ?g:

Since no B-recursive function majorizes f , there is some i with fB(i) < f(i).

Thus there is D 2 L such that i = min(D) and inferring D, N makes its

guess before seeing whether i + f(i) 2 D or not. N fails to infer either

D [ fi+ f(i)g or D � fi+ f(i)g, but both sets are in L.

Corollary 5.5 For the inference degrees of FinTxt or FinInf learning uni-

formly recursive families, the following holds:

(a) All oracles of hyperimmune-free degree are in the least inference degree.

(b) All 1-generic oracles are in the least inference degree.

(c) If A is r.e., then A's inference degree is below that of B i� A �T B.

(d) fA : A �T Kg is the greatest inference degree.

Proof: (a): If A is of hyperimmune-free degree then F[A] = F[;] since
any A-recursive function is majorized by a recursive one. Thus all sets of

hyperimmune-free degrees belong to the least inference degree.

(b): Let A be a 1-generic set. Consider any f 2 F[A] and let the A-recursive

function fA = fegA majorize f . The set

B = f� : (9x) [feg�(x)#< f(x) ] g

is r.e.; since fegA(x) #� f(x), no string in B is a pre�x of A. Since A is

1-generic, there is a string � � A such that no extension of � is in B. Now

let

g(x) = feg�(x) for the �rst � � � such that feg�(x)# within j�j steps.

g is recursive and majorizes f . Thus f 2 F[;], i.e., F[A] = F[;].

(c): Let As be a recursive enumeration of A and F[A] � F[B]. Now

f(x) =

�
s for the �rst s with x 2 As;

0 otherwise (x =2 A, i.e., there is no such s);
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is a function in F[A] and some B-recursive function g majorizes f . Then

x 2 A, x 2 Ag(x) and A �T B.

(d): The greatest degree can only contain degrees A �T K since K is r.e.;

so it remains to show that F[A] � F[K] for all oracles A. But this follows

from the fact, that each function f 2 F[A] is already K-recursive since

f(x; y) : y < f(x)g is an r.e. set.

Theorem 5.6 FinTxt[K] � NoisyTxt in the context of uniformly recursive

families.

Proof: Assume that L satis�es the condition (a) of Theorem 5.3. Then

L also satis�es condition (a) of Theorem 5.1: If Li � Lj then there is some
D � Li such that all Lj � D are equal to Li. Then in particular, Li = Lj.

The family L = f! � fig : i 2 !g of all sets whose complement has

cardinality 1 witnesses that the inclusion in proper.

Sometimes the addition of an oracle allows to overcome the di�erence be-

tween two concepts. An analogous result from the area of uniform recursive

languages to the result FinTxt[K] = SMondTxt from the general context is

the following one, where Angluin [1] introduced the notion conservative: An
IIM is conservative i� every mindchange is motivated by a counterexample to

the previous conjecture, i.e., i� j is guessed on input �� after i was guessed

on input � then range(�� ) 6� Li.

Theorem 5.7 ConsvTxt[K] = LimTxt in the context of uniformly recursive

families.

Proof: ()): Let L = fL0; L1; : : :g 2 Consv[K] via MK and T be a text

for some L 2 L. Since M is conservative, the following holds for all oracles

A: If i = MA(�) 6= j = MA(�� ) then range(�� ) 6� Li. That means that
M regardless of the oracle postpones any mindchange until a witness is seen

that makes it necessary. In other words: M is conservative for any oracle.

Since the sets L0; L1; : : : are uniform recursive, this postponing does not need

the oracle. On each input � the LimTxt learner guesses N(�) = MKj�j(�).

M converges on some � � T to an index i for the language to be learned.

Now for su�cient long � 2 � � L�
i it holds that MKj�j(� ) = MK(� ) = i and

therefore also MKj�j(�) = i by the conservativeness of the machine MK� . So

N(�) = i for all su�cient long � and N infers L.

((): Let L = fL0; L1; : : :g 2 LimTxt via N and w0w1 : : : be a text for some

22



L 2 L. With K-oracle it is possible to test whether a given sequence � is

a locking-sequence for N . The ConsvTxt[K]-algorithm de�nes inductively

(using the K-oracle) a new text w0�0w1�1 : : : and emulates N on this text:

If there are i and � such that

� i+ j� j � n and � 2 fw0; w1; : : : ; wng
�;

� w0; w1; : : : ; wn 2 Li;

� (8� 2 L�
i ) [N(w0�0w1�1 : : :wn��) = i];

then let �n = � , MK(w0w1 : : :wn) = N(w0�0w1�1 : : :wn�n) = i;

else let �n = �, MK(w0w1 : : :wn) = ?.

The algorithm works with K-oracle, since the search for the � is bounded.

If w0w1 : : : is a text for Li then w0�0w1�1 : : : is also a text for Li. N con-
verges on this text to i and so MK converges on the text w0w1 : : : also

to i. Furthermore if MK(w0w1 : : : wn) = j 6= MK(w0w1 : : :wm) = i with

m > n then N(w0�0w1�1 : : : wn�n) = j, N(w0�0w1�1 : : : wm�m) = i and

N(w0�0w1�1 : : :wn�n�) = j for all � 2 L�
j . Thus w0�0w1�1 : : :wm�m =2 L�

j

and since �k 2 fw0; w1; : : : ; wmg
� for k � m it follows that some wk =2 Lj for

k � m. So the mindchange from j to i was induced by a counterexample and

MK is conservative (using the de�nition that outputting ? does not count as
a mindchange).

The proof even relativizes to LimTxt[A] = ConsvTxt[A0] which shows that

the inference-degrees w.r.t. learning uniform recursive families is quite di�er-
ent to the degree-structure w.r.t. learning arbitrary families of r.e. sets: In

the latter case the low r.e. oracles all belong to di�erent inference-degrees.

Furthermore if Li 6� Lj for all i; j then the family L can be learned conserva-

tively: On input � the IIM just guesses the �rst index i with range(�) � Li.
So in the context of learning uniformly recursive sets the following holds for

all oracles A and B:

Corollary 5.8 FinTxt � FinTxt[K] = FinTxt[A � K] � NoisyTxt �

ConsvTxt � ConsvTxt[K] = LimTxt � LimTxt[K] = LimTxt[B �K].

6 Behaviorally Correct and Partial Identi�-

cation

Behavioral Correct identi�cation means that an IIM outputs an in�nite se-
quence of hypothesis which almost all compute the correct function or gener-
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ate the correct set. It turns out that learning functions from noisy informant,

there is no di�erence between behaviorally correct and explanatory inference

(NoisyInf):

Theorem 6.1 The following three statements are equivalent for any class

L � REC:

(a) L can be learned �nitely from informant using K-oracle.

(b) L can be learned in the limit from noisy informant.

(c) L can be learned behaviorally correct from noisy informant.

Proof: Since convergence in the limit always implies behaviorally correct

convergence, obviously (b ) c) holds. (a ) b) is shown in Theorem 2.1,

part FinInf[K] � NoisyInf. The remaining implication (c) a) is an adapted

version of Theorem 2.1, part NoisyInf � FinInf[K]:

Assume that M is a recursive IIM which learns the family L of sets

behaviorally correct from noisy informant. Recall that a string � is called
�-consistent i� all (x; y) occurring in � with x < j�j satisfy y = �(x). Now

the following FinInf[K] IIM N infers L:

On input �, N checks using the K-oracle whether there is a string

� of length up to j�j such that for all �-consistent strings � and

� 0 relation

(8x)['M(��)(x)# ^'M(�� 0)(x)#) 'M(��)(x) = 'M(�� 0)(x)]

holds. If yes, then no two guesses M(�� ) and M(�� 0) contradict
each other and N(�) converges to an index e of the amalgamation

of all functions 'M(��) with � ranging over all �-consistent strings.

If not, then N(�) = ?.

Let f 2 L and M behaviorally correct infer f . Then there is some � � f and

some string � such that M(�� ) is an index for f for all �-consistent strings

� { otherwise it could be shown as in Theorem 2.1 that there is a noisy

informant from which M does not learn f behaviorally correct. W.l.o.g.

assume that j�j � j�j. Then N(�) outputs an index e of the amalgamation

of the functions 'M(��); it is easy to see that 'e = f .

So it remains to show that N does not output an other false index before
�nding e, i.e., that already the �rst index output by N is correct. So let

� � f satisfy N(�) = e 6= ?. Take the � from the de�nition of N(�). Let T

enumerate all pairs (x; f(x)) in�nitely often without any noise. Now �T is

obviously a noisy informant for f and there is a � � T such that f = 'M(��).
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By choice, � is �-consistent. So 'e(x)#= 'M(��)(x)# for all x and 'e = f .

It follows that inferring any function f 2 L the �rst guess of N is already

correct and w.l.o.g. N makes no mindchanges.

NoisyBC denotes the concept of inferring behaviorally correct from noisy

text. The non-inclusion FinTxt 6� NoisyTxt does not generalize behaviorally

correct inference:

Theorem 6.2 FinTxt � NoisyBC.

Proof: Let M infer �nitely a class L of languages from text, in particular

M guesses ? until it outputs a guess e and then keeps this output e for ever.

Now consider N given by

N(w0w1 : : : wn) = M(wmwm+1 : : :wn) for the maximal m � n

with M(wmwm+1 : : :wn) 6= ?

and let w0w1 : : : be a noisy text for L. Since there is a maximal k with
wk =2 L, each sequence wmwm+1 : : : with m > k is a text for L. In particular

for all n � m, M(wmwm+1:::wn) is either ? or an index for L. SinceN outputs

M(wmwm+1:::wn) for the maximalm such that M(wmwm+1 : : : wn) 6= ?, these
m satisfy m > k for almost all input w0w1 : : :wn; then wm; wm+1; : : : ; wn 2 L

and since M �nitely learns L, M(wmwm+1 : : : wn) is always an index for L.

The properness of the inclusion follows from NoisyTxt 6� FinTxt (Corol-
lary 3.4) and the obvious fact that NoisyTxt � NoisyBC.

Osherson, Stob and Weinstein [17, Exercise 7.5A] introduced the notion
of partial identi�cation from text and showed that the family of all r.e.

languages can be learned from text under this criterion. The concept directly

transfers to noisy learning:

De�nition 6.3 A machine M partially identi�es L from noisy text i� for

every L 2 L and every noisy text T for L there is a unique index e such that

M outputs e in�nitely often on input T and We = L. Partial identi�cation

from very noisy text and very noisy informant is de�ned analogously.

Let REC denote the class of all total recursive functions and RE that of all

r.e. sets. The result of Osherson, Stob and Weinstein generalizes for learning

from very noisy informant and from noisy text:

Theorem 6.4 REC is partially identi�able from very noisy informant.

RE is partially identi�able from noisy informant.

RE is partially identi�able from noisy text.
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Proof: REC is partially identi�able from very noisy informant:

Let f'h(e)ge2! be a Friedberg numbering of all partial recursive functions,

h is total recursive. Further let T be a noisy informant for f . M may be

speci�ed only by stating how often M outputs an index h(e) on text T since

it does not matter when these outputs occur and identi�cation only depends

on how often M outputs an index.

M outputs h(e) at least n times i� for x = 0; 1; : : : ; n the following

two conditions are satis�ed:

- 'h(e)(x)# ,

- (x; 'h(e)(x)) occurs at least n times in T .

So M reads longer and longer initial segments and whenever M notices that

it has put out less than n times h(e) while the conditions above demand to

output h(e) at least n times, M 's next output is h(e).

There is an unique index e with f = 'h(e). For each x, the pairs (x; f(x))
occur in�nitely often in T and furthermore, 'h(e)(x)#= f(x) for all x. Thus

the conditions are satis�ed for each n and M outputs h(e) in�nitely often.

Now consider any e0 6= e. There is some x such that either 'h(e0)(x)" or
'h(e0)(x) 6= f(x). In the latter case, (x; 'h(e0)(x)) occurs only �nitely often,

say m times in T . Thus for all n > x { with additionally n > m in the

second case { M outputs the index h(e0) less than n times, in particularly

only �nitely often. Therefore M partially identi�es REC from very noisy
informant.

RE is partially identi�able from noisy informant:
Note that for characteristic functions, the notions noisy informant and

very noisy informant are the same. So the statement is equivalent to saying

that RE can be partially identi�ed from very noisy informant. Now let
fWh(e)ge2! be a Friedberg numbering of all r.e. sets and let T be a noisy

informant for some r.e. set L. This inference process is similar to the previous

one.

M outputs h(e) at least n times i� there is some s � n such

that the pairs (x;Wh(e);s(x)) occur at least n times in T for x =
0; 1; : : : ; n.

Let e be the index of L, i.e., L = Wh(e). For each n there is s � n such that
Wh(e)(x) = Wh(e);s(x) for all x � n. Thus (x;Wh(e);s(x)) occurs in T in�nitely

many times for these x and M outputs h(e) at least n times, therefore even

in�nitely often.
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Let e0 6= e. There is some x with Wh(e)(x) 6= Wh(e0)(x). There is some

m such that (x;Wh(e0)(x)) does not occur in T more than m times and

Wh(e0);s(x) = Wh(e0)(x) for all s � m. Then M does not output h(e0) for any

n > x+m. Thus M partially identi�es L from T .

RE is partially identi�able from noisy text:

To proof this, one needs a padded version of the Friedberg numbering.

So let Wg(e;k) = Wh(e) for an injective recursive function g and the Friedberg

numbering h of all r.e. sets from the second part. Let T = w0w1w2 : : : be a

noisy text for the r.e. language L.

M outputs g(e; k) at least n times i� the the following three r.e.

conditions are satis�ed:

- wk; wk+1; : : : ; wk+n 2 Wh(e);

- k = 0 or wk�1 =2 Wh(e);n;

- Each x 2 Wh(e);n occurs at least n times in T .

Let e denote the index with Wg(e;k) = L and k = minfl : (8m � l) [wm 2 L]g.

k exists since T is a noisy text for L and so wk; wk+1; : : : ; wk+n 2 Wh(e) for
all n. Either k = 0 or wk�1 =2 Wh(e) (and therefore wk�1 =2 Wh(e);n). Each

x 2 Wh(e) occurs in�nitely often in T . So all three conditions are satis�ed

for each n and M outputs g(e; k) in�nitely often.
Assume by the way of contradiction that M outputs a further index

g(e0; k0) in�nitely often on text T . Then each x 2 Wg(e0;k0) occurs in�nitely

often in T since each such x is enumerated into Wg(e0;k0) at some stage s and

for all n > x + s, if M outputs g(e0; k) at least n times then x occurs in T

at least n times. Thus x 2 L. If x =2 Wg(e0;k0) then x must not occur in T

beyond the k-th position and therefore x =2 L. Therefore Wg(e0;k0) = L and

e0 = e. If k0 > k then wk0�1 is enumerated into Wh(e) at some stage s. Thus
for no n � s + k0 the learner M outputs the guess g(e; k0). If k0 < k (and

thus k > 0) then g(e; k0) is not output more than k times since wk�1 =2 Wh(e).

So M does not output any index g(e0; k0) 6= g(e; k) in�nitely often.

While RE is partially identi�able from noisy text, RE is not partially iden-

ti�able from very noisy text as the following example shows:

Example 6.5 Let L contain all sets fx; x+1; x+2; x+3; : : :g.

L is partially identi�able from very noisy text.

L [ f;g is not partially identi�able from very noisy text.
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Proof: Since each set in L is co-�nite, every very noisy text for some

L 2 L is already a noisy text: each number not in L occurs only �nitely

often and since there are only �nitely many numbers outside L, only �nitely

many items of a very noisy text for L are not in L: Thus the text is already

noisy. Since every class of languages can be partially identi�ed from noisy

text, L can be identi�ed from very noisy text.

By the way of contradiction assume that M partially identi�es L [ f;g,

M may be even nonrecursive. Further let e0; e1; e2; : : : be the list of all indices

of the empty set. Now the following sequence T = �0�1�2 : : : is constructed

inductively:

For each n select a string �n 2 fn; n+1; n+2; : : :g� such that

(8� 2 fn; n+1; n+2; : : :g�) [M(�n�n� ) 6= en];

where �0 = � and �n = �0�1 : : : �n�1 for n > 0.

This construction works, because if �n would not exist there would be a noisy

text Tn 2 �nfn; n+1; n+2; : : :g1 for fn; n+1; n+2; : : :g on which M in�nitely

often outputs en and then M would not partially identify fn; n+1; n+2; : : :g
since en is an index of ;.

So by construction, M(� ) 6= en whenever �n�n � � � T , thus M outputs

en on input T only �nitely often. Further each number n occurs only in the
strings �m for m � n, thus each number n occurs only �nitely often in T . So

T is a very noisy text for ; but M does not partially identify ; from T .

Since L is learnable in the limit from text by guessing ; if range(�) = ;

and guessing the set fn; n+1; n+2; : : :g if range(�) is not empty and has

minimum n, L is a witness for the fact, that LimTxt does not imply partially

identi�ability from very noisy text. On the other hand the class of all graphs

of recursive functions is partial identi�able from very noisy text without
being learnable in the limit from text or informant.

Corollary 6.6 Learning in the limit from text and partially identi�cation

from very noisy text are incomparable concepts.
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