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One of the best-known complexity classes is NP. This class is strongly related to the problem

to decide whether a given Boolean formula is satis�able, or in other words, whether the

Boolean function described by this formula is not the function which outputs 0 for every

input. So it is quite natural to look at the complexity of problems related to the Boolean

functions described by given formulas, in particular to look whether two given formulas

generate equivalent functions or not.

There are several di�erent notions of equivalence. The most obvious one is of course

to consider whether two formulas generate exactly the same function. In this case the

formulas are called . All further notions are generalizations of this equivalence.

One natural generalization is to identify functions if they only di�er by the names on the

variables as the functions given by and , respectively. Such functions are called

. Isomorphic functions are not always identical, for example the assignment

with ( ) = 0, ( ) = 0, ( ) = 1, ( ) = 1 evaluates the �rst formula to 0 and the

second to 1. We give some evidence for the hypothesis that it is more di�cult to �nd out
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whether the functions generated by two given formulas are isomorphic than to �nd out

whether they are identical. More formally, two Boolean functions are if they

are identical after a bijective renaming of the variables of one of the functions. Note the

analogy with the same notion for graphs: two graphs are isomorphic if and only if they are

identical after a bijective renaming of the nodes of one of the graphs.

Another - though less intuitive - way of identifying Boolean functions is the following.

Say that two Boolean functions are if one can negate some of the

variables in one of the two functions such that the resulting Boolean function is identical

to the other. For example, the two Boolean functions described by the formulas

and ( ) are negation equivalent (by negating both and ).

These two concepts can be combined: say that two Boolean functions are if

they are identical after a bijective renaming of the variables and an additional negation of

some of the variables. For example, the two Boolean functions described by the formulas

and are congruent. This equivalence relation can be interpreted geometri-

cally as congruence of the two corresponding Boolean cubes, see Section 2. The relation

received attention already in the last century, see Section 2 and the second part of the

References.

Isomorphism was de�ned by permutations. But permutations are a special kind of

bijective linear mappings on the GF(2)-vectorspace 0 1 , namely the ones whose ma-

trices have exactly one 1 in each line and each row. So it is natural to consider the

following generalization of the Boolean isomorphism relation: say that two Boolean func-

tions ( . . . ) ( . . . ) are if there is a bijective linear mapping

: 0 1 0 1 such that = . This relation is generalized to

with bijective a�ne mappings instead of linear ones.

An even more general equivalence notion is de�ned by the : For a Boolean

function ( . . . ) the cardinality of is given by its share of satisfying assign-

ments, i.e. by the number 2 ( . . . ) 0 1 : ( . . . ) = 1 . Say that two

Boolean functions ( . . . ) and ( . . . ) are if = .

This paper states some results about the computational complexity of recognizing the

above relations if the Boolean functions are represented as formulas. For example, the

computational problem corresponding to the congruence relation is the set of all pairs

such that and are formulas and the Boolean functions given by and are

congruent.

The results in terms of polynomial time many-one reducibility are the following: the

relations are situated between co-NP and � , the only exception is the cardinality equiva-

lence which is complete for the class CP. Furthermore the problem whether two formulas

are equvialent is complete for co-NP. The negation equivalence problem is reducible to

the isomorphism and the congruence problem which have the same many-one complexity.

These two problems are reducible to the linear and the a�ne equivalence relation, which

have the same many-one complexity. A graphical summary is given in Figure 7.
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Boolean constants

assignments

renamings

n-mappings

n-renaming

Two Boolean functions and are said to be

, written , , if there

is a renaming n-mapping, n-renaming, bijective linear function, bijective a�ne function,

bijective function such that .

Let := 0 1 be the set of the two . A Boolean function is a function

: for some natural number 0, will be written as ( . . . ). The

tuples from are called . We will use the usual formula notation in order

to describe Boolean functions, for example the formula describes the Boolean

function ( ) with (0 0) = 0 (0 1) = 0 (1 0) = 1 (1 1) = 0.

A Boolean function ( . . . ) is identi�ed with the Boolean function ( . . .

. . . ) for if ( . . . . . . ) = ( . . . ) for all ( . . . . . . )

, i.e. if does not depend on the further variables. For example, the Boolean function

described by can be considered as a Boolean function ( ) but also as a

Boolean function ( ) which is independent of and .

Now the equivalence relations on Boolean functions mentioned in the introduction will

formally be de�ned, and some basic properties of them will be stated.

Let ( . . . ) be a Boolean function and let be a function . Obviously,

also is a Boolean function which we will call ( ). We will only consider bijective

functions : , and some natural subsets of the set of these bijective functions

are de�ned. First consider the set of functions : such that ( . . . ) =

( ( ) . . . ( )) and is a permutation on the set . . . . For obvious reasons

these functions are called . Another type of bijective functions are the functions

: such that ( . . . ) = ( ( ) . . . ( )) and each : is either

the identity function of the negation function (0) = 1 (1) = 0. These functions are

called , the n stands for negation. The two concepts can be combined: let an

be a composition of a renaming and an n-mapping . Consider the set

as a vectorspace over the two-element �eld GF(2), addition is given by pointwise parity

. Note that a renaming is a bijective linear function on with the special property that

in every row and every line of the representing matrix there is exactly one 1. Therefore,

bijective linear functions are a generalization of renamings. Likewise, n-renamings are a

special case of bijective a�ne functions on , namely the ones of the form ( ) = ( )

such that its linear part is represented by a matrix with the special form like above.

( . . . ) ( . . . ) iso-

morphic (negation equivalent, congruent, linear equivalent, a�ne equivalent, cardinality

equivalent) ( = )

(

) : = ( )

In other words, two Boolean functions are isomorphic if and only if they are identical

modulo a renaming of the variables, they are negation equivalent if and only if they are

identical modulo a negation of some variables, and they are congruent if and only if they

identical modulo a renaming of the variables and an additional negation of some of them.

They are linear (a�ne, cardinality) equivalent if they are identical after the application of

a linear (a�ne, any) bijective function on the assignments.
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Relation Operation Typical replacement

For let and

. Then for any of the equivalence relations

from De�nition 1.

x x

x x

x x

x x
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x x x x

x x x x

x x x x

n m F x ; ; x F x ; ; x ; ; x G x ; ; x

G x ; ; x ; ; x F G F G

F x ; ; x F ; F

x ; x ; ; x ; F x ; x ; ; x :
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; x i x i x x x x x x x
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x x x x x x

i

x x ; x x ; x x ; x x F G i

F G j j

x x ; x x ; x x ; x x j F H

renaming

n-mapping

= n-renaming

bijective linear function . . .

bijective a�ne function
. . .

. . . 1

Figure 1: Typical Replacements

The following Proposition 2 guarantees that De�nition 1 respects the way we identi�ed

Boolean functions (it states that the introduction of dummy variables does not change the

equivalence notions):

( . . . ) = ( . . . . . . ) ( . . . )

= ( . . . . . . )

An equivalent de�nition of the cardinality equivalence relation is given the following way:

Let ( . . . ) be given. Then the the cardinality [0 1] of is de�ned to be the

number

2 ( . . . ) 0 1 : ( . . . ) = 1

It is easy to see that for two Boolean functions it holds = if and only if

.

An a�ne function can be represented as a list of replacements ( ( )

. . . ( )), where each ( ) is of the form . . . or . . . 1.

For the more special operations this representation is even easier, for example, the list

( ) describes in an obvious way an n-renaming on . The

table in Figure 1 summarizes these representations. Remember that all operations have to

be bijective.

Let be four di�erent variables. Let be the three Boolean

functions described by the formulas , , and , respectively. Note

that the three Boolean functions are pairwise di�erent. Let : be the renaming

represented by the list ( ). We have = ( ) which

shows that and are isomorphic. Let be the n-mapping : represented by

the list ( ). witnesses that and are negation

4
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( ) ( ) ( ) ( ) ( )
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1 1 1 1 1

Figure 2: Partitions induced by the equivalence relations

equivalent, i.e., = ( ). The n-renaming = witnesses that and are congruent,

i.e., = ( ). Let : be the bijectice linear function represented by the list

( ). Then it is easy to see that = ( ), therefore and are

linear equivalent.

In Figure 2 the Boolean functions which depend on at most two variables and

are grouped according to the �ve equivalence-relations , , =, , and . The

nonimplications of the following Proposition 3 can all except the last easily be veri�ed by

this table.

=

The equivalence relations above were considered already in the previous century, especially

the relation of being congruent (in our terminology) received much attention since then,

see the second part of the References. The best overview about the de�nitions and results

maybe found in the papers of Harrison [Ha1964, Ha1971]. It should be remarked that

there does not seem to be a standard terminology, so we felt free to choose our own

symbols and names. People studying these equivalence relations were not interested in the

computational complexity of the relations. Instead, they were interested in determining

the number and the size of the equivalence classes when only a �nite number of variables
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Some Motivation for Boolean Congruence.

C
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F x ; ; x n F
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F t F t F �

� x c i ; ; n

n

F N;E; �

N n E

t; t V

c ; ; c ; c ; ; c i ; ; n

c c c c j i � N

t F t

congruent

-dimensional geometrical Boolean cube representing

-dimensional graphical

Boolean cube representing

=

=

Figure 3: Natural Implications of the form = .

are involved, see Figure 2. The mayor breakthrough was achieved by Polya in [Po1940]

who applied his famous general combinatorial result from [Po37] to the special case of

congruence of Boolean functions.

Justifying its name, the Boolean con-

gruence relation will easily be interpreted as a geometrical congruence problem, remember

that two sets of points in IR are called if there is a distance-preserving function

IR IR which maps one set of points bijectively to the other. Let a Boolean function

( . . . ) be given. The is de-

�ned to be the subset of IR which consists the tuples = ( . . . ), where each is

either 0 or 1, such that that ( ) = 1, where ( ) is de�ned to be the value ( ) for a

total assignment which maps to IR for each 1 . . . . See Figure 4 for

this de�nition, also Figure 5 may give some intuition. The Boolean congruence relation

will also be interpreted as a graph isomorphism problem: Let the

be the labeled undirected graph ( ) de�ned as follows.

The set of nodes consists of the 2 di�erent -tuples from . The set of edges

consists of the pairs ( ) of tuples which have Hamming distance 1, i.e. is the set of

(unordered) pairs (( . . . ) ( . . . )) for which there is exactly one 1 . . .

such that = , and = for all = . The labeling function : maps a tuple

to the value of ( ). See Figure 5 for this construction. The following proposition

is proven in a straightforward way.
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a b c

a F G

b n F G

c n F G

e p e x; y p x; y
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For two Boolean functions and the

following statements , , are equivalent.

and are congruent.

The -dimensional geometrical Boolean cubes representing and are congruent.

The -dimensional graphical Boolean cubes representing and are isomorphic.

induced by a preorder

( )

Figure 4: Two 2-dimensional geometrical Boolean cubes which are congruent

(000) (100)

(010) (110)

(001) (101)

(011) (111)

(000) (100)

(010) (110)

(001) (101)

(011) (111)

Figure 5: Two 3-dimensional graphical Boolean cubes which are isomorphic

= ( . . . ) = ( . . . )

( ) ( ) ( )

( )

( )

( )

Say that an equivalence relation is if ( ) ( ( )

and ( )). For example, the equivalence relation is induced by the preorder .

Borchert and Ranjan [BR93] show that the equivalence relations and = are induced

by two preorders which express that one Boolean function is the (monotone) projection

of the other, see [We87]. Considered as computational problems on formulas these two

preorders are � -complete, see [BR93]. Note the analogy to the isomorphism relation on

graphs: it is induced by a preorder, namely the subgraph isomorphism relation which as a

computational problem is NP-complete, see [GJ78], p. 202.
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A B

h w A h w B w

; x ; x ;

f

f f x ; ; x n

f f g f g

f g x x x x

f; g

f g f g

f; g f g

f; g f g

f; g f g

f; g f g

f; g f g

f; g f g

f; g f g

p-m-reducible p-m-equivalent polyno-

mial time many-one reducible polynomial time many-one equivalent

equivalent

a is -complete, b is -complete.

The paper studies the complexity of the equivalence relations de�ned in the previous chap-

ter when they are considered as computational problems. Karp [Ka72] introduced the

polynomial-time many-one reducibility: is reducible to i� there is a polynomial time

computable function such that ( ) for all . Garey, Johnson [GJ78]

and Papadimitriou [Pa94] give an overview on this and other standard notions from com-

plexity theory. The notions and are abbrevations for

and , respectively. The

symbols for these relations will be as usual and , respectively. The completeness

and hardness notion will always refer to .

In order to make relations on Boolean functions computational problems we will repre-

sent Boolean function by formulas using the constants 0 1, the variables . . ., 1-ary

negation ( ), and 2-ary conjunction ( ), disjunction ( ), implication ( ), equivalence

( ), and parity ( ). In the obvious way each formula describes a Boolean function

= ( . . . ) where is a variable index larger then the largest index of a variable

occurring in . Say that the formulas and are , written , if they describe

the same Boolean function, i.e. = , for example ( ) . We will use

some natural way to encode formulas as words on some �xed �nite alphabet �. Let

be the set of all encoded formulas. In order to handle relations let . . . be some usual

pairing function on � . For the details concerning formulas and the pairing function see

for example [Pa94].

For any of the equivalence relations in De�niton 1 we will transfer the notion from

the Boolean functions to the representing formulas, i.e. for two formulas we write

if .

The uniform de�nitions of the computational problems we consider are the following.

Figure 6 gives a summary of the terminology concerning the equivalence relations.

= (the Boolean equivalence problem)

= (the Boolean isomorphism problem)

= (the Boolean negation equivalence problem)

= = (the Boolean congruence problem)

= (the Boolean linear equivalence problem)

= (the Boolean a�ne equivalence problem)

= (the Boolean cardinality equality problem)

The problems and can be shown to be complete for well-known classes (for the

other problems we will not be able to show this). The class CP was introduced in [Wa86],

the class is known to be in PSPACE and to include both NP and co-NP but it is not known

to be in the Polynomial Hierachy.

( ) co-NP ( ) CP

8
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Proof.
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TAUT

TAUT BI BNE BC BLE BAE

f � f �
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f g f f;

A f f A

f f; x

x A f x ; ; x
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x ; x ; x x f x ; ; x g x ; ; x
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x

x f g x ; ; x ; x

h h f g

h A

f; g h

h h;

i f

f i f;
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i

equivalence (identity function)

isomorphism renaming

negation equivalence n-mapping

congruence = n-renaming

linear equivalence bijective linear function

a�ne equivalence bijective a�ne function

cardinality equivalence any bijective function

Figure 6: Summarized terminology

(a) The tautology problem = : ( ) = 1 is known to be

co-NP-complete. The problem is p-m-equivalent to since

and 1 .

(b) The problem = = is known to be complete for CP. is reducible

to by the reduction function which maps a formula to the pair , note that

= . is reducible to the following way: given two formulas ( . . . ) and

( . . . ), consider the following formula ( . . . ):

( ( . . . )) ( ( . . . ))

For 2 values of ( . . . ) the formula ( . . . ) is true, thus exactly 2 tuples

( . . . ) satisfy ( . . . ). Further 2 (1 ) of the tuples ( . . . )

satisfy ( . . . ) and exactly 2 (1 ) of the tuples satisfy ( . . . ).

Since the �rst half of the formula is satis�ed only when = 1 while the second half

is satis�ed only when = 0, in total 2 (1 + ) of the tuples ( . . . )

satisfy , with other words = . By this expression is obvious that =

if and only if = . Therefore, is reducible to by the reduction function which

maps to .

co-NP �

The function 1 is a many-one reduction from the tautology problem

to each , , , and . The reduction is veri�ed by the obser-

vation that any bijective function maps tautologies to tautologies, i.e.,

1 ( , , and respectively).

Membership of the problems in � is witnessed by the following algorithm: for a formula

( . . . ) �rst guess a representation list ( ( ) . . . ( )) representing a

renaming (n-mapping, n-renaming, bijective linear function, bijective a�ne function) ,

9
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and are p-m-equivalent.

n
n

n

n

n

n

n n

n n

n

n k

m

n

n n

n n n

n n n

m k m k m k

m k m k m k

k k

n n

k k n n n

k k

C

BI BNE BC BLE BAE

Theorem 7 BI BC

Proof. BI BC

BC BI

BI BC

BC BI

� ^ ^ ^ _ : ^ : ^ : ^

� ^ ^ ^ _ : ^ : ^ : ^

�

h i 2 () h i 2

� �

h i 2 () h i 2

h

i

� ^ ^ � ^ _

� ^ ^ � ^ _

� () � � �

:

:

:

: � )

�

1 1

1

1 2

1 2 1 2 3 4 5

1 2 3 4 5 1 1 2 3 1

1 2 3 4 5 1 1 2 3 1

1 2

1 2 3 4 5

1 2 3 4 5

1 2

1 2 3 4 5

1

1 1

1 1 1

1 1 1

1 2 2

1 1

1 1 1

x ; ; x f x ; ; x

f i x ; ; i x

f g

x ; x ; ; x c d

x ; x ; ; x y ; y ; y ; y ; y

c y y y y y x x y y y f x ; ; x ;

d y y y y y x x y y y g x ; ; x :

n x ; x ; ; x

y ; y ; y ; y ; y

c d

c; d c; d

y ; y ; y ; y ; y n

x ; x ; ; x n x

x c d f g

y ; y ; y ; y ; y c d

f g f; g c; d

f x ; ; x ;

g x ; ; x y ; ; y z n c; d

c x y x y z f x ; ; x

d x y x y z g x ; ; x

f g c d f g i c d

j
j z z j z z

j x x j y y i x x

j x y j y x i x x

y x

c d c x ; ; x ; y ; ; y ; z

x y k ; ; n c x ; ; x ; y ; ; y ; z f x ; ; x

z x y k ; ; n f g

c d

see Figure 1. Then check for all assignments ( . . . ) from if ( . . . ) and

( ( ) . . . ( )) evaluate to the same value.

On the following pages the complexities of the problems , , , and

will be compared with each other.

One obtains a reduction from to as follows: Given two formulas and

depending on . . . , the reduction constructs two new formulas and in the old

variables . . . and the new additional variables :

= (( + + + + 4) . . . ) ( ( . . . ))

= (( + + + + 4) . . . ) ( ( . . . ))

The conjunctive normal forms of both formulas contain exactly �ve monomials of de-

gree + 4, namely the conjunctions of all variables . . . and four of the vari-

ables . Since all variables in these monomials appear in positive form, every

n-renaming witnessing = has to preserve all variables in the positive form and thus is

already a renaming of the variables. Therefore .

Furthermore belong to exactly four monomials of degree + 4 while

. . . belong to all �ve monomials of degree +4. So it follows that each has to

be mapped to some other and any renaming witnessing witnesses already :

to see this �x the values of to 0 and the so restricted functions of and

are just and . Therefore .

A reduction from to is given the following way. Let a pair of formulas ( . . . )

( . . . ) be given. Let . . . and denote + 1 new variables and de�ne by

= ( ) . . . ( ) ( ( . . . ))

= ( ) . . . ( ) ( ( . . . ))

Now it is shown that = . If = via a n-renaming then via the

following :
( ) = and ( ) =

( ) = and ( ) = if ( ) =

( ) = and ( ) = if ( ) =

So the main idea is that the represent and so the negation is removed by introducing

a new variable. The form of and enforces, that ( . . . . . . ) = 1 only if

= for = 1 . . . and on the other hand, ( . . . . . . ) = ( . . . )

if = 0 and = for = 1 . . . . >From this thoughts it follows that = =

.

10
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1 1

is p-m-reducible to .

is p-m-equivalent to .

k k
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k
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m k m

n n n

n n

n n n

n n n

n n n n

i

i i i

n
k n

h m k m k

m k m k

m m

m
k m k

k m k

�

�

:

: :

�

h i

h i

: _ _ : _ _ : _ _

� ^ ^ � ^ _

� () �

f

8 6 g

h i ! h ^ ^ i

h i 2

h ^ ^ i 2

� ) ^ � ^

�

� � � �

� � � � � �

Theorem 8 BNE BI

Proof. BNE BI BC

BI

BC BI

C

u

Theorem 9 BAE BLE

Proof. BAE BLE

BAE

BLE

c d j v w c

c v w v w

c v x w y k

d c d j j c

d k m

j x x j y y j x y j y x

i x
x j x x

x j x y

f x ; ; x c x ; ; x ; x ; ; x ; g

d i f g

f x ; ; x ; g x ; ; x n

y ; y ; z ; ; y ; y ; z ; z c; d

c z y y z z y y z z z y y

z z z y y y y z f y ; ; y

d g f g c d

z

y y y

x a ; ; a

h k a x ; x x x

x ; x a ; a i

i

f; g x f; x g x

f g f; g

x f; x g

f g x f x g

i f g i y z

x

j y
z z i y z z

x z z i y z z

For the other way around assume that via . Call and -incompatible i�

there is no satisfying assignment for with = 1 and = 1. One can see that and

are -incompatible i� = and = for some ; the same holds for the corresponding

notion of -incompatibility. If via then has to map any pair of -incompatible

variables to a pair of -incompatible variables: so for each there is an such that either

( ) = and ( ) = or ( ) = and ( ) = . So one immediately obtains

the n-renaming

( ) =
if ( ) = ;

if ( ) = .

>From ( . . . ) = ( . . . . . . 0) and the corresponding equality for

versus it follows that witnesses = .

The following p-m-reduction from to is similar to the one from to

. Let a pair of formulas ( . . . ) ( . . . ) be given. Choose 3 + 1 di�erent

variables . . . and construct the pair of formulas where

= ( )( ) ( )( ) . . . . . . ( )( )

. . . ( ) . . . ( ) ( ( . . . ))

and similarly depends on . It holds that . The veri�cation is done

the same way like for the reduction from to , where here the variables guarantee

that is mapped only to or .

Consider to be a GF(2) vector space. Let [ ] denote the linear subspace ( . . . ) :

( = ) [ = 0] and [ ] the subspace generated by [ ] and [ ] and so on. Fur-

thermore [ ] denotes the projection ( ) on the given variables. Note that if

is a Boolean linear isomorphism, then maps subspaces to other linear subspaces of the

same dimension and cardinality.

The m-reduction from to is where is a

variable that neither occurs in nor in . It remains to be shown that the

i� :

= :

There is an a�ne mapping witnessing = . Let the and denote variables

other than and let

( ) =
. . . if ( ) = . . . ;

. . . if ( ) = 1 . . . .

11
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n n
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m
k m k
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n n n

n

n

n n

n

n

n
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1 1

1 1 1

1 1

1 1

a�

lin a�

lin

1 1

1 1

1 1 1

1

1

1 +1 1 +2

1

1 +1

1 +2

lin a�

lin

a�

a� lin

a�
+1 +2

^

^ ^

^

^ � ^

^ � ^

^ � ^ ) �

^ � ^

� � � �

� � � � � �

^ ^

� �

! f g � � ! f g

2

2 [

: 2 � � � [ [

h i ! h i

� ) �

� 2 2 �

� �

2

2 [

[ [ [ [ 2 :

: : �

� ) �

� [ [

:

j j j [ [ j j j j j

x i y j y x f ; y ; ; y f y ; ; y

g i y ; ; i y x g ; j y ; ; j y x x f ; y ; ; y

x g ; j y ; ; j y j y ; ; j y

x f j x g

i j j

x f x g

x f x g f g

j x f x g y z

x

i y
z z i y z z

z z i y x z z

f y ; ; y x f ; y ; ; y x g ; j y ; ; j y

g i y ; ; i y i j

f; g x ; ; x

y ; ; y z ; ; z X n

x ; ; x Y n

y ; ; y Z n

z ; ; z X; Y; Z

X Y Z

f X ; F X Y Z ;

F �

f � � X

f � Y Z

f � W W X Y Z X Y Z

g G f; g F;G

f g F G

i f g i f g � X � Y Z

j � � i � � j i j j

X X � X G j � G i � g i � f � F �

� Y Z j � � F � f g G � j

X Y Z X Y Z j W W � W F � f

G j � g f j F G

F G f g

i F G F f X Y Z

f W

W > X Y Z F G f g

For = 1, ( ) = ( ) and therefore ( )(1 . . . ) = ( . . . ) =

( ( ) . . . ( )) = ( )(1 ( ) . . . ( )). For = 0, ( )(0 . . . ) =

0 = ( )(0 ( ) . . . ( )) holds independently of the values ( ) . . . ( ).

Thus ( ) = .

Since can be transformed in the same way to , the new linear mapping is

invertable and .

= :

Let be a linear mapping witnessing . Let the and denote

variables other than and let

( ) =
. . . if ( ) = . . . ;

1 . . . if ( ) = . . . .

Note that ( . . . ) = ( )(1 . . . ) = ( )(1 ( ) . . . ( )) =

( ( ) . . . ( )), so the equivalence follows. Again is invertable since is in-

vertable.

For the other way round consider given functions which have the variables . . . .

Now new variables . . . and . . . are generated; further let be the -dimen-

sional Boolean vectorspace generated by the basis . . . , be the + 1-dimensional

vectorspace generated by . . . and be the +2-dimensional vectorspace generated

by . . . . are identi�ed with the corresponding subsets of the vectorspace

. Let denote the shared 0-vector of all four vectorspaces. Now the functions

: 0 1 is extended to a function : 0 1 as follows:

( ) =

( ) if ;

( ) if ;

( ) otherwise, i.e., where = .

Similarly is extended to . Now it has to be shown that the mapping is an

p-m-reduction from to . Obviously the mapping is polynomial time computable.

= :

Let witness that . Since is linear, ( ) = ( ). Given , ,

let ( ) = ( ) . is linear and thus a�ne. Since is bijective, so is .

maps to , therefore for all , ( ( )) = ( ( )) = ( ( )) = ( ) = ( ).

If then ( ) = and ( ) = ( ) = ( ) = ( ). Since maps

to , also maps to . So for , ( ) = ( ) and

( ( )) = ( ) = ( ). witnesses that .

= :

Let witness that . takes the value ( ) only on , that means

on at most 2 +2 + 2 arguments while it takes the value ( ) at least on .

Since but = it follows that ( ) = ( ).

12
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Theorem 10 BI BLE

Proof.
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p
m

n
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n

k k; k;n k

k m k;h m;h

k k; k;n

k n

k k; k;n

m m; m;n
n n n

n

n
n

k k; k;n m m; m;n k m

n n

n k k; k;n k

n k m k m

n n

n n

Z n F f G

i Z f g i Z n

i Z Z Y Z i Y i Z

i Y Y Y Z

i i Y i Z i i

U X i X U X i U

j X X

f � g j � � X � = U i � W

f � G i � f 
 i 
 j � j � = i U


 W g j � G i 
 F 
 f � j

f g

f; g x ; ; x

k ; ; n y ; ; y c f

c

f x ; ; x

x ; y ; ; y x k

d g f g c d i f g

i i c d c d

k m i x x i y y

j c d

f g c x ; y ; ; y

x x ; ; x d

j x ; j y ; ; j y

x ; y ; ; y d

< n >

x ; ; x m

j x ; y ; ; y x ; y ; ; y i x x

m a ; ; a x ; ; x

A a ; ; a k x ; y ; ; y a

b ; ; b a b i x x i

f g f a ; ; a g b ; ; b j j

A a ; ; a A b ; ; b

is a + 2-dimensional linear subspace where takes the value ( ). So must

take on ( ) again the value ( ) = ( ) and since ( ) is an a�ne +2-dimensional

space, ( ) = . Since intersects in one point, ( ) intersects ( ) also in one

point. From this information it can be deduced that ( ) = . Since ,

( ) ( ) ( ) and it follows that ( ) = , i.e., is linear.

Let = ( ). is a linear subspace of . The restriction of to can

be extended to a linear bijective function : . Now assume by the way of

contradiction that ( ) = ( ( )) for some . Then . Thus ( ) and

( ) = ( ( )) = ( ). Further there is with ( ) = ( ). Since ( ) ( ),

and ( ( )) = ( ( )) = ( ) = ( ). So such an does not exist and

witnesses .

Therefore .

Consider the formulas with the variables . . . . Now introduce for each

= 1 . . . the new variables . . . . Let derive from by the formula

( ) =

( ) if [ . . . ];

0 if [ . . . ] [ ] for some ;

1 otherwise;

and let similarly derive from . Now one shows that i� . If witnesses

then can be extended such that witnesses which immediately implies : For

each �nd the with ( ) = and let ( ) = . The veri�cation that this works

is left to the reader.

So the interesting case is to translate a Boolean linear equivalence witnessing

into a renaming witnessing . takes on any subspace [ . . . ] at most two

1s: they appear on the subspace [ ] which is the intersection with [ . . . ]. Thus

takes on the subspace [ ( ) ( ) . . . ( )] at most two 1s. If this subset contains

non-zero vectors in at least two subspaces of the form [ . . . ], then maps at

most 2 + 2 + 1 2 2 (w.l.o.g. 1) of its elements to 0: There are at most

2 + 1 vectors in any nontrivial union of orthogonal generating subspaces and at most

2 vectors in [ . . . ]. From this contradiction it follows that there is an such that

maps [ . . . ] to [ . . . ]. So it is suitable to de�ne ( ) = for

this . For any assignment ( . . . ) for the variables . . . let

( . . . ) = : ( ) [ [ . . . ] = = 1]

and ( . . . ) be the tuple which satis�es that = whenever ( ) = . Now

witnesses i� ( . . . ) = ( . . . ). Note that by the linearity of , maps each

set ( . . . ) to ( . . . ). Now the veri�cation needs the following case-distinction:

13
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is p-m-reducible to .

If the Polynomial Hierarchy does not collapse then , , ,

and are not in .

is p-m-reducible to .

, , and are not in unless is in .

0 0

u u

u u

u u

u u

u u u

u u u

u

USAT

USAT

USAT BNE BC

Proposition 11 USAT BNE

Corollary 12 BNE BI BC BLE

BAE

GI

Proposition 13 GI BI

Proof.

Corollary 14 BI BC BLE BAE GI

a a f a ; ; a c d g b ; ; b

a a f a ; ; a

c A a ; ; a

d A b ; ; b

g b ; ; b

a a > f a ; ; a

c A a ; ; a

d A b ; ; b

g b ; ; b

a a

c A a ; ; a x ; ; x

a a > c A a ; ; a

x ; ; x A a ; ; a x ; ; x f a ; ; a

c A a ; ; a

d A b ; ; b

f

n f f

f x ; ; x f x ; ; x ; x x :

G V;E h

i V G v h v v

G G

h h

+ . . . + = 0: ( . . . ) = 1 ( ) = 1 ( ) = 1 ( . . . ) = 1;

+ . . . + = 1: ( . . . ) = 1

( ) = 1 for some ( . . . )

( ) = 1 for some ( . . . )

( . . . ) = 1;

+ . . . + 1: ( . . . ) = 1

( ) = 1 for all ( . . . )

( ) = 1 for all ( . . . )

( . . . ) = 1.

The existential and universal quanti�cation are due to the fact, that if + . . . + = 1

then ( ) = 0 for all ( . . . ) except the one which is also in [ . . . ] and

that if + . . . + 1 then ( ) = 1 for all ( . . . ) except the one which is

also in [ . . . ]. The ( . . . ) [ . . . ] takes the value ( . . . ). The

rest of the equivalence is due to the fact the the number of 1s which takes on ( . . . )

is equal to the number of 1s which takes on ( . . . ).

Blass and Gurevich [BG82] de�ned the problem = exactly one of the 2

�nite assignments to the variables which occur in evaluates to 1 and showed that

it is co-NP{hard. Chang and Kadin [CK90] showed that is not in co-NP unless

the Polynomial Hierarchy collapses. The following construction is a p-m-reduction from

to (and also to ):

( . . . ) ( . . . ) . . .

co-NP

For the de�nition of the Graph Isomorphism problem see [KST93]. R. Chang [BR93,

Prop. 2] obtained the following result:

Let for a graph = ( ) the formula be de�ned as follows: for every vertex

in choose a di�erent variable , and let := ( ). Now, it is not

di�cult to see that and are isomorphic if and only if the two Boolean functions

described by and are isomorphic.

co-NP co-NP

14
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Figure 7: Summary of the results

The stated results are summarized in Figure 7 where an arrow denotes the proven exis-

tence of a p-m-reduction between two problems (in the case of a class consider a complete

problem).

The automorphism problems which correspond to the equivalence relations de�ned in

this paper are studied in a forthcoming paper of B. Borchert and A. Lozano, it is shown

there that similar results holds like in the case of Graph Isomorphism versus Graph Auto-

morphism [KST93], e.g. the automorphism problems are p-m-reducible to the correspond-

ing isomorphism problems.

In this paper the following equivalence relations on Boolean functions were considered:

Boolean isomorphism, Boolean negation equivalence, Boolean congruence, Boolean linear

equivalence, and Boolean a�ne equivalence. The following results on their polynomial time
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